
SurrogateBenchmarks Documentation
Release 0.0.1dev

Katharina Eggensperger

December 12, 2014

Contents

1 What you need to run Surrogate Hyperparameter Optimization Benchmarks 3

2 Install 5
2.1 Preparing a virtualenv . 5
2.2 Install the Surrogate Benchmark Library . 6
2.3 Run a Surrogate Benchmarks . 6

3 Indices and tables 9

i

ii

SurrogateBenchmarks Documentation, Release 0.0.1dev

Contents:

Contents 1

SurrogateBenchmarks Documentation, Release 0.0.1dev

2 Contents

CHAPTER 1

What you need to run Surrogate Hyperparameter Optimization
Benchmarks

Surrogate Benchmark library Provides python script to build and use benchmarks

Ready-to-use benchmarks trained regression models, that can be used with the library

HPOlib To easily evaluate hyperparameter optimization experiments

3

SurrogateBenchmarks Documentation, Release 0.0.1dev

4 Chapter 1. What you need to run Surrogate Hyperparameter Optimization Benchmarks

CHAPTER 2

Install

2.1 Preparing a virtualenv

We recommend using a virtualenv, because (A) you can control the version of each python package, (B) installing
and removing packages becomes easy as (C) you don’t need sudo rights and (D) it becomes harder to mess up up the
python installation on your system.

1. Get virtualenv, then load a freshly created virtualenv. (If you are not familiar with virtualenv, you might want to
read more about it)

pip install virtualenv
virtualenv virtualSurrogates
source virtualSurrogates/bin/activate

2. Install numpy, scipy, matplotlib, as this doesn’t work through setup.py.

easy_install -U distribute
pip install numpy==1.8.1
pip install scipy==0.14.0
pip install matplotlib
pip install scikit-learn==0.15.1
pip install matplotlib

This may take some time. Afterwards you can verify having those libs installed with:

pip freeze

argparse==1.2.1
matplotlib==1.4.2
mock==1.0.1
nose==1.3.4
numpy==1.8.1
pyparsing==2.0.3
python-dateutil==2.3
pytz==2014.10
scipy==0.14.0
six==1.8.0
wsgiref==0.1.2
scikit-learn==0.15.1
matplotlib==1.4.2

5

http://www.virtualenv.org/en/latest/virtualenv.html#installation
http://www.virtualenv.org/en/latest/virtualenv.html)

SurrogateBenchmarks Documentation, Release 0.0.1dev

2.2 Install the Surrogate Benchmark Library

1. Clone the repository:

git clone https://github.com/KEggensperger/SurrogateBenchmarks.git
cd SurrogateBenchmarks

2. Run setup.py

python setup.py install

This will install tools, scripts and some requirements (networkx, pyparsing, and python-daemon).
This might take a while. When your environment is ready it could/should look like this:

pip freeze
Surrogates==Nan
argparse==1.2.1
decorator==3.4.0
lockfile==0.10.2
matplotlib==1.4.2
mock==1.0.1
networkx==1.9.1
numpy==1.8.1
pyparsing==2.0.3
python-daemon==1.6.1
python-dateutil==2.3
pytz==2014.10
scikit-learn==0.15.1
scipy==0.14.0
six==1.8.0
wsgiref==0.1.2

3. If the installation was successful you can run some tests. NOTE: Some tests will fail, if you are using different
versions of numpy, scipy, and/or scikit-learn. This is not problematic as some of the tests only assert that you
retrieve exactly the same results as me and as the numeric results only slightly differ.

python setup.py test

2.3 Run a Surrogate Benchmarks

The surrogate benchmark runs as an independent daemon process and is connected to the optimizer via a local socket.
For debugging reasons it is also possible to start this process without creating a daemon. To interact with the daemon
we have two scripts:

daemonize_benchmark.py as the name says starting a daemon, that listens to a local socket. A daemon runs
till it reaches it timeout limit, which is set to 1200 sec. This means that the daemon terminates after waiting
for more than 1200secs without receiving a single request. daemonize_benchmark.py can also be used to
stop a running daemon before the timelimit is reached.

daemon_whisperer.py can talk to the daemon and is used to request performance predictions from the surrogate
benchmark. This script implements the same interface as all the HPOlib benchmarks. It also implements a
**fallback functionality*, which tries to resurrect the daemon process if it is not running.

Example 1 and 2 will show how to use these scripts

6 Chapter 2. Install

SurrogateBenchmarks Documentation, Release 0.0.1dev

2.3.1 Example 1 - Starting a Surrogate Benchmark

1. Download a trained regression models, e.g. a KNN model, which uses a one-hot encoding and is trained on all
data. You can get it from automl.org

wget www.automl.org/downloads/surrogates/onlineLDA_surrogates.tar.gz
tar -xf onlineLDA_surrogates.tar.gz
file ‘pwd‘/onlineLDA/models/ENCODED_onlineLDA_all_KNN
MODELNAME=‘pwd‘/onlineLDA/models/ENCODED_onlineLDA_all_KNN

2. Get the corresponding file describing the searchspace: params.pcs

file ‘pwd‘/onlineLDA/smac_2_06_01-dev/params.pcs
PCSFILE=‘pwd‘/onlineLDA/smac_2_06_01-dev/params.pcs

3. Start a daemon benchmark:

mkdir ~/socketdir
SOCKETDIR=~/socketdir
daemonize_benchmark.py --surrogateData ${MODELNAME} --pcs ${PCSFILE} --socket ${SOCKETDIR}/something --dry

By adding --dry we do not start an actual daemon, but just print a python command, which we can
run to see the surrogate benchmark work

<output of previous command>

Now the surrogate benchmark is running and listens for requests on the local socket in /socket-
dir/something. When this works, the benchmark outputs its regression model (which is wrong for
this only one model, saying it is an SVM, but it is indeed a KNN :-)) and the time left till it terminates.

4. In a different terminal, you can send a request:

cd ..
<new terminal>
source virtualSurrogate/bin/activate
daemon_whisperer.py --socket ~/socketdir/something --fold 0 --folds 1 --params -Kappa 0.75 -Tau 512 -S 8192

Which should give you the following output:

Found a socket on /home/eggenspk/socketdir/something
Requesting: --fold 0 --folds 1 --params -Kappa 0.75 -Tau 512 -S 8192..........
Answer: 1416.1125104
Result for ParamILS: SAT, 0.002427, 1, 1416.112510, -1, I’m not a daemon

Whereas in the benchmark’s terminal you will find:

Got a connection: <socket._socketobject object at 0x7f0c0ea8ff30> on
Received data: --fold 0 --folds 1 --params -Kappa 0.75 -Tau 512 -S 8192
CLEAN {’Tau’: 512, ’S’: 8192, ’Kappa’: 0.75}
AFTER Unlogging:
{’Tau’: 512, ’S’: 8192, ’Kappa’: 0.75}
{}
Requesting performance for: [0, 512, 8192, 0.75]
Encoding categorical features using a one hot encoding scheme
My answer: 1416.1125104

If you are missing a parameter or otherwise kill the script you might kill the surrogate process. In such a
case, you need to manually delete the socket in socketdir/something and start over at step 3.

5. You can now play around with the surrogate and send different requests. You can follow the requests in both
terminal windows. When you are finished you can either manually kill the benchmark process with ctr+C or
send the request to stop the process:

2.3. Run a Surrogate Benchmarks 7

SurrogateBenchmarks Documentation, Release 0.0.1dev

..code:: bash

daemonize_benchmark.py –socket ~/socketdir/something –stop –pcs pwd/onlineLDA/smac_2_06_01-
dev/params.pcs

Next you can run your surrogate benchmark as a daemon process.

2.3.2 Example 2 - Starting a daemon

1. Again run the command from above, but without --dry. You won’t see any output, but you can verify
with ps -ef | grep daemon_benchmark that your daemon is running. If not you can check ~/socket-
dir/somethingdaemon_log.txt for errors.

daemonize_benchmark.py --surrogateData ${MODELNAME} --pcs ${PCSFILE} --socket ${SOCKETDIR}/something

2. Now you can send the same request as before (in the same terminal):

daemon_whisperer.py --socket ~/socketdir/something --fold 0 --folds 1 --params -Kappa 0.75 -Tau 512 -S 8192

Which should give you the same output as before.

3. The benchmark output can be found in socketdir/somethingdaemon_log.txt

4. To stop the daemon run daemonize_benchmark.py --socket socketdir/something --pcs
space.pcs --stop

8 Chapter 2. Install

CHAPTER 3

Indices and tables

• genindex

• modindex

• search

9

	What you need to run Surrogate Hyperparameter Optimization Benchmarks
	Install
	Preparing a virtualenv
	Install the Surrogate Benchmark Library
	Run a Surrogate Benchmarks

	Indices and tables

