
Super State Machine Documentation
Release 2.0.2

Szczepan Cieślik

March 13, 2017

Contents

1 Super State Machine 3
1.1 Features . 3

2 Installation 7

3 Usage 9
3.1 State machine . 9
3.2 Options . 12
3.3 State machine as property . 14
3.4 utils . 15

4 API 17
4.1 machines . 17
4.2 utils . 17
4.3 extras . 17
4.4 errors . 17

5 Contributing 19
5.1 Types of Contributions . 19
5.2 Get Started! . 20
5.3 Pull Request Guidelines . 20
5.4 Tips . 21

6 Credits 23
6.1 Development Lead . 23
6.2 Contributors . 23

7 History 25
7.1 2.0.2 (2017-03-13) . 25
7.2 2.0.1 (2017-02-27) . 25
7.3 2.0 (2016-09-26) . 25

8 1.0 (2014-09-04) 27

9 0.1.0 (2014-08-08) 29

10 Indices and tables 31

Python Module Index 33

i

ii

Super State Machine Documentation, Release 2.0.2

Contents:

Contents 1

Super State Machine Documentation, Release 2.0.2

2 Contents

CHAPTER 1

Super State Machine

Super State Machine gives you utilities to build finite state machines.

• Free software: BSD license

• Documentation: https://super_state_machine.readthedocs.org

• Source: https://github.com/beregond/super_state_machine

Features

• Fully tested with Python 2.7, 3.3, 3.4 and PyPy.

• Create finite state machines:

>>> from enum import Enum

>>> from super_state_machine import machines

>>> class Task(machines.StateMachine):
...
... state = ’draft’
...
... class States(Enum):
...
... DRAFT = ’draft’
... SCHEDULED = ’scheduled’
... PROCESSING = ’processing’
... SENT = ’sent’
... FAILED = ’failed’

>>> task = Task()
>>> task.is_draft
False
>>> task.set_draft()
>>> task.state
’draft’
>>> task.state = ’scheduled’
>>> task.is_scheduled
True
>>> task.state = ’process’
>>> task.state

3

https://super_state_machine.readthedocs.org
https://github.com/beregond/super_state_machine

Super State Machine Documentation, Release 2.0.2

’processing’
>>> task.state = ’wrong’

*** ValueError: Unrecognized value (’wrong’).

• Define allowed transitions graph, define additional named transitions and checkers:

>>> class Task(machines.StateMachine):
...
... class States(Enum):
...
... DRAFT = ’draft’
... SCHEDULED = ’scheduled’
... PROCESSING = ’processing’
... SENT = ’sent’
... FAILED = ’failed’
...
... class Meta:
...
... allow_empty = False
... initial_state = ’draft’
... transitions = {
... ’draft’: [’scheduled’, ’failed’],
... ’scheduled’: [’failed’],
... ’processing’: [’sent’, ’failed’]
... }
... named_transitions = [
... (’process’, ’processing’, [’scheduled’]),
... (’fail’, ’failed’)
...]
... named_checkers = [
... (’can_be_processed’, ’processing’),
...]

>>> task = Task()
>>> task.state
’draft’
>>> task.process()

*** TransitionError: Cannot transit from ’draft’ to ’processing’.
>>> task.set_scheduled()
>>> task.can_be_processed
True
>>> task.process()
>>> task.state
’processing’
>>> task.fail()
>>> task.state
’failed’

Note, that third argument restricts from which states transition will be added to allowed (in case of process,
new allowed transition will be added, from ‘scheduled’ to ‘processing’). No argument means all available states,
None or empty list won’t add anything beyond defined ones.

• Use state machines as properties:

>>> from enum import Enum

>>> from super_state_machine import machines, extras

4 Chapter 1. Super State Machine

Super State Machine Documentation, Release 2.0.2

>>> class Lock(machine.StateMachine):

... class States(Enum):

...

... OPEN = ’open’

... LOCKED = ’locked’

...

... class Meta:

...

... allow_empty = False

... initial_state = ’locked’

... named_transitions = [

... (’open’, ’open’),

... (’lock’, ’locked’),

...]

>>> class Safe(object):
...
... lock1 = extras.PropertyMachine(Lock)
... lock2 = extras.PropertyMachine(Lock)
... lock3 = extras.PropertyMachine(Lock)
...
... locks = [’lock1’, ’lock2’, ’lock3’]
...
... def is_locked(self):
... locks = [getattr(self, lock).is_locked for lock in self.locks]
... return any(locks)
...
... def is_open(self):
... locks = [getattr(self, lock).is_open for lock in self.locks]
... return all(locks)

>>> safe = Safe()
>>> safe.lock1
’locked’
>>> safe.is_open
False
>>> safe.lock1.open()
>>> safe.lock1.is_open
True
>>> safe.lock1
’open’
>>> safe.is_open
False
>>> safe.lock2.open()
>>> safe.lock3 = ’open’
>>> safe.is_open
True

1.1. Features 5

Super State Machine Documentation, Release 2.0.2

6 Chapter 1. Super State Machine

CHAPTER 2

Installation

At the command line:

$ easy_install super_state_machine

Or, if you have virtualenvwrapper installed:

$ mkvirtualenv super_state_machine
$ pip install super_state_machine

7

Super State Machine Documentation, Release 2.0.2

8 Chapter 2. Installation

CHAPTER 3

Usage

State machine

State machine allows to operate on state, where allowed states are defined by states enum.

Remember that states enum must be unique.

Meta

All options for state machine are passed through Meta class, like below:

>>> class Task(machines.StateMachine):
...
... class States(Enum):
...
... DRAFT = ’draft’
... SCHEDULED = ’scheduled’
... PROCESSING = ’processing’
... SENT = ’sent’
... FAILED = ’failed’
...
... class Meta:
...
... named_checkers = [
... (’can_be_processed’, ’processing’),
...]

You can see that about only option named_checkers is provided. In fact it is not necessary to provide any option
at all. For full reference see Options.

Word about value translation

Whenever you will be passing enum value or string to represent state (in meta, in options, in methods is_*, set_*
or can_be_*) remember that these values must clearly describe enum value.

For example in following case:

>>> class Lock(machine.StateMachine):
...
... class States(Enum):
...

9

Super State Machine Documentation, Release 2.0.2

... OPEN = ’open’

... OPENING = ’opening’

... LOCKED = ’locked’

... LOCKING = ’locking’

values that clear state open are string ’open’ and Lock.States.OPEN, but for opening state these are strings
’openi’, ’opening’ and Lock.States.OPENING. In other words you must provide as much information to
make it not necessary to guess end value. Otherwise AmbiguityError will be raised.

Simple case

In simplest case you just have to define States enum to definen what valid states are and start using it.

>>> from enum import Enum

>>> from super_state_machine import machines

>>> class Task(machines.StateMachine):
...
... class States(Enum):
...
... DRAFT = ’draft’
... SCHEDULED = ’scheduled’
... PROCESSING = ’processing’
... SENT = ’sent’
... FAILED = ’failed’

>>> task = Task()
>>> task.is_draft
False
>>> task.set_draft()
>>> task.state
’draft’
>>> task.state = ’scheduled’
>>> task.is_scheduled
True
>>> task.state = ’p’
>>> task.state
’processing’
>>> task.state = ’wrong’

*** ValueError: Unrecognized value (’wrong’).

Actual state as enum

You can also get actual state in enum form by property actual_state, or as_enum:

>>> task.actual_state
<States.DRAFT: ’draft’>
>>> task.as_enum
<States.DRAFT: ’draft’>

Transitions

In case when you want to define what proper transitions are, you need to define transitions option.

10 Chapter 3. Usage

Super State Machine Documentation, Release 2.0.2

>>> class Task(machines.StateMachine):
...
... class States(Enum):
...
... DRAFT = ’draft’
... SCHEDULED = ’scheduled’
... PROCESSING = ’processing’
... SENT = ’sent’
... FAILED = ’failed’
...
... class Meta:
...
... transitions = {
... ’draft’: [’scheduled’, ’failed’],
... ’scheduled’: [’failed’],
... ’processing’: [’sent’, ’failed’],
... }
... named_transitions = [
... (’process’, ’processing’, [’scheduled’]),
... (’fail’, ’failed’),
...]

In example above transitions option defines which transitions are valid - for example from that option we can
read that state can be switched to draft but only from scheduled or failed.

You can change state to desired one by generated methods like set_*, so if you want to change state of Task to
draft it is enough to call set_draft on instance of Task.

There is also named_transitions option. This is list of 3-tuples with name, desired state optional “from” states,
or 2-tuples with name and desired states. First line means that instance of task will have method called process
which will trigger change of state to process. It is like you would call method set_processing but sounds
better. Also all “from” states are added to list of valid transitions of Task.

Warning: In case you won’t provide third argument in tuple, it is considered that transition to that case is allowed
from ANY other state (like (’fail’, ’failed’) case). If you want just to add named transition without
modifying actual transitions table, pass as None as third argument.

... named_transitions = [

... (’process’, ’processing’, None),

... }

See also:

complete

Forced set (forced transition)

You can also use force_set which will change current state to any other proper state without checkint if such
transition is allowed. It may be seen as ‘hard reset’ to some state.

>>> task.force_set(’draft’)
>>> task.force_set(Task.States.SCHEDULED)

New in version 2.0.

3.1. State machine 11

Super State Machine Documentation, Release 2.0.2

Checkers

>>> class Task(machines.StateMachine):
...
... class States(Enum):
...
... DRAFT = ’draft’
... SCHEDULED = ’scheduled’
... PROCESSING = ’processing’
... SENT = ’sent’
... FAILED = ’failed’
...
... class Meta:
...
... named_checkers = [
... (’can_be_processed’, ’processing’),
...]

Each instance of state machine has auto generated set of checkers (which are properties) like can_be_*. In this case
checkers will be like can_be_draft, can_be_sent etc. If you want to have custom checkers defined, you can
either define them by yourself or pass as 2-tuple in named_checkers option. Tuple must have name of checker
and state to check, so in this case instance of Task will have property can_be_processed which will work like
can_be_processing (yet sounds better).

Getters

>>> class Task(machines.StateMachine):
...
... class States(Enum):
...
... DRAFT = ’draft’
... SCHEDULED = ’scheduled’
... PROCESSING = ’processing’
... SENT = ’sent’
... FAILED = ’failed’

Getters checks state, but checks one particular state. All of getters are properties and are named like is_*. If you
want to check if instance of Task is currently draft, just call instance.is_draft. This work just like calling
instance.is_(’draft’). This comes handy especially in templates.

Name collisions

In case any auto generated method would collide with already defined one, or if named transitions or checkers would
cause collision with already defined one or with other auto generated method, ValueError will be raised. In
particular name collisions (intentional or not) are prohibited and will raise an exception.

Options

states_enum_name

Default value: ’States’.

Define name of states enum. States enum must be present in class definition under such name.

12 Chapter 3. Usage

Super State Machine Documentation, Release 2.0.2

allow_empty

Default value: True.

Determine if empty state is allowed. If this option is set to False option initial_state must be provided.

initial_state

Default value: None.

Defines initial state the instance will start it’s life cycle.

complete

This option defines if states graph is complete. It this option is set to True then any transition is always valid. If this
option is set to False then state machine looks to states graph to determine if this transition should succeeed.

This option in fact doesn’t have default value. If isn’t provided and transitions neither named_transitions
options are not provided then it is set to True. If one or both options are provided this option is set to False (still,
only if it wasn’t provided in Meta of state machine).

transitions

Dict that defines basic state graph (which can be later filled up with data comming from named_transitions).

Each key defines target of transition, and value (which must be a list) defines initial states for transition.

... class Meta:

...

... transitions = {

... ’draft’: [’scheduled’, ’failed’],

... ’scheduled’: [’failed’],

... ’processing’: [’sent’, ’failed’],

... }

named_transitions

List of 3-tuples or 2-tuples (or mixed) which defines named transitions. These definitions affect states graph:

• If there is no third argument (2-tuple was passed) then desired transition is valid from all states.

• If there is None passed as third argument - the states will not be affected.

• Otherwise third argument must be list of allowed initial states for this transition. Remember that these transitions
will be added to state graph. Also other transitions defined in transitions option will still be valid for given
transition name.

... class Meta:

...

... transitions = {

... ’draft’: [’scheduled’, ’failed’],

... ’scheduled’: [’failed’],

... ’processing’: [’sent’, ’failed’],

... }

... named_transitions = [

3.2. Options 13

Super State Machine Documentation, Release 2.0.2

... (’process’, ’processing’, [’scheduled’]),

... (’fail’, ’failed’),

...]

In this case method process will change state to processing but transition is valid from three initial states:
scheduled, sent and failed.

named_checkers

List of 2-tuple which defines named transition checkers. Tuple consist of checker name and desired state. When called,
checher will check if state machine can transit to desired state.

... class Meta:

...

... named_checkers = [

... (’can_be_processed’, ’processing’),

...]

In example above property can_be_processed on instance will determine if state can be changed to state
processing.

State machine as property

Thanks to extras module you can use state machines as properties!

>>> from enum import Enum

>>> from super_state_machine import machines, extras

>>> class Lock(machine.StateMachine):

... class States(Enum):

...

... OPEN = ’open’

... LOCKED = ’locked’

...

... class Meta:

...

... allow_empty = False

... initial_state = ’locked’

... named_transitions = [

... (’open’, ’o’),

... (’lock’, ’l’),

...]

>>> class Safe(object):
...
... lock1 = extras.PropertyMachine(Lock)
... lock2 = extras.PropertyMachine(Lock)
... lock3 = extras.PropertyMachine(Lock)
...
... _locks = [’lock1’, ’lock2’, ’lock3’]
...

14 Chapter 3. Usage

Super State Machine Documentation, Release 2.0.2

... def is_locked(self):

... locks = [getattr(self, lock).is_locked for lock in self._locks]

... return any(locks)

...

... def is_open(self):

... locks = [getattr(self, lock).is_open for lock in self._locks]

... return all(locks)

>>> safe = Safe()
>>> safe.lock1
’locked’
>>> safe.is_open
False
>>> safe.lock1.open()
>>> safe.lock1.is_open
True
>>> safe.lock1
’open’
>>> safe.is_open
False
>>> safe.lock2.open()
>>> safe.lock3 = ’open’
>>> safe.is_open
True

In this case method as_enum is really handy:

>>> safe.lock1.as_enum
<States.OPEN: ’open’>

Although you could also use actual_state here (yet as_enum sounds more familiar).

Warning: In this case value is always visible as string, so there is no None value returned. Instead of this None
is transformed into ’’ (empty string).

Note: Remember that change of state can be made by calling method safe.lock1.lock, assignation of string
(or its part) like safe.lock1 = ’open’ or safe.lock1 = ’o’ or assignation of enum like safe.lock1
= Lock.States.OPEN.

utils

EnumValueTranslator

This class is part of inner API (see super_state_machine.utils.Enumvaluetranslator) but is really
handy - it is used by state machine to translate all (short) string representations to enum values.

It also can ensure that given enum belongs to proper states enum.

>>> import enum

>>> from super_state_machine import utils

>>> class Choices(enum.Enum):

3.4. utils 15

Super State Machine Documentation, Release 2.0.2

...

... ONE = ’one’

... TWO = ’two’

... THREE = ’three’

>>> class OtherChoices(enum.Enum):
...
... ONE = ’one’

>>> trans = utils.Enumvaluetranslator(Choices)
>>> trans.translate(’o’)
<Choices.ONE: ’one’>
>>> trans.translate(’one’)
<Choices.ONE: ’one’>
>>> trans.translate(Choices.ONE)
<Choices.ONE: ’one’>

>>> trans.translate(’t’)

*** AmbiguityError: Can’t decide which value is proper for value ’t’ (...)

>>> trans.translate(OtherChoices.ONE)

*** ValueError: Given value (’OtherChoices.ONE’) doesn’t belong (...)

16 Chapter 3. Usage

CHAPTER 4

API

Contents:

machines

utils

extras

Extra utilities for state machines, to make them more usable.

class super_state_machine.extras.PropertyMachine(machine_type)
Descriptor to help using machines as properties.

class super_state_machine.extras.ProxyString
String that proxies every call to nested machine.

errors

Errors module.

exception super_state_machine.errors.TransitionError
Raised for situation, when transition is not allowed.

17

Super State Machine Documentation, Release 2.0.2

18 Chapter 4. API

CHAPTER 5

Contributing

Contributions are welcome, and they are greatly appreciated! Every little bit helps, and credit will always be given.

You can contribute in many ways:

Types of Contributions

Report Bugs

Report bugs at https://github.com/beregond/super_state_machine/issues.

If you are reporting a bug, please include:

• Your operating system name and version.

• Any details about your local setup that might be helpful in troubleshooting.

• Detailed steps to reproduce the bug.

Fix Bugs

Look through the GitHub issues for bugs. Anything tagged with “bug” is open to whoever wants to implement it.

Implement Features

Look through the GitHub issues for features. Anything tagged with “feature” is open to whoever wants to implement
it.

Write Documentation

Super State Machine could always use more documentation, whether as part of the official Super State Machine docs,
in docstrings, or even on the web in blog posts, articles, and such.

Submit Feedback

The best way to send feedback is to file an issue at https://github.com/beregond/super_state_machine/issues.

If you are proposing a feature:

19

https://github.com/beregond/super_state_machine/issues
https://github.com/beregond/super_state_machine/issues

Super State Machine Documentation, Release 2.0.2

• Explain in detail how it would work.

• Keep the scope as narrow as possible, to make it easier to implement.

• Remember that this is a volunteer-driven project, and that contributions are welcome :)

Get Started!

Ready to contribute? Here’s how to set up super_state_machine for local development.

1. Fork the super_state_machine repo on GitHub.

2. Clone your fork locally:

$ git clone git@github.com:your_name_here/super_state_machine.git

3. Install your local copy into a virtualenv. Assuming you have virtualenvwrapper installed, this is how you set up
your fork for local development:

$ mkvirtualenv super_state_machine
$ cd super_state_machine/
$ python setup.py develop

4. Create a branch for local development:

$ git checkout -b name-of-your-bugfix-or-feature

Now you can make your changes locally.

5. When you’re done making changes, check that your changes pass flake8 and the tests, including testing other
Python versions with tox:

$ flake8 super_state_machine tests
$ python setup.py test
$ tox

To get flake8 and tox, just pip install them into your virtualenv.

6. Commit your changes and push your branch to GitHub:

$ git add .
$ git commit -m "Your detailed description of your changes."
$ git push origin name-of-your-bugfix-or-feature

7. Submit a pull request through the GitHub website.

Pull Request Guidelines

Before you submit a pull request, check that it meets these guidelines:

1. The pull request should include tests.

2. If the pull request adds functionality, the docs should be updated. Put your new functionality into a function
with a docstring, and add the feature to the list in README.rst.

3. The pull request should work for Python 2.6, 2.7, 3.3, and 3.4, and for PyPy. Check https://travis-
ci.org/beregond/super_state_machine/pull_requests and make sure that the tests pass for all supported Python
versions.

20 Chapter 5. Contributing

https://travis-ci.org/beregond/super_state_machine/pull_requests
https://travis-ci.org/beregond/super_state_machine/pull_requests

Super State Machine Documentation, Release 2.0.2

Tips

To run a subset of tests:

$ python -m unittest tests.test_super_state_machine

5.4. Tips 21

Super State Machine Documentation, Release 2.0.2

22 Chapter 5. Contributing

CHAPTER 6

Credits

Development Lead

• Szczepan Cieślik <szczepan.cieslik@gmail.com>

Contributors

(In alphabetical order)

• Eric Dill <eric.dill@maxpoint.com>

• Thomas A Caswell <tcaswell@gmail.com>

23

mailto:szczepan.cieslik@gmail.com
mailto:eric.dill@maxpoint.com
mailto:tcaswell@gmail.com

Super State Machine Documentation, Release 2.0.2

24 Chapter 6. Credits

CHAPTER 7

History

2.0.2 (2017-03-13)

• Fixed requirements for Python > 3.4.

2.0.1 (2017-02-27)

• Remove enum34 for Python > 3.4.

• Added support for Python 2.6.

2.0 (2016-09-26)

• Added force_set method.

• Added field machine.

• Added support for Python 3.5.

Backward compatibility breaks:

• Empty state is now disallowed.

• Only full names are allowed, when using scalars, no shortcuts.

• Removed support for unhashable types.

25

Super State Machine Documentation, Release 2.0.2

26 Chapter 7. History

CHAPTER 8

1.0 (2014-09-04)

• Added all basic features.

27

Super State Machine Documentation, Release 2.0.2

28 Chapter 8. 1.0 (2014-09-04)

CHAPTER 9

0.1.0 (2014-08-08)

• First release on PyPI.

• Added utilities to create simple state machine.

29

Super State Machine Documentation, Release 2.0.2

30 Chapter 9. 0.1.0 (2014-08-08)

CHAPTER 10

Indices and tables

• genindex

• modindex

• search

31

Super State Machine Documentation, Release 2.0.2

32 Chapter 10. Indices and tables

Python Module Index

s
super_state_machine.errors, 17
super_state_machine.extras, 17

33

Super State Machine Documentation, Release 2.0.2

34 Python Module Index

Index

P
PropertyMachine (class in super_state_machine.extras),

17
ProxyString (class in super_state_machine.extras), 17

S
super_state_machine.errors (module), 17
super_state_machine.extras (module), 17

T
TransitionError, 17

35

	Super State Machine
	Features

	Installation
	Usage
	State machine
	Options
	State machine as property
	utils

	API
	machines
	utils
	extras
	errors

	Contributing
	Types of Contributions
	Get Started!
	Pull Request Guidelines
	Tips

	Credits
	Development Lead
	Contributors

	History
	2.0.2 (2017-03-13)
	2.0.1 (2017-02-27)
	2.0 (2016-09-26)

	1.0 (2014-09-04)
	0.1.0 (2014-08-08)
	Indices and tables
	Python Module Index

