
SUNFISH Platform Documentation
Documentation

Release 0.9

SUNFISH Consortium

Mar 13, 2018

Motivation

1 Cloud Computing and the Public Sector 3
1.1 Adoption of Cloud Computing: report and challenges . 3
1.2 Benefits for the Public Sector . 5

2 The SUNFISH approach 7
2.1 Federation-as-a-Service . 7
2.2 Service Ledger . 8
2.3 The SUNFISH Platform . 9

3 Platform components 11
3.1 Identity Management (IDM) . 12
3.2 Data Security (DS) . 12
3.3 Federated Administration and Monitoring (FAM) . 12
3.4 Intelligent Workload Management (IWM) . 12
3.5 Data Masking (DM) . 12
3.6 Anonymization (ANM) . 13
3.7 Federated Runtime Monitoring (FRM) . 13
3.8 Federated Security Audit (FSA) . 13
3.9 Secure Multi-party Computation (SMC) . 13
3.10 Service Ledger (SL) . 13

4 Use Cases 15
4.1 Cross-cloud payslip calculation . 15
4.2 Private-Public Cloud integration to underpin tax calculation . 16
4.3 Secure cross-cloud data sharing . 17

5 Anonymisation (ANM) 19
5.1 Functionality . 19
5.2 Anonymisation Interface (ANI) . 19

6 Data Masking (DM) 23
6.1 Functionality . 23

7 Data Security (DS) 25

8 Federated Administration and Monitoring (FAM) 27
8.1 Service Level Agreement Manager (SLAM) . 29

i

8.2 Configurator & Deployment Manager . 30

9 Federated Runtime Monitoring (FRM) 31
9.1 Proxy . 31
9.2 Chaincode . 32
9.3 Policy Violation Engine . 33

10 Federated Security Audit (FSA) 35
10.1 Functionality . 35

11 Intelligent Workload Manager (IWM) 37
11.1 Azure Integration . 38

12 Secure Multiparty Computation (SMC) 39
12.1 Intro to SMC . 39
12.2 Sharemind . 40

13 Service Ledger (SL) 43
13.1 Architecture . 43

14 Platform API 47
14.1 Anonymisation (ANM) . 47
14.2 Anonymisation Interface (ANI) . 51
14.3 Data Masking (DM) . 52
14.4 Policy Administration Point (PAP) . 55
14.5 Policy Decision Point (PDP) . 57
14.6 Policy Enforcement Point (PEP) . 59
14.7 Policy Information Point (PIP) . 60
14.8 Policy Retrieval Point (PRP) . 62
14.9 Federated Administration Monitoring (FAM) . 65
14.10 Federated Runtime Monitoring (FRM) . 66
14.11 Intelligent Workload Manager (IWM) . 67
14.12 Secure Multi-party Computation (SMC) . 141
14.13 Service Ledger (SL) . 144
14.14 Service Ledger Interface (SLI) . 145

15 Networking Infrastructure 157
15.1 Network Component . 157

16 Federated Administration Monitoring (FAM) 165
16.1 Dependencies . 165
16.2 Administration Manager set-up . 165
16.3 SLA Manager set-up . 166

17 Configurator 167
17.1 Installation Steps . 167
17.2 Installation . 171

18 Data Security (DS) 173
18.1 Setting-Up a Service Tenant . 173
18.2 Setting-Up an Infrastructure Tenant . 177

19 Intelligent Workload Manager (IWM) 179
19.1 Deployment instruction . 179
19.2 Screenshots . 181

ii

20 Anonymisation (ANM) 185
20.1 Anonymisation Interface (ANI) . 185

21 Data Masking (DM) 187

22 Federated Runtime Monitoring (FRM) 189
22.1 Proxy . 189
22.2 Chaincode . 192

23 Federated Security Audit (FSA) 195

24 Secure Multiparty Computation (SMC) 197
24.1 Sharemind MPC Application Server . 197
24.2 Sharemind Web Application Gateway . 200

25 Service Ledger (SL) 201
25.1 Dependency . 201
25.2 Service Ledger Interface . 202
25.3 Service Ledger . 202
25.4 Usage Guide . 202

26 UC-1: Cross-cloud payslip calculation 203

27 UC-2: Private and Public Clouds for Tax Calculation 205

28 UC-3: Federation-based Intelligent Shared Index 207
28.1 Deployment Instructions . 207

iii

iv

SUNFISH Platform Documentation Documentation, Release 0.9

The SUNFISH Platform is software platform enabling Federation-as-a-Service (FaaS), a new and innovative Cloud
Federation solution conceived and designed by the EU H2020 SUNFISH Project.

Note: The SUNFISH project has been supported by the H2020 Programme under the grant agreement N.
644666.

Motivation 1

SUNFISH Platform Documentation Documentation, Release 0.9

2 Motivation

CHAPTER 1

Cloud Computing and the Public Sector

Cloud computing is drawing wide attention in the Public Sector. Nowadays main bodies rely on their own private
clouds, leading to a multitude of secluded, not-interoperable cloud centres. The lack of reliable cross-cloud infrastruc-
ture hinders effective and practicable exploitation of clouds in the Public sector.

The SUNFISH Project has built upon this need by providing a software platform that via the principled usage of a
blockchain infrastructure offers decentralised, democratic and secure federation of private clouds.

1.1 Adoption of Cloud Computing: report and challenges

Cloud computing has been part of the computing landscape for more than 10 years and it is lately increasing its
deployment within businesses and individual costumers. It provides substantial benefits in particular by offering:

1. economic growth by providing an IT environment where technology is located in the most efficient way;

2. more choice and lower cost, increasing competition among providers.

While in a rapidly evolving environment, cloud services are one of the cheapest means to secure a large part of
e-Government services. Cloud computing overcomes barriers typical to the public sector by improving features of
effectiveness, efficiency, transparency, participation, data sharing, cooperation, interoperability and security. Cloud
computing solutions are now among the most innovative tools and their adoption within European public sector
organisations would allow them to take thrilling advantages from their adoption.

The interest in adoption of cloud computing solutions also for delivering Public Administration services has been
emerging as a key target in the design of next generation public services. This process requires the selection of the
most suitable solutions in order to fill into the current public sector technological gap, and to be able to face the
challenges of the “EU Digital Market” for the next years. Cloud computing is surely a key enabling technology in
order to improve efficiency and cost effectiveness while deploying new public services.

Cloud infrastructure is capable of introducing in the public sector mechanisms fulfilling citizens’ demands and it is
particularly interesting when applied to support the provision of governmental applications provided to citizens by
public authorities.

The European Commission study - “Measuring the economic impact of cloud computing in Europe, 2016” - estimated
that in the period 2016-2020, cloud computing could add a cumulative total revenue of EUR 449 billion to the EU28

3

SUNFISH Platform Documentation Documentation, Release 0.9

GDP (including in the Public Sector). Of these EUR 103,2 billion would be net new GPD generated in the year 2020,
representing a share of 0,71% of total EU GDP.

According to this study, the cumulative impact on employment is expected to reach 1,6 million jobs created up
to 2020 (ranging from 2,5 million according to the optimistic scenario and slightly over 1 million in the pessimistic
scenario). In terms of business creation, approximately 303.000 new businesses, in particular SMEs, could be created
between 2015 and 2020 through the development and deployment of cloud computing.

According to IDC’s Worldwide Quarterly Cloud IT Infrastructure (2016), traditional datacenters in 2017 weigh nearly
60% of IT infrastructure, while the remaining 40% are on clouds (with about 25% of public clouds). In 2021, the
situation will reverse: traditional data centers will weigh about 45%, while the cloud for nearly 55%, of which about
35% will be public cloud while 20% private. However, according to Gartner (2016) by 2020 hybrid cloud will be the
most common use of the cloud.

Clear examples of how governments are embracing this strategy are provided by the EU Regulation 2016/679, with
the European Cloud Strategy, and national strategies and plans such as

1. the Italian AGID’s three-year Plan for 2017-2019 and the Cloudify program of NoiPA;

2. the British government’s cloud computing plan (G-cloud <https://www.gov.uk/guidance/the-g-cloud-
framework-on-the-digital-marketplace>_);

4 Chapter 1. Cloud Computing and the Public Sector

http://pianotriennale-ict.readthedocs.io/en/latest/doc/01_piano-triennale-per-informatica-nella-pa.html
https://www.cloudifynoipa.it/documents/20143/0/Allegato+Agenda+Digitale+Italiana_EN.pdf/75734d80-6e98-0561-4d3c-d023d71a477f

SUNFISH Platform Documentation Documentation, Release 0.9

3. the French Guide sur le Cloud Computing et les Datacenters à l’attention des collectivités locales;

4. the Spanish Líneas estratégicas del plan de Administración Electrónica del Gobierno.

1.1.1 Challenges

However, the migration process is not always a smooth procedure given several issues can emerge when the transition
towards Cloud solutions is applied to the Public Sector. Main concerns in the adoption process for public organisations
are the following:

• governance and control of ICT systems also across different Public Administration bodies;

• application of the concept of Quality of Experience (QoE) also to cloud services;

• ownership and asset liability;

• security, privacy and trustworthiness;

• resilience of infrastructures and services;

• interoperability and standards;

• dependencies with vendors;

• National and Supranational regulation.

The migration process towards Cloud solutions consists mainly of four pillars:

1. selection of applications/services that have to be migrated;

2. technical and process challenges;

3. backward compatibility with legacy applications;

4. operational cloud setup.

Given such a revolutionary context characterising new public services delivered via digital means, the SUNFISH
project consortium partners have been contributing to this challenge by focusing on cloud development for the public
sector.

1.2 Benefits for the Public Sector

According to up-to-date studies, the main common benefits of the adoption of Cloud computing solutions for a public
sector organisation are:

1. Cost effectiveness: the use of Cloud computing solutions do not have all the maintenance costs that physical
data centres do have. Especially in the public sector there is the need to rationalize public expenses and cost
savings are a significant key factor;

2. Sustainability & Green saving: most data centres are environmentally and economically unsustainable due to
their scares energy consumption efficiency. The adoption of Cloud computing solutions, would allow on one
hand to cut CO2 emissions, through a reduction of hardware use, and energy consumption thanks to the use of
more efficient cooling systems; on the other hand public sector organisations would be able to pay the Cloud
solution less than a data centre one, as there is a huge saving in energy consumption even for the providers.

3. Ease of Implementation: public sector organisations can deploy cloud computing rapidly as there is no need
to purchase hardware, software licenses, or implementation services;

1.2. Benefits for the Public Sector 5

https://www.entreprises.gouv.fr/files/files/directions_services/secteurs-professionnels/numerique/guide-cloud-computing-et-datacenters-2015.pdf
https://www.ccn-cert.cni.es/seguridad-al-dia/noticias-seguridad/554-lineas-estrategicas-del-plan-de-administracion-electronica-del-gobierno-2013-2015.html

SUNFISH Platform Documentation Documentation, Release 0.9

4. Flexibility: cloud computing solutions offer more in matching ICT resources to business functions than past
computing methods. It can also increase staff mobility by enabling access to business information and applica-
tions from a wider range of locations and devices, enabling public sector employees to easily access data even
if they are out of office through any kind of device;

5. Innovation: innovation represents a deep need of public sector organisations, as most of the time they lack
innovation processes. Once the Cloud is adopted, its architecture would facilitate services across systems and
organisational borders, such as the exchange of data among different administrations of the same public sector
organisation;

6. Scalability: public sector organisations adopting cloud computing solutions don’t need to procure any additional
hardware and software when users’ loads are increasing, but can instead simply add and subtract capacity to the
Cloud when and if needed. In this way, resources are used only when needed;

7. Redeployment of IT personnel due to Cloud efficiency: by reducing or eliminating constant server updates
and other computing issues, and consequentially cutting expenditures of time and money, public sector organi-
sations can relocate ICT personnel on higher-value tasks;

8. Focusing on Core Competencies: the ability to run data centres and to develop and manage software applica-
tions is not necessarily a core competency of most public sector organisations. Indeed, the adoption of Cloud
computing solutions can make it much easier to reduce these functions, enabling public sector organisations to
concentrate on critical issues such as the development of policy and the delivery of public services;

6 Chapter 1. Cloud Computing and the Public Sector

CHAPTER 2

The SUNFISH approach

This page outline the overall SUNFISH’s approach to Cloud Computing solution for the Public Sector.

2.1 Federation-as-a-Service

The SUNFISH project coined Federation-as-a-Service (FaaS) a secure-by-design Cloud federation solution that
enables public sector organisations to federate their clouds in a distributed and democratic manner, thanks to an
underlying blockchain infrastructure.

FaaS creates a homogenous goal-oriented aggregation of cloud systems, which allows sharing of data and services.
All participating nodes are peers: they enjoy the same duties and authorities.

The corner store of FaaS is its democratic and decentralised federation governance. Generally speaking, it offers
the these key features:

• Dynamic Federation of Clouds and their services with service level agreement policy and optimal workload
strategies;

7

SUNFISH Platform Documentation Documentation, Release 0.9

• Cloud Federation Governance supporting trust-less coalitions where participating clouds are governed by a
federation contract agreed with a distributed consensus;

• Privacy-Preserving Services enforcing an advanced and innovative access control and monitoring.

Note: Blockchain technology

It has appeared on the market in recent years, firstly used as public ledger for the Bitcoin cryptocurrency. It mainly
consists of consecutive chained blocks containing records that are replicated and stored by nodes of a peer-2-peer
network. The records witness transactions occurred between the nodes of the network. Transactions may feature a
cryptocurrency like, e.g., the Bitcoin, or other kinds of assets. The collection of transactions and their enclosing in
chain blocks is carried out in a decentralised fashion by distinguished nodes of the network, called miners.

Besides cryptocurrency, blockchain offers so-called smart contract, immutable program deployed and executed au-
tonomously upon a blockchain.

FaaS uses blockchain technology to offer a decentralised computation infrastructure at hand that alleviates the need
for a trusted-third-party and reduces systemic risk of disputes and frauds.

More specifically, FaaS offers functionality to both administrator and service consumers. The phases concern both
administrator-side operations, e.g. the creation of a cloud federation, and service consumer- side operations, e.g. the
request of a service.

Following the previous figure, these functionalities can be grouped according to the following operating phases:

1. Cloud Federation: it refers to the functionalities that permit creating a cloud federation and enabling the joining
of new members to an already created federation.

2. Service Publishing: it refers to the functionalities that permit: (i) registering a service offered by a federation
member; (ii) making available the registered service to the other federation members.

3. Federation Leaving: it refers to the functionalities that permit a federation member to leave the federation.
Leaving can be imposed when the business contract underlying the federation has been violated.

4. Service Request: a service consumer willing to use a service offered by a FaaS federation (i.e., any service from
IaaS to SaaS) has first to submit a service request. This preparation phase has a twofold objective. On the
one hand, it permits controlling the authentication and authorisation of the consumer and, on the other hand, it
permits selecting the optimal service provider for such a request.

5. Service Usage: it amounts to the actual usage of the already requested, hence set up, service. During this
phase, the provisioning of the service has to ensure that the corresponding access control policies are correctly
enforced.

2.2 Service Ledger

The Service Ledger is a blockchain-empowered software layer which underpins the whole FaaS federation offering
a decentralised (hence without any centralised point-of-failure) platform upon which basing highly trusted services
such as the governance of the federation or cross-cloud piece of computation.

8 Chapter 2. The SUNFISH approach

SUNFISH Platform Documentation Documentation, Release 0.9

On the fact of it, FaaS and the SUFISH platform appear to be the first blockchain-based cloud federation architec-
ture of its denomination.

2.3 The SUNFISH Platform

The SUNFISH Platform is a modular software solution that enables the dynamic and secure creation of cloud federa-
tions and their management.

2.3. The SUNFISH Platform 9

SUNFISH Platform Documentation Documentation, Release 0.9

Its main features are:

• Dynamic cloud federation management. A dynamic federation of clouds and their related services, with
optimal service level and workload; the service offered is based on “core components” (IDM, DS, FAM, IWM)
that are necessary to assure the creation and essential federation management.

• Democratic governance. An innovative cloud federation governance supporting trust-less coalitions, as none of
the federated organizations rules on the others, thanks to the “Service Ledger” which - based on the blockchain
technology - offers decentralised and democratic enforcement of governance rules in the federation. Such gov-
ernance is then ruled according to a federation contract negotiated among partners.

• Data security. Advanced, innovative privacy-preserving services ensuring high security of provisioned services
and managed data. The backbone of data security is a distributed access control infrastructure transparently en-
forcing cross-cloud access policies and privacy-preserving services. Data masking (DM) ensures that sensitive
data can be securely stored protecting sensitive data of interest. Data anonymisation (ANM) ensures that datasets
can be released (both in a micro and macro fashion) without leaking sensitive data. Secure multi-parties compu-
tation (SMC) offers privacy-preserving computation of sensitive data: any of the party involved in a computation
can learn anything on the data itself.

• Brokerage of Federated services. Services of single clouds can be dynamically federated and brokered ac-
cording to security and Service Level Agreement (SLA) policy. Due to an intermediate layer of API, any type
of service, ranging from infrastructure to software and data, can be federated and provided.

• Federation Monitoring. Cross-cloud integrations and distributed nature of federations require advanced mon-
itoring facilities that can ensure the integrity and correctness of the provisioned services. FRM and FSA offer
runtime and offline monitoring respectively to protect from security violations such illegitimate accesses and
privilege escalations.

This set of functionalities is implemented via state-of-the-art technology and take advantage of the blockchain in-
frastructure underlying SUNFISH federations to strengthen security assurance of provisioned services and security
controls.

10 Chapter 2. The SUNFISH approach

CHAPTER 3

Platform components

The SUNFISH Platform is a modular software solution that enables dynamic and secure creation of cloud federa-
tions and their management. Its components interact between them to establish the FaaS approach but their use is
not limited to this as all of them can be deployed independently.

11

SUNFISH Platform Documentation Documentation, Release 0.9

3.1 Identity Management (IDM)

Software providing a set of services to authenticate the access to and within a FaaS federation. It supports the authenti-
cation of all the entities part of the federation, varying from users and administrators to service providers and platform
components. The added value is that by abstracting the existing IDM solutions to pre-agreed roles in the federation,
it enables a flexible definition of data access and data usage policies. This enables the setup of a SUNFISH federa-
tion, that uses the pre-deployed IDM solutions. Furthermore, the platform is integrated with eIDAS and it enables a
pan-European user authentication.

3.2 Data Security (DS)

Software aiming to enforce the access control policies associated with the federated services. Its main role is to decide
whether to allow access requests concerning service requests and provisioning. Existing approaches focus on access
control or data-usage control. The added value of this component is provided by combining these approaches and rely
on developed advanced data protection mechanisms. Extensions are based on well known access control languages.
Furthermore, this component intercepts the main communication channel and applies the defined policies, based on
data as well as endpoint characteristics.

3.3 Federated Administration and Monitoring (FAM)

Software representing the logical entry-points for the management of a FaaS federation, hence, for the interaction
with the SUNFISH platform components. It provides a front-end for the administrators and service consumers of
the federation based on a graphical web interface. It permits the administration of member clouds (i.e., entering and
leaving a federation), tenants (i.e., creation and deploying of tenants), service publishing (i.e., registering a service to
the federation), and service provisioning (i.e., management of Service Level Agreement and access control policies).

3.4 Intelligent Workload Management (IWM)

Software performing service brokerage of the federated services offered by the member clouds. In particular, once
a service consumer requests a service, it provides an optimal federation-based workload deployment target to satisfy
such a service request. To actually deploy the workload, the IWM interacts directly with the clouds to create / delete
virtual machines running on the federated clouds. The IWM can provide different workload management strategies
optimised according to different parameters. It thus solves an optimisation problem based on the current state of the
federation and the requested service. IWM offers a comprehensive set of services as a stand-alone component, with
added value being: accent on end-user, pushing more IT governance to the edges, reducing operator’s load, integration
with blockchain Service Ledger offering higher guarantees against malicious data manipulation.

3.5 Data Masking (DM)

Software providing a generic service for masking in a selective way personal and/or sensitive information. This service
is called masking service. The service, given a policy and payload (e.g. text, JSON, XML), results with a masked
payload. The masked payload itself is identical in format and structure to the original payload except for the personal
or sensitive information that is masked. The added value provided by the masking component is its combined support
for selecting the sensitive elements and the actions performed (redaction, tokenization, encryption). Moreover, both
the selection and action are highly configurable using a flexible policy.

12 Chapter 3. Platform components

SUNFISH Platform Documentation Documentation, Release 0.9

3.6 Anonymization (ANM)

Software providing Micro data and Macro data anonymization services. Micro data anonymization: a data set is
released with the k-anonymity guaranty. This process ensures the protection of sensitive information against linkage
attacks using other open data sets. Macro data anonymization: statistical data are released with differential privacy
guarantees. This process adds noise to the summary statistic such that the probability to identify if a single person
is added or removed is extremely small. The added value of this component is its flexible support for different
privacy guarantees when releasing a data set. Specifically the component allows the user to select the required privacy
guarantee that best fits the use case: data perturbation, k-anonymity and crowd blending.

3.7 Federated Runtime Monitoring (FRM)

Software providing a distributed infrastructure to intercept (via transparent plug-in proxies) and monitor every access
control request received and possibly authorised by the Data Security (DS). The added value lays in the usage of
smart-contracts (programs that facilitate, verify, or respect the negotiation or execution of a contract).

3.8 Federated Security Audit (FSA)

Software providing an automatic detection service against vulnerabilities in the distributed access control system and
against security breaches possibly occurred within the federation. The added value of this component is its use of Role
Mining techniques to identify real needs from users’ behaviour. This allows to identify vulnerabilities and security
breaches with much more confidence.

3.9 Secure Multi-party Computation (SMC)

Software enabling privacy-preserving computation of sensitive data. It can be thus used for computing tasks on
confidential data. The added value of this component is that it is integrated with the governmental backbone technology
UXP (X-Road) already deployed in Estonia, Finland, Namibia, Haiti, Azerbaijan and ongoing deployment in Ukraine.
This is a novel way of securely processing administrative data that enables to use private or public cloud resources.

3.10 Service Ledger (SL)

Blockchain-based infrastructure managing the storage and evaluation of governance data. Its seamless integration with
the SUNFISH platform via the Service Ledger Interface component permits realising the FaaS “democratic” gover-
nance. The Service Ledger offers a set of APIs used by authorised components to invoke smart contracts deployed on
the Service Ledger.

3.6. Anonymization (ANM) 13

SUNFISH Platform Documentation Documentation, Release 0.9

14 Chapter 3. Platform components

CHAPTER 4

Use Cases

This is a page for the SUNFISH use cases, reporting the business rationale behind the use case.

4.1 Cross-cloud payslip calculation

The General Administration, Personnel and Services Department (DAG) of the Italian Ministry of Economy and
Finance (MEF) is in charge of the management of payroll functions for approximately 2.1 million Italian public sector
employees. Such service is provided through a unique payroll function, NoiPA - which currently manages annually
more than C51 billion in payments. Starting in 2015, the compulsory entrance in NoiPA of Italian police and military
personnel generated an increase of around 25% of the monthly payslips managed by the system.

The Italian legal framework forces the Ministry of Interior (MIN), in charge of Police Forces, to be the exclusive con-
troller of sensitive data of its employees. The main problem generated by the entrance in NoiPA of MIN’s employees
was overcoming segregation of Public Bodies data among Clouds for calculating payslips.

In particular, the MEF must compute local taxes on actual residence, which is however sealed for data classification
purposes within the MIN. The MEF and the MIN had therefore to balance two contrasting needs: on one side, the
MEF’s need to have certified computation of sensitive data, on the other side the MIN’s need to keep sensitive data
within its perimeter. This created a problem for the overall calculation of taxes and to overcome it the MEF and the
MIN were forced to an intricate cooperation keeping low level of efficiency and elevated costs.

15

SUNFISH Platform Documentation Documentation, Release 0.9

The potential conundrum was overcome via a Federation-as-a-Service platform and its blockchain-empowered Service
Ledger infrastructure. This system, put in place by SUNFISH, allows the democratic governance of cloud federations:
none of the federated clouds rules on the other, but each of them shares the same duty and authority

4.2 Private-Public Cloud integration to underpin tax calculation

The Maltese Ministry for Finance has been leading the innovation of the Country’s Public Sector with the goal of
easing citizens’ interaction with the Government. This has been achieved by adopting a once-only principle and by
facilitating the re-use of public data. Pushed by the growing awareness of central public administrations’ need to
promote a different role across Europe, the Ministry’s interest for innovation led it to look for proposals in the field of
cloud computing for the public sector.

Such kind of development is a great opportunity in particular within the Taxation Department, which requires tax-
payers, employers, banks and SMEs, to submit information to the Office of the Commissioner for Revenue. This
information relates to Payroll, Financial Statements, information related to payments that qualify for deduction from
chargeable income, and receipts of payments that need to be included in taxable income, trading records and account-
ing records that maybe subject to audit checks.

Large enterprises can lean on their financial capability to submit payroll data and financial statements via the Depart-
ment’s website and await for the end of the year to receive their tax deduction back. Small businesses, on the other
hand, might struggle because of their financial means.

Where applicable, the Department requires data from Employers and other third parties for the calculation of tax
statements and eventual issuance of refunds. To provide a holistic solution, the Department can make use of public
cloud services to host Software-as-a-Service (SaaS) solutions and to federate these with its own private cloud.

16 Chapter 4. Use Cases

SUNFISH Platform Documentation Documentation, Release 0.9

This use case enables the use of public cloud Platform-as-a-Service (PaaS) offerings to deploy applications which
collect data and perform required calculations and validations while ensuring compliance with the secrecy, privacy
and data protection legislations and regulations. It also allows for the use of federated systems between the MFIN
application on the public cloud PaaS and other commercial SaaS solutions providing services such as payroll etc.

4.3 Secure cross-cloud data sharing

South East Regional Cyber Crime Unit (SEROCU) is one of the nine Regional Cyber Crime Unit (ROCU) operating
across the UK. Besides its regional role, it collaborates on a national level with major crime units, all ROCUs and the
National Cyber Crime Unit, to prosecute offenders based in Europe and beyond.

SEROCU is responsible for the investigation of offences categorised under the Misuse of Computer’s Act 1990 and
other offences where a digital aspect is believed to be involved. Its powers include the seizure and forensic examination
of digital data and electronic devices, as well as live network investigations. Part of SEROCU’s mandate is to store
securely large quantities of cyber-crime evidences and highly sensitive data, such as: high-level corporate information,
data produced from network servers and personal digital storage devices. Its investigations generate evidences with
different security classifications, each of which, depending on Governmental guidance, comes with its own strict
handling conditions.

The storage of such data must be localised on the Unit’s premises but at the same time, each unit must ensure access,
in a regulated manner and with different levels of accessibility, to all other ROCUs while investigations are in process.
The sharing of such information among ROCUs not only encountered difficulties brought about the different interfaces
implemented, but it was convoluted and hardly automated. Moreover, due to changing reporting procedures around
cyber-crime issues, it is impossible to predict with certainty the future demand for the unit and, therefore, data capacity
and processing requirements. There is a current need to ensure the efficient and secure reception, supply, and storage
of intelligence/data between the regional units, local policing forces, and governmental departments.

Clouds have the ability to help overcoming concealed ROCUs data storage systems by fostering cross-Cloud regulated
sharing of information. This would allow reaping the cost, usability and connectivity benefits of the cloud, whilst
sharing the infrastructure safely and reliably between many different Government and Policing agencies.

4.3. Secure cross-cloud data sharing 17

SUNFISH Platform Documentation Documentation, Release 0.9

18 Chapter 4. Use Cases

CHAPTER 5

Anonymisation (ANM)

The anonymization service provides the means to anonymize data. In particular it support Macro Anonymization -
adding noise to queries - as well as Micro Anonymization which generalizes values for the release of personal records
in data sets. The service provides REST API’s that allow a user to configure the service, upload data, anonymize the
data and finally download the anonymized data.

5.1 Functionality

The anonymization service provided the necessary functionality to anonymize (micro, macro) a data set. It allows a
privacy expert to configure and then perform the anonymization. The Anonymization flow is very simple:

1. Upload configuration (which contains necessary anonymization parameters as well as data format and data
types)

2. Upload Data

3. Perform anonymization

4. Download anonymized data (for micro only)

All the functionalities are invoked via RESTful calls. Examples are provided in the deployment guide.

5.2 Anonymisation Interface (ANI)

Related to Macro anonymization, the statistical data API of ANM is also integrated with the Service Ledger blockchain
to provide a greater level of control for privacy protection of data sets. This integration is realised via the Anonymisa-
tion Interface (ANI), whose high-level behaviour is here detailed

19

SUNFISH Platform Documentation Documentation, Release 0.9

This blockchain-based anonymization approach relies on two phases:

1. Setup, to put in place privacy and data utility requirements, and

2. Runtime, to dynamically control privacy budgets and tune the data sharing process.

20 Chapter 5. Anonymisation (ANM)

SUNFISH Platform Documentation Documentation, Release 0.9

Blockchain smart contracts are used to store, evaluate and keep track of historical queries and privacy budget. These
functionalities empower untrusted privacy services of a Cloud federation.

5.2.1 Setup

At the Setup phase, data owners provide their privacy and data utility requirements which are then stored in the smart
contract. The privacy requirement is represented by the privacy budget, which represents the maximum amount of
budget allowed on sharing data. According to data owner preferences, the budget can be associated to one or many
datasets, or even to single columns of a single dataset. Data utility requirement is represented by a numerical variable,
representing the maximum amount of noise allowed on the actual query result, thus to maintain adequate data utility.

5.2.2 Runtime

At the Runtime phase, data queries are managed returning anonymized results, when allowed by the privacy budget
and requirements. Indeed, our approach M consists of an unbounded sequence of mechanisms M_1,M_2,. . . , , where
M_i operates when the i-th query is received. Logically, it can be decomposed into three main test activities:

1. Query matching: it aims at determining whether a newly received query has been executed before. Smart
contract checks the sharing history stored on the blockchain;

2. Utility-based approximation: it aims at checking whether a previous released result can approximate the result
to return for the current query;

3. Budget verification: this test is triggered if there has been no same query executed (i.e., the query matching test
failed), or the query result cannot be approximated (i.e., the approximation test failed). Thus, a new result has
to be computed, as long as the remaining privacy budget is enough.

5.2. Anonymisation Interface (ANI) 21

SUNFISH Platform Documentation Documentation, Release 0.9

22 Chapter 5. Anonymisation (ANM)

CHAPTER 6

Data Masking (DM)

The masking service provides the means by which sensitive data is replaced, possibly in a reversible and format
preserving manner, with data that is unintelligible to receiver. The service supports parsing and classifying sensi-
tive/confidential data in payloads, mask them in different ways and supports flexible configuration of the process.

6.1 Functionality

The masking service provided the necessary functionality to mask different data payloads (e.g. xml, json etc). The
service enables to user to upload a policy which configures where the data items can be found in the payload (e.g.
xpath, css etc.) and how to mask them (e.g. redaction, format preserving encryption). The Masking flow is very
simple:

1. Upload policy

2. Create context

3. Process payload (mask/unmask)

All the functionalities are invoked via RESTful calls. Examples are provided in the deployment guide.

23

SUNFISH Platform Documentation Documentation, Release 0.9

24 Chapter 6. Data Masking (DM)

CHAPTER 7

Data Security (DS)

The SUNFISH Data Security (DS) enforcement infrastructure is responsible for regulating and securing access to
services in a federated cloud environment.

The infrastructure consists of the following components:

• The Policy Enforcement Gateway (PEG) responsible for enforcing decision regarding whether access to a
resource is granted or not and which obligations need to be observed (if any). This component serves as the
main entry point to a service protected by the SUNFISH DS enforcement infrastructure.

• An accompanying Proxy enabling the non-SUNFISH-aware applications to utilise the benefits of the SUNFISH
platform.

• A Policy Decision Point (PDP) evaluating a decision request, indicating whether access to a service should be
granted or not. In addition, Obligations such as data masking, for example can be part of the decision.

• Policy Information Points (PIPs) delivering information to the PEG and the PDP to enhance decision requests.

• A Policy Administration Point (PAP) providing an interface for administration data security policies.

• The Service Ledger Interface responsible for storing, managing and delivering policies to the PDP for eval-
uation. Setup an operation of the SLI is described separately, since it is operated independently of the other
components.

• A Masking Service providing data masking capabilities to the PEG. Like the SLI, the masking service is
operated independently of the other components and therefore also discussed separately.

Typically, the enforcement infrastructure will be deployed among different tenants. A minimal example consists of
one infrastructure tenant and a service tenant. A typical cross-cloud set-up will be as follows, with highlighted typical
inter-tenant interactions.

25

SUNFISH Platform Documentation Documentation, Release 0.9

The infrastructure tenant will house the PDP, any number of PIPs and the PRP. The service tenant hosts the actual
service to be protected by the enforcement infrastructure as well as the PEG, any number of PIPs and the proxy to
maintain backwards compatibility to non-SUNFISH-aware clients.

As outlined initially, the PEG located at the service tenant serves as the main entry point, responding to incoming
requests, which can either be submitted directly to the PEG, or through the proxy. In case the requests was directed to
the proxy, responses are also interpreted by the proxy and reduced in such a way that non-SUNFISH-aware applications
are able to interpret it correctly (albeit losing expressibility in the process).

26 Chapter 7. Data Security (DS)

CHAPTER 8

Federated Administration and Monitoring (FAM)

The Federated Administration and Monitoring (FAM) component is the management plane of the SUNFISH FaaS
federation. It provides federation administrators with a graphical interface to configure, manage and monitor the
services that are made available to the federation. The FAM captures the information submitted by the administrators,
validates it, and dispatches that information to the respective low-level sub-components.

The FAM provides administrators with a set of functions such as to join and leave the federation, publish services and
administrator access policies. It then relies on other SUNFISH components to execute the low-level instructions. The
FAM has 3 sub-components being the Deployment Manager, Configurator and SLA Manager as depicted below.

27

SUNFISH Platform Documentation Documentation, Release 0.9

The high-level interactions orchestrated by the FAM to federate a new member cloud (Cloud Federation phase, see
Federation-as-a-Service) and to make an already federated member cloud leave the federation (Federation Leaving
phase, see Federation-as-a-Service). The logic to coordinate these operations is encapsulated in the Deployment
Manager component, which instructs the Configurator and consequently the IWM to execute the required actions.

Thus, the flow of interactions for the Cloud Federation phase can be summarised as follows

• The FAM asks the Deployment Manager to federate a new member cloud.

• The Deployment Manager instructs the IWM Adapter to establish a connection to such member cloud.

• The IWM interacts with this member cloud at the infrastructure level to install the software required to make it
configurable for the next step.

• The Configurator deploys required SUNFISH components over the resources provided by the new member
cloud, according to a deployment plan decided by the Deployment Manager.

Similarly, for the Federation Leaving phase, the high-level sequence of interactions is as follows

• The FAM asks the Deployment Manager to make an already federated member cloud leave the federation.

• The Deployment Manager commands the Configurator to un-deploy all the SUNFISH components currently
placed on the resources provided by the member cloud.

• The Configurator applies such un-deployment and thus removes all the SUNFISH software currently installed
on the member cloud.

28 Chapter 8. Federated Administration and Monitoring (FAM)

SUNFISH Platform Documentation Documentation, Release 0.9

• Then the Deployment Manager asks the IWM Adapter to remove all the software that were installed during the
Cloud Federation phase to establish the initial connection.

8.1 Service Level Agreement Manager (SLAM)

The Service Level Agreement Manager (SLAM) unit provides management of service level agreements (SLAs) and
metrics for services within the federation. Administrators are able to monitor these services on the FAM graphical
user interface via data representation graphs composed from the analytics provided by the SLAM. The use of SLAs
identifies which services are not fulfilling the set requirements and notifies administrators about such services.

To realise the SLAM, we rely on products already available to realise SLA monitoring and adopt the SLALOM metrics
specialised to the context of the Public Sector. The realised component is integrated with the SLA service Insight of
Microsoft Azure (see the code here).

SLAs are used for analytics reports on services registered within the federation. Below is shown a detailed workflow
between the FAM, SLAM and SLI components to construct and view analytical reports to federation administrators

The reported workflow can be described as follows

1. Federation administrator selects service via graphical user interface on the FAM.

8.1. Service Level Agreement Manager (SLAM) 29

https://github.com/sunfish-prj/SLA-Manager

SUNFISH Platform Documentation Documentation, Release 0.9

2. The FAM sends the service ID along with query parameters to the SLAM and requests data analytics of the
service.

3. The SLAM sends the service ID to Azure Application Insights and requests metrics for the service.

4. Azure Application Insights returns all available metrics for the given criteria.

5. The SLAM sends the service ID to the Service Ledger Interface and requests the service’s SLA.

6. The Service Ledger Interface returns the SLA for the respective service.

7. Data analytics are sent back to the FAM.

8. The FAM builds the analytics into visual data representation.

8.2 Configurator & Deployment Manager

The Configurator component consists in a set of Infrastructure Services actuating commands and controls relative to
the deployment and configurations of other Infrastructure Services.

While the Configurator has not a decision-making role on the Deployment State of a federation, it provides APIs
for its actuation, and for the retrieving of information sufficient for its determination. The Configurator provides the
following functionalities:

• Automatic configuration of the VMs hosting non-containerised Infrastructure Services

• Automatic deployment and managing of the containerised Infrastructure Services among Nodes of a cluster

The Configurator relies on the following technologies:

• Configuration Management Engine: a software responsible of ensuring that a remote operating system is con-
figured in terms of installed packages, presence of files and services. The solution utilised is Saltstack.

• Container: it represents an isolated, resource-controlled, portable operating environment where an application
can be deployed. The solution utilised is Docker. Container Cluster Manager: it represents a software capable
of orchestrating Containers among a set of nodes. The solution utilised is Kubernetes.

The functionality is therefore carried out according to the following logical connection

The Deployment Manager, properly instructed by the FAM, is utilised to properly instruct the configurator. Therefore,
according to the current global state the Deployment Manager takes a decision on how to modify and set up a specific
service via the Configurator.

30 Chapter 8. Federated Administration and Monitoring (FAM)

CHAPTER 9

Federated Runtime Monitoring (FRM)

FRM (Federated Runtime Monitoring) consists of the following components:

• Proxy: it monitors the interactions among the DS components, providing the access log upon which the moni-
toring service is built;

• Chaincode: it is the blockchain smart contract checking that no access decision has been subverted due to
hijacking of intermediate DS components (aka PEGs and PIPs see Data Security (DS));

• Policy Violation Engine: it is the component based on the formal language FACPL checking that the PDP (see
Data Security (DS)) has not been compromised and hence access control policy circumvented.

The functionality of the components are discussed below.

9.1 Proxy

The DS components architecture (Data Security (DS)) is based on a Tomcat server solution (Data Security (DS)),
where Policy Enforcement Points (PEP) mediate access among tenants and services. Actually, PEPs enforce decision
calculated by the Policy Decision Point (PDP) which relies (via other DS components here not listed for the sake of
presentation) on the Service Ledger to retrieve the policy in force in the federation for a given access request.

The monitoring algorithm implemented via the chaincode requires the requests transmitted across tenants—hence
exchanged between distributed PEPs—must be controlled to avoid Man-in-the-Middle attacks and most of all sub-
verted PEP gateways that maliciously alter the request contents to obtain unauthorised access. The following figure
graphically reports the protocol in place among the DS components and hence what interactions the proxy must sense.

31

http://facpl.sf.net

SUNFISH Platform Documentation Documentation, Release 0.9

Indeed, it is worth noticing that the Attribute-based Access Control (ABAC) featured by the DS component does
not ensure monotonicity of evaluation. Namely, by adding a new attribute to a request there is no guarantee on the
ordering of the calculated decision, that is a PERMIT decision for a n-attribute request can become DENY introducing
an additional one, or vice versa. Therefore, it is of paramount importance that while a request is in transit is not
maliciously altered by compromised components

9.2 Chaincode

The interaction among the proxy and monitoring engine is detailed as per the following figure

32 Chapter 9. Federated Runtime Monitoring (FRM)

SUNFISH Platform Documentation Documentation, Release 0.9

The chaincode mainly supports two main functionalities:

• Storage of access logs: this is realised via the Key-Value store of the Hyperledger Fabric. This gives a sig-
nificant added value of relying on the history ledger of the keys: via a mechanism called CompositeKey the
requests/responses generated in a session can be grouped and consequently evaluated.

• Comparison of exchange requests: this realises the monitoring check previously mentioned about ensuring that
end-point components are not compromised as well as the communication means.

To invoke this functionality, we rely on the two-level invocation structure of the Service Ledger Interface - Service
Ledger (Service Ledger (SL)). Therefore, via a REST invocation the Service Ledger Interface is invoked and in its own
turn invokes the Invoke API of the Service Ledger to transparently invoke the chaincode (Service Ledger (SL)).

9.3 Policy Violation Engine

The Policy Violation Engine (PVE) is realised via the formal-based access control language fully interoperable with
XACML named FACPL.

9.3. Policy Violation Engine 33

http://facpl.sf.net

SUNFISH Platform Documentation Documentation, Release 0.9

The toolchain provides via the Xtext framework an Eclipse-based IDE in the form of a plugin for content-assisted
development of access control policies with automated translation to XACML. At the same time, it offers standalone
translator library to both generate SMT-LIB code ready to be analysed via the SMT constraint solver Z3, and Java
source code to potentially enforce the policy.

The analysis functionalities provided by the FACPL framework enable static verification of two main groups of prop-
erties of FACPL policies:

• Authorisation properties permit reasoning on the evaluation of a policy with respect to a specific request, by
also considering additional attributes that can be possibly introduced in the request at run-time and that might
lead to unexpected authorisations.

• Structural properties permit reasoning on the whole set of evaluations of policies and can be exploited, e.g., to
implement maintenance and change-impact analysis techniques. Therefore, how a changing in an access control
policy can affect the considered system.

Thus, the FACPL language, consequently the PVE, can be used both as supporting tool for the development of the
access control policies (via the Eclipse plugin) and as implementation of the timely analysis of the monitored accesses.
Examples of FACPL policies and analysis can be found here.

34 Chapter 9. Federated Runtime Monitoring (FRM)

https://github.com/sunfish-prj/Federation-Monitoring/tree/master/pve/demonstrator

CHAPTER 10

Federated Security Audit (FSA)

The FSA exploits machine learning techniques to figure out the high-level activities occurred in the federation and,
consequently, to identify vulnerabilities and security breaches.

When vulnerabilities or security breaches are detected, the FSA raises the corresponding alert to the FRM. The FSA
consists of a single module that, given in input the access control logs provided by the FRM, detects vulnerabilities
and security breaches.

10.1 Functionality

The FSA uses the following techniques:

• Role Mining: the goal here is to learn roles from actual usage information and to employ the learned roles for
the purpose of vulnerabilities identification.

• Anomaly detection: these techniques deal with learning what is normal behaviour (profile) from historical data
and comparison of profile with actual behaviour. Any significant deviation from the learned behaviour could
indicate an attempt for attacks.

FSA works on a knowledge model of accesses according to the previous techniques. Specifically, it is based on three
operations:

1. CreateModel: it is used to learn real roles and normal users’ behaviour from the log file and save the results
internally. This method will be invoked iteratively (i.e. every week/month) each time with a new log file.

2. IdentifySuspiciousActivities: it is used to compare users’ behaviour demonstrated in the input log file against
learned models and alert on suspicious activities. This operation allows to check quickly (and frequently, i.e.
every hour) observed users’ behaviour with the learned model.

3. GetEntitlementVulnerabilites: is used to extract entitlement information from the learned models, and will com-
pare existing entitlement against learned models and alert on vulnerabilities.

It is worth mentioning that the proposed operations are not exposed in terms of API. Indeed, due to the size of
exchanged data, we prefer to use an approach based on file exchanges.

Therefore, the functionalities of the FSA can be summarised as follows:

35

SUNFISH Platform Documentation Documentation, Release 0.9

1. Detect vulnerabilities in existing access control mechanisms by analysing access logs.

2. Detect security breaches by analysing access logs.

3. Rise alerts to the FRM to signal vulnerabilities and/or security breaches.

36 Chapter 10. Federated Security Audit (FSA)

CHAPTER 11

Intelligent Workload Manager (IWM)

SUNFISH Federation provides automated services for joining and leaving the federation, as well as an interface to
the available Federation services for a Service Consumer with ability to request optimised service list of services
matching Consumer requirements better. A common aspect of all use cases is requirement to be able to retrieve
information about the Federation resources and optionally schedule execution of a workload on a particular service
provider. Within SUNFISH, a component responsible for delivering such functionality is called Intelligent Workload
Manager (IWM).

Optimisation model applicable to the scenario of Service provisioning by Service Consumer is offering an improve-
ment over local scheduling while imposing as little as possible of additional overhead on the definition of the workload
requirements. Improvement means achieving a better outcome regarding user-defined parameters (e.g. cost) while pre-
serving the strict requirements for the job payload. The goal of the model is to offer an added value over local scope
of resources by finding and managing a globally optimal target for the Service Consumer’s planned workload.

Optimisation model is a logical component exposed to the user in form of an optional ordering and filtering capability
used during provider lookup request.

IWM is based on open-source Waldur cloud brokerage platform. The latter is extended to include more fine-grained
optimisation capability. The functionality developed within SUNFISH has been integrated with the upstream.

Technically, IWM is composed of the following primary components as from the figure below

• Nginx and uwsgi container hosting IWM - exposing API over HTTPS.

• Task Queue (Redis) for storing asynchronous tasks.

• Celery worker pool - processors of the stored tasks.

• Celery beat - a process for scheduling regular tasks (similar to Cron on Linux).

37

https://opennodecloud.com/products/waldur.html

SUNFISH Platform Documentation Documentation, Release 0.9

11.1 Azure Integration

IWM supports provisioning and management of compute resources on private and public clouds. Within SUNFISH,
Azure support has been added to IWM for management of the Azure Classic VMs. The pricing and configuration
of VM types has been integrated with the optimizer component to allow simplified comparison and finding optimal
match also with Azure, if federation has a registered account.

38 Chapter 11. Intelligent Workload Manager (IWM)

CHAPTER 12

Secure Multiparty Computation (SMC)

This is a page for Secure Multi-party Computation (SMC) component of the SUNFISH platform. SUNFISH platform
uses Sharemind MPC as a practical implementation of SMC.

We first introduce the concept of SMC, then the Sharemind approach.

12.1 Intro to SMC

Secure multi-party computation (SMC, also abbreviated as MPC) is a technique for evaluating a function with multiple
peers so that each of them learns the output value but not each other’s inputs. There are various ways for implementing
secure MPC with different number of peers and security guarantees. Here, we concentrate on systems based on secret
sharing.

Share computing systems use the concept of secret sharing introduced by Blakley (Blakley, 1979) and Shamir (Shamir,
1979). In secret sharing, a secret value 𝑠 is split into any number of shares 𝑠1, 𝑠2, . . ., 𝑠𝑛 that are distributed among
the peers (computing nodes). Depending on the type of scheme used, the original value can be reconstructed only by
knowing all or a predefined number (threshold 𝑡) of these shares. Any group of 𝑡 or more peers can combine their
shares to reconstruct the original value. However, the result of combining less than 𝑡 shares provides no information
about the value they represent.

Secure multi-party computation protocols can be used to process secret-shared data. These protocols take secret-shared
values as inputs and output a secret-shared result that can be used in further computations. For example, let us have
values 𝑢 and 𝑣 that are both secret-shared and distributed among all the peers so that each computation node 𝒞𝑖 gets
the shares 𝑢𝑖 and 𝑣𝑖. To evaluate 𝑤 = 𝑢 ⊕ 𝑣 for some binary function ⊕, the computation nodes engage in a share
computing protocol and output 𝑤 in a shared form (node 𝒞𝑖 holds 𝑤𝑖). During the computation, no computation node
is able to recover the original values 𝑢 or 𝑣 nor learn anything about the output value 𝑤.

The fact that most SMC protocols are composable and the computation result is also secret-shared, allows one to use
the output of one computation as an input for the next one. Using this property, one can combine primitive functions
like multiplication or comparison into algorithms (e.g. sorting) and such algorithms into applications that implement
the necessary business logic in privacy-preserving fashion.

Multi-party computation protocols can be secure in either passive or active corruption models. In the passive model, an
adversary can read all the information available to the corrupted peer, but it cannot modify it. In this case, the corrupted

39

https://sharemind.cyber.ee/

SUNFISH Platform Documentation Documentation, Release 0.9

Fig. 12.1: An example of secret sharing two values (orange and blue) among three computation nodes and an SMC
protocol that results in a secret-shared result (green).

peer still follows the predefined protocol, but it tries to deduce the original data values based on the information
available to that peer. This is also known as honest-but-curious model. In the active model, an adversary has full
control over the corrupted peer. For more properties of SMC protocols, see Cramer et al., 2004.

12.2 Sharemind

Sharemind MPC is a practical implementation of secure multi-party computation technology with the emphasis on
performance and ease of use. Sharemind MPC supports several different SMC schemes called protection domains, but
the SUNFISH platform uses the shared3p protection domain, which stands for 3-out-of-3 secret sharing with passive
security. This protection domain uses additive secret sharing scheme, where a secret value 𝑠 is secret shared as follows:

𝑠1 ← random(),

𝑠2 ← random(),

𝑠3 ← 𝑠− 𝑠1 − 𝑠2,

such that 𝑠 = 𝑠1 + 𝑠2 + 𝑠3. All these computations are done modulo the corresponding data type size, e.g. modulo
264 for 64-bit (unsigned) integers. Note that this modulo computation happens automatically for primitive data types
like (u)int8, (u)int16, (u)int32 and (u)int64. More complex data types (e.g. floating point numbers) use
structures of primitive data types.

12.2.1 Architecture

Sharemind MPC deployment consists of two types of components – application servers and client applications. Share-
mind Application Server implements the SMC computation node role, it talks to other Application Servers during
SMC protocols and to client applications for user input and output. It also has a local persistent storage for saving
input shares and computation results between computations. A typical Sharemind MPC deployment supporting the
shared3p protection domain has three application servers and any number of client applications.

On Sharemind MPC platform, privacy-preserving applications are developed using the open source SecreC program-
ming language. SecreC is a domain specific language that separates private and public data flows. By marking user
(and other sensitive) input as private, an application developer can be confident that all computations involving these
values are executed in the secure SMC environment. At the same time, the developer does not have to know the
underlying SMC protocol details.

An example SecreC program, counting the number of occurrences of a secret value in a vector of secret values:

40 Chapter 12. Secure Multiparty Computation (SMC)

SUNFISH Platform Documentation Documentation, Release 0.9

import shared3p;
import stdlib;

// All variables prefixed with `pd_shared3p` are secret-shared
domain pd_shared3p shared3p;

void main() {
pd_shared3p uint64[[1]] haystack = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10};
// In reality, this comes from database:
// pd_shared3p uint64[[1]] haystack = loadFromDB(...);
pd_shared3p uint64 needle = 5;
// In reality, this comes from user-supplied argument, for example:
// pd_shared3p uint64 needle = argument("needle");

// Because of private operands, the equality operation
// invokes a corresponding SMC protocol
pd_shared3p bool[[1]] match = (needle == haystack);

// Publish orders each computation node to send its
// corresponding share back to the client application
publish("count", sum(match));

}

SecreC programs are deployed on Application Servers and invoked by authorised client applications by their name
(think of remote procedure calls or stored procedures in database management systems). This happens in parallel in
all three Application Servers.

Fig. 12.2: In Sharemind MPC, each Application Server is independent in validating the user query against its access
control list (ACL) and the data usage policy.

It is important to notice that each Application Server is independent in deciding a) whether the user is authorised to run
a given SecreC program; and b) if the requested SecreC program correctly implements the data usage policy. An SMC
protocol cannot be executed if the Application Servers do not reach consensus in these questions. Consequently, a user
can only run a predetermined set of programs and a single server or a pair of servers cannot allow potentially malicious
queries without the consent of the third server. This provides cryptographic enforcement of data usage policies.

12.2.2 Requirements and Privacy Guarantees

Deploying Sharemind MPC in practice requires that the three Application Servers (computation nodes) are hosted by
independent parties who do not collude. Good candidates are government organisations from different jurisdictions or
peers that are themselves interested in the correct outcome of the computation.

With the non-collusion requirement holding, secure multi-party computation technology and Sharemind MPC guaran-
tee the confidentiality of private values, except the ones that are explicitly published by all three servers (either to the
user or the servers themselves).

12.2. Sharemind 41

SUNFISH Platform Documentation Documentation, Release 0.9

Contact information:
Riivo Talviste
riivo.talviste@cyber.ee

42 Chapter 12. Secure Multiparty Computation (SMC)

mailto:riivo.talviste@cyber.ee

CHAPTER 13

Service Ledger (SL)

The main rationale behind the architecture of the Service Ledger is flexibility, modularity and interoperability.

Service Ledger offers to the SUNFISH platform components straightforward interaction with complex computing
infrastructure, such as blockchain smart contract, alleviating any technicality burdens of setting up proper commu-
nication and invocation mechanisms.

• It features a modular architecture with respect to the tenant organisation fostered by FaaS (i.e., infrastructural,
operational and segregated) to ease its deployment according to the needs.

• It empowers the FaaS governance with democratic and distributed features by transparently integrating
blockchain with all FaaS activities so to inject distinguishing characteristics like democratic control of data
computation and data integrity throughout the federation.

Service Ledger has also been designed to be pluggable: any new technology can be easily integrated without changing
any high-level interaction with platform components. This crucially enhances the sustainability over time of the
SUNFISH Cloud federation solution and, most of all, of one of its key contributions: underpinning federation with
blockchain-empowered storage and computation.

13.1 Architecture

The infrastructure of the Service Ledger is composed by three main logical subsystems:

• Computing/Storage Platform: the low-level blockchain (or other solution) platform used to carry out decen-
tralised computation/storage;

• Service Ledger: low-level API offering a common interface of the underlying platform;

• Service Ledger Interface: component-level API acting as point of contact for the platform components.

Logically, we have then the following setting

43

SUNFISH Platform Documentation Documentation, Release 0.9

hence with a two layers of API to transparently interact with the underlying platform. For the FaaS deployment, we
developed full integration with two underlying platforms: MongoDB (used for testing and integration purposes) and
the smart contract blockchain platform Hyperledger Fabric.

Moving to a distributed deployment of the components, the scenario is as follows

Specifically to a FaaS federation, the high-level architecture of the Service Ledger deployment boils down to the
following scenario

44 Chapter 13. Service Ledger (SL)

SUNFISH Platform Documentation Documentation, Release 0.9

The infrastructure tenant, created across all the member clouds, features one or more SL instances (yellow blocks
below) to connect with different underlying platforms; we consider three potential platforms: a data-store, a block-
chain and a smart contract enabled blockchain. It comes without saying that in case of distributed infrastructure, say
blockchain, such infrastructure has to be the same. The SL can be invoked by an instance of the SLI (the blue blocks
below) from any tenant, that in turn can be invoked by any component.

13.1.1 Computing Platform

The Computing/Storage Platform is the low-level underlying infrastructure to execute computations and store/retrieve
values. It is assumed to be distributed on each federation member composing the infrastructure tenant and it can be
implemented either with just a data-store or a blockchain system.

Computations in a decentralised fashion are anyway possible only by employing a smart contract enabled
blockchain. A data-store or a pure blockchain platform (aka à la Bitcoin) can instead just store values.

13.1.2 Service Ledger

The Service Ledger (SL) is a distributed stateless REST API server operating as logical interface of the Comput-
ing/Storage Platform. As the underlying computing/storage platform, it is deployed on each federation member of the
infrastructure tenant. The Service Ledger enables the communication with the Computing/Storage Platform.

It exposes three main operations:

• get(k)

• put(k,v)

• invoke(args)

The operations get(k) and post(k,v) can be used with both a data-store and a blockchain as long as the memory model is
based on a key-value store (KVS). Thus, NoSQL-like data-store can be employed as well as most common blockchain
as they directly rely on a KVS (with versioning). The input parameters are a key k and an associated value v. The
get(k) operation returns the associated value v, while the put(k,v) returns confirmation of an insert of the pair
key k and value v.

In case of smart contract-based blockchain as underlying platform, the invoke(args) operation can be used to invoke
a computation on a smart contract and store the results on the blockchain.

13.1. Architecture 45

SUNFISH Platform Documentation Documentation, Release 0.9

13.1.3 Service Ledger Interface

The Service Ledger Interface (SLI) is a stateless web app used as entry point to issue computations towards the
SL outside the infrastructure tenant. Each component of the federation runs an instance of the SLI which as many
operations as deployed services (or smart contract) running on the underlying Computation/Storage Platform. The SLI
converts the received input in a couple key-value or in an ‘args’ format and, consequently, invokes the corresponding
API of the SL.

Note: By splitting the overall Federated Service Ledger in the just presented three modules permits:

• increasing flexibility, as multiple underlying infrastructure can be easily plugged-in: they just need to implement
the three API put, get and invoke;

• increasing modularity, as interaction between components and the low-level infrastructure occurs via two levels
of API

Therefore, platform components, being within or outside the infrastructure tenant, can access all Service Ledger
service via the exposed API considering the underlying infrastructure as a black box. Moreover, being multiple
SLI/SL acting as entry points for the platform, the availability of the platform itself is strengthen.

The Service Ledger infrastructure offers computational means not just for the federation governance, but also to
empower cross-Cloud services. In fact, via a high-level SLI API the SL API invoke can be used to move part of
the computation on, e.g., a blockchain smart contract. This gives the benefit of decentralised, immutable and non-
repudiable computation. By way of example, if two member clouds need to share a decentralised computation they
can use an application-oriented smart contract deployed on the blockchain via such high-level API. This is indeed the
case of UC1 where part of the computation is moved to blockchain.

46 Chapter 13. Service Ledger (SL)

CHAPTER 14

Platform API

This page reports the API definitions of the SUNFISH Platform components. All the OpenAPI specification in
.json/.yaml files are available in this GitHub repository.

14.1 Anonymisation (ANM)

14.1.1

PUT /micro/configuration/{id}

• Description: Update a ‘MicroConfiguration‘ object.

• Consumes: [u’application/json’]

Parameters

Name Position Description Type
id path MicroConfiguration id string
body body MicroConfiguration

Responses

200 - Success. The MicroConfiguration was updated

404 - The MicroConfiguration with the specified id was not found

400 - Invalid request (invalid MicroConfiguration id)

DELETE /micro/configuration/{id}

• Description: Delete a ‘MicroConfiguration‘ object.

47

https://github.com/sunfish-prj/SUNFISH-Platform-API

SUNFISH Platform Documentation Documentation, Release 0.9

Parameters

Name Position Description Type
id path MicroConfiguration id string

Responses

200 - Success. The MicroConfiguration was deleted

404 - The MicroConfiguration with the specified id was not found

400 - Invalid request (invalid MicroConfiguration id)

GET /micro/configuration/{id}

• Produces: [u’application/json’]

• Description: Get a ‘MicroConfiguration‘ object.

Parameters

Name Position Description Type
id path MicroConfiguration id string

Responses

200 - Success. The body contains the requested MicroConfiguration

404 - The MicroConfiguration with the specified id was not found

400 - Invalid request (invalid MicroConfiguration id)

POST /macro/configuration

• Produces: [u’application/json’]

• Description: Creates a new ‘MacroConfiguration‘ object.

• Consumes: [u’application/json’]

Parameters

Name Position Description Type
body body MacroConfiguration

Responses

200 - Success. The body contains the requested MacroConfiguration id

400 - Invalid request (invalid MacroConfiguration).

POST /micro

• Produces: [u’application/json’]

• Description: Anonymize data

48 Chapter 14. Platform API

SUNFISH Platform Documentation Documentation, Release 0.9

Parameters

Name Position Description Type
configuration query MicroConfiguration id string
file query file id string

Responses

200 - Success. The body contains outpu file id.

404 - The MicroConfiguration id or file id were not found

PUT /macro/configuration/{id}

• Description: Update a ‘MacroConfiguration‘ object.

• Consumes: [u’application/json’]

Parameters

Name Position Description Type
id path MacroConfiguration id string
body body MacroConfiguration

Responses

200 - Success. The MacroConfiguration was updated

404 - The MacroConfiguration with the specified id was not found

400 - Invalid request (invalid MacroConfiguration id)

DELETE /macro/configuration/{id}

• Description: Delete a ‘MacroConfiguration‘ object.

Parameters

Name Position Description Type
id path MacroConfiguration id string

Responses

200 - Success. The MacroConfiguration was deleted

404 - The MacroConfiguration with the specified id was not found

400 - Invalid request (invalid MacroConfiguration id)

GET /macro/configuration/{id}

• Produces: [u’application/json’]

• Description: Get a ‘MacroConfiguration‘ object.

14.1. Anonymisation (ANM) 49

SUNFISH Platform Documentation Documentation, Release 0.9

Parameters

Name Position Description Type
id path MacroConfiguration id string

Responses

200 - Success. The body contains the requested MacroConfiguration

404 - The MacroConfiguration with the specified id was not found

400 - Invalid request (invalid MacroConfiguration id)

DELETE /file/{id}

• Description: Delete a file.

Parameters

Name Position Description Type
id path file id string

Responses

200 - Success. The file was deleted

404 - The file with the specified id was not found

400 - Invalid request (invalid file id)

GET /file/{id}

• Produces: [u’multipart/form-data’]

• Description: Download a file.

Parameters

Name Position Description Type
id path File id string

Responses

200 - Success. The body contains the requested file

404 - The file with the specified id was not found

500 - Internal server error.

POST /file

• Produces: [u’application/json’]

• Description: Uploads a new file.

• Consumes: [u’multipart/form-data’]

50 Chapter 14. Platform API

SUNFISH Platform Documentation Documentation, Release 0.9

Parameters

Name Position Description Type
file formData the file to upload file

Responses

200 - Success. The body contains the uploaded file id

500 - Internal server error

400 - Invalid request

POST /micro/configuration

• Produces: [u’application/json’]

• Description: Creates a new ‘MicroConfiguration‘ object.

• Consumes: [u’application/json’]

Parameters

Name Position Description Type
body body MicroConfiguration

Responses

200 - Success. The body contains the requested MicroConfiguration id

400 - Invalid request (invalid MicroConfiguration).

POST /macro

• Produces: [u’application/json’]

• Description: Execute queries with differential privacy

Parameters

Name Position Description Type
configuration query Macroonfiguration id string
file query file id string

Responses

200 - Success. The body contains outpu file id.

404 - The MacroConfiguration id or file id were not found

14.2 Anonymisation Interface (ANI)

ANI provides anonymisation service for federated clouds via differential privacy guarantee.

14.2. Anonymisation Interface (ANI) 51

SUNFISH Platform Documentation Documentation, Release 0.9

Version: 1.0.0

Contact information:
Andrea Margheri
a.margheri@soton.ac.uk

14.2.1

POST /interface/register

• Description: This endpoint is used to register a new data-sharing event.

Parameters

Name Position Description Type
body body JSON body of the register information

Responses

200 - The response body for successful response

401 - The operation is not allowed (unauthorised access, the token is invalid, etc.)

400 - Invalid request, required parameters missing.

POST /interface/queryFromUser

• Description: This endpoint is used to query the anonymised statistical the DataId and requested budget

Parameters

Name Position Description Type
body body JSON body of the query input

Responses

200 - The response body for a successful response

401 - The operation is not allowed (unauthorised access, the token is invalid, etc.)

400 - Invalid request, required parameters missing

14.3 Data Masking (DM)

14.3.1

DELETE /contexts/{id}

52 Chapter 14. Platform API

mailto:a.margheri@soton.ac.uk

SUNFISH Platform Documentation Documentation, Release 0.9

• Description: Delete a ‘Context‘ object.

Parameters

Name Position Description Type
id path Context id string

Responses

200 - Success. The context was deleted

404 - The context with the specified id was not found

400 - Invalid request (invalid context id)

POST /policies

• Description: Creates a new ‘Policy‘ object.

• Consumes: [u’application/json’]

Parameters

Name Position Description Type
body body Policy

Responses

200 - Success. The body contains the requested policy id

400 - Invalid request (invalid policy).

POST /process

• Description: process a payload

• Consumes: [u’text/plain’, u’text/xml’, u’application/json’, u’application/xml’]

Parameters

Name Position Description Type
policy query policy id string
context query context id string
X-DM-encryption-key header encryption key to use string
X-DM-encryption-iv header encryption initial vector to use string
body body payload

Responses

200 - Success. The body contains the processed payload

404 - The policy id or context id were not found

400 - Invalid request (invalid policy id, context id, missing headers).

14.3. Data Masking (DM) 53

SUNFISH Platform Documentation Documentation, Release 0.9

POST /contexts

• Description: Creates a new ‘Context‘ object.

Responses

200 - Success. The body contains the requested policy id

PUT /policies/{id}

• Description: Update a ‘Policy‘ object.

• Consumes: [u’application/json’]

Parameters

Name Position Description Type
id path Policy id string
body body Policy

Responses

200 - Success. The policy was updated

404 - The policy with the specified id was not found

400 - Invalid request (invalid policy id)

DELETE /policies/{id}

• Description: Delete a ‘Policy‘ object.

Parameters

Name Position Description Type
id path Policy id string

Responses

200 - Success. The policy was deleted

404 - The policy with the specified id was not found

400 - Invalid request (invalid policy id)

GET /policies/{id}

• Produces: [u’application/json’]

• Description: Get a ‘Policy‘ object.

• Consumes: [u’application/json’]

Parameters

54 Chapter 14. Platform API

SUNFISH Platform Documentation Documentation, Release 0.9

Name Position Description Type
id path Policy id string

Responses

200 - Success. The body contains the requested policy

404 - The policy with the specified id was not found

400 - Invalid request (invalid policy id)

14.4 Policy Administration Point (PAP)

The PAP interface follows a straight forward REST interface, as it requires bare access to the policy storage.

Version: 1.0.0

Contact information:
Alexander Marsalek
alexander.marsalek@a-sit.at

14.4.1 /v1/policies

GET

Summary: This endpoint is used by entities interfacing with the PAP to retrieve policies

Description:

Parameters

Name Lo-
cated
in

Description Re-
quired

Schema

SUNFISH-
issuer

header References the entity that issued the request. This field may include the data
that confirms the authenticati on of source entity and its authenticati on level.

Yes string

Responses

Code Description Schema
200 The body of the response contains the requested policies according to the schema defined in Listing

3. The response result set only contains a certain amount of entries. Pagination is done using the Web
Linking approach according to RFC5988. A Link header is included in the response pointing to the
next resultset: Link: https://%3Ch ost/pap/api/ v1/policies/ ?page=2>; rel=”next” The possible “rel”
values are “next” pointing to the next result-set. Pagination URLs are not allowed to be constructed
manually.

string

400 Invalid request
403 The requestor is not allowed to perform this operation
404 No policies matching the specified request were found

14.4. Policy Administration Point (PAP) 55

mailto:alexander.marsalek@a-sit.at
https://%3Ch

SUNFISH Platform Documentation Documentation, Release 0.9

POST

Summary: This endpoint is used by entities interfacing with the PAP to add a policy

Description:

Parameters

Name Lo-
cated
in

Description Re-
quired

Schema

body body The body of the request contains a to be added policy according to the schema
in Listing 1.

Yes string

SUNFISH-
issuer

header References the entity that issued the request. This field may include the data
that confirms the authenticati on of source entity and its authenticati on level.

Yes string

Responses

Code Description Schema
200 Created successful string
400 Invalid request
403 The requestor is not allowed to perform this operation
409 The policy exists already

14.4.2 /v1/policies/{id}/{version}

DELETE

Summary: This endpoint is used by entities to remove policies

Description:

Parameters

Name Lo-
cated
in

Description Re-
quired

Schem
a

id path Id of the policy to delete Yes string
version path Specifies the version of the policy to be deleted Yes string
SUNFISH-
issuer

header References the entity that issued the request. This field may include the data
that confirms the authenticati on of source entity and its authenticati on level.

Yes string

Responses

Code Description Schema
200 Deleted successful string
400 Invalid request
403 The requestor is not allowed to perform this operation
404 Policy not found

56 Chapter 14. Platform API

SUNFISH Platform Documentation Documentation, Release 0.9

14.5 Policy Decision Point (PDP)

This API is primarily used by adjacent PEPs to issue authorization requests for intra-zone and cross-zone interactions.
In this specification we partially rely on the REST profile suggested by the OASIS XACML Standard

Version: 1.0.0

Contact information:
Bernd Prünster
bernd.pruenster@a-sit.at

14.5.1 /v1

GET

Summary: API entry point. This point is used to identify functionality and endpoints provided by PDP.

Description:

Parameters

Name Located in Description Required Schema

Responses

Code Description
200 The response contains a resource with link relation http://docs. oasis-open.o rg/ns/xacml/ relation/pdp and

a valid URL.

14.5.2 /v1/verifyServicePolicy

POST

Summary: Verify a service policy

Description:

Parameters

Name Located
in

Description Re-
quired

Schema

SUNFISH-
signature

header This field is used to provide integrity and authenticity of
messages.

No string

body body Contains XACML-format ted policy for PDP to perform
verification.

Yes string

Responses

14.5. Policy Decision Point (PDP) 57

mailto:bernd.pruenster@a-sit.at
http://docs

SUNFISH Platform Documentation Documentation, Release 0.9

Code Description Schema
200 Contains information about the verification result. VerifyPolicyResult
400 Invalid request
404 The requestor is not allowed

14.5.3 /v1/verifyServicePolicySet

POST

Summary: Verify a service policy set

Description:

Parameters

Name Located
in

Description Re-
quired

Schema

SUNFISH-
signature

header This field is used to provide integrity and authenticity of
messages.

No string

body body Contains XACML-format ted policy set for PDP to perform
verification .

Yes string

Responses

Code Description Schema
200 Contains information about the verification result. VerifyPolicyResult
400 Invalid request
404 The requestor is not allowed

14.5.4 /v1/authorization

POST

Summary: This endpoint is used by PEPs to issue authorization decision requests to PDP. These requests are sent
using POST method. Inputs to this endpoint are parameters that describe access requests initiated by entities interacting
through the calling PEP. Additionally, this request contains other contextual parameters that can be used by PDP to
evaluate request.

Description:

Parameters

Name Lo-
cated
in

Description Re-
quired

Schem
a

SUNFISH-
signature

header This field is used to provide integrity and authenticity of messages. No string

body body Contains XACML-format ted (or other) request with all relevant data and
attributes necessary for PDP to perform authorization decision.

Yes string

Responses

58 Chapter 14. Platform API

SUNFISH Platform Documentation Documentation, Release 0.9

Code Description Schema
200 Contains complete XACML-format ted answer. Body can include additional answer that deals

with activity context, if requested.
string

400 Invalid XACML request
404 Requestor is not allowed to perform the request

14.5.5 Models

VerifyPolicyResult

Name Type Description Required
status string Indicates the status of the verification operation. No
description string Description, containing detailed information about the requested operation. No
statusCode integer Status code of the operation. No

14.6 Policy Enforcement Point (PEP)

The interactions executed inside one zone are checked by and enforced in the scope of a PEP assigned for that zone.
The approach is similar for the zones that consist of geographically dispersed locations: each PEP (or sub-PEP)
is responsible for its geographical unit or layer. Being the single point of contact of a zone, the PEP is primarily
responsible for checking incoming and outgoing requests. In the second instance, depending on security settings and
application requirements, PEP might serve as an inter-zone communication gateway, as well.

Version: 1.0.0

Contact information:
Dominik Ziegler
dominik.ziegler@a-sit.at

14.6.1 /v1/request

POST

Summary: This endpoint is used by PEPs to POST new requests to other PEPs. Inputs to this endpoint are contextual
parameters that establish the request, application and target specific settings. The response of this action is the data
record that contains request id and data structure describing status parameters or other PEP requirements.

Description:

Parameters

Responses

Code Description Schema
200 Body of the original request [byte]

14.6. Policy Enforcement Point (PEP) 59

mailto:dominik.ziegler@a-sit.at

SUNFISH Platform Documentation Documentation, Release 0.9

14.6.2 /v1/app-request

POST

Summary: Applications can POST new requests to this endpoint. Inputs to this endpoint are contextual parameters
that establish the request, application and target specific settings. For this specification, the applications rely on
common SUNFISH functionalities and components. The response of this action is the original response of the target
service (synchronous use case).

Description:

Parameters

Name Lo-
cated
in

Description Re-
quired

Schema

body body Body of the original request No [
byte
]

SUNFISH-
issuer

headerReferences the application that issued the request. This field may include the data
required to perform application authenticati on, in the form of authenticati on token.

No string

SUNFISH-
service

headerMachine-read able description of endpoint including at least an identifier of the service.
With the service id, the PEP can resolve other required attributes.

Yes string

SUNFISH-
request

headerMachine-read able description of the target endpoint and request data. The PEP at
least requires the parameters method, port, path and protocol. If additional attributes
are registered in the SUNFISH federation, the PEP can retrieve these attributes from a
correspondin
PIP. Furthermore, this field may include validity constraints on a request (not-valid-b
efore, not valid-after) .

Yes string

SUNFISH-
request-
parameters

headerThe parameters related to the request, including its priority, SLA requirements , call-
back URI. This field includes other request meta-data that may extend or override
the definitions provided in centralized administrati ve console. These include request
type, application- specific policies or obligations to be applied beyond the ones defined
in the central console, or parameters related to data-masking policies. The scope of
applicable and allowed definitions provided in this variable depends on an extent of
delegation policies, as determined in centralized console.

No string

SUNFISH-
request-
data

headerThis field encapsulates the original header data and the original query string as issued
by the application.

Yes string

SUNFISH-
signature

headerThis parameter is used to ensure integrity and authenticity of the source message for
applications which require a higher degree of security. It contains signed request and
fields, according to predefined schema

No string

Responses

Code Description Schema
200 The same response as provided by the target service [byte]

14.7 Policy Information Point (PIP)

The PIP is generally defined as “the system entity that acts as source of attribute values

60 Chapter 14. Platform API

SUNFISH Platform Documentation Documentation, Release 0.9

Version: 1.0.0

Contact information:
Dominik Ziegler
dominik.ziegler@a-sit.at

14.7.1 /v1/collect

GET

Summary: This endpoint is used to retrieve collection of all available attribute ids

Description:

Parameters

Name Lo-
cated
in

Description Re-
quired

Schema

SUNFISH-
issuer

header References the entity that issued the request. This field includes the data that
confirms the authenticati on of source entity and its authenticati on level.

Yes string

Responses

Code Description Schema
200 Contains collection of attribute designators ids according to the attribute designator set

schema.
string

400 Invalid request
403 The requestor is not allowed

14.7.2 /v1/request

POST

Summary: This endpoint is used to retrieve additional attributes

Description:

Parameters

Name Lo-
cated
in

Description Re-
quired

Schema

body body Contains the requested attributes and the request context as issued by the PEP.
If multiple PIPs are involved, the PIP always receive the most recent request
context.

No string

SUNFISH-
issuer

header References the entity that issued the request. This field includes the data that
confirms the authenticati on of source entity and its authenticati on level.

Yes string

14.7. Policy Information Point (PIP) 61

mailto:dominik.ziegler@a-sit.at

SUNFISH Platform Documentation Documentation, Release 0.9

Responses

Code Description Schema
200 The request context was enhanced with all or some of the requested attributes. string
400 Invalid request
403 The requestor is not allowed
404 This PIP does not provide any of the requested attributes.

14.8 Policy Retrieval Point (PRP)

The PRP is not included in the OASIS XACML standard, but provides another abstraction level of the PAP

Version: 1.0.0

Contact information:
Alexander Marsalek
alexander.marsalek@a-sit.at

14.8.1 /v1/collect

POST

Summary: This endpoint is used by PDPs to retrieve collection of policies for specified decision request.

Description:

Parameters

NameLo-
cated
in

Description Re-
quired

Schema

body body Contains the request formatted according to the XACML decision request language
with all relevant data and attributes necessary for the PRP to identify the relevant
policies.

Yes string

Responses

Code Description Schema
200 Contains single policy set where all policies are contained or references according to the

XACML policy set schema.
string

400 Invalid request
404 No policies matching the specified request were found

62 Chapter 14. Platform API

mailto:alexander.marsalek@a-sit.at

SUNFISH Platform Documentation Documentation, Release 0.9

14.8.2 /v1/policyset/{id}/{version}

GET

Summary: This endpoint is used to retrieve policy by id. Optionally version can be specified.

Description:

Parameters

Name Lo-
cated
in

Description Required Schema

root-
Poli-
cySet

query true false Defines if root policy-se t
or re-usable policies- set should
be returned.

Yes

id path Specifies the id of the policy set to be returned in the
response.

Yes string

ver-
sion

path Specifies the version of the policy set to be returned in
the response. If no version is specified the newest policy
set will be returned.

Yes string

Responses

Code Description Schema
200 Contains the requested policy set string
400 Invalid request
403 The requestor is not allowed to retrieve this policy
404 The policy set with the specified id was not found

14.8.3 /v1/policy/{id}

GET

Summary: This endpoint is used to retrieve policy by id. Optionally version can be specified.

Description:

Parameters

Name Lo-
cated
in

Description Required Schema

root-
Policy

query true false Defines if root policy or
re-usable policy should be returned.

Yes

id path Specifies the id of the policy to be re-
turned in the response.

Yes string

Responses

14.8. Policy Retrieval Point (PRP) 63

SUNFISH Platform Documentation Documentation, Release 0.9

Code Description Schema
200 Contains the requested policy set string
400 Invalid request
403 The requestor is not allowed to retrieve this policy
404 The policy set with the specified id was not found

14.8.4 /v1/policyset/{id}

GET

Summary: This endpoint is used to retrieve policy by id. Optionally version can be specified.

Description:

Parameters

Name Lo-
cated
in

Description Required Schema

root-
Policy-
Set

query true false Defines if root policy-se t or re-usable
policies- set should be returned.

Yes

id path Specifies the id of the policy set to be
returned in the response.

Yes string

Responses

Code Description Schema
200 Contains the requested policy set string
400 Invalid request
403 The requestor is not allowed to retrieve this policy
404 The policy set with the specified id was not found

14.8.5 /v1/policy/{id}/{version}

GET

Summary: This endpoint is used to retrieve policy by id. Optionally version can be specified.

Description:

Parameters

64 Chapter 14. Platform API

SUNFISH Platform Documentation Documentation, Release 0.9

Name Lo-
cated
in

Description Required Schema

root-
Pol-
icy

query true false Defines if root policy or
re-usable policy should be re-
turned.

Yes

id path Specifies the id of the policy to be returned in the re-
sponse.

Yes string

ver-
sion

path Specifies the version of the policy to be returned in the
response. If no version is specified the newest policy will
be returned.

Yes string

Responses

Code Description Schema
200 Contains the requested policy set string
400 Invalid request
403 The requestor is not allowed to retrieve this policy
404 The policy set with the specified id was not found

14.9 Federated Administration Monitoring (FAM)

Here reported the API offered by the FAM for alert management. Notice that the other functionalities are offered via
a UI, not via API

14.9.1

POST /triggerAlert

• Produces: [u’application/json’]

• Description: This endpoint is used to receive security alerts.

• Consumes: [u’application/json’]

Parameters

Name Position Description Type
body body Body in JSON

Responses

200 - The response body for a successful response

401 - The operation is not allowed (unauthorised access, the token is invalid, etc.).

400 - Invalid request, required parameter(s) missing.

14.9. Federated Administration Monitoring (FAM) 65

SUNFISH Platform Documentation Documentation, Release 0.9

14.10 Federated Runtime Monitoring (FRM)

14.10.1 Proxy

POST /agent

• Produces: [u’application/json’]

• Description: This endpoint is used to send an alert from FSA to a SMART Agent.

• Consumes: [u’application/json’]

Parameters

Name Position Description Type
body body Body in JSON

Responses

200 - The response body for a successful response.

401 - The operation is not allowed (unauthorised access, the token is invalid, etc.).

400 - Invalid request, required parameter(s) missing.

14.10.2 Policy Validation Engine

POST /pve

• Produces: [u’application/json’]

• Description: This endpoint is used to indicate new logs have been stored in the blockchain.

• Consumes: [u’application/json’]

Parameters

Name Position Description Type
body body Body in JSON

Responses

200 - The response body for a successful response.

401 - The operation is not allowed (unauthorised access, the token is invalid, etc.).

400 - Invalid request, required parameter(s) missing.

66 Chapter 14. Platform API

SUNFISH Platform Documentation Documentation, Release 0.9

14.11 Intelligent Workload Manager (IWM)

IWM provides lifecycle management for virtual resources in a multi-cloud multi-tenant environment. It also provides
optimised planner for the target infrastructure (costs, tags, etc). Functionality is implemented on top of the Waldur
hybrid cloud broker.

Version: 1.0.0

Contact information:
Ilja Livenson
ilja.livenson@gmail.com

14.11.1

PUT /api/openstacktenant-snapshots/{uuid}/

• Consumes: [u’application/json’]

Parameters

Name Position Description Type
uuid path string
data body

Responses

200 -

DELETE /api/openstacktenant-snapshots/{uuid}/

Parameters

Name Position Description Type
uuid path string

Responses

204 -

PATCH /api/openstacktenant-snapshots/{uuid}/

• Consumes: [u’application/json’]

Parameters

Name Position Description Type
uuid path string
data body

14.11. Intelligent Workload Manager (IWM) 67

mailto:ilja.livenson@gmail.com

SUNFISH Platform Documentation Documentation, Release 0.9

Responses

200 -

GET /api/openstacktenant-snapshots/{uuid}/

Parameters

Name Position Description Type
uuid path string

Responses

200 -

GET /api/customers/{uuid}/users/

A list of users connected to the customer

• Description: A list of users connected to the customer

Parameters

Name Position Description Type
uuid path string

Responses

200 -

POST /api/project-permissions/

- Projects are connected to customers, whereas the project may belong to one customer only,

• Description: - Projects are connected to customers, whereas the project may belong to one customer only,
and the customer may have multiple projects. - Projects are connected to services, whereas the project may
contain multiple services, and the service may belong to multiple projects. - Staff members can list all available
projects of any customer and create new projects. - Customer owners can list all projects that belong to any
of the customers they own. Customer owners can also create projects for the customers they own. - Project
administrators can list all the projects they are administrators in. - Project managers can list all the projects they
are managers in.

• Consumes: [u’application/json’]

Parameters

Name Position Description Type
data body

Responses

201 -

68 Chapter 14. Platform API

SUNFISH Platform Documentation Documentation, Release 0.9

GET /api/project-permissions/

Project permissions expresses connection of user to a project.

• Description: Project permissions expresses connection of user to a project. User may have either project
manager or system administrator permission in the project. Use */api/project-permissions/* endpoint to maintain
project permissions.

Note that project permissions can be viewed and modified only by customer owners and staff users.

To list all visible permissions, run a **GET** query against a list. Response will contain a list of project users
and their brief data.

To add a new user to the project, **POST** a new relationship to */api/project-permissions/* endpoint specify-
ing project, user and the role of the user (‘admin’ or ‘manager’):

.. code-block:: http

POST /api/project-permissions/ HTTP/1.1 Accept: application/json Authorization: Token
95a688962bf68678fd4c8cec4d138ddd9493c93b Host: example.com

{ “project”: “http://example.com/api/projects/6c9b01c251c24174a6691a1f894fae31/”, “role”: “manager”,
“user”: “http://example.com/api/users/82cec6c8e0484e0ab1429412fe4194b7/” }

Parameters

Name Position Description Type
page query string
page_size query string
role query string
user query string
user_url query string
username query string
full_name query string
native_name query string
o query string
customer query string
project query string
project_url query string

Responses

200 -

POST /api/openstack-tenants/{uuid}/pull_floating_ips/

Parameters

Name Position Description Type
uuid path string

Responses

201 -

14.11. Intelligent Workload Manager (IWM) 69

SUNFISH Platform Documentation Documentation, Release 0.9

PUT /api/hooks-email/{uuid}/

• Consumes: [u’application/json’]

Parameters

Name Position Description Type
uuid path string
data body

Responses

200 -

DELETE /api/hooks-email/{uuid}/

Parameters

Name Position Description Type
uuid path string

Responses

204 -

PATCH /api/hooks-email/{uuid}/

• Consumes: [u’application/json’]

Parameters

Name Position Description Type
uuid path string
data body

Responses

200 -

GET /api/hooks-email/{uuid}/

Parameters

Name Position Description Type
uuid path string

Responses

200 -

70 Chapter 14. Platform API

SUNFISH Platform Documentation Documentation, Release 0.9

POST /api/openstacktenant-snapshots/

• Consumes: [u’application/json’]

Parameters

Name Position Description Type
data body

Responses

201 -

GET /api/openstacktenant-snapshots/

Parameters

Name Position Description Type
page query string
page_size query string
customer query string
customer_uuid query string
customer_name query string
customer_native_name query string
customer_abbreviation query string
project query string
project_uuid query string
project_name query string
service_uuid query string
service_name query string
service_settings_name query string
service_settings_uuid query string
name query string
description query string
state query string
uuid query string
tag query string
rtag query string
o query string
source_volume_uuid query string
source_volume query string
backup_uuid query string
backup query string

Responses

200 -

PUT /api/openstacktenant-service-project-link/{id}/

• Consumes: [u’application/json’]

14.11. Intelligent Workload Manager (IWM) 71

SUNFISH Platform Documentation Documentation, Release 0.9

Parameters

Name Position Description Type
id path string
data body

Responses

200 -

DELETE /api/openstacktenant-service-project-link/{id}/

Parameters

Name Position Description Type
id path string

Responses

204 -

PATCH /api/openstacktenant-service-project-link/{id}/

• Consumes: [u’application/json’]

Parameters

Name Position Description Type
id path string
data body

Responses

200 -

GET /api/openstacktenant-service-project-link/{id}/

To remove a link, issue **DELETE** to URL of the corresponding connection as stuff user or customer owner.

• Description: To remove a link, issue **DELETE** to URL of the corresponding connection as stuff user or
customer owner.

Parameters

Name Position Description Type
id path string

Responses

200 -

72 Chapter 14. Platform API

SUNFISH Platform Documentation Documentation, Release 0.9

POST /api/openstack-tenants/{uuid}/create_floating_ip/

Parameters

Name Position Description Type
uuid path string

Responses

201 -

PUT /api/project-permissions/{id}/

- Projects are connected to customers, whereas the project may belong to one customer only,

• Description: - Projects are connected to customers, whereas the project may belong to one customer only,
and the customer may have multiple projects. - Projects are connected to services, whereas the project may
contain multiple services, and the service may belong to multiple projects. - Staff members can list all available
projects of any customer and create new projects. - Customer owners can list all projects that belong to any
of the customers they own. Customer owners can also create projects for the customers they own. - Project
administrators can list all the projects they are administrators in. - Project managers can list all the projects they
are managers in.

• Consumes: [u’application/json’]

Parameters

Name Position Description Type
id path string
data body

Responses

200 -

DELETE /api/project-permissions/{id}/

To remove a user from a project, delete corresponding connection (**url** field). Successful deletion

• Description: To remove a user from a project, delete corresponding connection (**url** field). Successful
deletion will return status code 204.

.. code-block:: http

DELETE /api/project-permissions/42/ HTTP/1.1 Authorization: Token
95a688962bf68678fd4c8cec4d138ddd9493c93b Host: example.com

Parameters

Name Position Description Type
id path string

Responses

14.11. Intelligent Workload Manager (IWM) 73

SUNFISH Platform Documentation Documentation, Release 0.9

204 -

PATCH /api/project-permissions/{id}/

- Projects are connected to customers, whereas the project may belong to one customer only,

• Description: - Projects are connected to customers, whereas the project may belong to one customer only,
and the customer may have multiple projects. - Projects are connected to services, whereas the project may
contain multiple services, and the service may belong to multiple projects. - Staff members can list all available
projects of any customer and create new projects. - Customer owners can list all projects that belong to any
of the customers they own. Customer owners can also create projects for the customers they own. - Project
administrators can list all the projects they are administrators in. - Project managers can list all the projects they
are managers in.

• Consumes: [u’application/json’]

Parameters

Name Position Description Type
id path string
data body

Responses

200 -

GET /api/project-permissions/{id}/

- Projects are connected to customers, whereas the project may belong to one customer only,

• Description: - Projects are connected to customers, whereas the project may belong to one customer only,
and the customer may have multiple projects. - Projects are connected to services, whereas the project may
contain multiple services, and the service may belong to multiple projects. - Staff members can list all available
projects of any customer and create new projects. - Customer owners can list all projects that belong to any
of the customers they own. Customer owners can also create projects for the customers they own. - Project
administrators can list all the projects they are administrators in. - Project managers can list all the projects they
are managers in.

Parameters

Name Position Description Type
id path string

Responses

200 -

GET /api/events/event_groups/

Returns a list of groups with event types.

• Description: Returns a list of groups with event types. Group is used in exclude_features query param.

74 Chapter 14. Platform API

SUNFISH Platform Documentation Documentation, Release 0.9

Parameters

Name Position Description Type

Responses

200 -

PUT /api/hooks-push/{uuid}/

• Consumes: [u’application/json’]

Parameters

Name Position Description Type
uuid path string
data body

Responses

200 -

DELETE /api/hooks-push/{uuid}/

Parameters

Name Position Description Type
uuid path string

Responses

204 -

PATCH /api/hooks-push/{uuid}/

• Consumes: [u’application/json’]

Parameters

Name Position Description Type
uuid path string
data body

Responses

200 -

GET /api/hooks-push/{uuid}/

14.11. Intelligent Workload Manager (IWM) 75

SUNFISH Platform Documentation Documentation, Release 0.9

Parameters

Name Position Description Type
uuid path string

Responses

200 -

GET /api/events/scope_types/

Returns a list of scope types acceptable by events filter.

• Description: Returns a list of scope types acceptable by events filter.

Parameters

Name Position Description Type

Responses

200 -

PUT /api/openstack-floating-ips/{uuid}/

Parameters

Name Position Description Type
uuid path string

Responses

200 -

DELETE /api/openstack-floating-ips/{uuid}/

Parameters

Name Position Description Type
uuid path string

Responses

204 -

PATCH /api/openstack-floating-ips/{uuid}/

Parameters

Name Position Description Type
uuid path string

76 Chapter 14. Platform API

SUNFISH Platform Documentation Documentation, Release 0.9

Responses

200 -

GET /api/openstack-floating-ips/{uuid}/

Parameters

Name Position Description Type
uuid path string

Responses

200 -

POST /api/openstacktenant-volumes/{uuid}/extend/

Increase volume size

• Description: Increase volume size

• Consumes: [u’application/json’]

Parameters

Name Position Description Type
uuid path string
data body

Responses

201 -

PUT /api/openstack-subnets/{uuid}/

• Consumes: [u’application/json’]

Parameters

Name Position Description Type
uuid path string
data body

Responses

200 -

DELETE /api/openstack-subnets/{uuid}/

Parameters

14.11. Intelligent Workload Manager (IWM) 77

SUNFISH Platform Documentation Documentation, Release 0.9

Name Position Description Type
uuid path string

Responses

204 -

PATCH /api/openstack-subnets/{uuid}/

• Consumes: [u’application/json’]

Parameters

Name Position Description Type
uuid path string
data body

Responses

200 -

GET /api/openstack-subnets/{uuid}/

Parameters

Name Position Description Type
uuid path string

Responses

200 -

PUT /api/openstacktenant-instances/{uuid}/

OpenStack instance permissions

• Description: OpenStack instance permissions ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

- Staff members can list all available VM instances in any service. - Customer owners can list all VM instances in
all the services that belong to any of the customers they own. - Project administrators can list all VM instances,
create new instances and start/stop/restart instances in all the services that are connected to any of the projects
they are administrators in. - Project managers can list all VM instances in all the services that are connected to
any of the projects they are managers in.

• Consumes: [u’application/json’]

Parameters

Name Position Description Type
uuid path string
data body

78 Chapter 14. Platform API

SUNFISH Platform Documentation Documentation, Release 0.9

Responses

200 -

DELETE /api/openstacktenant-instances/{uuid}/

Deletion of an instance is done through sending a **DELETE** request to the instance URI.

• Description: Deletion of an instance is done through sending a **DELETE** request to the instance URI.
Valid request example (token is user specific):

.. code-block:: http

DELETE /api/openstacktenant-instances/abceed63b8e844afacd63daeac855474/ HTTP/1.1 Authorization: To-
ken c84d653b9ec92c6cbac41c706593e66f567a7fa4 Host: example.com

Only stopped instances or instances in ERRED state can be deleted.

By default when instance is destroyed, all data volumes attached to it are destroyed too. In order to preserve data
volumes use query parameter ?delete_volumes=false In this case data volumes are detached from the instance
and then instance is destroyed. Note that system volume is deleted anyway. For example:

.. code-block:: http

DELETE /api/openstacktenant-instances/abceed63b8e844afacd63daeac855474/?delete_volumes=false
HTTP/1.1 Authorization: Token c84d653b9ec92c6cbac41c706593e66f567a7fa4 Host: example.com

Parameters

Name Position Description Type
uuid path string

Responses

204 -

PATCH /api/openstacktenant-instances/{uuid}/

OpenStack instance permissions

• Description: OpenStack instance permissions ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

- Staff members can list all available VM instances in any service. - Customer owners can list all VM instances in
all the services that belong to any of the customers they own. - Project administrators can list all VM instances,
create new instances and start/stop/restart instances in all the services that are connected to any of the projects
they are administrators in. - Project managers can list all VM instances in all the services that are connected to
any of the projects they are managers in.

• Consumes: [u’application/json’]

Parameters

Name Position Description Type
uuid path string
data body

Responses

14.11. Intelligent Workload Manager (IWM) 79

SUNFISH Platform Documentation Documentation, Release 0.9

200 -

GET /api/openstacktenant-instances/{uuid}/

OpenStack instance permissions

• Description: OpenStack instance permissions ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

- Staff members can list all available VM instances in any service. - Customer owners can list all VM instances in
all the services that belong to any of the customers they own. - Project administrators can list all VM instances,
create new instances and start/stop/restart instances in all the services that are connected to any of the projects
they are administrators in. - Project managers can list all VM instances in all the services that are connected to
any of the projects they are managers in.

Parameters

Name Position Description Type
uuid path string

Responses

200 -

POST /api/openstacktenant-instances/{uuid}/change_flavor/

OpenStack instance permissions

• Description: OpenStack instance permissions ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

- Staff members can list all available VM instances in any service. - Customer owners can list all VM instances in
all the services that belong to any of the customers they own. - Project administrators can list all VM instances,
create new instances and start/stop/restart instances in all the services that are connected to any of the projects
they are administrators in. - Project managers can list all VM instances in all the services that are connected to
any of the projects they are managers in.

• Consumes: [u’application/json’]

Parameters

Name Position Description Type
uuid path string
data body

Responses

201 -

POST /api/hooks-web/

To create new web hook issue **POST** against */api/hooks-web/* as an authenticated user.

• Description: To create new web hook issue **POST** against */api/hooks-web/* as an authenticated user. You
should specify list of event_types or event_groups.

Example of a request:

80 Chapter 14. Platform API

SUNFISH Platform Documentation Documentation, Release 0.9

.. code-block:: http

POST /api/hooks-web/ HTTP/1.1 Content-Type: application/json Accept: application/json Authorization: To-
ken c84d653b9ec92c6cbac41c706593e66f567a7fa4 Host: example.com

{ “event_types”: [“resource_start_succeeded”], “event_groups”: [“users”], “destination_url”:
“http://example.com/” }

When hook is activated, **POST** request is issued against destination URL with the following data:

.. code-block:: javascript

{ “timestamp”: “2015-07-14T12:12:56.000000”, “message”: “Customer ABC LLC has been updated.”,
“type”: “customer_update_succeeded”, “context”: { “user_native_name”: “Walter Lebrowski”, “cus-
tomer_contact_details”: “”, “user_username”: “Walter”, “user_uuid”: “1c3323fc4ae44120b57ec40dea1be6e6”,
“customer_uuid”: “4633bbbb0b3a4b91bffc0e18f853de85”, “ip_address”: “8.8.8.8”, “user_full_name”: “Wal-
ter Lebrowski”, “customer_abbreviation”: “ABC LLC”, “customer_name”: “ABC LLC” }, “levelname”:
“INFO” }

Note that context depends on event type.

• Consumes: [u’application/json’]

Parameters

Name Position Description Type
data body

Responses

201 -

GET /api/hooks-web/

Parameters

Name Position Description Type
page query string
page_size query string
user query string
is_active query string
last_published query string
destination_url query string
content_type query string
author_uuid query string

Responses

200 -

POST /api/openstack-tenants/

• Consumes: [u’application/json’]

Parameters

14.11. Intelligent Workload Manager (IWM) 81

SUNFISH Platform Documentation Documentation, Release 0.9

Name Position Description Type
data body

Responses

201 -

GET /api/openstack-tenants/

Parameters

Name Position Description Type
page query string
page_size query string
customer query string
customer_uuid query string
customer_name query string
customer_native_name query string
customer_abbreviation query string
project query string
project_uuid query string
project_name query string
service_uuid query string
service_name query string
service_settings_name query string
service_settings_uuid query string
name query string
description query string
state query string
uuid query string
tag query string
rtag query string
o query string

Responses

200 -

POST /api/openstack-floating-ips/

Parameters

Name Position Description Type

Responses

201 -

GET /api/openstack-floating-ips/

82 Chapter 14. Platform API

SUNFISH Platform Documentation Documentation, Release 0.9

To get a list of all available floating IPs, issue **GET** against */api/floating-ips/*.

• Description: To get a list of all available floating IPs, issue **GET** against */api/floating-ips/*. Floating IPs
are read only. Each floating IP has fields: ‘address’, ‘status’.

Status *DOWN* means that floating IP is not linked to a VM, status *ACTIVE* means that it is in use.

Parameters

Name Position Description Type
page query string
page_size query string
customer query string
customer_uuid query string
customer_name query string
customer_native_name query string
customer_abbreviation query string
project query string
project_uuid query string
project_name query string
service_uuid query string
service_name query string
service_settings_name query string
service_settings_uuid query string
name query string
description query string
state query string
uuid query string
tag query string
rtag query string
runtime_state query string
o query string
tenant_uuid query string
tenant query string

Responses

200 -

POST /api/openstack-subnets/

• Consumes: [u’application/json’]

Parameters

Name Position Description Type
data body

Responses

201 -

GET /api/openstack-subnets/

14.11. Intelligent Workload Manager (IWM) 83

SUNFISH Platform Documentation Documentation, Release 0.9

Parameters

Name Position Description Type
page query string
page_size query string
customer query string
customer_uuid query string
customer_name query string
customer_native_name query string
customer_abbreviation query string
project query string
project_uuid query string
project_name query string
service_uuid query string
service_name query string
service_settings_name query string
service_settings_uuid query string
name query string
description query string
state query string
uuid query string
tag query string
rtag query string
o query string
tenant_uuid query string
tenant query string
network_uuid query string
network query string

Responses

200 -

POST /api/openstack/

• Consumes: [u’application/json’]

Parameters

Name Position Description Type
data body

Responses

201 -

GET /api/openstack/

To create a service, issue a **POST** to */api/openstack/* as a customer owner.

• Description: To create a service, issue a **POST** to */api/openstack/* as a customer owner.

You can create service based on shared service settings. Example:

84 Chapter 14. Platform API

SUNFISH Platform Documentation Documentation, Release 0.9

.. code-block:: http

POST /api/openstack/ HTTP/1.1 Content-Type: application/json Accept: application/json Authorization: Token
c84d653b9ec92c6cbac41c706593e66f567a7fa4 Host: example.com

{ “name”: “Common OpenStack”, “customer”: “http://example.com/api/customers/1040561ca9e046d2b74268600c7e1105/”,
“settings”: “http://example.com/api/service-settings/93ba615d6111466ebe3f792669059cb4/” }

Or provide your own credentials. Example:

.. code-block:: http

POST /api/openstack/ HTTP/1.1 Content-Type: application/json Accept: application/json Authorization: Token
c84d653b9ec92c6cbac41c706593e66f567a7fa4 Host: example.com

{ “name”: “My OpenStack”, “customer”: “http://example.com/api/customers/1040561ca9e046d2b74268600c7e1105/”,
“backend_url”: “http://keystone.example.com:5000/v2.0”, “username”: “admin”, “password”: “secret” }

Parameters

Name Position Description Type
page query string
page_size query string
name query string
project_uuid query string
customer query string
project query string
settings query string
shared query string
type query string
tag query string
rtag query string

Responses

200 -

GET /api/customers/{uuid}/balance_history/

Parameters

Name Position Description Type
uuid path string

Responses

200 -

POST /api/openstacktenant-instances/{uuid}/stop/

OpenStack instance permissions

• Description: OpenStack instance permissions ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

- Staff members can list all available VM instances in any service. - Customer owners can list all VM instances in
all the services that belong to any of the customers they own. - Project administrators can list all VM instances,

14.11. Intelligent Workload Manager (IWM) 85

SUNFISH Platform Documentation Documentation, Release 0.9

create new instances and start/stop/restart instances in all the services that are connected to any of the projects
they are administrators in. - Project managers can list all VM instances in all the services that are connected to
any of the projects they are managers in.

• Consumes: [u’application/json’]

Parameters

Name Position Description Type
uuid path string
data body

Responses

201 -

POST /api/openstack-networks/{uuid}/pull/

• Consumes: [u’application/json’]

Parameters

Name Position Description Type
uuid path string
data body

Responses

201 -

POST /api/projects/

A new project can be created by users with staff privilege (is_staff=True) or customer owners.

• Description: A new project can be created by users with staff privilege (is_staff=True) or customer owners.
Project resource quota is optional. Example of a valid request:

.. code-block:: http

POST /api/projects/ HTTP/1.1 Content-Type: application/json Accept: application/json Authorization: Token
c84d653b9ec92c6cbac41c706593e66f567a7fa4 Host: example.com

{ “name”: “Project A”, “customer”: “http://example.com/api/customers/6c9b01c251c24174a6691a1f894fae31/”,
}

• Consumes: [u’application/json’]

Parameters

Name Position Description Type
data body

Responses

201 -

86 Chapter 14. Platform API

SUNFISH Platform Documentation Documentation, Release 0.9

GET /api/projects/

To get a list of projects, run **GET** against */api/projects/* as authenticated user.

• Description: To get a list of projects, run **GET** against */api/projects/* as authenticated user. Here you can
also check actual value for project quotas and project usage

Note that a user can only see connected projects:

- projects that the user owns as a customer - projects where user has any role

Supported logic filters:

- ?can_manage - return a list of projects where current user is manager or a customer owner; - ?can_admin -
return a list of projects where current user is admin;

Parameters

Name Position Description Type
page query string
page_size query string
name query string
customer query string
customer_name query string
customer_native_name query string
customer_abbreviation query string
description query string
created query string
o query string

Responses

200 -

POST /api/openstacktenant-instances/

OpenStack instance permissions

• Description: OpenStack instance permissions ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

- Staff members can list all available VM instances in any service. - Customer owners can list all VM instances in
all the services that belong to any of the customers they own. - Project administrators can list all VM instances,
create new instances and start/stop/restart instances in all the services that are connected to any of the projects
they are administrators in. - Project managers can list all VM instances in all the services that are connected to
any of the projects they are managers in.

• Consumes: [u’application/json’]

Parameters

Name Position Description Type
data body

Responses

201 -

14.11. Intelligent Workload Manager (IWM) 87

SUNFISH Platform Documentation Documentation, Release 0.9

GET /api/openstacktenant-instances/

OpenStack instance permissions

• Description: OpenStack instance permissions ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

- Staff members can list all available VM instances in any service. - Customer owners can list all VM instances in
all the services that belong to any of the customers they own. - Project administrators can list all VM instances,
create new instances and start/stop/restart instances in all the services that are connected to any of the projects
they are administrators in. - Project managers can list all VM instances in all the services that are connected to
any of the projects they are managers in.

Parameters

Name Position Description Type
page query string
page_size query string
customer query string
customer_uuid query string
customer_name query string
customer_native_name query string
customer_abbreviation query string
project query string
project_uuid query string
project_name query string
service_uuid query string
service_name query string
service_settings_name query string
service_settings_uuid query string
name query string
description query string
state query string
uuid query string
tag query string
rtag query string
o query string
tenant_uuid query string

Responses

200 -

GET /api/openstacktenant-security-groups/

Parameters

Name Position Description Type
page query string
page_size query string
name query string
settings_uuid query string
settings query string

88 Chapter 14. Platform API

SUNFISH Platform Documentation Documentation, Release 0.9

Responses

200 -

POST /api/openstack-networks/

• Consumes: [u’application/json’]

Parameters

Name Position Description Type
data body

Responses

201 -

GET /api/openstack-networks/

Parameters

Name Position Description Type
page query string
page_size query string
customer query string
customer_uuid query string
customer_name query string
customer_native_name query string
customer_abbreviation query string
project query string
project_uuid query string
project_name query string
service_uuid query string
service_name query string
service_settings_name query string
service_settings_uuid query string
name query string
description query string
state query string
uuid query string
tag query string
rtag query string
o query string
tenant_uuid query string
tenant query string

Responses

200 -

POST /api/openstack-tenants/{uuid}/pull/

14.11. Intelligent Workload Manager (IWM) 89

SUNFISH Platform Documentation Documentation, Release 0.9

• Consumes: [u’application/json’]

Parameters

Name Position Description Type
uuid path string
data body

Responses

201 -

GET /api/openstacktenant-security-groups/{uuid}/

Parameters

Name Position Description Type
uuid path string

Responses

200 -

PUT /api/openstack/{uuid}/

• Consumes: [u’application/json’]

Parameters

Name Position Description Type
uuid path string
data body

Responses

200 -

DELETE /api/openstack/{uuid}/

Parameters

Name Position Description Type
uuid path string

Responses

204 -

PATCH /api/openstack/{uuid}/

• Consumes: [u’application/json’]

90 Chapter 14. Platform API

SUNFISH Platform Documentation Documentation, Release 0.9

Parameters

Name Position Description Type
uuid path string
data body

Responses

200 -

GET /api/openstack/{uuid}/

To update OpenStack service issue **PUT** or **PATCH** against */api/openstack/<service_uuid>/*

• Description: To update OpenStack service issue **PUT** or **PATCH** against
/api/openstack/<service_uuid>/ as a customer owner. You can update service’s ‘name‘ and ‘available_for_all‘
fields.

Example of a request:

.. code-block:: http

PUT /api/openstack/c6526bac12b343a9a65c4cd6710666ee/ HTTP/1.1 Content-Type: application/json Accept:
application/json Authorization: Token c84d653b9ec92c6cbac41c706593e66f567a7fa4 Host: example.com

{ “name”: “My OpenStack2” }

To remove OpenStack service, issue **DELETE** against */api/openstack/<service_uuid>/* as staff user or
customer owner.

Parameters

Name Position Description Type
uuid path string

Responses

200 -

POST /api/openstack-security-groups/

• Consumes: [u’application/json’]

Parameters

Name Position Description Type
data body

Responses

201 -

GET /api/openstack-security-groups/

14.11. Intelligent Workload Manager (IWM) 91

SUNFISH Platform Documentation Documentation, Release 0.9

Parameters

Name Position Description Type
page query string
page_size query string
description query string
name query string
error_message query string
backend_id query string
start_time query string
service_project_link query string
tenant query string
customer query string
customer_uuid query string
customer_name query string
customer_native_name query string
customer_abbreviation query string
project query string
project_uuid query string
project_name query string
service_uuid query string
service_name query string
service_settings_uuid query string
service_settings_name query string
state query string
uuid query string
tag query string
rtag query string
o query string
tenant_uuid query string

Responses

200 -

GET /api/hooks/

Use */api/hooks/* to get a list of all the hooks of any type that a user can see.

• Description: Use */api/hooks/* to get a list of all the hooks of any type that a user can see.

Parameters

Name Position Description Type
page query string
page_size query string

Responses

200 -

POST /api/users/

92 Chapter 14. Platform API

SUNFISH Platform Documentation Documentation, Release 0.9

• Consumes: [u’application/json’]

Parameters

Name Position Description Type
data body

Responses

201 -

GET /api/users/

User list is available to all authenticated users. To get a list,

• Description: User list is available to all authenticated users. To get a list, issue authenticated **GET** request
against */api/users/*.

User list supports several filters. All filters are set in HTTP query section. Field filters are listed below. All of
the filters apart from ?organization are using case insensitive partial matching.

Several custom filters are supported:

- ?current - filters out user making a request. Useful for getting information about a currently logged in user. -
?civil_number=XXX - filters out users with a specified civil number - ?is_active=True|False - show only active
(non-active) users - ?potential - shows users that have common connections to the customers and are potential
collaborators. Exclude staff users. Staff users can see all the customers. - ?potential_customer=<Customer
UUID> - optionally filter potential users by customer UUID - ?potential_organization=<organization name>
- optionally filter potential unconnected users by their organization name (deprecated, use ‘organization
plugin <http://nodeconductor-organization.readthedocs.org/en/stable/>‘_ instead) - ?organization_claimed -
show only users with a non-empty organization (deprecated, use ‘organization plugin <http://nodeconductor-
organization.readthedocs.org/en/stable/>‘_ instead)

The user can be created either through automated process on login with SAML token, or through a REST call
by a user with staff privilege.

Example of a creation request is below.

.. code-block:: http

POST /api/users/ HTTP/1.1 Content-Type: application/json Accept: application/json Authorization: Token
c84d653b9ec92c6cbac41c706593e66f567a7fa4 Host: example.com

{ “username”: “sample-user”, “full_name”: “full name”, “native_name”: “taisnimi”, “job_title”: “senior clean-
ing manager”, “email”: “example@example.com”, “civil_number”: “12121212”, “phone_number”: “”, “de-
scription”: “”, “organization”: “”, }

NB! Username field is case-insensitive. So “John” and “john” will be treated as the same user.

Parameters

Name Position Description Type
page query string
page_size query string
full_name query string
native_name query string
organization query string

Continued on next page

14.11. Intelligent Workload Manager (IWM) 93

SUNFISH Platform Documentation Documentation, Release 0.9

Table 14.1 – continued from previous page
Name Position Description Type
organization_approved query string
email query string
phone_number query string
description query string
job_title query string
username query string
civil_number query string
is_active query string
registration_method query string
o query string
full_name query string
native_name query string
organization query string
organization_approved query string
email query string
phone_number query string
description query string
job_title query string
username query string
civil_number query string
is_active query string
registration_method query string
o query string
full_name query string
native_name query string
organization query string
organization_approved query string
email query string
phone_number query string
description query string
job_title query string
username query string
civil_number query string
is_active query string
registration_method query string
o query string

Responses

200 -

POST /api/openstacktenant-volumes/{uuid}/attach/

Attach volume to instance

• Description: Attach volume to instance

• Consumes: [u’application/json’]

Parameters

94 Chapter 14. Platform API

SUNFISH Platform Documentation Documentation, Release 0.9

Name Position Description Type
uuid path string
data body

Responses

201 -

POST /api/openstacktenant-instances/{uuid}/update_security_groups/

OpenStack instance permissions

• Description: OpenStack instance permissions ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

- Staff members can list all available VM instances in any service. - Customer owners can list all VM instances in
all the services that belong to any of the customers they own. - Project administrators can list all VM instances,
create new instances and start/stop/restart instances in all the services that are connected to any of the projects
they are administrators in. - Project managers can list all VM instances in all the services that are connected to
any of the projects they are managers in.

• Consumes: [u’application/json’]

Parameters

Name Position Description Type
uuid path string
data body

Responses

201 -

POST /api/hooks-email/

To create new email hook issue **POST** against */api/hooks-email/* as an authenticated user.

• Description: To create new email hook issue **POST** against */api/hooks-email/* as an authenticated user.
You should specify list of event_types or event_groups.

Example of a request:

.. code-block:: http

POST /api/hooks-email/ HTTP/1.1 Content-Type: application/json Accept: application/json Authorization: To-
ken c84d653b9ec92c6cbac41c706593e66f567a7fa4 Host: example.com

{ “event_types”: [“openstack_instance_start_succeeded”], “event_groups”: [“users”], “email”:
“test@example.com” }

You may temporarily disable hook without deleting it by issuing following **PATCH** request against hook
URL:

.. code-block:: javascript

{ “is_active”: “false” }

• Consumes: [u’application/json’]

14.11. Intelligent Workload Manager (IWM) 95

SUNFISH Platform Documentation Documentation, Release 0.9

Parameters

Name Position Description Type
data body

Responses

201 -

GET /api/hooks-email/

Parameters

Name Position Description Type
page query string
page_size query string
user query string
is_active query string
last_published query string
email query string
author_uuid query string

Responses

200 -

POST /api/openstacktenant/{uuid}/unlink/

Unlink all related resources, service project link and service itself.

• Description: Unlink all related resources, service project link and service itself.

• Consumes: [u’application/json’]

Parameters

Name Position Description Type
uuid path string
data body

Responses

201 -

PUT /api/customer-permissions/{id}/

- Customers are connected to users through roles, whereas user may have role “customer owner”.

• Description: - Customers are connected to users through roles, whereas user may have role “customer owner”.
- Each customer may have multiple owners, and each user may own multiple customers. - Staff members can list
all available customers and create new customers. - Customer owners can list all customers they own. Customer
owners can also create new customers. - Project administrators can list all the customers that own any of the

96 Chapter 14. Platform API

SUNFISH Platform Documentation Documentation, Release 0.9

projects they are administrators in. - Project managers can list all the customers that own any of the projects
they are managers in.

• Consumes: [u’application/json’]

Parameters

Name Position Description Type
id path string
data body

Responses

200 -

DELETE /api/customer-permissions/{id}/

- Customers are connected to users through roles, whereas user may have role “customer owner”.

• Description: - Customers are connected to users through roles, whereas user may have role “customer owner”.
- Each customer may have multiple owners, and each user may own multiple customers. - Staff members can list
all available customers and create new customers. - Customer owners can list all customers they own. Customer
owners can also create new customers. - Project administrators can list all the customers that own any of the
projects they are administrators in. - Project managers can list all the customers that own any of the projects
they are managers in.

Parameters

Name Position Description Type
id path string

Responses

204 -

PATCH /api/customer-permissions/{id}/

- Customers are connected to users through roles, whereas user may have role “customer owner”.

• Description: - Customers are connected to users through roles, whereas user may have role “customer owner”.
- Each customer may have multiple owners, and each user may own multiple customers. - Staff members can list
all available customers and create new customers. - Customer owners can list all customers they own. Customer
owners can also create new customers. - Project administrators can list all the customers that own any of the
projects they are administrators in. - Project managers can list all the customers that own any of the projects
they are managers in.

• Consumes: [u’application/json’]

Parameters

Name Position Description Type
id path string
data body

Responses

14.11. Intelligent Workload Manager (IWM) 97

SUNFISH Platform Documentation Documentation, Release 0.9

200 -

GET /api/customer-permissions/{id}/

To remove a user from a customer owner group, delete corresponding connection (**url** field).

• Description: To remove a user from a customer owner group, delete corresponding connection (**url** field).
Successful deletion will return status code 204.

.. code-block:: http

DELETE /api/customer-permissions/71/ HTTP/1.1 Authorization: Token
95a688962bf68678fd4c8cec4d138ddd9493c93b Host: example.com

Parameters

Name Position Description Type
id path string

Responses

200 -

POST /api/openstack-tenants/{uuid}/create_network/

• Consumes: [u’application/json’]

Parameters

Name Position Description Type
uuid path string
data body

Responses

201 -

PUT /api/openstack-service-project-link/{id}/

• Consumes: [u’application/json’]

Parameters

Name Position Description Type
id path string
data body

Responses

200 -

DELETE /api/openstack-service-project-link/{id}/

98 Chapter 14. Platform API

SUNFISH Platform Documentation Documentation, Release 0.9

Parameters

Name Position Description Type
id path string

Responses

204 -

PATCH /api/openstack-service-project-link/{id}/

• Consumes: [u’application/json’]

Parameters

Name Position Description Type
id path string
data body

Responses

200 -

GET /api/openstack-service-project-link/{id}/

To remove a link, issue **DELETE** to URL of the corresponding connection as stuff user or customer owner.

• Description: To remove a link, issue **DELETE** to URL of the corresponding connection as stuff user or
customer owner.

Parameters

Name Position Description Type
id path string

Responses

200 -

POST /api/users/{uuid}/password/

To change a user password, submit a **POST** request to the user’s RPC URL, specifying new password

• Description: To change a user password, submit a **POST** request to the user’s RPC URL, specifying new
password by staff user or account owner.

Password is expected to be at least 7 symbols long and contain at least one number and at least one lower or
upper case.

Example of a valid request:

.. code-block:: http

14.11. Intelligent Workload Manager (IWM) 99

SUNFISH Platform Documentation Documentation, Release 0.9

POST /api/users/e0c058d06864441fb4f1c40dee5dd4fd/password/ HTTP/1.1 Content-Type: application/json
Accept: application/json Authorization: Token c84d653b9ec92c6cbac41c706593e66f567a7fa4 Host: exam-
ple.com

{ “password”: “nQvqHzeP123”, }

• Consumes: [u’application/json’]

Parameters

Name Position Description Type
uuid path string
data body

Responses

201 -

GET /api/openstacktenant-floating-ips/

Parameters

Name Position Description Type
page query string
page_size query string
name query string
settings_uuid query string
settings query string
runtime_state query string

Responses

200 -

POST /api/openstacktenant-instances/{uuid}/unassign_floating_ip/

OpenStack instance permissions

• Description: OpenStack instance permissions ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

- Staff members can list all available VM instances in any service. - Customer owners can list all VM instances in
all the services that belong to any of the customers they own. - Project administrators can list all VM instances,
create new instances and start/stop/restart instances in all the services that are connected to any of the projects
they are administrators in. - Project managers can list all VM instances in all the services that are connected to
any of the projects they are managers in.

Parameters

Name Position Description Type
uuid path string

Responses

201 -

100 Chapter 14. Platform API

SUNFISH Platform Documentation Documentation, Release 0.9

POST /api/hooks-push/

To create new push hook issue **POST** against */api/hooks-push/* as an authenticated user.

• Description: To create new push hook issue **POST** against */api/hooks-push/* as an authenticated user.
You should specify list of event_types or event_groups.

Example of a request:

.. code-block:: http

POST /api/hooks-push/ HTTP/1.1 Content-Type: application/json Accept: application/json Authorization: To-
ken c84d653b9ec92c6cbac41c706593e66f567a7fa4 Host: example.com

{ “event_types”: [“resource_start_succeeded”], “event_groups”: [“users”], “type”: “Android” }

You may temporarily disable hook without deleting it by issuing following **PATCH** request against hook
URL:

.. code-block:: javascript

{ “is_active”: “false” }

• Consumes: [u’application/json’]

Parameters

Name Position Description Type
data body

Responses

201 -

GET /api/hooks-push/

Parameters

Name Position Description Type
page query string
page_size query string
user query string
is_active query string
last_published query string
type query string
device_id query string
device_manufacturer query string
device_model query string
token query string
author_uuid query string

Responses

200 -

POST /api/events/

14.11. Intelligent Workload Manager (IWM) 101

SUNFISH Platform Documentation Documentation, Release 0.9

• Consumes: [u’application/json’]

Parameters

Name Position Description Type
data body

Responses

201 -

GET /api/events/

To get a list of events - run **GET** against */api/events/* as authenticated user. Note that a user can

• Description: To get a list of events - run **GET** against */api/events/* as authenticated user. Note that a user
can only see events connected to objects she is allowed to see.

Sorting is supported in ascending and descending order by specifying a field to an **?o=** parameter. By
default events are sorted by @timestamp in descending order.

Run POST against */api/events/* to create an event. Only users with staff privileges can create events. New
event will be emitted with ‘custom_notification‘ event type. Request should contain following fields:

- level: the level of current event. Following levels are supported: debug, info, warning, error - message: string
representation of event message - scope: optional URL, which points to the loggable instance

Request example:

.. code-block:: javascript

POST /api/events/ Accept: application/json Content-Type: application/json Authorization: Token
c84d653b9ec92c6cbac41c706593e66f567a7fa4 Host: example.com

{ “level”: “info”, “message”: “message#1”, “scope”: “http://example.com/api/customers/9cd869201e1b4158a285427fcd790c1c/”
}

Parameters

Name Position Description Type
page query string
page_size query string

Responses

200 -

GET /api/customer-permissions-log/{id}/

Parameters

Name Position Description Type
id path string

Responses

102 Chapter 14. Platform API

SUNFISH Platform Documentation Documentation, Release 0.9

200 -

POST /api/openstack-tenants/{uuid}/create_security_group/

Example of a request:

• Description: Example of a request:

.. code-block:: http

{ “name”: “Security group name”, “description”: “description”, “rules”: [{ “protocol”: “tcp”, “from_port”:
1, “to_port”: 10, “cidr”: “10.1.1.0/24” }, { “protocol”: “udp”, “from_port”: 10, “to_port”: 8000, “cidr”:
“10.1.1.0/24” }] }

• Consumes: [u’application/json’]

Parameters

Name Position Description Type
uuid path string
data body

Responses

201 -

POST /api/openstacktenant-volumes/{uuid}/pull/

• Consumes: [u’application/json’]

Parameters

Name Position Description Type
uuid path string
data body

Responses

201 -

GET /api/customer-permissions-log/

Parameters

14.11. Intelligent Workload Manager (IWM) 103

SUNFISH Platform Documentation Documentation, Release 0.9

Name Position Description Type
page query string
page_size query string
role query string
user query string
user_url query string
username query string
full_name query string
native_name query string
o query string
customer query string
customer_url query string

Responses

200 -

GET /api/openstacktenant-flavors/

VM instance flavor is a pre-defined set of virtual hardware parameters that the instance will use:

• Description: VM instance flavor is a pre-defined set of virtual hardware parameters that the instance will use:
CPU, memory, disk size etc. VM instance flavor is not to be confused with VM template – flavor is a set of
virtual hardware parameters whereas template is a definition of a system to be installed on this instance.

Parameters

Name Position Description Type
page query string
page_size query string
ram query string
ram__gte query string
ram__lte query string
name query string
settings query string
cores query string
cores__gte query string
cores__lte query string
disk query string
disk__gte query string
disk__lte query string
settings_uuid query string
o query string

Responses

200 -

POST /api/openstack-ip-mappings/

• Consumes: [u’application/json’]

104 Chapter 14. Platform API

SUNFISH Platform Documentation Documentation, Release 0.9

Parameters

Name Position Description Type
data body

Responses

201 -

GET /api/openstack-ip-mappings/

Parameters

Name Position Description Type
page query string
page_size query string
project query string
private_ip query string
public_ip query string

Responses

200 -

GET /api/openstacktenant-flavors/{uuid}/

VM instance flavor is a pre-defined set of virtual hardware parameters that the instance will use:

• Description: VM instance flavor is a pre-defined set of virtual hardware parameters that the instance will use:
CPU, memory, disk size etc. VM instance flavor is not to be confused with VM template – flavor is a set of
virtual hardware parameters whereas template is a definition of a system to be installed on this instance.

Parameters

Name Position Description Type
uuid path string

Responses

200 -

PUT /api/openstack-packages/{uuid}/

Parameters

Name Position Description Type
uuid path string

Responses

200 -

14.11. Intelligent Workload Manager (IWM) 105

SUNFISH Platform Documentation Documentation, Release 0.9

DELETE /api/openstack-packages/{uuid}/

Parameters

Name Position Description Type
uuid path string

Responses

204 -

PATCH /api/openstack-packages/{uuid}/

Parameters

Name Position Description Type
uuid path string

Responses

200 -

GET /api/openstack-packages/{uuid}/

Parameters

Name Position Description Type
uuid path string

Responses

200 -

POST /api/keys/

SSH public keys are injected to VM instances during creation, so that holder of corresponding SSH private key can

• Description: SSH public keys are injected to VM instances during creation, so that holder of corresponding
SSH private key can log in to that instance. SSH public keys are connected to user accounts, whereas the key
may belong to one user only, and the user may have multiple SSH keys. Users can only access SSH keys
connected to their accounts. Staff users can see all the accounts. Project administrators can select what SSH key
will be injected into VM instance during instance provisioning.

• Consumes: [u’application/json’]

Parameters

Name Position Description Type
data body

Responses

106 Chapter 14. Platform API

SUNFISH Platform Documentation Documentation, Release 0.9

201 -

GET /api/keys/

To get a list of SSH keys, run **GET** against */api/keys/* as authenticated user.

• Description: To get a list of SSH keys, run **GET** against */api/keys/* as authenticated user.

A new SSH key can be created by any active users. Example of a valid request:

.. code-block:: http

POST /api/keys/ HTTP/1.1 Content-Type: application/json Accept: application/json Authorization: Token
c84d653b9ec92c6cbac41c706593e66f567a7fa4 Host: example.com

{ “name”: “ssh_public_key1”, “public_key”: “ssh-rsa AAAAB3NzaC1yc2EAAAADAQABAAABAQDDURXDP5YhOQUYoDuTxJ84DuzqMJYJqJ8+SZT28
TtLm5yBDRLKAERqtlbH2gkrQ3US58gd2r8H9jAmQOydfvgwauxuJUE4eDpaMWupqquMYsYLB5f+vVGhdZbbzfc6DTQ2rY
dknWoMoArlG7MvRMA/xQ0ye1muTv+mYMipnd7Z+WH0uVArYI9QBpqC/gpZRRIouQ4VIQIVWGoT6M4Kat5ZBXEa9yP+9du
D2C05GX3gumoSAVyAcDHn/xgej9pYRXGha4l+LKkFdGwAoXdV1z79EG1+9ns7wXuqMJFHM2KDpxAizV0GkZcojISvDwuh
vEAFdOJcqjyyH4FOGYa8usP1 jhon@example.com”, }

Parameters

Name Position Description Type
page query string
page_size query string
name query string
fingerprint query string
uuid query string
user_uuid query string
o query string

Responses

200 -

GET /api/customers/{uuid}/counters/

Count number of entities related to customer

• Description: Count number of entities related to customer

.. code-block:: javascript

{ “alerts”: 12, “services”: 1, “projects”: 1, “users”: 3 }

Parameters

Name Position Description Type
uuid path string
page query string
page_size query string

Responses

200 -

14.11. Intelligent Workload Manager (IWM) 107

SUNFISH Platform Documentation Documentation, Release 0.9

GET /api/openstack-images/{uuid}/

Parameters

Name Position Description Type
uuid path string

Responses

200 -

PUT /api/projects/{uuid}/

• Consumes: [u’application/json’]

Parameters

Name Position Description Type
uuid path string
data body

Responses

200 -

DELETE /api/projects/{uuid}/

Deletion of a project is done through sending a **DELETE** request to the project instance URI.

• Description: Deletion of a project is done through sending a **DELETE** request to the project instance URI.
Please note, that if a project has connected instances, deletion request will fail with 409 response code.

Valid request example (token is user specific):

.. code-block:: http

DELETE /api/projects/6c9b01c251c24174a6691a1f894fae31/ HTTP/1.1 Authorization: Token
c84d653b9ec92c6cbac41c706593e66f567a7fa4 Host: example.com

Parameters

Name Position Description Type
uuid path string

Responses

204 -

PATCH /api/projects/{uuid}/

• Consumes: [u’application/json’]

108 Chapter 14. Platform API

SUNFISH Platform Documentation Documentation, Release 0.9

Parameters

Name Position Description Type
uuid path string
data body

Responses

200 -

GET /api/projects/{uuid}/

Optional ‘field‘ query parameter (can be list) allows to limit what fields are returned.

• Description: Optional ‘field‘ query parameter (can be list) allows to limit what fields are returned. For example,
given request /api/projects/<uuid>/?field=uuid&field=name you get response like this:

.. code-block:: javascript

{ “uuid”: “90bcfe38b0124c9bbdadd617b5d739f5”, “name”: “Default” }

Parameters

Name Position Description Type
uuid path string

Responses

200 -

POST /api/openstacktenant-instances/{uuid}/pull/

OpenStack instance permissions

• Description: OpenStack instance permissions ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

- Staff members can list all available VM instances in any service. - Customer owners can list all VM instances in
all the services that belong to any of the customers they own. - Project administrators can list all VM instances,
create new instances and start/stop/restart instances in all the services that are connected to any of the projects
they are administrators in. - Project managers can list all VM instances in all the services that are connected to
any of the projects they are managers in.

• Consumes: [u’application/json’]

Parameters

Name Position Description Type
uuid path string
data body

Responses

201 -

14.11. Intelligent Workload Manager (IWM) 109

SUNFISH Platform Documentation Documentation, Release 0.9

GET /api/service-settings/

To get a list of service settings, run **GET** against */api/service-settings/* as an authenticated user.

• Description: To get a list of service settings, run **GET** against */api/service-settings/* as an authenticated
user. Only settings owned by this user or shared settings will be listed.

Supported filters are:

- ?name=<text> - partial matching used for searching - ?type=<type> - choices: OpenStack, DigitalOcean,
Amazon, JIRA, GitLab, Oracle - ?state=<state> - choices: New, Creation Scheduled, Creating, Sync Scheduled,
Syncing, In Sync, Erred - ?shared=<bool> - allows to filter shared service settings

Parameters

Name Position Description Type
page query string
page_size query string
name query string
type query string
state query string
shared query string
name query string
type query string
state query string
shared query string

Responses

200 -

GET /api/openstack-flavors/{uuid}/

VM instance flavor is a pre-defined set of virtual hardware parameters that the instance will use:

• Description: VM instance flavor is a pre-defined set of virtual hardware parameters that the instance will use:
CPU, memory, disk size etc. VM instance flavor is not to be confused with VM template – flavor is a set of
virtual hardware parameters whereas template is a definition of a system to be installed on this instance.

Parameters

Name Position Description Type
uuid path string

Responses

200 -

POST /api/openstack-packages/

• Consumes: [u’application/json’]

Parameters

110 Chapter 14. Platform API

SUNFISH Platform Documentation Documentation, Release 0.9

Name Position Description Type
data body

Responses

201 -

GET /api/openstack-packages/

Parameters

Name Position Description Type
page query string
page_size query string
name query string
customer query string
project query string
tenant query string

Responses

200 -

GET /api/openstacktenant-floating-ips/{uuid}/

Parameters

Name Position Description Type
uuid path string

Responses

200 -

GET /api/openstack-flavors/

VM instance flavor is a pre-defined set of virtual hardware parameters that the instance will use:

• Description: VM instance flavor is a pre-defined set of virtual hardware parameters that the instance will use:
CPU, memory, disk size etc. VM instance flavor is not to be confused with VM template – flavor is a set of
virtual hardware parameters whereas template is a definition of a system to be installed on this instance.

Parameters

14.11. Intelligent Workload Manager (IWM) 111

SUNFISH Platform Documentation Documentation, Release 0.9

Name Position Description Type
page query string
page_size query string
ram query string
ram__gte query string
ram__lte query string
name query string
settings query string
cores query string
cores__gte query string
cores__lte query string
disk query string
disk__gte query string
disk__lte query string
settings_uuid query string
o query string

Responses

200 -

POST /api/openstacktenant-instances/{uuid}/restart/

OpenStack instance permissions

• Description: OpenStack instance permissions ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

- Staff members can list all available VM instances in any service. - Customer owners can list all VM instances in
all the services that belong to any of the customers they own. - Project administrators can list all VM instances,
create new instances and start/stop/restart instances in all the services that are connected to any of the projects
they are administrators in. - Project managers can list all VM instances in all the services that are connected to
any of the projects they are managers in.

• Consumes: [u’application/json’]

Parameters

Name Position Description Type
uuid path string
data body

Responses

201 -

DELETE /api/keys/{uuid}/

SSH public keys are injected to VM instances during creation, so that holder of corresponding SSH private key can

• Description: SSH public keys are injected to VM instances during creation, so that holder of corresponding
SSH private key can log in to that instance. SSH public keys are connected to user accounts, whereas the key
may belong to one user only, and the user may have multiple SSH keys. Users can only access SSH keys
connected to their accounts. Staff users can see all the accounts. Project administrators can select what SSH key
will be injected into VM instance during instance provisioning.

112 Chapter 14. Platform API

SUNFISH Platform Documentation Documentation, Release 0.9

Parameters

Name Position Description Type
uuid path string

Responses

204 -

GET /api/keys/{uuid}/

SSH public keys are injected to VM instances during creation, so that holder of corresponding SSH private key can

• Description: SSH public keys are injected to VM instances during creation, so that holder of corresponding
SSH private key can log in to that instance. SSH public keys are connected to user accounts, whereas the key
may belong to one user only, and the user may have multiple SSH keys. Users can only access SSH keys
connected to their accounts. Staff users can see all the accounts. Project administrators can select what SSH key
will be injected into VM instance during instance provisioning.

Parameters

Name Position Description Type
uuid path string

Responses

200 -

GET /api/service-metadata/

To get a list of supported service types, run **GET** against */api/service-metadata/* as an authenticated user.

• Description: To get a list of supported service types, run **GET** against */api/service-metadata/* as an
authenticated user. Use an endpoint from the returned list in order to create new service.

Parameters

Name Position Description Type
page query string
page_size query string

Responses

200 -

POST /api/openstacktenant-volumes/

• Consumes: [u’application/json’]

Parameters

Name Position Description Type
data body

14.11. Intelligent Workload Manager (IWM) 113

SUNFISH Platform Documentation Documentation, Release 0.9

Responses

201 -

GET /api/openstacktenant-volumes/

Parameters

Name Position Description Type
page query string
page_size query string
customer query string
customer_uuid query string
customer_name query string
customer_native_name query string
customer_abbreviation query string
project query string
project_uuid query string
project_name query string
service_uuid query string
service_name query string
service_settings_name query string
service_settings_uuid query string
name query string
description query string
state query string
uuid query string
tag query string
rtag query string
instance query string
instance_uuid query string
o query string

Responses

200 -

POST /api/openstack-tenants/{uuid}/create_service/

Create non-admin service with credentials from the tenant

• Description: Create non-admin service with credentials from the tenant

• Consumes: [u’application/json’]

Parameters

Name Position Description Type
uuid path string
data body

Responses

114 Chapter 14. Platform API

SUNFISH Platform Documentation Documentation, Release 0.9

201 -

GET /api/version/

Retrieve version of the application

• Description: Retrieve version of the application

Parameters

Name Position Description Type

Responses

200 -

GET /api/resources/

To get a list of supported resources’ actions, run **OPTIONS** against

• Description: To get a list of supported resources’ actions, run **OPTIONS** against */api/<resource_url>/*
as an authenticated user.

It is possible to filter and order by resource-specific fields, but this filters will be applied only to resources that
support such filtering. For example it is possible to sort resource by ?o=ram, but SugarCRM crms will ignore
this ordering, because they do not support such option.

Filter resources by type or category ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

There are two query argument to select resources by their type.

- Specify explicitly list of resource types, for example:

/api/<resource_endpoint>/?resource_type=DigitalOcean.Droplet&resource_type=OpenStack.Instance

- Specify category, one of vms, apps, private_clouds or storages for example:

/api/<resource_endpoint>/?category=vms

Filtering by monitoring fields ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

Resources may have SLA attached to it. Example rendering of SLA:

.. code-block:: javascript

“sla”: { “value”: 95.0 “agreed_value”: 99.0, “period”: “2016-03” }

You may filter or order resources by SLA. Default period is current year and month.

- Example query for filtering list of resources by actual SLA:

/api/<resource_endpoint>/?actual_sla=90&period=2016-02

- Warning! If resource does not have SLA attached to it, it is not included in ordered response. Example query
for ordering list of resources by actual SLA:

/api/<resource_endpoint>/?o=actual_sla&period=2016-02

Service list is displaying current SLAs for each of the items. By default, SLA period is set to the current month.
To change the period pass it as a query argument:

14.11. Intelligent Workload Manager (IWM) 115

SUNFISH Platform Documentation Documentation, Release 0.9

- ?period=YYYY-MM - return a list with SLAs for a given month - ?period=YYYY - return a list with SLAs
for a given year

In all cases all currently running resources are returned, if SLA for the given period is not known or not present,
it will be shown as **null** in the response.

Resources may have monitoring items attached to it. Example rendering of monitoring items:

.. code-block:: javascript

“monitoring_items”: { “application_state”: 1 }

You may filter or order resources by monitoring item.

- Example query for filtering list of resources by installation state:

/api/<resource_endpoint>/?monitoring__installation_state=1

- Warning! If resource does not have monitoring item attached to it, it is not included in ordered response.
Example query for ordering list of resources by installation state:

/api/<resource_endpoint>/?o=monitoring__installation_state

Filtering by tags ^^^^^^^^^^^^^^^^^

Resource may have tags attached to it. Example of tags rendering:

.. code-block:: javascript

“tags”: [“license-os:centos7”, “os-family:linux”, “license-application:postgresql”, “support:premium”]

Tags filtering:

- ?tag=IaaS - filter by full tag name, using method OR. Can be list. - ?rtag=os-family:linux - filter by full tag
name, using AND method. Can be list. - ?tag__license-os=centos7 - filter by tags with particular prefix.

Tags ordering:

- ?o=tag__license-os - order by tag with particular prefix. Instances without given tag will not be returned.

Parameters

Name Position Description Type
page query string
page_size query string

Responses

200 -

POST /api-auth/password/

Api view loosely based on DRF’s default ObtainAuthToken,

• Description: Api view loosely based on DRF’s default ObtainAuthToken, but with the responses formats and
status codes aligned with BasicAuthentication behavior.

Valid request example:

.. code-block:: http

POST /api-auth/password/ HTTP/1.1

116 Chapter 14. Platform API

SUNFISH Platform Documentation Documentation, Release 0.9

Parameters

Name Position Description Type

Responses

201 -

PUT /api/openstacktenant/{uuid}/

• Consumes: [u’application/json’]

Parameters

Name Position Description Type
uuid path string
data body

Responses

200 -

DELETE /api/openstacktenant/{uuid}/

Parameters

Name Position Description Type
uuid path string

Responses

204 -

PATCH /api/openstacktenant/{uuid}/

• Consumes: [u’application/json’]

Parameters

Name Position Description Type
uuid path string
data body

Responses

200 -

GET /api/openstacktenant/{uuid}/

14.11. Intelligent Workload Manager (IWM) 117

SUNFISH Platform Documentation Documentation, Release 0.9

Parameters

Name Position Description Type
uuid path string

Responses

200 -

POST /api/openstacktenant-instances/{uuid}/assign_floating_ip/

To assign floating IP to the instance, make **POST** request to

• Description: To assign floating IP to the instance, make **POST** request to */api/openstacktenant-
instances/<uuid>/assign_floating_ip/* with link to the floating IP. Make empty POST request to allocate new
floating IP and assign it to instance. Note that instance should be in stable state, service project link of the
instance should be in stable state and have external network.

Example of a valid request:

.. code-block:: http

POST /api/openstacktenant-instances/6c9b01c251c24174a6691a1f894fae31/assign_floating_ip/
HTTP/1.1 Content-Type: application/json Accept: application/json Authorization: Token
c84d653b9ec92c6cbac41c706593e66f567a7fa4 Host: example.com

{ “floating_ip”: “http://example.com/api/floating-ips/5e7d93955f114d88981dea4f32ab673d/” }

• Consumes: [u’application/json’]

Parameters

Name Position Description Type
uuid path string
data body

Responses

201 -

PUT /api/openstack-networks/{uuid}/

• Consumes: [u’application/json’]

Parameters

Name Position Description Type
uuid path string
data body

Responses

200 -

DELETE /api/openstack-networks/{uuid}/

118 Chapter 14. Platform API

SUNFISH Platform Documentation Documentation, Release 0.9

Parameters

Name Position Description Type
uuid path string

Responses

204 -

PATCH /api/openstack-networks/{uuid}/

• Consumes: [u’application/json’]

Parameters

Name Position Description Type
uuid path string
data body

Responses

200 -

GET /api/openstack-networks/{uuid}/

Parameters

Name Position Description Type
uuid path string

Responses

200 -

POST /api/openstacktenant-instances/{uuid}/backup/

OpenStack instance permissions

• Description: OpenStack instance permissions ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

- Staff members can list all available VM instances in any service. - Customer owners can list all VM instances in
all the services that belong to any of the customers they own. - Project administrators can list all VM instances,
create new instances and start/stop/restart instances in all the services that are connected to any of the projects
they are administrators in. - Project managers can list all VM instances in all the services that are connected to
any of the projects they are managers in.

• Consumes: [u’application/json’]

Parameters

Name Position Description Type
uuid path string
data body

14.11. Intelligent Workload Manager (IWM) 119

SUNFISH Platform Documentation Documentation, Release 0.9

Responses

201 -

PUT /api/users/{uuid}/

• Consumes: [u’application/json’]

Parameters

Name Position Description Type
uuid path string
data body

Responses

200 -

DELETE /api/users/{uuid}/

Parameters

Name Position Description Type
uuid path string

Responses

204 -

PATCH /api/users/{uuid}/

• Consumes: [u’application/json’]

Parameters

Name Position Description Type
uuid path string
data body

Responses

200 -

GET /api/users/{uuid}/

User fields can be updated by account owner or user with staff privilege (is_staff=True).

• Description: User fields can be updated by account owner or user with staff privilege (is_staff=True). Following
user fields can be updated:

120 Chapter 14. Platform API

SUNFISH Platform Documentation Documentation, Release 0.9

- organization (deprecated, use ‘organization plugin <http://nodeconductor-
organization.readthedocs.org/en/stable/>‘_ instead) - full_name - native_name - job_title - phone_number
- email

Can be done by **PUT**ing a new data to the user URI, i.e. */api/users/<UUID>/* by staff user or account
owner. Valid request example (token is user specific):

.. code-block:: http

PUT /api/users/e0c058d06864441fb4f1c40dee5dd4fd/ HTTP/1.1 Content-Type: application/json Accept: ap-
plication/json Authorization: Token c84d653b9ec92c6cbac41c706593e66f567a7fa4 Host: example.com

{ “email”: “example@example.com”, “organization”: “Bells organization”, }

Parameters

Name Position Description Type
uuid path string

Responses

200 -

POST /api/openstack-floating-ips/{uuid}/pull/

Parameters

Name Position Description Type
uuid path string

Responses

201 -

POST /api/openstack-service-project-link/

• Consumes: [u’application/json’]

Parameters

Name Position Description Type
data body

Responses

201 -

GET /api/openstack-service-project-link/

In order to be able to provision OpenStack resources, it must first be linked to a project. To do that,

• Description: In order to be able to provision OpenStack resources, it must first be linked to a project. To do
that, **POST** a connection between project and a service to */api/openstack-service-project-link/* as stuff
user or customer owner.

14.11. Intelligent Workload Manager (IWM) 121

SUNFISH Platform Documentation Documentation, Release 0.9

Example of a request:

.. code-block:: http

POST /api/openstack-service-project-link/ HTTP/1.1 Content-Type: application/json Accept: application/json
Authorization: Token c84d653b9ec92c6cbac41c706593e66f567a7fa4 Host: example.com

{ “project”: “http://example.com/api/projects/e5f973af2eb14d2d8c38d62bcbaccb33/”, “service”:
“http://example.com/api/openstack/b0e8a4cbd47c4f9ca01642b7ec033db4/” }

To remove a link, issue DELETE to URL of the corresponding connection as stuff user or customer owner.

Parameters

Name Position Description Type
page query string
page_size query string
project query string
service query string
service_uuid query string
customer_uuid query string
project_uuid query string

Responses

200 -

PUT /api/hooks-web/{uuid}/

• Consumes: [u’application/json’]

Parameters

Name Position Description Type
uuid path string
data body

Responses

200 -

DELETE /api/hooks-web/{uuid}/

Parameters

Name Position Description Type
uuid path string

Responses

204 -

PATCH /api/hooks-web/{uuid}/

122 Chapter 14. Platform API

SUNFISH Platform Documentation Documentation, Release 0.9

• Consumes: [u’application/json’]

Parameters

Name Position Description Type
uuid path string
data body

Responses

200 -

GET /api/hooks-web/{uuid}/

Parameters

Name Position Description Type
uuid path string

Responses

200 -

GET /api/openstacktenant/{uuid}/managed_resources/

Parameters

Name Position Description Type
uuid path string

Responses

200 -

POST /api/openstack-packages/extend/

• Consumes: [u’application/json’]

Parameters

Name Position Description Type
data body

Responses

201 -

POST /api/openstacktenant-service-project-link/

• Consumes: [u’application/json’]

14.11. Intelligent Workload Manager (IWM) 123

SUNFISH Platform Documentation Documentation, Release 0.9

Parameters

Name Position Description Type
data body

Responses

201 -

GET /api/openstacktenant-service-project-link/

To get a list of connections between a project and an service, run **GET** against service_project_link_url

• Description: To get a list of connections between a project and an service, run **GET** against ser-
vice_project_link_url as authenticated user. Note that a user can only see connections of a project where a
user has a role.

If service has ‘available_for_all‘ flag, project-service connections are created automatically. Otherwise, in order
to be able to provision resources, service must first be linked to a project. To do that, **POST** a connection
between project and a service to service_project_link_url as stuff user or customer owner.

Parameters

Name Position Description Type
page query string
page_size query string
project query string
service query string
service_uuid query string
customer_uuid query string
project_uuid query string

Responses

200 -

GET /api/services/

Filter services by type

• Description: Filter services by type ^^^^^^^^^^^^^^^^^^^^^^^

It is possible to filter services by their types. Example:

/api/services/?service_type=DigitalOcean&service_type=OpenStack

Parameters

Name Position Description Type
page query string
page_size query string

Responses

124 Chapter 14. Platform API

SUNFISH Platform Documentation Documentation, Release 0.9

200 -

POST /api/openstack-security-groups/{uuid}/set_rules/

WARNING! Auto-generated HTML form is wrong for this endpoint. List should be defined as input.

• Description: WARNING! Auto-generated HTML form is wrong for this endpoint. List should be defined as
input.

Example: [{ “protocol”: “tcp”, “from_port”: 1, “to_port”: 10, “cidr”: “10.1.1.0/24” }]

• Consumes: [u’application/json’]

Parameters

Name Position Description Type
uuid path string
data body

Responses

201 -

POST /api/openstacktenant-instances/{uuid}/start/

OpenStack instance permissions

• Description: OpenStack instance permissions ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

- Staff members can list all available VM instances in any service. - Customer owners can list all VM instances in
all the services that belong to any of the customers they own. - Project administrators can list all VM instances,
create new instances and start/stop/restart instances in all the services that are connected to any of the projects
they are administrators in. - Project managers can list all VM instances in all the services that are connected to
any of the projects they are managers in.

• Consumes: [u’application/json’]

Parameters

Name Position Description Type
uuid path string
data body

Responses

201 -

POST /api/openstacktenant-volumes/{uuid}/detach/

Detach instance from volume

• Description: Detach instance from volume

• Consumes: [u’application/json’]

14.11. Intelligent Workload Manager (IWM) 125

SUNFISH Platform Documentation Documentation, Release 0.9

Parameters

Name Position Description Type
uuid path string
data body

Responses

201 -

POST /api/openstack-tenants/{uuid}/pull_security_groups/

• Consumes: [u’application/json’]

Parameters

Name Position Description Type
uuid path string
data body

Responses

201 -

POST /api/openstack-networks/{uuid}/create_subnet/

• Consumes: [u’application/json’]

Parameters

Name Position Description Type
uuid path string
data body

Responses

201 -

PUT /api/service-settings/{uuid}/

To update service settings, issue a **PUT** or **PATCH** to */api/service-settings/<uuid>/* as a customer owner.

• Description: To update service settings, issue a **PUT** or **PATCH** to */api/service-settings/<uuid>/* as
a customer owner. You are allowed to change name and credentials only.

Example of a request:

.. code-block:: http

PATCH /api/service-settings/9079705c17d64e6aa0af2e619b0e0702/ HTTP/1.1 Content-Type: application/json
Accept: application/json Authorization: Token c84d653b9ec92c6cbac41c706593e66f567a7fa4 Host: exam-
ple.com

{ “username”: “admin”, “password”: “new_secret” }

126 Chapter 14. Platform API

SUNFISH Platform Documentation Documentation, Release 0.9

• Consumes: [u’application/json’]

Parameters

Name Position Description Type
uuid path string
data body

Responses

200 -

PATCH /api/service-settings/{uuid}/

• Consumes: [u’application/json’]

Parameters

Name Position Description Type
uuid path string
data body

Responses

200 -

GET /api/service-settings/{uuid}/

Parameters

Name Position Description Type
uuid path string

Responses

200 -

POST /api/openstack/{uuid}/link/

To get a list of resources available for import, run **GET** against */<service_endpoint>/link/*

• Description: To get a list of resources available for import, run **GET** against */<service_endpoint>/link/*
as an authenticated user. Optionally project_uuid parameter can be supplied for services requiring it like Open-
Stack.

To import (link with NodeConductor) resource issue **POST** against the same endpoint with resource id.

.. code-block:: http

POST /api/openstack/08039f01c9794efc912f1689f4530cf0/link/ HTTP/1.1 Content-Type: application/json Ac-
cept: application/json Authorization: Token c84d653b9ec92c6cbac41c706593e66f567a7fa4 Host: exam-
ple.com

{ “backend_id”: “bd5ec24d-9164-440b-a9f2-1b3c807c5df3”, “project”:
“http://example.com/api/projects/e5f973af2eb14d2d8c38d62bcbaccb33/” }

14.11. Intelligent Workload Manager (IWM) 127

SUNFISH Platform Documentation Documentation, Release 0.9

• Consumes: [u’application/json’]

Parameters

Name Position Description Type
uuid path string
data body

Responses

201 -

GET /api/openstack/{uuid}/link/

To get a list of resources available for import, run **GET** against */<service_endpoint>/link/*

• Description: To get a list of resources available for import, run **GET** against */<service_endpoint>/link/*
as an authenticated user. Optionally project_uuid parameter can be supplied for services requiring it like Open-
Stack.

To import (link with NodeConductor) resource issue **POST** against the same endpoint with resource id.

.. code-block:: http

POST /api/openstack/08039f01c9794efc912f1689f4530cf0/link/ HTTP/1.1 Content-Type: application/json Ac-
cept: application/json Authorization: Token c84d653b9ec92c6cbac41c706593e66f567a7fa4 Host: exam-
ple.com

{ “backend_id”: “bd5ec24d-9164-440b-a9f2-1b3c807c5df3”, “project”:
“http://example.com/api/projects/e5f973af2eb14d2d8c38d62bcbaccb33/” }

Parameters

Name Position Description Type
uuid path string

Responses

200 -

PUT /api/openstack-ip-mappings/{uuid}/

• Consumes: [u’application/json’]

Parameters

Name Position Description Type
uuid path string
data body

Responses

200 -

DELETE /api/openstack-ip-mappings/{uuid}/

128 Chapter 14. Platform API

SUNFISH Platform Documentation Documentation, Release 0.9

Parameters

Name Position Description Type
uuid path string

Responses

204 -

PATCH /api/openstack-ip-mappings/{uuid}/

• Consumes: [u’application/json’]

Parameters

Name Position Description Type
uuid path string
data body

Responses

200 -

GET /api/openstack-ip-mappings/{uuid}/

Parameters

Name Position Description Type
uuid path string

Responses

200 -

POST /api/openstack-tenants/{uuid}/set_quotas/

A quota can be set for a particular tenant. Only staff users can do that.

• Description: A quota can be set for a particular tenant. Only staff users can do that. In order to set quota
submit **POST** request to */api/openstack-tenants/<uuid>/set_quotas/*. The quota values are propagated to
the backend.

The following quotas are supported. All values are expected to be integers:

- instances - maximal number of created instances. - ram - maximal size of ram for allocation. In MiB_.
- storage - maximal size of storage for allocation. In MiB_. - vcpu - maximal number of virtual cores for
allocation. - security_group_count - maximal number of created security groups. - security_group_rule_count -
maximal number of created security groups rules. - volumes - maximal number of created volumes. - snapshots
- maximal number of created snapshots.

It is possible to update quotas by one or by submitting all the fields in one request. NodeConductor will at-
tempt to update the provided quotas. Please note, that if provided quotas are conflicting with the backend (e.g.
requested number of instances is below of the already existing ones), some quotas might not be applied.

14.11. Intelligent Workload Manager (IWM) 129

SUNFISH Platform Documentation Documentation, Release 0.9

.. _MiB: http://en.wikipedia.org/wiki/Mebibyte .. _settings: http://nodeconductor.readthedocs.org/en/stable/guide/intro.html#id1

Example of a valid request (token is user specific):

.. code-block:: http

POST /api/openstack-tenants/c84d653b9ec92c6cbac41c706593e66f567a7fa4/set_quotas/ HTTP/1.1 Content-
Type: application/json Accept: application/json Host: example.com

{ “instances”: 30, “ram”: 100000, “storage”: 1000000, “vcpu”: 30, “security_group_count”: 100, “secu-
rity_group_rule_count”: 100, “volumes”: 10, “snapshots”: 20 }

Response code of a successful request is **202 ACCEPTED**. In case tenant is in a non-stable status, the
response would be **409 CONFLICT**. In this case REST client is advised to repeat the request after some
time. On successful completion the task will synchronize quotas with the backend.

• Consumes: [u’application/json’]

Parameters

Name Position Description Type
uuid path string
data body

Responses

201 -

POST /api/openstack/{uuid}/unlink/

Unlink all related resources, service project link and service itself.

• Description: Unlink all related resources, service project link and service itself.

• Consumes: [u’application/json’]

Parameters

Name Position Description Type
uuid path string
data body

Responses

201 -

PUT /api/customers/{uuid}/

• Consumes: [u’application/json’]

Parameters

Name Position Description Type
uuid path string
data body

Responses

130 Chapter 14. Platform API

SUNFISH Platform Documentation Documentation, Release 0.9

200 -

DELETE /api/customers/{uuid}/

Deletion of a customer is done through sending a **DELETE** request to the customer instance URI. Please note,

• Description: Deletion of a customer is done through sending a **DELETE** request to the customer instance
URI. Please note, that if a customer has connected projects, deletion request will fail with 409 response code.

Valid request example (token is user specific):

.. code-block:: http

DELETE /api/customers/6c9b01c251c24174a6691a1f894fae31/ HTTP/1.1 Authorization: Token
c84d653b9ec92c6cbac41c706593e66f567a7fa4 Host: example.com

Parameters

Name Position Description Type
uuid path string

Responses

204 -

PATCH /api/customers/{uuid}/

• Consumes: [u’application/json’]

Parameters

Name Position Description Type
uuid path string
data body

Responses

200 -

GET /api/customers/{uuid}/

Optional ‘field‘ query parameter (can be list) allows to limit what fields are returned.

• Description: Optional ‘field‘ query parameter (can be list) allows to limit what fields are returned. For example,
given request /api/customers/<uuid>/?field=uuid&field=name you get response like this:

.. code-block:: javascript

{ “uuid”: “90bcfe38b0124c9bbdadd617b5d739f5”, “name”: “Ministry of Bells” }

Parameters

Name Position Description Type
uuid path string

14.11. Intelligent Workload Manager (IWM) 131

SUNFISH Platform Documentation Documentation, Release 0.9

Responses

200 -

POST /api/customers/

A new customer can only be created by users with staff privilege (is_staff=True).

• Description: A new customer can only be created by users with staff privilege (is_staff=True). Example of a
valid request:

.. code-block:: http

POST /api/customers/ HTTP/1.1 Content-Type: application/json Accept: application/json Authorization: Token
c84d653b9ec92c6cbac41c706593e66f567a7fa4 Host: example.com

{ “name”: “Customer A”, “native_name”: “Customer A”, “abbreviation”: “CA”, “contact_details”: “Luhamaa
28, 10128 Tallinn”, }

• Consumes: [u’application/json’]

Parameters

Name Position Description Type
data body

Responses

201 -

GET /api/customers/

To get a list of customers, run GET against */api/customers/* as authenticated user. Note that a user can

• Description: To get a list of customers, run GET against */api/customers/* as authenticated user. Note that a
user can only see connected customers:

- customers that the user owns - customers that have a project where user has a role

Staff also can filter customers by user UUID, for example /api/customers/?user_uuid=<UUID>

Parameters

Name Position Description Type
page query string
page_size query string
name query string
abbreviation query string
contact_details query string
native_name query string
registration_code query string
o query string

Responses

200 -

132 Chapter 14. Platform API

SUNFISH Platform Documentation Documentation, Release 0.9

POST /api/openstacktenant-snapshots/{uuid}/pull/

• Consumes: [u’application/json’]

Parameters

Name Position Description Type
uuid path string
data body

Responses

201 -

PUT /api/customers/{uuid}/image/

• Consumes: [u’application/json’]

Parameters

Name Position Description Type
uuid path string
data body

Responses

200 -

DELETE /api/customers/{uuid}/image/

Parameters

Name Position Description Type
uuid path string

Responses

204 -

PATCH /api/customers/{uuid}/image/

• Consumes: [u’application/json’]

Parameters

Name Position Description Type
uuid path string
data body

Responses

14.11. Intelligent Workload Manager (IWM) 133

SUNFISH Platform Documentation Documentation, Release 0.9

200 -

GET /api/customers/{uuid}/image/

Parameters

Name Position Description Type
uuid path string
page query string
page_size query string

Responses

200 -

GET /api/events/count/

To get a count of events - run **GET** against */api/events/count/* as authenticated user.

• Description: To get a count of events - run **GET** against */api/events/count/* as authenticated user. End-
point support same filters as events list.

Response example:

.. code-block:: javascript

{“count”: 12321}

Parameters

Name Position Description Type

Responses

200 -

POST /api/openstacktenant-volumes/{uuid}/snapshot/

Create snapshot from volume

• Description: Create snapshot from volume

• Consumes: [u’application/json’]

Parameters

Name Position Description Type
uuid path string
data body

Responses

201 -

134 Chapter 14. Platform API

SUNFISH Platform Documentation Documentation, Release 0.9

POST /api/openstack-security-groups/{uuid}/pull/

• Consumes: [u’application/json’]

Parameters

Name Position Description Type
uuid path string
data body

Responses

201 -

POST /api/openstack-subnets/{uuid}/pull/

• Consumes: [u’application/json’]

Parameters

Name Position Description Type
uuid path string
data body

Responses

201 -

GET /api/openstacktenant-images/

Parameters

Name Position Description Type
page query string
page_size query string
name query string
settings_uuid query string
settings query string

Responses

200 -

PUT /api/openstacktenant-volumes/{uuid}/

• Consumes: [u’application/json’]

Parameters

Name Position Description Type
uuid path string
data body

14.11. Intelligent Workload Manager (IWM) 135

SUNFISH Platform Documentation Documentation, Release 0.9

Responses

200 -

DELETE /api/openstacktenant-volumes/{uuid}/

Parameters

Name Position Description Type
uuid path string

Responses

204 -

PATCH /api/openstacktenant-volumes/{uuid}/

• Consumes: [u’application/json’]

Parameters

Name Position Description Type
uuid path string
data body

Responses

200 -

GET /api/openstacktenant-volumes/{uuid}/

Parameters

Name Position Description Type
uuid path string

Responses

200 -

POST /api/openstacktenant/

• Consumes: [u’application/json’]

Parameters

Name Position Description Type
data body

Responses

136 Chapter 14. Platform API

SUNFISH Platform Documentation Documentation, Release 0.9

201 -

GET /api/openstacktenant/

To list all services without regard to its type, run **GET** against */api/services/* as an authenticated user.

• Description: To list all services without regard to its type, run **GET** against */api/services/* as an authen-
ticated user.

To list services of specific type issue **GET** to specific endpoint from a list above as a customer owner.
Individual endpoint used for every service type.

To create a service, issue a **POST** to specific endpoint from a list above as a customer owner. Individual
endpoint used for every service type.

You can create service based on shared service settings. Example:

.. code-block:: http

POST /api/digitalocean/ HTTP/1.1 Content-Type: application/json Accept: application/json Authorization: To-
ken c84d653b9ec92c6cbac41c706593e66f567a7fa4 Host: example.com

{ “name”: “Common DigitalOcean”, “customer”: “http://example.com/api/customers/1040561ca9e046d2b74268600c7e1105/”,
“settings”: “http://example.com/api/service-settings/93ba615d6111466ebe3f792669059cb4/” }

Or provide your own credentials. Example:

.. code-block:: http

POST /api/oracle/ HTTP/1.1 Content-Type: application/json Accept: application/json Authorization: Token
c84d653b9ec92c6cbac41c706593e66f567a7fa4 Host: example.com

{ “name”: “My Oracle”, “customer”: “http://example.com/api/customers/1040561ca9e046d2b74268600c7e1105/”,
“backend_url”: “https://oracle.example.com:7802/em”, “username”: “admin”, “password”: “secret” }

Parameters

Name Position Description Type
page query string
page_size query string
name query string
project_uuid query string
customer query string
project query string
settings query string
shared query string
type query string
tag query string
rtag query string

Responses

200 -

GET /api/openstack/{uuid}/managed_resources/

14.11. Intelligent Workload Manager (IWM) 137

SUNFISH Platform Documentation Documentation, Release 0.9

Parameters

Name Position Description Type
uuid path string

Responses

200 -

GET /api/openstack-images/

Parameters

Name Position Description Type
page query string
page_size query string
name query string
settings_uuid query string
settings query string

Responses

200 -

PUT /api/openstack-security-groups/{uuid}/

• Consumes: [u’application/json’]

Parameters

Name Position Description Type
uuid path string
data body

Responses

200 -

DELETE /api/openstack-security-groups/{uuid}/

Parameters

Name Position Description Type
uuid path string

Responses

204 -

PATCH /api/openstack-security-groups/{uuid}/

138 Chapter 14. Platform API

SUNFISH Platform Documentation Documentation, Release 0.9

• Consumes: [u’application/json’]

Parameters

Name Position Description Type
uuid path string
data body

Responses

200 -

GET /api/openstack-security-groups/{uuid}/

Parameters

Name Position Description Type
uuid path string

Responses

200 -

GET /api/openstacktenant-images/{uuid}/

Parameters

Name Position Description Type
uuid path string

Responses

200 -

POST /api/customer-permissions/

- Customers are connected to users through roles, whereas user may have role “customer owner”.

• Description: - Customers are connected to users through roles, whereas user may have role “customer owner”.
- Each customer may have multiple owners, and each user may own multiple customers. - Staff members can list
all available customers and create new customers. - Customer owners can list all customers they own. Customer
owners can also create new customers. - Project administrators can list all the customers that own any of the
projects they are administrators in. - Project managers can list all the customers that own any of the projects
they are managers in.

• Consumes: [u’application/json’]

Parameters

Name Position Description Type
data body

14.11. Intelligent Workload Manager (IWM) 139

SUNFISH Platform Documentation Documentation, Release 0.9

Responses

201 -

GET /api/customer-permissions/

Each customer is associated with a group of users that represent customer owners. The link is maintained

• Description: Each customer is associated with a group of users that represent customer owners. The link is
maintained through **api/customer-permissions/** endpoint.

To list all visible links, run a **GET** query against a list. Response will contain a list of customer owners and
their brief data.

To add a new user to the customer, **POST** a new relationship to **customer-permissions** endpoint:

.. code-block:: http

POST /api/customer-permissions/ HTTP/1.1 Accept: application/json Authorization: Token
95a688962bf68678fd4c8cec4d138ddd9493c93b Host: example.com

{ “customer”: “http://example.com/api/customers/6c9b01c251c24174a6691a1f894fae31/”, “role”: “owner”,
“user”: “http://example.com/api/users/82cec6c8e0484e0ab1429412fe4194b7/” }

Parameters

Name Position Description Type
page query string
page_size query string
role query string
user query string
user_url query string
username query string
full_name query string
native_name query string
o query string
customer query string
customer_url query string

Responses

200 -

PUT /api/openstack-tenants/{uuid}/

• Consumes: [u’application/json’]

Parameters

Name Position Description Type
uuid path string
data body

Responses

140 Chapter 14. Platform API

SUNFISH Platform Documentation Documentation, Release 0.9

200 -

DELETE /api/openstack-tenants/{uuid}/

Parameters

Name Position Description Type
uuid path string

Responses

204 -

PATCH /api/openstack-tenants/{uuid}/

• Consumes: [u’application/json’]

Parameters

Name Position Description Type
uuid path string
data body

Responses

200 -

GET /api/openstack-tenants/{uuid}/

Parameters

Name Position Description Type
uuid path string

Responses

200 -

14.12 Secure Multi-party Computation (SMC)

SUNFISH framework’s SMC service consists of two components, SMC Proxy and computation node, both providing
their own API. In each case, both the request and response body are JSON-encoded

Version: 0.1

Contact information:
Riivo Talviste
riivo.talviste@cyber.ee

14.12. Secure Multi-party Computation (SMC) 141

mailto:riivo.talviste@cyber.ee

SUNFISH Platform Documentation Documentation, Release 0.9

14.12.1 SMC Node Service

SMC Node Service provides the interface to run privacy-preserving programs (i.e., SecreC programs) on SMC nodes.
Each SMC node provides this service independently, the client must invoke this service in parallel at each SMC node.

POST /startProcess

• Description: Start the SecreC secure computation process on computation nodes.

Parameters

Name Position Description Type
data body

Responses

200 - Successful response

Name Description Type
process_id integer
vars Values published by the SecreC program. object
server Server number integer

POST /requestProcess

• Description: Initiate a new process request at computation nodes.

Parameters

Name Position Description Type
data body

Responses

200 - Successful response

Name Description Type
pro-
cess_id

inte-
ger

re-
lay_data

Contains signed relay data from the computation node. This data is relayed to the other compu-
tation nodes by the next request.

server Server number inte-
ger

142 Chapter 14. Platform API

SUNFISH Platform Documentation Documentation, Release 0.9

POST /relayedProcessShare

• Description: Relay signed data obtained by ‘requestProcess‘ to other computation nodes.

Parameters

Name Position Description Type
data body

Responses

200 - Successful response

14.12.2 SMC Proxy Service

SMC Proxy Service is a client-side helper service for secret-sharing user input for the secure multi-party computation
and reconstructing the results for further processing in the client application.

POST /secretShare

• Description: Secret share input data

Parameters

Name Position Description Type
data body

Responses

200 - Successful response

POST /reconstruct

• Description: Reconstruct data from shares

Parameters

Name Position Description Type
data body

Responses

200 - Successful response

Version: 1.0.0

Contact information:

14.12. Secure Multi-party Computation (SMC) 143

SUNFISH Platform Documentation Documentation, Release 0.9

Andrea Margheri
a.margheri@soton.ac.uk

14.13 Service Ledger (SL)

14.13.1 store

POST /get

• Description: Retrieving a value by its key

Parameters

Name Position Description Type
getId body Body in JSON

Responses

200 - The response body for a successful response.

404 - The requested key is not found.

401 - The operation is not allowed.

400 - Invalid request, required parameter(s) missing.

POST /getKeys

• Description: Get all the key of a category

• Consumes: [u’application/json’]

Parameters

Name Position Description Type
body body Body in JSON

Responses

200 - The response body for a successful response.

401 - The operation is not allowed (unauthorised access, the token is invalid, etc.).

400 - Invalid request, required parameter(s) missing.

POST /put

• Description: Storing a key-value pair

Parameters

144 Chapter 14. Platform API

mailto:a.margheri@soton.ac.uk

SUNFISH Platform Documentation Documentation, Release 0.9

Name Position Description Type
putSpec body Body in JSON

Responses

200 - The response body for a successful response.

401 - The operation is not allowed.

400 - Invalid request, required parameter(s) missing.

POST /delete

• Description: Delete a stored key

Parameters

Name Position Description Type
body body

Responses

200 - The response body for a successful response.

401 - The operation is not allowed.

400 - Invalid request, required parameter(s) missing.

14.13.2 exec

POST /invoke

• Description: invoke the functions in the chaincode

Parameters

Name Position Description Type
invokeSpec body

Responses

200 - The response body for a successful chaincode invoke

401 - The operation is not allowed

400 - Invalid request, required parameter(s) missing.

14.14 Service Ledger Interface (SLI)

14.14.1 dm

14.14. Service Ledger Interface (SLI) 145

SUNFISH Platform Documentation Documentation, Release 0.9

POST /dm/store

• Description: Storing encryption/tokenization key

• Consumes: [u’application/json’]

Parameters

Name Position Description Type
body body Body in JSON

Responses

200 - The response body for a successful response.

401 - The operation is not allowed (unauthorised access, the token is invalid, etc.).

400 - Invalid request, required parameter(s) missing.

POST /dm/read

• Description: Retrieving a stored key

Parameters

Name Position Description Type
body body Body in JSON

Responses

200 - The response body for a successful response.

401 - The operation is not allowed (unauthorised access, the token is invalid, etc.).

400 - Invalid request, required parameter(s) missing

POST /dm/delete

• Description: Delete a stored key

Parameters

Name Position Description Type
body body

Responses

200 - The response body for a successful response.

401 - The operation is not allowed (unauthorised access, the token is invalid, etc.).

400 - Invalid request, required parameter(s) missing

146 Chapter 14. Platform API

SUNFISH Platform Documentation Documentation, Release 0.9

14.14.2 monitoring

POST /monitoring/store

• Produces: [u’application/json’]

• Description: This endpoint is used to store relevant monitoring data.

• Consumes: [u’application/json’]

Parameters

Name Position Description Type
body body Body in JSON

Responses

200 - The response body for a successful response.

401 - The operation is not allowed (unauthorised access, the token is invalid, etc.).

400 - Invalid request, required parameter(s) missing.

POST /monitoring/read

• Produces: [u’application/json’]

• Description: This endpoint is used to read the relevant monitoring data.

• Consumes: [u’application/json’]

Parameters

Name Position Description Type
body body Body in JSON

Responses

200 - The response body for a successful response.

401 - The operation is not allowed (unauthorised access, the token is invalid, etc.).

400 - Invalid request, required parameter(s) missing.

14.14.3 alert

POST /alert/store

• Produces: [u’application/json’]

• Description: This endpoint is used to store alerts.

• Consumes: [u’application/json’]

14.14. Service Ledger Interface (SLI) 147

SUNFISH Platform Documentation Documentation, Release 0.9

Parameters

Name Position Description Type
body body Body in JSON

Responses

200 - The response body for a successful response.

401 - The operation is not allowed (unauthorised access, the token is invalid, etc.).

400 - Invalid request, required parameter(s) missing.

POST /alert/read

• Produces: [u’application/json’]

• Description: This endpoint is used to retrieve the stored alert using the index. The body contains the alert id
received by the store api

• Consumes: [u’application/json’]

Parameters

Name Position Description Type
body body Body in JSON

Responses

200 - The response body for a successful response.

401 - The operation is not allowed (unauthorised access, the token is invalid, etc.).

400 - Invalid request, required parameter(s) missing.

14.14.4 state

POST /state/vm-store

• Description: Storing federated services

• Consumes: [u’application/json’]

Parameters

Name Position Description Type
body body Body in JSON

Responses

200 - The response body for a successful response.

401 - The operation is not allowed (unauthorised access, the token is invalid, etc.).

400 - Invalid request, required parameter(s) missing.

148 Chapter 14. Platform API

SUNFISH Platform Documentation Documentation, Release 0.9

POST /state/member-store

• Description: Storing federated services

• Consumes: [u’application/json’]

Parameters

Name Position Description Type
body body Body in JSON

Responses

200 - The response body for a successful response.

401 - The operation is not allowed (unauthorised access, the token is invalid, etc.).

400 - Invalid request, required parameter(s) missing.

POST /state/tenant-create

• Description: Creating a tenant

• Consumes: [u’application/json’]

Parameters

Name Position Description Type
body body Body in JSON

Responses

200 - The response body for a successful response.

401 - The operation is not allowed (unauthorised access, the token is invalid, etc.).

400 - Invalid request, required parameter(s) missing.

POST /state/member-read

• Description: Storing federated services

• Consumes: [u’application/json’]

Parameters

Name Position Description Type
body body Body in JSON cotaining the service id

Responses

200 - The response body for a successful response.

401 - The operation is not allowed (unauthorised access, the token is invalid, etc.).

400 - Invalid request, required parameter(s) missing.

14.14. Service Ledger Interface (SLI) 149

SUNFISH Platform Documentation Documentation, Release 0.9

POST /state/tenant-addMember

• Description: Creating a tenant

• Consumes: [u’application/json’]

Parameters

Name Position Description Type
body body Body in JSON

Responses

200 - The response body for a successful response.

401 - The operation is not allowed (unauthorised access, the token is invalid, etc.).

400 - Invalid request, required parameter(s) missing.

POST /state/service-read

• Description: Storing federated services

• Consumes: [u’application/json’]

Parameters

Name Position Description Type
body body Body in JSON cotaining the service id

Responses

200 - The response body for a successful response.

401 - The operation is not allowed (unauthorised access, the token is invalid, etc.).

400 - Invalid request, required parameter(s) missing.

POST /state/getKeys

• Description: Get all the key of a category

• Consumes: [u’application/json’]

Parameters

Name Position Description Type
body body Body in JSON

Responses

200 - The response body for a successful response.

401 - The operation is not allowed (unauthorised access, the token is invalid, etc.).

400 - Invalid request, required parameter(s) missing.

150 Chapter 14. Platform API

SUNFISH Platform Documentation Documentation, Release 0.9

POST /state/tenant-read

• Description: Storing federated services

• Consumes: [u’application/json’]

Parameters

Name Position Description Type
body body Body in JSON cotaining the service id

Responses

200 - The response body for a successful response.

401 - The operation is not allowed (unauthorised access, the token is invalid, etc.).

400 - Invalid request, required parameter(s) missing.

POST /state/vm-read

• Description: Storing federated services

• Consumes: [u’application/json’]

Parameters

Name Position Description Type
body body Body in JSON cotaining the vm id

Responses

200 - The response body for a successful response.

401 - The operation is not allowed (unauthorised access, the token is invalid, etc.).

400 - Invalid request, required parameter(s) missing.

POST /state/service-store

• Description: Storing federated services

• Consumes: [u’application/json’]

Parameters

Name Position Description Type
body body Body in JSON

Responses

200 - The response body for a successful response.

401 - The operation is not allowed (unauthorised access, the token is invalid, etc.).

400 - Invalid request, required parameter(s) missing.

14.14. Service Ledger Interface (SLI) 151

SUNFISH Platform Documentation Documentation, Release 0.9

POST /state/deleteKey

• Description: Remove the pair identified by the key

• Consumes: [u’application/json’]

Parameters

Name Position Description Type
body body Body in JSON

Responses

200 - The response body for a successful response.

401 - The operation is not allowed (unauthorised access, the token is invalid, etc.).

400 - Invalid request, required parameter(s) missing.

14.14.5 policy

POST /policy/delete

• Description: Deleting a policy by its id

Parameters

Name Position Description Type
policyId body Body in JSON

Responses

200 - The response body for a successful response.

404 - The respective policy is not found.

401 - The operation is not allowed (unauthorised access, the token is invalid, etc.).

400 - Invalid request, required parameter(s) missing

POST /policy/store

• Description: Storing a new policy

Parameters

Name Position Description Type
policySpec body Body in JSON

Responses

200 - The response body for a successful response.

409 - The operation is not allowed as the policy already exists.

152 Chapter 14. Platform API

SUNFISH Platform Documentation Documentation, Release 0.9

401 - The operation is not allowed (unauthorised access, the token is invalid, etc.).

400 - Invalid request, required parameter(s) missing.

POST /policy/polService

• Description: Retrieving policies associated to a service

Parameters

Name Position Description Type
serviceId body Body in JSON

Responses

200 - The response body for a successful response.

401 - The operation is not allowed (unauthorised access, the token is invalid, etc.).

400 - Invalid request, required parameter(s) missing

POST /policy/read

• Description: Retrieving a policy by its id

Parameters

Name Position Description Type
policyId body Body in JSON

Responses

200 - The response body for a successful response.

404 - The requested policy is not found.

401 - The operation is not allowed (unauthorised access, the token is invalid, etc.).

400 - Invalid request, required parameter(s) missing

14.14.6 proposal

POST /proposal/getProposal

• Description: getting a proposal

• Consumes: [u’application/json’]

Parameters

Name Position Description Type
body body Body in JSON

Responses

14.14. Service Ledger Interface (SLI) 153

SUNFISH Platform Documentation Documentation, Release 0.9

200 - The response body for a successful response.

401 - The operation is not allowed (unauthorised access, the token is invalid, etc.).

400 - Invalid request, required parameter(s) missing.

POST /proposal/voteProposal

• Description: vote for a submitted a proposal

• Consumes: [u’application/json’]

Parameters

Name Position Description Type
body body Body in JSON

Responses

200 - The response body for a successful response.

401 - The operation is not allowed (unauthorised access, the token is invalid, etc.).

400 - Invalid request, required parameter(s) missing.

POST /proposal/submitProposal

• Description: Submitting a proposal

• Consumes: [u’application/json’]

Parameters

Name Position Description Type
body body Body in JSON

Responses

200 - The response body for a successful response.

401 - The operation is not allowed (unauthorised access, the token is invalid, etc.).

400 - Invalid request, required parameter(s) missing.

POST /proposal/countVotes

• Description: Request a votes counting to validate a stored proposal

• Consumes: [u’application/json’]

Parameters

Name Position Description Type
body body Body in JSON

Responses

154 Chapter 14. Platform API

SUNFISH Platform Documentation Documentation, Release 0.9

200 - The response body for a successful response.

401 - The operation is not allowed (unauthorised access, the token is invalid, etc.).

400 - Invalid request, required parameter(s) missing.

14.14.7 anonymisation

POST /anonymisation/register

• Description: This endpoint is used to register a data-sharing event.

Parameters

Name Position Description Type
body body Body in JSON

Responses

200 - The response body for a successful response.

401 - The operation is not allowed (unauthorised access, the token is invalid, etc.).

400 - Invalid request, required parameter(s) missing.

POST /anonymisation/queryOldRes

• Description: This endpoint is used to query the anonymised statistical result in Registry given the DataId and
requested budget.

Parameters

Name Position Description Type
body body Body in JSON

Responses

200 - The response body for a successful response.

401 - The operation is not allowed (unauthorised access, the token is invalid, etc.)

400 - Invalid request, required parameter(s) missing

POST /anonymisation/updateLedger

• Description: this endpoint is used to update final result to Registry

Parameters

Name Position Description Type
body body JSON body of the received result

Responses

14.14. Service Ledger Interface (SLI) 155

SUNFISH Platform Documentation Documentation, Release 0.9

200 - Success

401 - The operation is not allowed (unauthorised access, the token is invalid, etc.)

400 - Invalid request, required parameter(s) missing

POST /anonymisation/receiveAnonyRes

• Description: this endpoint is used to receive anonymised result from the anonymisation interface

Parameters

Name Position Description Type
body body JSON body of the received result

Responses

200 - Success

401 - The operation is not allowed (unauthorised access, the token is invalid, etc.)

400 - Invalid request, required parameter(s) missing

156 Chapter 14. Platform API

CHAPTER 15

Networking Infrastructure

This is a page for helping the setup the network and access services needed for connecting different clouds.

15.1 Network Component

This text details the configuration of the SUNFISH Network service, which is the component realizing the Cross-
Cloud Networking functionalities (see SUNFISH deliverable ID5). The aggregation of networks relizes Network OSI
layer visibility among different sections (i.e., networks), which realizes a single SUNFISH tenant. This is achieved
using site-to-site VPN channels, provided by multiple instances of the Network component VMs.

15.1.1 Planning phase

Before setting-up the network services, it is necessary to:

P1. - Plan the networks for the Sections, and the Sections for the SUNFISH Tenants:

1. plan the address space of the set of SUNFISH Sections, which has to form a SUNFISH Federation.
This task depends on the maximum number of services to be deployed on each of the Section. As an
example, for a /24 Network the maximum number of services which can be deployed (total usable
hosts) in the Section is 253.

2. define what Sections are aggregated to form the SUNFISH Tenants.

P2. - Plan the VPN channels topology among clouds. Given a certain set of SUNFISH Tenants com-
posed by Sections, there are in general multiple VPN topologies which can be used for their imple-
mentation. The criterias to be utilized when choosing a VPN topology are outside the scope of this
document. The idea however is to try to minimize the number of VPN connections while avoiding
troughput bottlenecks and single points of failture. In the simplest case a hub-and-spoke topology is
considered. In this case, for aggregating a set of Sections, there are the following conditions:

1. (deployment) one instance of the Network service is deployed in each cloud, serving alle the
sections belonging to the cloud

157

SUNFISH Platform Documentation Documentation, Release 0.9

2. (configuration) a single instance of the Network service is configured as a VPN Server, while
the remaining are configured as VPN Clients connected to the Server

3. (routing) the VPN Clients and Server are configured to realize the Tenants.

P3. - Decide other parameters related to networking aspects:

1. IP and ports the Network services, as seen from outside the federation. The IP and ports are those
which are used by a VPN servers and clients externally to a cloud.

2. IP and ports the Network services, as seen from inside the federation. A convention for the Network
IP address defines a certain IP address in each Section to be reserved as gateway for inter-section
communication (i.e., a default gateway for the federated services). As an example, the IP ..*.254 can
be reserved as a convenction in each section for the inter-tenant communication.

3. what are the security parameters for the VPN connections which will be used. The security param-
eters determines the kind of security measurement adopted for the VPN channels.

15.1.2 Configuration phase

Based on the plan phases, there are the following task to the beformed:

T1. - Configuration at cloud level:

1. for each cloud, it has to be created a cloud Tenant (to not be confused with a SUNFISH tenant)
reserved to SUNFISH. Then the virtual network(s) associated to sections (point P1) has to be
created

2. for each cloud, the VMs dedicated to the instances of Network service (in the simplest case,
just one) has to be instantiated. Given that a Network service serves a number n of sections, its
VM has to have n+1 NICs: {LAN_1, LAN_2, . . . LAN_n, WAN}, where the WAN interface
is the one directly exposed to a static cloud’s public IP

3. a proper IP address has to be assigned to the various LAN NICS, accordingly to the network
convenction of point P3

4. for each cloud, there is the need to configure a set of firewall rules at cloud level, allowing traffic
from/to the cloud’s tenant (specifically, from/to the IP forwarded to the WAN interface). This
depends on the planned topology of point P2. The firewall rules has to consider the connection
direction between VPN Clients and Servers, given the fact that each Client initiate a connection
thoward a Server. In particular the firewall rules must allows inbound traffic for a VPN server,
and outbound traffic for a VPN client.

5. depending on the specific cloud implementation, there could be additional traffic rules to be
enabled. As an example, in Microsoft Azure there is the need to enable the “forward between
NICs”, and in Openstack there is the need to enable “traffic from/to unknown networks”.

T2. - Configuration of each of the instances of the Network service

1. configure the OpenVPN service of each of the Network service instances. This depends on the
planning of point P2 (i.e. Server or Client role), and on the planning ofs point P3.

2. configure the firewall and routing tables for each of the Network service instance. Similarly
to what done in point T1.4, the traffic must be allowed as inbound or outbound on WAN in-
terface depending on the server/client role and the topology, but in this case at the level of the
WAN network interface of the VM hosting the Network service. Moreover, there has to be a
set of routing rules instructing each instance of the Network service to properely route traffic
trough the WAN interface (when having sections of the same SUNFISH Tenant in two differ-
ent clouds), or between different LAN interfaces (when having sections of the same SUNFISH
Tenant in the same clouds). As a result, for each SUNFISH Tenant, all the sections composing

158 Chapter 15. Networking Infrastructure

SUNFISH Platform Documentation Documentation, Release 0.9

the Tenant must have full Network OSI visibility, while different SUNFISH sections has to be
isolated. An exception is given by the Infrastructure Tenant, which have to be visible to all the
remaining SUNFISH sections (see SUNFISH Deliverable D3.11).

15.1.3 Configuration of a VPN: details

This sub-section further elaborats the point T2 trough an example. In our prototype we used PFsense 2.4.1 for the the
instances of the Network service. The configuration of the services can be done by web interface, or by providing an
XML file. In the following, we provide the relevant parts of such XML file for the configuration of an instance of a
Network service to be configured as a VPN Client. We consider an example in which network network N1 located in
Cloud “A” has to be aggregated to networks N2, N3 located in Cloud “B”. In particular we have:

1. Cloud “A” have network N1 defined as 192.168.1.0/24, with an instance of PF-Sense “NS1” to be configured as
server

2. Cloud “A” have networks N2,N3 defined as 192.168.8.0/24 and 192.168.9.0/24, with an instance of PF-Sense
“NS2” to be configured as a client

Then for “NS2” there are the following relevant parts to be customized in its configuration:

Network interfaces:

There are defined the network interfaces to be used by PF-Sense.

<interfaces>
<wan>

<enable></enable>
<if>hn0</if>
<ipaddr>dhcp</ipaddr>
<gateway></gateway>
<blockbogons>on</blockbogons>
<media></media>
<mediaopt></mediaopt>
<dhcp6-duid></dhcp6-duid>
<dhcp6-ia-pd-len>0</dhcp6-ia-pd-len>

</wan>
<lan1>

<descr><![CDATA[LAN1]]></descr>
<if>hn1</if>
<enable></enable>
<spoofmac></spoofmac>
<mtu>1446</mtu>
<ipaddr>192.168.8.254</ipaddr>
<subnet>24</subnet>

</lan1>
<lan2>

<descr><![CDATA[LAN2]]></descr>
<if>hn2</if>
<enable></enable>
<spoofmac></spoofmac>
<mtu>1446</mtu>
<ipaddr>192.168.9.254</ipaddr>
<subnet>24</subnet>

</lan2>
</interfaces>

15.1. Network Component 159

SUNFISH Platform Documentation Documentation, Release 0.9

Firewall rules:

It is allowed an administator IP 1.5.5.5 to configure the PF-Sense trough web interface and ssh:

<filter>
<rule>

<id></id>
<tracker>1511201327</tracker>
<type>pass</type>
<interface>wan</interface>
<ipprotocol>inet</ipprotocol>
<tag></tag>
<tagged></tagged>
<max></max>
<max-src-nodes></max-src-nodes>
<max-src-conn></max-src-conn>
<max-src-states></max-src-states>
<statetimeout></statetimeout>
<statetype><![CDATA[keep state]]></statetype>
<os></os>
<protocol>tcp</protocol>
<source>

<address>1.5.5.5</address>
</source>
<destination>

<network>wan</network>
<port>22</port>

</destination>
<descr><![CDATA[To Configure PF-Sense. ONLY FOR TESTING. To be CLOSED

→˓in real world scenario.]]></descr>
</rule>
<rule>

<id></id>
<tracker>1511201153</tracker>
<type>pass</type>
<interface>wan</interface>
<ipprotocol>inet</ipprotocol>
<tag></tag>
<tagged></tagged>
<max></max>
<max-src-nodes></max-src-nodes>
<max-src-conn></max-src-conn>
<max-src-states></max-src-states>
<statetimeout></statetimeout>
<statetype><![CDATA[keep state]]></statetype>
<os></os>
<protocol>tcp</protocol>
<source>

<address>1.5.5.5</address>
</source>
<destination>

<network>wan</network>
<port>443</port>

</destination>
<descr><![CDATA[To Configure PF-Sense. ONLY FOR TESTING. To be CLOSED

→˓in real world scenario.]]></descr>
</rule>

It is allowed the PF-Sense client to connect to the PF-Sense Server at 1.2.3.4:8443 :

160 Chapter 15. Networking Infrastructure

SUNFISH Platform Documentation Documentation, Release 0.9

<rule>
<id></id>
<tracker>1510931486</tracker>
<type>pass</type>
<interface>wan</interface>
<ipprotocol>inet</ipprotocol>
<tag></tag>
<tagged></tagged>
<max></max>
<max-src-nodes></max-src-nodes>
<max-src-conn></max-src-conn>
<max-src-states></max-src-states>
<statetimeout></statetimeout>
<statetype><![CDATA[keep state]]></statetype>
<os></os>
<protocol>tcp</protocol>
<source>

<network>wan</network>
</source>
<destination>

<address>1.2.3.4</address>
<port>8443</port>

</destination>
<descr><![CDATA[Allow to initiate VPN connection to the VPN Server Cloud]]></

→˓descr>
</rule>

It is allowed traffic from/to the Sections:

<rule>
<id></id>
<tracker>1510931286</tracker>
<type>pass</type>
<interface>openvpn</interface>
<ipprotocol>inet</ipprotocol>
<tag></tag>
<tagged></tagged>
<max></max>
<max-src-nodes></max-src-nodes>
<max-src-conn></max-src-conn>
<max-src-states></max-src-states>
<statetimeout></statetimeout>
<statetype><![CDATA[keep state]]></statetype>
<os></os>
<source>

<any></any>
</source>
<destination>

<any></any>
</destination>
<descr><![CDATA[Allow traffic trough virtual interface openVPN]]></

→˓descr>
</rule>
<rule>

<id></id>
<tracker>1510935658</tracker>
<type>pass</type>
<interface>lan1</interface>

15.1. Network Component 161

SUNFISH Platform Documentation Documentation, Release 0.9

<ipprotocol>inet</ipprotocol>
<tag></tag>
<tagged></tagged>
<max></max>
<max-src-nodes></max-src-nodes>
<max-src-conn></max-src-conn>
<max-src-states></max-src-states>
<statetimeout></statetimeout>
<statetype><![CDATA[keep state]]></statetype>
<os></os>
<source>

<any></any>
</source>
<destination>

<any></any>
</destination>
<descr><![CDATA[Allow traffic of lan1]]></descr>

</rule>
<rule>

<id></id>
<tracker>1512646679</tracker>
<type>pass</type>
<interface>lan2</interface>
<ipprotocol>inet</ipprotocol>
<tag></tag>
<tagged></tagged>
<max></max>
<max-src-nodes></max-src-nodes>
<max-src-conn></max-src-conn>
<max-src-states></max-src-states>
<statetimeout></statetimeout>
<statetype><![Allow traffic of lan2]]></statetype>
<os></os>
<protocol>tcp</protocol>
<source>

<any></any>
</source>
<destination>

<any></any>
</destination>
<descr></descr>

</rule>
</filter>

OpenVPN configuration

This block contains the configuration of the OpenVPN client. In particular it defined the address:port of the Server,
the security parameters (i.e., we choose to use a AES-256-GCM shared key between the Server and the Client), the
VPN modality (i.e. site-to-site) and a routing rule for distributing the traffic among the Sections.

<openvpn>
<openvpn-client>

<auth_user>admin</auth_user>
<auth_pass>adminPassword</auth_pass>
<vpnid>1</vpnid>
<protocol>TCP4</protocol>

162 Chapter 15. Networking Infrastructure

SUNFISH Platform Documentation Documentation, Release 0.9

<dev_mode>tun</dev_mode>
<ipaddr></ipaddr>
<interface>wan</interface>
<local_port></local_port>
<server_addr>1.2.3.4</server_addr>
<server_port>8443</server_port>
<proxy_addr></proxy_addr>
<proxy_port></proxy_port>
<proxy_authtype>none</proxy_authtype>
<proxy_user></proxy_user>
<proxy_passwd></proxy_passwd>
<description></description>
<mode>p2p_shared_key</mode>
<topology>subnet</topology>
<custom_options>route 192.168.0.0 255.255.0.0</custom_options>
<shared_key>930C5...SHAREDKEYCONTINUES...</shared_key>
<crypto>AES-128-CBC</crypto>
<digest>SHA1</digest>
<engine>none</engine>
<tunnel_network>10.10.9.0/24</tunnel_network>
<tunnel_networkv6></tunnel_networkv6>
<remote_network>192.168.8.0/24, 192.168.9.0/24</remote_network>
<remote_networkv6></remote_networkv6>
<use_shaper></use_shaper>
<compression></compression>
<auth-retry-none></auth-retry-none>
<passtos></passtos>
<udp_fast_io></udp_fast_io>
<sndrcvbuf></sndrcvbuf>
<route_no_pull></route_no_pull>
<route_no_exec></route_no_exec>
<verbosity_level>1</verbosity_level>
<ncp-ciphers>AES-256-GCM,AES-128-GCM</ncp-ciphers>
<ncp_enable>disabled</ncp_enable>

</openvpn-client>
</openvpn>

15.1. Network Component 163

SUNFISH Platform Documentation Documentation, Release 0.9

164 Chapter 15. Networking Infrastructure

CHAPTER 16

Federated Administration Monitoring (FAM)

16.1 Dependencies

Install the dependencies

• OS:

– Windows 7 and newer

– Windows Server 2008 R2 and newer

• DotNetCore 1.1.4 Windows Hosting

• Internet Information Services Manager

To check that all the decencies have been set up, execute

dotnet --version

-> Microsoft .NET Core Shared Framework Host

Version : 1.1.0
Build : 928f77c4bc3f49d892459992fb6e1d5542cb5e86

16.2 Administration Manager set-up

To set the service, execute the following commands

git clone https://github.com/sunfish-prj/Administration-Manager.git
cd Administration-Manager/manager
dotnet SUNFISH.dll

The server is now running and listening on the port chosen in the hosting.json. file (e.g. 80).

165

http://download.microsoft.com/download/6/F/B/6FB4F9D2-699B-4A40-A674-B7FF41E0E4D2/DotNetCore.1.0.7_1.1.4-WindowsHosting.exe
https://docs.microsoft.com/en-us/aspnet/core/publishing/iis?tabs=aspnetcore1x

SUNFISH Platform Documentation Documentation, Release 0.9

The Administration Manager is expected to interact with the: - Service Level Agreements Manager - Service Ledger
Interface

The urls and ports for the above applications may be altered in the appsettings.production.json config file.

For the Administration Manager to make use of the mock up IDM, set the UseIDM variable in the appset-
tings.production.json to true.

• The current IDM url is 49.118.99.72 using port 44001

• For the default username & password contact Alexander Tanti.

16.3 SLA Manager set-up

To set the service, execute the following commands

git clone https://github.com/sunfish-prj/SLA-Manager.git
cd SLA-Manager
dotnet Sunfish.SLAMService.dll

The server is now running and listening on the port chosen in the hosting.json. file (e.g. 80).

The SLA Manager is expected to interact with the:

• Service Ledger Interface

The urls and ports for the above application may be altered in the appsettings.production.json config file.

166 Chapter 16. Federated Administration Monitoring (FAM)

https://github.com/sunfish-prj/SLA-Manager
https://github.com/sunfish-prj/Service-Ledger-Interface.git
https://github.com/sunfish-prj/Service-Ledger-Interface.git
https://github.com/sunfish-prj/Service-Ledger-Interface.git

CHAPTER 17

Configurator

The codebase of the Configurator is available here Configurator

The overall structure of the codebase is organised in the following files and directories:

• /client/*

• /configurator/*

• /saltstack/*

• /Vagrantfile

17.1 Installation Steps

There are the following steps for creating a cluster of Kubernetes Nodes:

1. Instantiate the Virtual Machines (configure and execute Vagrantfile)

2. Configure the saltstack master and minions

3. Apply kubernetes states

4. Proceed with cluster operations

In this document we describe the setup of a Kubernetes cluster composed by two nodes.

17.1.1 Vagrant config file

The initial point for the setup process is the file Vagrantfile. This file contains all the information needed for the
configuration of the Virtual Machines (VMs).

The minimum requirement for setting this infrastructure up is the initialization of four VMs: Saltstack master, kuber-
netes master and two minions. Vagrantfile provides the configuration details for each of these four virtual machines,
referred respectively as saltmaster, master, node1, and node2.

167

https://github.com/sunfish-prj/Configurator

SUNFISH Platform Documentation Documentation, Release 0.9

Apart of the mandatory specifications that a common configuration of a VM machine requires (like operating system,
hostname, ip), in this infrastructure the VMs should have some additional configurations.

Specifically, for the configuration of saltmaster machine are required:

Source code that saltmaster should run.

This includes two folders: salt and pillar

1. Path to a custom salt master config file

2. Path to a custom salt minion config file

3. Path to master key

4. Path to minion key

Since in Saltstack’ s perspective the other three VMs are minions, the requirement for their initial configuration are identical:

1. Path to a custom minion config file

2. Path to minion key

Note that to provision of the guest machines is used the Vagrant Salt provisioner, which allows the usage of the Salt
states. Also, in the configuration of the saltmaster machine, the folders clients and configurator refer to the necessary
libraries and source code for the Configurator API. Configurator API is included inside the saltmaster machine, but
practically it can be located to a new VM.

To boot the environment and have all the virtual machines running: vagrant up

To access the shell of a running virtual machine: vagrant ssh [name]

At the end of this process should be running the saltstack master machine and three minions. At this point, the minions
are identical to each other, and they are all connected to saltmaster machine. This can be verified by executing these
shell commands:

Enter saltmaster machine: vagrant ssh saltmaster

Check the status of the connected minions: salt-run manage.status

To require the deployment of the kubernete master in the minion master: salt-run state.
orchestrate k8s_orchestrate

At this stage, the Kubernetes states may be applied to the remaining minions in order to obtain Kubernetes nodes.

17.1.2 Configuration of Saltstack master

• /root/conf/* contains configurations files of saltstack

• /srv/salt/_states/* contains custom state module for saltstack

• /srv/salt/_modules/* contains custom execution module for saltstack

• /srv/salt/top.sls provides mapping between states files and target minions

• /srv/pillar/top.sls provides mapping between pillar data and target minions

The Salt Master maintains States and Pillars, located respectively at /srv/salt/* and /srv/pillar/*.

168 Chapter 17. Configurator

SUNFISH Platform Documentation Documentation, Release 0.9

Salt States (/srv/salt/*)

Salt is a directory hierarchy that contains state files. Each state file describes one or more states to be configured and
enforced on the targeted machines. top.sls is the first file that will be processed, and it determines the SLS files to run
on particular minions. Pillar Data (/srv/pillar/*).

Pillar is managed in a similar way as the Salt states. Pillar data is used to configure the specific data that should be
distributed to minions. This directory contains the top.sls file and the pillar files. Top.sls provides a mapping between
the minions and the pillar files.

All the pillar files provide the data targeted to a minion, described as key:value.

Keys

/root/k8s_keys/* contains the list of keys for the target minions.

Applying the states

From SaltStack Master can be applied the states for the minions machines. The execution of state.orchestrate on
saltstack master provides a stateful management of the entire infrastructure by allowing control over the application of
asynchronous states on different minions.

vagrant ssh saltmaster

sudo salt-run state.orchestrate k8s_orchestrate

17.1.3 Configuration of Kubernetes

• /srv/salt/k8s/* contains the kubernetes formulas

• /srv/salt/k8s_yaml/* contains the files for kubernetes deployments

• /srv/salt/k8s_orchestrate.sls is the file that manages kubernetes installation

• /srv/salt/k8s_orchestrate.sls provides the configurations required to deal with the creation of the cluster. Specif-
ically, this file defines the states that should be applied for:

Certificate Authority (CA)

In /srv/pillar/k8s_common.sls should be defined the list of nodes authorized to get a signed certificate by CA and the
location of the public keys.

Kubernetes Master

In /srv/pillar/k8s_master.sls should be defined the kubernetes nodes that are going to be deployed, the labels applied
to them, and the location of the yaml files for service deployment.

Kubernetes Nodes

and /srv/pillar/k8s_node.sls contains the configurations that should be assigned to target minions like the IP range of
the cluster services.

17.1. Installation Steps 169

SUNFISH Platform Documentation Documentation, Release 0.9

Apply node to label

This action requires to define the name of the kubernetes node and the label in the pillar file /srv/pillar/k8s_master.sls.

After this, should be applied the custom state: salt “master” state.apply k8s.master.node_label

Deploy a service

The file with the configuration of the service should be located at /srv/salt/k8s_yaml/* (e.g new.yaml). This file
should be included in the configurations of /srv/pillar/k8s_master.sls. The new state should be applied: salt “master”
state.apply k8s.master.deploy_yaml

Custom state module

/srv/salt/_state/k8s_custom.py contains the implementation of functions for different custom states of kubernetes:

• label_node_present

• node_cordoned

• node_uncordoned

• node_drained

• node_absent

• yaml_applied

• node_labels

Custom execution module functions

/srv/salt/_modules/k8s_custom.py contains the implementation of functions for different custom modules:

• get_node_list lists the information of all nodes in the cluster

• get_pods_list lists the information of all pods in the cluster

• get_svc_list lists the information of all services in the cluster

• get_node lists the information of a single node

Configurator

/root/clients/* saltstack client

• /srv/salt/salt_rest_api.sls provides the configuration of the saltstack client (such as keys, users, modules etc.)

• /root/configurator/* configurator API

• /srv/salt/configurator.sls provides the required packages for Configurator API

To set the configurator up, is required the installation of the saltstack client library on the saltstack master machine.
This library is located at /root/clients/* (specified in Vagrantfile). In the same way, the Configurator API is located at
/root/configurator/*. Note that, for simplicity, in Vagrantfile, is specified to install the Configurator API in SaltStack
master machine, but this API can be installed in any deployed virtual machine.

170 Chapter 17. Configurator

SUNFISH Platform Documentation Documentation, Release 0.9

17.2 Installation

• sh /root/configurator/setup.sh

• sh /root/configurator/start.sh

In the end of these steps, the minions of the saltstack, which are not configured as saltstack master or kubernetes
master, will be stored as Virtual Machines resources.

Configurator API will be running at port 8443, and it can be accessed at https:/IP:8443/api/
configurator/v1

17.2.1 API Calls

• /confVMS Modify virtual machine with vmID=”node1” curl -ik https:/
/localhost:8443/api/configurator/v1/confVMS/
node1 -H "Content-Type: application/json" -X
PUT -d '{"vmID":"node1","vmType":"containerized",
"confID":"1"}'.

• /confNodes Configure a kubernetes node for the VM with id=”node1” curl
-ik https://localhost:8443/api/configurator/v1/
confNodes -H "Content-Type: application/json"
-X POST -d '{"vmID":"node1","nodeID":"node1",
"labels":{"label_key":"123", "label_key2":
"qwerty"}}'.

Remove the node with nodeID=”node1” from kubernetes cluster curl
-ik https://localhost:8443/api/configurator/v1/
confNodes/node1 -H "Content-Type: application/
json" -X DELETE

• /jobs List all the async operations added in a queue curl -ik https:/
/localhost:8443/api/configurator/v1/jobs -H
"Content-Type: application/json" -X GET

17.2. Installation 171

SUNFISH Platform Documentation Documentation, Release 0.9

172 Chapter 17. Configurator

CHAPTER 18

Data Security (DS)

In-depth descriptions on how to set up a service tenant and an infrastructure tenant are available. These include
step-by-step instructions to deploy the enforcement infrastructure on existing Java application servers. In addition,
a streamlined, deployment-script-based setup as well as an automated, easy-to-use, self-contained, two-step, docker-
based setup is provided for jump-starting a SUNFISH deployment.

The referred scripts and configuration files are located at https://github.com/sunfish-prj/
Data-Security/tree/master/ds/doc/install. The sub-folder service contains necessary files for
the service tenant deployment, the infrastructure folder for the infrastructure tenant deployment respectively.
The docker folder again contains the same structure, but for the dockerized setup.

18.1 Setting-Up a Service Tenant

It is assumed that a service is already running in the service tenant.

18.1.1 Step-By-Step Setup

Although not recommended, the SUNFISH data security enforcement infrastructure can be deployed following the
succeeding steps. However, depending on the deployment use case, additional steps or adaptions to either configuration
or system components may still be necessary. For demonstration purposes a two tenant setup is assumed. The sample
configuration ships with precompiled Tomcat applications, which can be found in the respective webapps directory
of either tenant. Additionally, a sample configuration for the service tenant can be found in the respective conf
directory. To deploy the service tenant follow these steps:

• Copy the content of the provided ./tomcat/webapps directory to CATALINA_HOME/webapps directory

• Copy the content of the provided ./tomcat/conf directory to CATALINA_HOME/conf directory

• Copy the content of the provided ./proxy/ directory to any desired directory (referred to as PROXY_HOME)

In a divergent deployment scenario, the respective configurations of the SUNFISH components and the SUNFISH
proxy need to be adapted individually. To start the SUNFISH data security enforcement infrastructure simply start
your local Tomcat instance and execute the start.sh script, located in your PROXY_HOME directory.

173

SUNFISH Platform Documentation Documentation, Release 0.9

18.1.2 Using the Deployment Script

The attached deployment script is an easy way to automatically setup a service tenant. For this, the following two
steps are necessary:

• Adapt the configuration if necessary (config.sh)

• Execute the deployment script (./deploy.sh)

The deployment script will automatically create all necessary resources and copy them to their designated destination.
No further steps are necessary. To start the SUNFISH data security enforcement infrastructure simply start your local
Tomcat instance and execute the start.sh script, located in your PROXY_HOME directory.

Configuration Directives

The infrastructure tenant features several configuration options before installation. The following parameters are
available:

• TOMCAT_PORT: Defines the port of the local Tomcat instance

• CATALINA_HOME: Defines the home directory of the local Tomcat instance (e.g. (/usr/local/tomcat/)

• PEP_URL_PDP: Defines the URL of the designated PDP for the PEP

• PEP_URLS_PIPS: Defines the possible PIPs available to the PEP. Multiple URLs can be specified, separated
by a comma

• PEP_ZONE: Defines the tenant name the PEP is located in

• PEP_URL_DM: Specifies the URL to the data masking service

• PEP_URL_ANON: Sepcifies the URL to the anonymisation service

• PIP_DATABASE: Defines possible database values for the PIP. Each setting consists of a key and a value. In
general three entries are necessary in order to setup a new service inside the service tenant:

– Host for ID: Assign a hostname to a specific service. The key must be in the format host.
<service_id>. The value represents a single URL to the designated service.

– Tenant for ID: Assign a service to a specific tenant. The key must be in the format zone.
<service_id>. The value defines the tenant the service is located at.

– PEP for Tenant: Assign a PEP to a specific tenant. The key must be in the format pep.<tenant
name>. The value represents a single URL to the designated PEP.

In addition, a special PIP with SLI interface can be used. This pip is automatically deployed on the infrastructure
tenant as /pip-sli. and retrieves host, tenant, and PEP for a service fromthe SLI. It requires SLI to be set to the
endpoint of the SLI to use. To use it, set USE_PIP_SLI in the service’s config.sh and add the endpoint of this
PIP (running on the infrastructure tenant) to PEP_URLS_PIPS.

• PROXY_HOME: Defines the home directory of the SUNFISH proxy (e.g. (/usr/local/proxy/)

• PROXY_IP: Defines the IP address the SUNFISH Proxy will run on

• PROXY_PORT: Defines the port the SUNISH Proxy will listen to

• PROXY_PEP[<service_id>]: Defines the URL of the PEP guarding the service <service_id> for the
SUNFISH Proxy. Multiple services can be defined; should match the service IDs in the PIP database. The
proxy interprets the first part of any path as service_id and strips it from the request forwarded to the PEP
declared for <service_id>.

174 Chapter 18. Data Security (DS)

SUNFISH Platform Documentation Documentation, Release 0.9

18.1.3 Dockerised Setup

The docker-based deployment also features a configuration file containing essentially the same (at this point mostly
self-explanatory) directives and a deployment script. This script has to be invoked after editing the configuration file
just as it is the case for the regular deployment-script-based setup.

To actually deploy the docker container, once the configuration file has been adapted, the following steps need to be
performed:

• Download and etract the ‘Docker Latest’ release from the Releases tab in the GitHub repository.

• The preconfigured docker containers demotenant.tar and infra.tar need to be loaded: docker load -i
demotenant.tar docker load -i infra.tar

• The deployment script of the infrastructure has to be executed (./deploy.sh) inside the infrastructure direc-
tory

• The IP address of the docker container will be printed out. Copy it and press Enter.

• This address needs to be configured as infrastructure tenant IP address for the demotenant cotnainer in the file
tenant/config.sh

• Execute the demo tenant by invoking deploy.sh

This should start a docker container, inside which the proxy is running on PROXY_PORT and the PEG and the PIP are
running as web applications on a Tomcat server in the same container on TOMCAT_PORT. Both ports are mapped to
their respective counterparts on the host machine.

The demo tenant includes a demo application, but no DS policies. A postman collection is also part of the ‘Docker
Latest’ release. It contains a sample policy allowing access to /demo-app/demo/ds/index.* and denying everything
else. It should work out-of-the-box for the default setup. The default configuration of the proxy assigns the demo
application the identifier ‘demo’. Consequently, the demo application (and the sample DS policy) can be tested, by
invoking http://localhost:10000/demo/demo-app/demo/ds/index.html. The DS component can
also by bypassed for debugging purposes by connecting to http://localhost:8081/demo-app/demo/ds/
index.html.

18.1.4 Setting-Up a Service

To add a new service to the SUNFISH data security enforcement infrastructure, the following steps are necessary:

• Add a host for the service id to the configuration file config.sh or, if the SUNFISH tenant has already
been setup, to the configuration file located in CATALINA_HOME/conf/sunfish/pip/database/
pip_database.config

• Add a tenant for the service id to the configuration file config.sh or, if the SUNFISH tenant has al-
ready been setup, to the configuration file located in CATALINA_HOME/conf/sunfish/pip/database/
pip_database.config. It is important to note that this step needs to be performed for all operational
tenants, as long as the PIP database containing the service configuration is not replicated between all tenants.

• Add a pep for the tenant of the service to the configuration file config.sh or, if the SUNFISH tenant has al-
ready been setup, to the configuration file located in CATALINA_HOME/conf/sunfish/pip/database/
pip_database.config. It is important to note that this step needs to be performed for all operational
tenants, as long as the PIP database containing the service configuration is not replicated between all tenants.

• Restart your local Service Tenant Tomcat in order to apply the changes

18.1. Setting-Up a Service Tenant 175

SUNFISH Platform Documentation Documentation, Release 0.9

18.1.5 Adding Policies

By default, any deployed service requires dedicated policies in order for the SUNFISH data security enforcement
infrastructure to work. Policies can be added via the PAP and the defined API (see also Chapter SUNFISH Policy
Administration Point (PAP) API). A sample policy, allowing access to a defined service is shown below:

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<Policy xmlns="urn:oasis:names:tc:xacml:3.0:core:schema:wd-17" xmlns:ns2="urn:sunfish
→˓" PolicyId="urn:sunfish:policy:demo-proxy-https" Version="1.0" RuleCombiningAlgId=
→˓"urn:oasis:names:tc:xacml:1.0:rule-combining-algorithm:deny-overrides">

<Description>Demo Permit-All Policy </Description>
<Target>

<AnyOf>
<AllOf>

<Match MatchId="urn:oasis:names:tc:xacml:1.0:function:string-equal">
<AttributeValue DataType="http://www.w3.org/2001/XMLSchema#string

→˓">129.27.142.49</AttributeValue>
<AttributeDesignator Category="urn:sunfish:attribute-

→˓category:service" AttributeId="urn:sunfish:attribute:id" DataType="http://www.w3.
→˓org/2001/XMLSchema#string" MustBePresent="true"/>

</Match>
<Match MatchId="urn:oasis:names:tc:xacml:3.0:function:string-starts-

→˓with">
<AttributeValue DataType="http://www.w3.org/2001/XMLSchema#string

→˓">/demo-app/demo/</AttributeValue>
<AttributeDesignator Category="urn:sunfish:attribute-

→˓category:response" AttributeId="urn:sunfish:attribute:request:path" DataType="http:/
→˓/www.w3.org/2001/XMLSchema#string" MustBePresent="false"/>

</Match>
</AllOf>
<AllOf>

<Match MatchId="urn:oasis:names:tc:xacml:1.0:function:string-equal">
<AttributeValue DataType="http://www.w3.org/2001/XMLSchema#string

→˓">129.27.142.49</AttributeValue>
<AttributeDesignator Category="urn:sunfish:attribute-

→˓category:service" AttributeId="urn:sunfish:attribute:id" DataType="http://www.w3.
→˓org/2001/XMLSchema#string" MustBePresent="true"/>

</Match>
<Match MatchId="urn:oasis:names:tc:xacml:3.0:function:string-starts-

→˓with">
<AttributeValue DataType="http://www.w3.org/2001/XMLSchema#string

→˓">/demo-app/demo/</AttributeValue>
<AttributeDesignator Category="urn:sunfish:attribute-

→˓category:request" AttributeId="urn:sunfish:attribute:request:path" DataType="http://
→˓www.w3.org/2001/XMLSchema#string" MustBePresent="false"/>

</Match>
</AllOf>

</AnyOf>
</Target>
<Rule RuleId="urn:sunfish:rule:permit" Effect="Permit">

<Target/>
</Rule>

</Policy>

176 Chapter 18. Data Security (DS)

SUNFISH Platform Documentation Documentation, Release 0.9

18.2 Setting-Up an Infrastructure Tenant

18.2.1 Step-By-Step Setup

Although not recommended, the SUNFISH data security enforcement infrastructure can be deployed following the
succeeding steps. However, depending on the deployment use case, additional steps or adaptions to either configuration
or system components may still be necessary. For demonstration purposes a two tenant setup is assumed. The sample
configuration ships with precompiled Tomcat applications, which can be found in the respective webapps directory
of either tenant. Additionally, a sample configuration for the infrastructure tenant can be found in the respective conf
directory. To deploy the service tenant follow these steps:

• Copy the content of the provided webapps directory to CATALINA_HOME/webapps directory

• Copy the content of the provided conf directory to CATALINA_HOME/conf directory

In a divergent deployment scenario, the respective configurations of the SUNFISH components need to be adapted
individually. To start the SUNFISH data security enforcement infrastructure simply start your local Tomcat instance.

18.2.2 Using the Deployment Script

The attached deployment script is an easy way to automatically setup an infrastructure tenant. For this, the following
two steps are necessary:

• Adapt the configuration if necessary (config.sh)

• Execute the deployment script (./deploy.sh)

The deployment script will automatically create all necessary resources and copy them to their designated destination.
No further steps are necessary. To start the SUNFISH data security enforcement infrastructure simply start your local
Tomcat instance.

Configuration Directives

The infrastructure tenant features several configuration options before installation. The following parameters are
available:

• TOMCAT_PORT: Defines the port of the local Tomcat instance

• CATALINA_HOME: Defines the home directory of the local Tomcat instance (e.g. (/usr/local/tomcat/)

• PAP_URL_RI: Defines the URL of the designated Registry Interface for the PAP

• PDP_URLS_PRPS: Defines the possible PRPs available to the PDP. Multiple URLs can be specified, separated
by a comma

• PDP_URLS_PIPS: Defines the possible PIPs available to the PDP. Multiple URLs can be specified, separated
by a comma

• PRP_URL_RI: Defines the URL of the designated Registry Interface for the PRP

• PIP_DATABASE: Defines possible database values for the PIP. Each setting consists of a key and a value. In
general, no additional values are necessary for the PIP in the infrastructure tenant.

18.2. Setting-Up an Infrastructure Tenant 177

SUNFISH Platform Documentation Documentation, Release 0.9

18.2.3 Dockerised Setup

The docker-based deployment also features a configuration file containing essentially the same (at this point mostly
self-explanatory) directives and a deployment script. This script has to be invoked after editing the configuration file
just as it is the case for the regular deployment-script-based setup.

To actually deploy the docker container, once the configuration file has been adapted, the following steps need to be
performed:

• Download the infrastructure docker container (infrastructure.tar) from the Releases tab in the GitHub
repository and copy it to install/docker/infrastructure/

• The preconfigured docker container infrastructure.tar needs to be loaded: docker load -i
infrastructure.tar

• The deployment script has to be executed (./deploy.sh)

This should start a docker container, inside which the PDP, the PRP and the PIP are running as web applications on a
Tomcat server on TOMCAT_PORT which is mapped to the same port on the host machine.

178 Chapter 18. Data Security (DS)

CHAPTER 19

Intelligent Workload Manager (IWM)

19.1 Deployment instruction

IWM functionality has been integrated into Waldur. As such, deployment of IWM is done in the same fashion as
upstream. Installation script is below. Deployment requirements are:

• CentOS 7 or other RHEL7-compliant operating system

• At least 8GB of RAM, preferably 2 cores or more.

yum clean all
yum -y update

Configure repositories
yum -y install epel-release
yum -y install https://download.postgresql.org/pub/repos/yum/9.5/redhat/rhel-7-x86_64/
→˓pgdg-centos95-9.5-2.noarch.rpm
yum -y install https://opennodecloud.com/centos/7/elastic-release.rpm
yum -y install https://opennodecloud.com/centos/7/waldur-release.rpm

Set up PostgreSQL
yum -y install postgresql95-server
/usr/pgsql-9.5/bin/postgresql95-setup initdb
systemctl start postgresql-9.5
systemctl enable postgresql-9.5

su - postgres -c "/usr/pgsql-9.5/bin/createdb -EUTF8 waldur"
su - postgres -c "/usr/pgsql-9.5/bin/createuser waldur"

Set up Redis
yum -y install redis
systemctl start redis
systemctl enable redis

Set up Elasticsearch

179

SUNFISH Platform Documentation Documentation, Release 0.9

yum -y install elasticsearch java

systemctl start elasticsearch
systemctl enable elasticsearch

Set up Logstash
yum -y install logstash

cat > /etc/logstash/conf.d/waldur-events.json <<EOF
input {

tcp {
codec => json
port => 5959
type => "waldur-event"

}
}

filter {
if [type] == "waldur-event" {
json {

source => "message"
}

mutate {
remove_field => ["class", "file", "logger_name", "method", "path", "priority",

→˓"thread"]
}

grok {
match => { "host" => "%{IPORHOST:host}:%{POSINT}" }
overwrite => ["host"]

}
}

}

output {
elasticsearch { }

}
EOF

systemctl start logstash
systemctl enable logstash

Set up Waldur Core
yum -y install waldur-core

su - waldur -c "waldur migrate --noinput"

systemctl start waldur-uwsgi
systemctl enable waldur-uwsgi

systemctl start waldur-celery
systemctl enable waldur-celery

systemctl start waldur-celerybeat
systemctl enable waldur-celerybeat

su - waldur -c "waldur createstaffuser -u admin -p admin"

180 Chapter 19. Intelligent Workload Manager (IWM)

SUNFISH Platform Documentation Documentation, Release 0.9

Set up Waldur MasterMind
yum -y install centos-release-openstack-pike
yum -y install waldur-mastermind

su - waldur -c "waldur migrate --noinput"

systemctl restart waldur-uwsgi
systemctl restart waldur-celery
systemctl restart waldur-celerybeat

Set up Waldur HomePort
yum -y install waldur-homeport

Set up Nginx
yum -y install nginx

systemctl start nginx
systemctl enable nginx

19.2 Screenshots

Screenshots below are taken from a demo deployment of IWM in a federation.

19.2. Screenshots 181

SUNFISH Platform Documentation Documentation, Release 0.9

Fig. 19.1: Login view of IWM frontend, white-labelled to a concrete federation.

Fig. 19.2: Adding federation service providers to IWM.

182 Chapter 19. Intelligent Workload Manager (IWM)

SUNFISH Platform Documentation Documentation, Release 0.9

Fig. 19.3: Listing registered SUNFISH tenants within an IWM.

Fig. 19.4: Visual interface to optimisation API for finding the best option for a planned infrastructure.

Fig. 19.5: Results of the optimisation with 2 service providers in the federation.

19.2. Screenshots 183

SUNFISH Platform Documentation Documentation, Release 0.9

184 Chapter 19. Intelligent Workload Manager (IWM)

CHAPTER 20

Anonymisation (ANM)

This is the installation for the anonymisation component.

The anonymization service has a single dependency, namely Java8 run time environment.

The service installation procedure is very simple:

1. Place AnonymizationService.jar in your target directory.

2. Place AnonymizationService_lib/ directory in the same target directory.

3. Create an ‘application.properties’ file and set the port number.

For example, the application.properties can contain the following line: server.port=50001

To run the service, execute the following command:

> java -jar AnonymizationService.jar

The service is now ready to accept REST calls.

20.1 Anonymisation Interface (ANI)

Install the dependencies

Nodejs v6.x Npm v3.x Releases and installation guides can be found on the official websites here and here

To check that all the dependencies have been set up, execute

$ node -v
-> v6.1.0
$ npm -v
-> 3.10.6

Anonymisation Interface set-up

To set the service, execute the following commands

185

SUNFISH Platform Documentation Documentation, Release 0.9

$ git clone https://github.com/sunfish-prj/Anonymisation-Interface.git
$ npm start

The server is now running and listening on the port chosen in the config/server_config.yaml file (e.g. 50001).

The anonymisaiton interface is expected to interact with the anonymisation component in the Service Ledger Interface,
whose url and port are defined in the configuration file config/default.yaml.

186 Chapter 20. Anonymisation (ANM)

CHAPTER 21

Data Masking (DM)

This is the installation for the data masking component.

The masking service has a single dependency, namely Java8 run time environment.

The service installation procedure is very simple:

1. Place MaskingService.jar in your target directory.

2. Create an ‘application.properties’ file and set the port number. For example, the application.properties can
contain the following line: server.port=50002

3. Create/Modify the ‘sunfish.properties’ file (located within the jar) and set URI’s for the Service Ledger. For
example:

riStoreUri=http://localhost:60005/r/put riReadUri=http://localhost:60005/r/get riDele-
teUri=http://localhost:60005/r/delete

To run the service, execute the following command:

> java -jar MaskingService.jar

The service is now ready to accept REST calls

187

SUNFISH Platform Documentation Documentation, Release 0.9

188 Chapter 21. Data Masking (DM)

CHAPTER 22

Federated Runtime Monitoring (FRM)

The installation of the FRM component is here listed.

22.1 Proxy

The proxy component has been developed as a servlet filter in order to be compatible with the DS servlets. It is
released ad a .jar dependency in such a way to be totally integrate in the Tomcat Server. The proxy consists of two
Java source files, named ProxyFilter.java and CachedServletRequest.java under the sunfish.frm.proxy package.

The supplied pom.xml file contains the maven depency code snippet for the required libraries.

The supplied web.xml file, located under the src/main/webapp/WEB-INF directory, contains the servlet mapping for
the servlet filter.

A config.json file, located under the src/main/webapp/WEB-INF directory, contains configuration directives.

There additional libraries supplied in the src/main/webapp/WEB-INF/lib directory need to be properly added into the
java path during the deployment.

22.1.1 Installation guide

The following steps are required to deploy and/or integrate the proxy with each DS component.

N.B. The following instructions refer to the dockerised setup of the SUNFISH Data Security Enforcement Infrastruc-
ture. Follow the doc for the deployment.

1. Download the last release of the Proxy Infrastructure tenant from the Releases tab in the GitHub repository
release.

2. Once loaded the preconfigured docker containers demotenant.tar and infra.tar open the infrastructure folder and
copy from the Federation-Monitoring/install/ds-infrastructure/ folder the following elements:

• ./params.json this contains the configuration params for the ProxyFilter

• ./web.xml this contains a new version of the configuration for Tomcat. It enables the filter-mapping.

189

https://github.com/sunfish-prj/Federation-Monitoring/releases

SUNFISH Platform Documentation Documentation, Release 0.9

• ./deploy.sh this is the modified script to launch the instrastructure tenant. It load all required depen-
dencies and configurations in Tomcat.

3. Copy ProxyFilter-1.0-release.jar download at 1. in Federation-Monitoring/install/
ds-infrastructure/dependencies/

4. Copy the dependencies/ inside the infrastructure folder.

Once finished you should have inside the DS module infrastructure and the tenant folders. Your infrastructure folder
should looks like this:

ubuntu@ubuntu:~/Data-Security/ds/doc/install/docker/infrastructure$ ls -la
attributes
config.sh
dependencies
deploy.sh
infra.tar
params.json
web.xml

22.1.2 Usage guide

In ./params.json must be defined the configuration directives. Configure the following paameters:

• ServerIP #It is the IP of the localhost where the dockers are running.

• Path #It is the path for calling the API of the monitoring service.

Once completed the configuration, run the ./deploy.sh script to execute the infrastructure tenant with the Proxy-
Filter.

By using the demo application the ProxyFilter intercept requests as the following:

<?xml version="1.0" encoding="UTF-8"?>
<Request xmlns="urn:oasis:names:tc:xacml:3.0:core:schema:wd-17" xmlns:xsi=
→˓"http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation=
→˓"urn:oasis:names:tc:xacml:3.0:core:schema:wd-17 http://docs.oasis-open.org/
→˓xacml/3.0/xacml-core-v3-schema-wd-17.xsd" ReturnPolicyIdList="false"
→˓CombinedDecision="false">

<Attributes Category="urn:sunfish:attribute-category:service
→˓">

<Attribute AttributeId=
→˓"urn:sunfish:attribute:id" IncludeInResult="false">

<AttributeValue DataType=
→˓"http://www.w3.org/2001/XMLSchema#string">demo</AttributeValue>

</Attribute>
<Attribute AttributeId=

→˓"urn:sunfish:attribute:service:zone" IncludeInResult="false">
<AttributeValue DataType=

→˓"http://www.w3.org/2001/XMLSchema#string">demozone</AttributeValue>
</Attribute>

</Attributes>
<Attributes Category="urn:sunfish:attribute-

→˓category:application">
<Attribute AttributeId=

→˓"urn:sunfish:attribute:id" IncludeInResult="false">
<AttributeValue DataType=

→˓"http://www.w3.org/2001/XMLSchema#string">TBD?!!</AttributeValue>
</Attribute>

190 Chapter 22. Federated Runtime Monitoring (FRM)

SUNFISH Platform Documentation Documentation, Release 0.9

<Attribute AttributeId=
→˓"urn:sunfish:attribute:application:zone" IncludeInResult="false">

<AttributeValue DataType=
→˓"http://www.w3.org/2001/XMLSchema#string">demozone</AttributeValue>

</Attribute>
<Attribute AttributeId=

→˓"urn:sunfish:attribute:application:host" IncludeInResult="false">
<AttributeValue DataType=

→˓"http://www.w3.org/2001/XMLSchema#string">TBD?!!</AttributeValue>
</Attribute>
</Attributes>

<Attributes Category="urn:sunfish:attribute-category:request
→˓">

<Attribute AttributeId=
→˓"urn:sunfish:attribute:request:method" IncludeInResult="false">

<AttributeValue DataType=
→˓"http://www.w3.org/2001/XMLSchema#string">GET</AttributeValue>

</Attribute>
<Attribute AttributeId=

→˓"urn:sunfish:attribute:request:path" IncludeInResult="false">
<AttributeValue DataType=

→˓"http://www.w3.org/2001/XMLSchema#string">/demo-app/demo/ds/index.html</
→˓AttributeValue>

</Attribute>
<Attribute AttributeId=

→˓"urn:sunfish:attribute:request:port" IncludeInResult="false">
<AttributeValue DataType=

→˓"http://www.w3.org/2001/XMLSchema#integer">80</AttributeValue>
</Attribute>
<Attribute AttributeId=

→˓"urn:sunfish:attribute:request:protocol" IncludeInResult="false">
<AttributeValue DataType=

→˓"http://www.w3.org/2001/XMLSchema#string">http://</AttributeValue>
</Attribute>
<Attribute AttributeId=

→˓"urn:sunfish:attribute:request:content-type" IncludeInResult="false">
<AttributeValue DataType=

→˓"http://www.w3.org/2001/XMLSchema#string">application/json</AttributeValue>
</Attribute>
<Attribute AttributeId=

→˓"urn:sunfish:attribute:request:body-data" IncludeInResult="false">
<AttributeValue DataType=

→˓"http://www.w3.org/2001/XMLSchema#string">sfbd20812981</AttributeValue>
</Attribute>
<Attribute AttributeId=

→˓"urn:sunfish:attribute:request:content-type" IncludeInResult="false">
<AttributeValue DataType=

→˓"http://www.w3.org/2001/XMLSchema#string">text/xml</AttributeValue>
</Attribute>
<Attribute AttributeId=

→˓"urn:sunfish:attribute:request:header-parameter" IncludeInResult="false">
<AttributeValue DataType=

→˓"http://www.w3.org/2001/XMLSchema#string">sfhp021</AttributeValue>
</Attribute>
<Attribute AttributeId=

→˓"urn:sunfish:attribute:request:header-parameter" IncludeInResult="false">
<AttributeValue DataType=

→˓"http://www.w3.org/2001/XMLSchema#string">sfhp101</AttributeValue>

22.1. Proxy 191

SUNFISH Platform Documentation Documentation, Release 0.9

</Attribute>
</Attributes>

</Request>

and send to the Service Ledger Monitoring the following json:

{
"timeStamp":"2017-12-13 17:47:21",
"requestorID":"TODO",
"data":

→˓"W0RvY3VtZW50OiAgTm8gRE9DVFlQRSBkZWNsYXJhdGlvbiwgUm9vdCBpcyBbRWxlbWVudDogPFJlcXVlc3QgW05hbWVzcGFjZTogdXJuOm9hc2lzOm5hbWVzOnRjOnhhY21sOjMuMDpjb3JlOnNjaGVtYTp3ZC0xN10vPl1d
→˓",

"dataType":"REQUEST",
"loggerID":"PDP",
"token":"TODO",
"monitoringID":"/demo-app/demo/ds/index.html"

}

22.2 Chaincode

The code to be deployed is available here.

22.2.1 Installation Guide

The chaincode has been implemented for the blockchain system Hyperledger Fabric v1.0.0. Its installation and de-
ployment instruction can be found in the guide.

1. To install the chaincode named monitoring is as follow

peer chaincode install -n ex02 -v 1.0 -p github.com/hyperledger/fabric/sunfish/
→˓chaincode/monitoring.go

We proceed now with the instantiation for the code for its actual running. For the sake of simplicity, we assume a
blockchain network formed by two peers; the procedure can be extended for any number of peers.

2. Instantiate the chaincode on peer0 or peer2:

peer chaincode instantiate -o orderer0:7050 --tls $CORE_PEER_TLS_ENABLED --cafile
→˓$ORDERER_CA -C mychannel -n ex02 -v 1.0 -c '{"Args":["init","a","100","b","200"]}' -
→˓P "OR ('Org0MSP.member','Org1MSP.member')"

As a result, a new docker container is now created to manage the chaincode, the following log is showed:

peer2 | 2017-06-20 18:32:40.189 UTC [dockercontroller] Start -> DEBU 3b6 Start
→˓container dev-peer2-ex02-1.0
peer2 | 2017-06-20 18:32:40.189 UTC [dockercontroller] getDockerHostConfig ->
→˓DEBU 3b7 docker container hostconfig NetworkMode: e2ecli_default
peer2 | 2017-06-20 18:32:40.190 UTC [dockercontroller] createContainer -> DEBU
→˓3b8 Create container: dev-peer2-ex02-1.0
peer2 | 2017-06-20 18:32:40.192 UTC [dockercontroller] Start -> DEBU 3b9 start-
→˓could not find image ...attempt to recreate image no such image
peer2 | 2017-06-20 18:32:40.192 UTC [chaincode-platform] generateDockerfile ->
→˓DEBU 3ba
peer2 | FROM hyperledger/fabric-baseos:x86_64-0.3.0

192 Chapter 22. Federated Runtime Monitoring (FRM)

https://github.com/sunfish-prj/Service-Ledger/tree/master/server/hyperledger-fabric/chaincode/monitoring

SUNFISH Platform Documentation Documentation, Release 0.9

peer2 | ADD binpackage.tar /usr/local/bin
peer2 | LABEL org.hyperledger.fabric.chaincode.id.name="monitoring" \
peer2 | org.hyperledger.fabric.chaincode.id.version="1.0" \
peer2 | org.hyperledger.fabric.chaincode.type="GOLANG" \
peer2 | org.hyperledger.fabric.version="1.0.0-snapshot-ecc29dd" \
peer2 | org.hyperledger.fabric.base.version="0.3.0"
peer2 | ENV CORE_CHAINCODE_BUILDLEVEL=1.0.0-snapshot-ecc29dd
peer2 | ENV CORE_PEER_TLS_ROOTCERT_FILE=/etc/hyperledger/fabric/peer.crt
peer2 | COPY peer.crt /etc/hyperledger/fabric/peer.crt
peer2 | 2017-06-20 18:32:51.945 UTC [dockercontroller] deployImage -> DEBU 3bb
→˓Created image: dev-peer2-ex02-1.0
peer2 | 2017-06-20 18:32:51.945 UTC [dockercontroller] Start -> DEBU 3bc start-
→˓recreated image successfully
peer2 | 2017-06-20 18:32:51.945 UTC [dockercontroller] createContainer -> DEBU
→˓3bd Create container: dev-peer2-ex02-1.0

Note: the -o flag indicates the orderer address:port who handle the channel; the --tls takes a boolean
and indicates whether we are using TLS or not (it’s true in our environment, look at the docker-compose file); the
--cafile indicates the file with the certificate of the Orderer (ignore it for now); the -c flag indicates the args to
give to the chaincode in a json format and finally -P is referred to the endorsement policy (we will see later in this
course).

Now a new docker container should be up with the chaincode execution on the peer. Via the command docker ps
the new docker can be shown. While via the command docker attach <ID> where ID is the CONTAINER ID
discovered in the previous step with docker ps, the docker can be accessed to issue execution.

3. To query the chaincode on the initialised argument to check if they have been correctly stored

peer chaincode query -C mychannel -n ex02 -c '{"Args":["query","a"]}'

while to run an execution the following command can be executed

peer chaincode invoke -o orderer0:7050 --tls $CORE_PEER_TLS_ENABLED --cafile
→˓$ORDERER_CA -C mychannel -n ex02 -c '{"Args":["invoke","a","b","10"]}'

22.2. Chaincode 193

SUNFISH Platform Documentation Documentation, Release 0.9

194 Chapter 22. Federated Runtime Monitoring (FRM)

CHAPTER 23

Federated Security Audit (FSA)

This is the installation for the FSA component.

To install FSA extract the provided archive FSA.tar.gz. The extracted FSA folder has the following structure:

• bins/ - scripts and jars of the FSA application

• docs/ - documentation files with usage instructions

• rootFolder/ - containing input, output and intermediate files for FSA operations: CreateModel, IdentifySuspi-
ciousActivities and GetEntitlementVulnerabilites

• activities_arch/ - IdentifySuspiciousActivities processed input files

• activities_in/ - IdentifySuspiciousActivities input files

• activities_out/ - IdentifySuspiciousActivities result files

• model_arch/ - CreateModel processed input files

• model_in/ - CreateModel input files

• model_out/ - CreateModel current model

• entitlement_arch/ - GetEntitlementVulnerabilites processed input files

• entitlement_in/ - GetEntitlementVulnerabilites input files

• entitlement_out/ - GetEntitlementVulnerabilites result files

• /spark - local installation of spark

To use FSA application follow the following steps:

1. Start FSA application by executing bins/FSA_start.sh

2. Add input files to rootFolder/XXX_in, select XXX according to the required operation (as described above).

3. Get result files from rootFolder/XXX_out, where XXX is the same as was selected in the previous step

4. Go to step 2 or stop FSA application

195

SUNFISH Platform Documentation Documentation, Release 0.9

196 Chapter 23. Federated Security Audit (FSA)

CHAPTER 24

Secure Multiparty Computation (SMC)

24.1 Sharemind MPC Application Server

24.1.1 Requirements

• Minimal hardware requirements: 8 GB of RAM, 2 CPU cores. Optimal requirements depend on planned
workloads.

• Operating system: Debian (Stretch), Ubuntu (16.04 or newer) or other APT-based Linux distribution.

24.1.2 Installation

Sharemind MPC is available from Cybernetica’s private APT repository. To access it, add the repository location to
your APT configuration and trust the Sharemind package signing GPG key.

gpg --keyserver subkeys.pgp.net --search sharemind-packaging@cyber.ee # Note the
→˓downloaded key ID
gpg -a --export <key ID> | sudo apt-key add - # Supply the key ID here

echo "deb https://repo.cyber.ee/sharemind/apt/debian stretch main" | sudo tee /etc/
→˓apt/sources.list.d/sharemind-mpc.list
sudo apt-get update

Install Sharemind Application Server with the shared3p SMC module and HDF5 embedded storage backend:

sudo apt-get install sharemind-server sharemind-mod_shared3p sharemind-mod_tabledb-
→˓hdf5

24.1.3 Key Generation and Exchange

Sharemind MPC uses Transport Layer Security (TLS) technology for secure, mutually authenticated and encrypted
communication channels between computation nodes as well as between computation nodes and client applications

197

SUNFISH Platform Documentation Documentation, Release 0.9

like CSV Importer. Therefore, each Sharemind component requires a personal asymmetric key pair for authentication
and encryption.

As Sharemind MPC uses RSA keys in standard X.509 certificate format, already familiar tools like OpenSSL can be
used. The process described below generates a new RSA key pair, where the private key is in file my-private-key
and public part in my-public-key. The -days value should be at least the expected duration of the deployment.

openssl req -x509 -days 300 -nodes -newkey rsa:2048 -keyout my-private-key -out my-
→˓public-key -outform der

Generating a 2048 bit RSA private key
...+++
...+++
writing new private key to 'my-private-key'

You are about to be asked to enter information that will be incorporated
into your certificate request.
What you are about to enter is what is called a Distinguished Name or a DN.
There are quite a few fields but you can leave some blank
For some fields there will be a default value,
If you enter '.', the field will be left blank.

Country Name (2 letter code) [AU]: **(Required)**
State or Province Name (full name) [Some-State]: **(Required)**
Locality Name (eg, city) []: **(Required)**
Organization Name (eg, company) [Internet Widgits Pty Ltd]: **(Required)**
Organizational Unit Name (eg, section) []:
Common Name (e.g. server FQDN or YOUR name) []: **(Required)**
Email Address []:

This openssl tool generates the private key by default in PEM format. However, for Sharemind MPC, it must be
converted to DER format:

openssl rsa -in my-private-key -out my-private-key -outform der

The public key must be sent to each other participant in the SMC deployment that communicates directly with the
Sharemind Application Server. This includes other (two) Sharemind Application Servers and client or proxy applica-
tions. The public key should be sent in a way that allows sender authentication, e.g. by digitally signing it.

24.1.4 Configuration

In every deployment, all three Sharemind Application Server hosts have to agree on unique server names and their
order. Before continuing, make sure you have the following information information about the deployment and other
hosts:

• Deployment name

• For each Sharemind Application Server:

– Node number (1, 2 or 3)

– Name

– Hostname or IP

– Port number

– Public key file

Sharemind Application Servers search for their main configuration file from the following locations (in order):

198 Chapter 24. Secure Multiparty Computation (SMC)

SUNFISH Platform Documentation Documentation, Release 0.9

• Filename given by the --conf command line argument

• System-wide configuration file in /etc/xdg/sharemind/server.conf (XDG Basedir search path)

• System-wide configuration file in /etc/sharemind/server.conf

The configuration file is an INI-formatted file, where section names are between square brackets ([Section]) and
configuration values are given with key=value pairs. A commented example server configuration file is available in
/usr/share/doc/sharemind/examples/server.conf.

At minimum, the following changes to the example configuration are necessary:

• The value of UuidNamespace in section [Server] must be set to your deployment name.

• The value of Name in section [Server] must be set to your server’s unique name.

• The value of ListenInterfaces in section [Network] must be set to an IP address and port number,
where the Sharemind Application Server listens for incoming connections. If the server should listen only on a
single network interface, insert it’s IP address. Otherwise, specify 0.0.0.0. The port number can be chosen
according to personal preference, keeping in mind that listening on low port numbers (up to 1023) requires root
access.

• The values of PublicKeyFile and PrivateKeyFile in section [Network] should be the file names
of your public and private keys, respectively. Following the example key generation procedure given above,
these are my-public-key and my-private-key. File location can be given relative to the current
configuration file with %{CurrentFileDirectory}, e.g. %{CurrentFileDirectory}/keys/
my-public-key.

• Information about the other two servers is in sections [Server <name>], where <name> is the unique
agreed upon name of the respective server. For both servers, the following values should be changed:
Address: server’s IP address, Port: server’s port number and PublicIdentity: file name of the cor-
responding server’s public key file. File location can be given relative to the current configuration file with
%{CurrentFileDirectory}.

Additionally the file shared3p.conf should be changed so that server names are assigned to the correct identifiers
(node numbers). This configuration has to be identical for all three servers so they know their communication order in
the secure multi-party protocols. The system-wide copy of this file is in /etc/sharemind/shared3p.conf.

Other parts of the configuration files should remain unchanged, as network and security parameters must be consistent
for all servers and client applications.

Each client application or proxy owner also generates a key pair and sends its public key to each server host. The
Sharemind Application Server only allows incoming connections from client applications whose public key is reg-
istered in its access control list, referenced by the WhiteListFile from the main configuration file (by default
%{CurrentFileDirectory}/server-whitelist.conf). The format of this whitelist file is as follows:

Format:
path/to/public-key-filename: script-filename1[, script-filename2, ...] # Ignored
→˓comment
Example:
key1: script1, script2 # Allow running only 'script1' and 'script2' with public
→˓key 'key1'.
key2: * # Allow 'key2' to run any script. NB! Should not be used
→˓in production!
client-public-key: secrec-program.sb

24.1.5 Compiling SecreC Code

Each Sharemind Application Server host must audit and deploy necessary SecreC programs separately. SecreC code
is compiled into bytecode with the scc program and by default, Sharemind Application Server looks for the bytecode

24.1. Sharemind MPC Application Server 199

SUNFISH Platform Documentation Documentation, Release 0.9

from /var/lib/sharemind/scripts/ folder:

scc -o /var/lib/sharemind/scripts/program.sb /path/to/src/program.sc

24.1.6 Starting Sharemind Application Server

A system-wide installation of the Sharemind Application Server is controlled by the systemd unit file:

sudo systemctl start sharemind-server
sudo systemctl stop sharemind-server

24.2 Sharemind Web Application Gateway

Sharemind platform components communicate using a binary protocol. To support web-based client applications, a
proxy service has to be deployed in front of each Sharemind Application Server that translates between HTTP and
Sharemind’s binary protocol. Such proxy applications can be built with Sharemind Web Application Gateway add-on
– a NodeJS library that must be installed separately on the server:

24.2.1 Installation

sudo apt-get install sharemind-web-gateway

Proxy applications written in NodeJS should then add “sharemind-web-gateway” as a dependency in their package.json
file. Sharemind Web Application Gateway requires NodeJS version 6 or newer. If a suitable version is not provided
directly by the Linux distribution, it can be obtained from NodeJS site.

24.2.2 Configuration

A proxy application using Sharemind Web Application Gateway acts as a client application for the Sharemind Appli-
cation Server. Thus, it also needs a key pair for TLS as described in Key Generation and Exchange.

An example client application configuration, also suitable for proxy applications, can be found in /usr/share/
doc/sharemind/examples/client.conf. At minimum, the following changes to the example configuration
are necessary:

• The value of UuidNamespace in section [Controller] must be set to your deployment name.

• The values of PublicKeyFile and PrivateKeyFile in section [Network] should be the file
names of your public and private keys, respectively. Following the example key generation procedure
given at Key Generation and Exchange, these are my-public-key and my-private-key. File lo-
cation can be given relative to the current configuration file with %{CurrentFileDirectory}, e.g.
%{CurrentFileDirectory}/keys/my-public-key.

• Proxy applications only connect to one Sharemind Application Server and thus have only one [Server
<name>] section, where <name> is the unique agreed upon name of the respective server. The following val-
ues should be changed: Address: server’s IP address, Port: server’s port number and PublicIdentity:
file name of the corresponding server’s public key file. File location can be given relative to the current config-
uration file with %{CurrentFileDirectory}.

200 Chapter 24. Secure Multiparty Computation (SMC)

https://nodejs.org/en/download/package-manager/#debian-and-ubuntu-based-linux-distributions

CHAPTER 25

Service Ledger (SL)

25.1 Dependency

Install the dependencies

• Node.js v6.x

• Npm v3.x

Releases and installation guides can be found on the official web-sites node and npm.

To check that all the decencies have been set up, execute

$ node -v
-> v6.1.0
$ npm -v
-> 3.10.6

Note that you probably also need to have installed on the machine make and gyp; if not installed, execute also

$ apt-get install build-essential git
$ npm install -g node-gyp

Remember to execute the installation as superuser.

Additionally, to install the underlying platform we have two different options

1. MongoDB to be installed according to the used OS. To check installation outcomes

$ mongo --version
-> MongoDB shell version v3.4.6

2. Hyperledger Fabric blockchain to be installed according to the guide.

201

https://nodejs.org
https://www.npmjs.com/
https://hyperledger-fabric.readthedocs.io/en/release-1.0/getting_started.html

SUNFISH Platform Documentation Documentation, Release 0.9

25.2 Service Ledger Interface

To set the service, execute the following commands

$ git clone https://github.com/sunfish-prj/Service-Ledger-Interface.git
$ cd Service-Ledger-Interface/server
$ npm start

The server is now running and listening on the port chosen in the config/default.yaml. file (e.g. 8089). You can use the
client-stub interface http://localhost:8089/docs.

The Service-Ledger-Interface is expected to interact with the Service Ledger whose url and port are defined in the
configuration file config/default.yaml.

25.3 Service Ledger

To set the service, execute the following commands

$ git clone https://github.com/sunfish-prj/Service-Ledger.git
$ cd Service-Ledger/server

To set up the ServiceLedger server, edit the file config/default.yaml properly. In this file it can be set to use MongoDB
or Hyperledger Fabric.

In case the server is using MongoDB, you should also start it before ServiceLedger. See the corresponding command
wrt your os here. Similarly, if using Hyperledger Fabric, you need a running Fabric cluster to gather all information
related to its docker containers.

Now you can start the ServiceLedger server:

$ npm start

The server is now running and listening on the port chosen in the config/default.yaml. file (e.g. 8090). You can use the
[client-stub interface](http://localhost:8090/docs).

25.4 Usage Guide

The Service Ledger Interface API is the expected entry-points for the SUNFISH platform components.

The Service Ledger API is a general-purpose invocation for blockchain underlying platform. The following parameters
are expected:

• Chaincode: the name of the chaincode to invoke.

• Function: the name of the function of the chaincode to invoke.

• Argument: the arguments to give in input to the function.

Therefore, this API has been implemented to realise the monitoring functionality of the chaincode and, most of all,
for the remaining number of chaincode part of the federation; namely anonymisation, key value store and the smart
contract used for the Use Case 1.

202 Chapter 25. Service Ledger (SL)

http://localhost:8089/docs
https://docs.mongodb.com/manual/administration/install-community/
http://localhost:8090/docs

CHAPTER 26

UC-1: Cross-cloud payslip calculation

We refer to online videos on

High-level video on the use case

Here how the SUNFISH solution at work to realise the service

203

https://www.youtube.com/watch?v=Sdo3hdmEteU
https://www.youtube.com/watch?v=Vw3oASCb3nA

SUNFISH Platform Documentation Documentation, Release 0.9

204 Chapter 26. UC-1: Cross-cloud payslip calculation

CHAPTER 27

UC-2: Private and Public Clouds for Tax Calculation

We refer to online videos on

High-level video on the use case

Here how the SUNFISH solution at work to realise the service

205

https://www.youtube.com/watch?v=TIuLtkR8yng&t=19s
https://www.youtube.com/watch?v=by7rLQwcfyE

SUNFISH Platform Documentation Documentation, Release 0.9

206 Chapter 27. UC-2: Private and Public Clouds for Tax Calculation

CHAPTER 28

UC-3: Federation-based Intelligent Shared Index

We refer to online videos on

High-level video on the use case

Here how the SUNFISH solution at work to realise the service

28.1 Deployment Instructions

Fig. 28.1: SMC Architecture of the Intelligent Shared Index.

207

https://www.youtube.com/watch?v=RLIkbUG2imc&t=61s
https://www.youtube.com/watch?v=Yvym5ZHafBs

SUNFISH Platform Documentation Documentation, Release 0.9

28.1.1 Index Service

SMC nodes together provide the shared intelligence index service. The following steps have to be completed on
each SMC node. At each SMC node, the Sharemind Application Server is accompanied by a proxy application that
implements a SOAP interface so the communication can be routed through the Unified eXchange Platform (UXP).

First, install and configure Sharemind Application Server as described in Instructions for Deploying SMC. The SOAP
proxy also requires a special version of Sharemind Web Application Proxy that uses SOAP for its transport layer.

Clone and run the SOAP proxy:

git clone https://github.com/sunfish-prj/Secure-Multiparty-Computation
cd Secure-Multiparty-Computation/usecase/index-service

Install NodeJS dependencies
npm install

Compile SecreC code
scc -o /var/lib/sharemind/scripts/add-document.sb secrec/add-document.sc
scc -o /var/lib/sharemind/scripts/add-owners.sb secrec/add-owners.sc
scc -o /var/lib/sharemind/scripts/search.sb secrec/search.sc

Configure Sharemind Application Server names and ROCU Service addresses in gateway.
→˓js

Run SOAP proxy
node gateway.js <node number> <IP> <port> <configuration file>

28.1.2 ROCU Service

Because of the query review and oblivious notification systems, ROCU-s also act as SOAP services in addition to
being SOAP clients. Node v6 or newer and npm are required to deploy ROCU Service. In addition, a a copy of
Sharemind MPC JavaScript Client library is required.

Clone and run the ROCU Service:

git clone https://github.com/sunfish-prj/Secure-Multiparty-Computation
cd Secure-Multiparty-Computation/usecase/rocu-service

Point Sharemind MPC JavaScript Client library (sharemind-web-client) to a local
→˓copy in package.json

Install NodeJS dependencies
npm install

Configure Index Service addresses in rocu-service.js

Run ROCU Service
node rocu-service.js <IP> <port>

208 Chapter 28. UC-3: Federation-based Intelligent Shared Index

../smc/deployment.html

	Cloud Computing and the Public Sector
	Adoption of Cloud Computing: report and challenges
	Benefits for the Public Sector

	The SUNFISH approach
	Federation-as-a-Service
	Service Ledger
	The SUNFISH Platform

	Platform components
	Identity Management (IDM)
	Data Security (DS)
	Federated Administration and Monitoring (FAM)
	Intelligent Workload Management (IWM)
	Data Masking (DM)
	Anonymization (ANM)
	Federated Runtime Monitoring (FRM)
	Federated Security Audit (FSA)
	Secure Multi-party Computation (SMC)
	Service Ledger (SL)

	Use Cases
	Cross-cloud payslip calculation
	Private-Public Cloud integration to underpin tax calculation
	Secure cross-cloud data sharing

	Anonymisation (ANM)
	Functionality
	Anonymisation Interface (ANI)

	Data Masking (DM)
	Functionality

	Data Security (DS)
	Federated Administration and Monitoring (FAM)
	Service Level Agreement Manager (SLAM)
	Configurator & Deployment Manager

	Federated Runtime Monitoring (FRM)
	Proxy
	Chaincode
	Policy Violation Engine

	Federated Security Audit (FSA)
	Functionality

	Intelligent Workload Manager (IWM)
	Azure Integration

	Secure Multiparty Computation (SMC)
	Intro to SMC
	Sharemind

	Service Ledger (SL)
	Architecture

	Platform API
	Anonymisation (ANM)
	Anonymisation Interface (ANI)
	Data Masking (DM)
	Policy Administration Point (PAP)
	Policy Decision Point (PDP)
	Policy Enforcement Point (PEP)
	Policy Information Point (PIP)
	Policy Retrieval Point (PRP)
	Federated Administration Monitoring (FAM)
	Federated Runtime Monitoring (FRM)
	Intelligent Workload Manager (IWM)
	Secure Multi-party Computation (SMC)
	Service Ledger (SL)
	Service Ledger Interface (SLI)

	Networking Infrastructure
	Network Component

	Federated Administration Monitoring (FAM)
	Dependencies
	Administration Manager set-up
	SLA Manager set-up

	Configurator
	Installation Steps
	Installation

	Data Security (DS)
	Setting-Up a Service Tenant
	Setting-Up an Infrastructure Tenant

	Intelligent Workload Manager (IWM)
	Deployment instruction
	Screenshots

	Anonymisation (ANM)
	Anonymisation Interface (ANI)

	Data Masking (DM)
	Federated Runtime Monitoring (FRM)
	Proxy
	Chaincode

	Federated Security Audit (FSA)
	Secure Multiparty Computation (SMC)
	Sharemind MPC Application Server
	Sharemind Web Application Gateway

	Service Ledger (SL)
	Dependency
	Service Ledger Interface
	Service Ledger
	Usage Guide

	UC-1: Cross-cloud payslip calculation
	UC-2: Private and Public Clouds for Tax Calculation
	UC-3: Federation-based Intelligent Shared Index
	Deployment Instructions

