
Sumo Notebooks Documentation
Release 0.1

Armin Wasicek

Sep 19, 2018

Contents:

1 Getting Started 3
1.1 Running the Sumo Notebooks Docker Container . 3
1.2 Setting the Access Keys . 4

2 Data Science Workflow 7
2.1 Data Exploration using Spark SQL . 7
2.2 Clustering Example . 8
2.3 Clustering Example using Jupyter . 10

3 Troubleshooting 13
3.1 Common Errors . 13
3.2 Debugging . 13

4 Limitations 15

5 Other Documentation 17

6 Indices and tables 19

i

ii

Sumo Notebooks Documentation, Release 0.1

Sumo Notebooks provide a way to seamlessly access data stored in Sumo for the purpose of data exploration and
statistical analysis. The notebooks provide an interactive way to gain and share insights of a dataset. Built on top of
Apache Zeppelin and Jupyter, Sumo Notebooks provide a state-of-the-art user experience coupled with access to the
most recent machine learning frameworks such as Apache Spark, tensorflow, etc to unlock the value of machine data.

Note: This is an experimental feature under development.

Contents: 1

Sumo Notebooks Documentation, Release 0.1

2 Contents:

CHAPTER 1

Getting Started

Sumo Notebooks are organized as a docker container that assembles all dependencies in a single container. This
simplifies installing and updating. A Sumo Notebooks container gets access to an organzation’s Sumo data store via
Sumo’s REST API. For that purpose, we require you to create an access key for Sumo as described in this guide. After
creating access credentials, please follow these steps to install and run the Sumo Notebooks container.

1.1 Running the Sumo Notebooks Docker Container

0. Open a shell or terminal on your computer

1. Load the SumoLab docker container on your computer: docker pull sumologic/notebooks:latest

Note: It is a prerequisite to have a working docker installed.

2. Start the container. API access id and access key have to be submitted via command line to work with the Jupyter
notebook but can be either submitted via the command line or entered via the Spark interpreter configuration
menu in Zeppelin.

docker run -d -it -p 8088:8080 -e SUMO_ACCESS_ID='XXX' -e
SUMO_ACCESS_KEY='XXX' -e SUMO_ENDPOINT='XXX' sumologic/notebooks:latest

3. Open the Zeppelin UI and find some sample notebooks under the ‘Notebook’ drop down menu or see the
‘Demo.ipynb’ on opening Jupyter on the browser.

Application Ports Link
Zeppelin 8088 http://localhost:8088
Spark Web UI 4040 http://localhost:4040
Tensorboard XXXX http://localhost:XXXX
Jupyter 4000 http://localhost:4000

This is it, happy coding!

3

https://help.sumologic.com/Manage/Security/Access-Keys
https://docs.docker.com/v17.09/engine/installation/
http://localhost:8088
http://localhost:4040
http://localhost:XXXX
http://localhost:4000

Sumo Notebooks Documentation, Release 0.1

1.1.1 Docker Container Environment Variables

There is a set of environment variables for Sumo Notebooks that can be set when starting the docker container. The
docker push command provides the -e switch to define these variables.

Variable Description
SUMO_ACCESS_ID Access Id token from Sumo, usually a base64url encoded string.
SUMO_ACCESS_KEY Access key token from Sumo, usually a base64url encoded string.
SUMO_ENDPOINT A https URL denoting the Sumo deployment to connect to. (Needed by Zeppelin)
ZEP-
PELIN_SPARK_WEBUI

This variable controls where the “Spark Job” link in a paragraph points. (Needed by
Zeppelin)

1.2 Setting the Access Keys

Sharing access id/key with the Sumo Notebooks container can be done using two methods:

• Submitting SUMO_ACCESS_ID and SUMO_ACCESS_KEY environment variables to the container as shown in
the previous section

• Setting or changing the access id/key pair within the Zeppelin web UI as shown below. This is not available in
Jupyter.

1.2.1 Step 1

Click on the username in the right top corner of the Zeppelin web UI. Scroll down or enter spark in the search bar to
get to the Spark configuration page.

Fig. 1: Open the Spark interpreter configuration page

4 Chapter 1. Getting Started

Sumo Notebooks Documentation, Release 0.1

1.2.2 Step 2

On the Spark configuration page click the edit button and then enter access id, access key, and http endpoint in the
according text fields. An overview of the Sumo endpoints for the different deployments is listed on this page. Finally,
save the configuration and the interprester will restart with the new configuration.

Fig. 2: Enter the access id/key pair and save

1.2. Setting the Access Keys 5

https://help.sumologic.com/APIs/General-API-Information/Sumo-Logic-Endpoints-and-Firewall-Security

Sumo Notebooks Documentation, Release 0.1

6 Chapter 1. Getting Started

CHAPTER 2

Data Science Workflow

The foundational data structure for Sumo notebooks is a data frame. A typical data science workflow manipulates data
frames in many ways. For instance, data frames might be transformed for feature generation and statistical analysis,
or joined with another dataset for enrichment. Therefore, a Sumo notebook returns query results in a Spark dataframe.
This enables users to tap into Spark’s development universe, or – using the toPandas method – switch over to a
python-native approach for data analytics.

2.1 Data Exploration using Spark SQL

This workflow focuses on loading log data from Sumo and then performing data exploration using Spark SQL.

First thing is to instruct Zeppelin to use the Sumo interpreter by entering %spark.sumo in the first line of the paragraph.
This annotation indicates that the paragraph is routed to the Sumo interpreter running in the backend. This interpreter
checks the query, connects to Sumo using access id and access key and retrieves the data. The data is represented as a

7

Sumo Notebooks Documentation, Release 0.1

Spark DataFrame and can be used as such through the name displayed in the DataFrame field. In this example this is
myquery768.

Note: In fact it uses a customized version of the sumo-java-client, therefore it has the same restrictions.

A DataFrame bound to this name exists in the scope of the Spark Scala shell, this is can be manipulated via the Spark
Scala API. When sharing the reference through the Zeppelin context, it can also be used in PySpark (see next tutorial).
The DataFrame as also registered as a temporary table in Spark SQL.

Starting the paragraph with %spark.sql designates the Spark SQL interpreter and SQL queries can be entered to explore
the data. This example produces counts from raw data. Counting is a common pre-processing task for subsequent
statistical learning task.

Another common operation on logs is string matching. Spark SQL’s SELECT provides a set of operations to filter and
aggregate data.

2.2 Clustering Example

This example is about leveraging the python interpreter to perform a basic clustering operation on metrics data. As
usual, %spark.sumo leads in a Sumo query. This time a metrics query is submitted. Metrics queries can be specified
by selecting _Metrics_ via the drop down menu.

8 Chapter 2. Data Science Workflow

https://spark.apache.org/docs/2.1.0/sql-programming-guide.html
https://github.com/SumoLogic/sumo-java-client
https://docs.databricks.com/spark/latest/spark-sql/language-manual/select.html

Sumo Notebooks Documentation, Release 0.1

Similarly to the log queries, the result is a DataFrame. As this DataFrame lives in the Spark Scala world we need to
share it via the Zeppelin context with the python interpreter

After retrieving the DataFrame in the python interpreter and loading it as a pandas data frame, the powerful world
python machine learning frameworks opens up! First, some visual exploration using matplotlib reveals is done.

Next, each time series is featurized to simple (mean, std) pairs and plotted as a scatter plot. Visual inspection reveals
that there might be some clusters!

2.2. Clustering Example 9

https://zeppelin.apache.org/docs/0.8.0/usage/other_features/zeppelin_context.html

Sumo Notebooks Documentation, Release 0.1

Using this intuition, a first try is to run the dbscan algorithm from the sklearn package.

And there we are, yes there are a couple of clusters in the that particular metric.

2.3 Clustering Example using Jupyter

We can see the same clustering example shown above as executed on the Jupyter notebook.

10 Chapter 2. Data Science Workflow

Sumo Notebooks Documentation, Release 0.1

We initialize a SumoLab object to get a simple interface to enter the query and time range parameters. Once added we
can Run the query.

Once we have the data-frame we can follow the same procedure explained above to perform clustering of the data.

2.3. Clustering Example using Jupyter 11

Sumo Notebooks Documentation, Release 0.1

12 Chapter 2. Data Science Workflow

CHAPTER 3

Troubleshooting

3.1 Common Errors

No data or exception:

• Make sure to have the right access credentials in place

TTransportException or timeout

• Restart the interpreter: Use black, top right gear for pulling up interpreter menu, then push restart icon on the
left of the blue bar listing the interpreter group for spark, finally save on the bottom.

3.2 Debugging

The SparkSumoMemoryCache object is a key value store that holds the context of the most recent operations. It can
be used to inquire on exceptions and results that are retrieve behind the scenes.

Key Type Description
lastDataFrame DataFrame Holds a reference to the last data frame that has been created
lastLogQueryExcep-
tion

Exception References the last exception (if any) that the log backend threw

lastMetricsQueryEx-
ception

Exception References the last exception (if any) that the log backend threw

lastMetricsDimensions HashMap[String,
String]

Dictionary to resolve the metrics column header to the actual
dimensions

lastQueryJob JobId References the last job id returned from the search api
lastTriplet QueryTriplet Last processed query
metricsClient SumoMetricsClient Client used to retrieve metrics from Sumo
sumoClient SumoClient Client used to retrieve logs from Sumo
sparkSession SparkSession Spark session that is used to ingest the data

13

Sumo Notebooks Documentation, Release 0.1

3.2.1 Code example

val spark = SparkSumoMemoryCache.get("sparkSession").get.asInstanceOf[SparkSession]

14 Chapter 3. Troubleshooting

CHAPTER 4

Limitations

Current limits of the REST API are documented here.

Zeppelin is started with these parameters:

• ZEPPELIN_INTP_MEM=”-Xmx10g”

• SPARK_SUBMIT_OPTIONS=”–driver-memory 2g”

15

https://help.sumologic.com/APIs/Search-Job-API/About-the-Search-Job-API#Rate_limiting

Sumo Notebooks Documentation, Release 0.1

16 Chapter 4. Limitations

CHAPTER 5

Other Documentation

• Apache Zeppelin Documentation

• HortonWorks: How to diagnose zeppelin

• MapR: Troubleshooting Zeppelin

• Qubole: Debugging Notebook Issues

17

https://zeppelin.apache.org/docs/0.8.0/
https://community.hortonworks.com/articles/70658/how-to-diagnose-zeppelin.html
https://maprdocs.mapr.com/home/Zeppelin/TroubleshootingZeppelin.html
https://docs.qubole.com/en/latest/user-guide/notebook/debug-notebooks.html

Sumo Notebooks Documentation, Release 0.1

18 Chapter 5. Other Documentation

CHAPTER 6

Indices and tables

• genindex

• modindex

• search

19

	Getting Started
	Running the Sumo Notebooks Docker Container
	Setting the Access Keys

	Data Science Workflow
	Data Exploration using Spark SQL
	Clustering Example
	Clustering Example using Jupyter

	Troubleshooting
	Common Errors
	Debugging

	Limitations
	Other Documentation
	Indices and tables

