
subwabbit Documentation
Release 2.0.0

Matej Jakimov

Jun 14, 2019

Contents

1 Documentation 3

2 Requirements 5

3 Installation 7

4 Example use 9
4.1 More advanced use . 9

5 Benchmarks 11
5.1 Benchmark results . 11

6 License 13

7 Contents 15
7.1 Throughput vs. latency . 15
7.2 Monitoring and debugging . 16
7.3 Explaining predictions . 17
7.4 API . 19

8 Indices and tables 27

Index 29

i

ii

subwabbit Documentation, Release 2.0.0

For Kaggle playing use official vowpalwabbit package, for production use subwabbit.

subwabbit is Python wrapper around great Vowpal Wabbit tool that aims to be as fast as Vowpal itself. It is ideal for
real time use, when many lines need to be scored in just few milliseconds or when high throughput is required.

Advantages:

• more then 4x faster then official Python wrapper

• good latency guarantees - give 10ms for prediction and it will end in 10ms

• explainability - API for explaining prediction value

• use just vw CLI - no compiling

• proven by reliably running in production at Seznam.cz where it makes hundreds of thousands of predictions per
second per machine

Contents 1

https://github.com/VowpalWabbit/vowpal_wabbit/

subwabbit Documentation, Release 2.0.0

2 Contents

CHAPTER 1

Documentation

Full documentation can be found on Read the docs.

3

https://subwabbit.readthedocs.io

subwabbit Documentation, Release 2.0.0

4 Chapter 1. Documentation

CHAPTER 2

Requirements

• Python 3.4+

• Vowpal Wabbit

You can install Vowpal Wabbit by running:

sudo apt-get install vowpal-wabbit

on Debian-based systems or by using Homebrew:

brew install vowpal-wabbit

You can also build Vowpal Wabbit from source, see instructions.

subwabbit will probably work on other Pythons than 3.4+ but it is not tested (contribution welcomed).

5

https://github.com/VowpalWabbit/vowpal_wabbit/wiki/Dependencies

subwabbit Documentation, Release 2.0.0

6 Chapter 2. Requirements

CHAPTER 3

Installation

pip install subwabbit

7

subwabbit Documentation, Release 2.0.0

8 Chapter 3. Installation

CHAPTER 4

Example use

from subwabbit import VowpalWabbitProcess, VowpalWabbitDummyFormatter

vw = VowpalWabbitProcess(VowpalWabbitDummyFormatter(), ['-q', 'ab'])

common_features = '|a common_feature1:1.5 common_feature2:-0.3'
items_features = [

'|b item123',
'|b item456',
'|b item789'

]

for prediction in vw.predict(common_features, items_features, timeout=0.001):
print(prediction)

0.4
0.5
0.6

This is the simplest use of subwabbit library. You have some common features that describe context - it can be location
of user or daytime for example. Then there is collection of items to score, each item has its specific features. Use of
timeout argument means “compute as many predictions as you can in 1ms”, then stop.

4.1 More advanced use

With simple implementation above you will not use key feature of subwabbit: you can format your vw lines while
Vowpal is busy with computing predictions. By using this trick, you can get great speedup and VW lines formatting
abstraction as a bonus.

Suppose we have features as dicts:

common_features = {
'common_feature1': 1.5,
'common_feature2': -0.3

(continues on next page)

9

subwabbit Documentation, Release 2.0.0

(continued from previous page)

}

items_features = [
{'id': 'item123'},
{'id': 'item456'},
{'id': 'item789'}

]

Then implementation with use of formatter can look like this:

from subwabbit import VowpalWabbitBaseFormatter, VowpalWabbitProcess

class MyVowpalWabbitFormatter(VowpalWabbitBaseFormatter):

def format_common_features(self, common_features, debug_info=None):
return '|a ccommon_feature1:{:.2f} common_feature2:{:.2f}'.format(

common_features['common_feature1'],
common_features['common_feature2']

)

def format_item_features(self, common_features, item_features, debug_info=None):
return '|b {}'.format(item_features['id'])

vw = VowpalWabbitProcess(MyVowpalWabbitFormatter(), ['-q', 'ab'])

for prediction in vw.predict(common_features, items_features, timeout=0.001):
print(prediction)

0.4
0.5
0.6

10 Chapter 4. Example use

CHAPTER 5

Benchmarks

Benchmarks were made on logistic regression model with L2 regularization and with many quadratic combinations to
mimic real-world use case. Real dataset containing 1000 contexts and 3000 items was used. Model was pretrained on
this dataset with random labels generated. You can see used features at:

• tests/benchmarks/requests.json

• tests/benchmarks/items.json

Prepare environment
pip install pandas vowpalwabbit
cd tests/benchmarks
benchmarks depends a lot whether Vowpal is trained or just initialized
python pretrain_model.py

Benchmark official Python client
python benchmark_pyvw.py

Benchmark blocking implementation
python benchmark_blocking_implementation.py

Benchmark nonblocking implementation
python benchmark_blocking_implementation.py

5.1 Benchmark results

Results on Dell Latitude E7470 with Intel(R) Core(TM) i5-6300U CPU @ 2.40GHz.

Table shows how many lines implementation can predict in 10ms:

11

subwabbit Documentation, Release 2.0.0

pyvw subwabbit
mean 239.461000 1033.70000
min 83.000000 100.00000
25% 192.750000 650.00000
50% 240.000000 1000.00000
75% 288.000000 1350.00000
90% 316.000000 1600.00000
99% 349.000000 1900.00000
max 362.000000 2050.00000

subwabbit is in average more then 4x faster than official Python wrapper.

12 Chapter 5. Benchmarks

CHAPTER 6

License

Copyright (c) 2016 - 2018, Seznam.cz, a.s. All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted provided that the
following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following
disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the follow-
ing disclaimer in the documentation and/or other materials provided with the distribution.

3. Neither the name of the copyright holder nor the names of its contributors may be used to endorse or promote
products derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS “AS IS” AND ANY
EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT
SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, IN-
CIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSI-
NESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CON-
TRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY
WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAM-
AGE.

13

subwabbit Documentation, Release 2.0.0

14 Chapter 6. License

CHAPTER 7

Contents

7.1 Throughput vs. latency

There are two implementations of subwabbit.base.VowpalWabbitBaseModel. Both implementations run
vw subprocess and communicates with subprocess through pipes, but implementations differ in whether pipe is block-
ing or nonblocking.

7.1.1 Blocking

subwabbit.blocking.VowpalWabbitProcess

Blocking implementation use buffered binary IO. When predict() method is called, there is loop that:

• creates batch of VW lines

• sends this batch to Vowpal and flush Python-side buffer into system pipe buffer

• waits for predictions from last but one batch (writing is one batch ahead, so Vowpal should always be busy with
processing lines)

There is also train() method that looks very similar, but usually you run training on instance with write_only=True
so there is no need to wait for predictions.

7.1.2 Nonblocking

• subwabbit.nonblocking.VowpalWabbitNonBlockingProcess

Warning: Nonblocking implementation is only available for Linux based systems.

15

subwabbit Documentation, Release 2.0.0

Warning: Training is not implemented for nonblocking variant.

Blocking implementation has great throughput, depends on features you have and arguments of vw process, it can be
even optimal, so Vowpal itself is a bottleneck. However, due to blocking system calls, it can miss timeout. That is
unacceptable if there is SLO with low-latency requirements.

Nonblocking implementation works similar to blocking, but it does not block for system calls when there are no
predictions to read or system level buffer for VW lines is full, which helps to keep latencies very stable.

There is comparison of running time of predict() method with timeout set to 10ms:

pyvw blocking nonblocking
mean 0.010039 0.010929 0.009473
min 0.010012 0.010054 0.009049
25% 0.010025 0.010130 0.009142
50% 0.010036 0.010312 0.009355
75% 0.010048 0.010630 0.009804
90% 0.010063 0.010950 0.010024
99% 0.010091 0.013289 0.010140
max 0.010138 0.468903 0.010999

Nonblocking implementation reduced latency peaks significantly, from almost 460ms to just 1ms.

Nonblocking implementation makes more system calls with smaller batches then blocking implementation and it
comes with price of slightly lower throughput.

Predicted lines per request:

pyvw blocking nonblocking
mean 239.461000 1033.70000 911.890000
min 83.000000 100.00000 0.000000
25% 192.750000 650.00000 552.000000
50% 240.000000 1000.00000 841.500000
75% 288.000000 1350.00000 1271.750000
90% 316.000000 1600.00000 1574.000000
99% 349.000000 1900.00000 1900.130000
max 362.000000 2050.00000 2022.000000

Note: Nonblocking implementation may have even zero predictions per call. It can happen due to previous call not
having enough time to clean buffers before timeout, thus next call has to clean buffers and that can take all of it’s time.
See predict() metrics argument for details how to monitor this behavior.

7.2 Monitoring and debugging

This section gives overview of subwabbit monitoring and debugging capabilities.

7.2.1 Monitoring

It is good practice to monitor your system’s behavior and fire an alert when system behavior changes.

16 Chapter 7. Contents

subwabbit Documentation, Release 2.0.0

Both blocking and nonblocking implementations of predict() can collect some metrics that can be helpful. There
are two kinds of metrics:

• metrics - one numeric measurment per one call of predict() method. They are relatively cheap to collect and
should be monitored in production.

• detailed_metrics - more measurements per one call of predict(). Each metric value is a list containing
tuple (time, numeric value). Their collection brings some overhead (e.g. reallocation of memory
for growing lists of measurements). They are useful for profiling and can answer questions like “What is the
bottleneck, formatting Vowpal lines or Vowpal itself?” or “Can change in some parameter bring some additional
performance?”.

See API documentation for more details about collected metrics for specific implementation.

See example of visualizing detailed_metrics:

pip install jupyter pandas matplotlib
jupyter notebook examples/Detailed-metrics.ipynb

7.2.2 Debugging

Sometimes it is useful to save some internal state like final formatted VW line. For these cases you can use
debug_info parameter, which can be passed both to predict() and train() methods and which is passed
to all following subwabbit.base.VowpalWabbitBaseFormatter calls and to private method calls. You
can pass dict for example and fill it by some useful information.

7.3 Explaining predictions

It is practical to understand your model. There are various ways how to gain some insights about your
model behavior, see for example excellent Dan Becker’s tutorial on Kaggle: https://www.kaggle.com/learn/
machine-learning-explainability .

Vowpal Wabbit offers various options how to inspect learned weights, subwabbit helps with use of audit mode. It
allows to easily compute which features contributes the most for particular line’s prediction.

7.3.1 How to explain prediction

At first, you need to turn on audit_mode by passing audit_mode=True argument to subwabbit.base.
VowpalWabbitBaseModel constructor.

Warning: When audit mode is turned on, it is not possible to call predict() and train() methods.

Then use explain_vw_line() to retrieve explanation string. It will look
like this: c^c8*f^f10237121819548268936:23365229:1:0.0220863@0
a^a3426538138935958091*e^e115:1296634:0.2:0.0987504@0

Features used for prediction are separated by tab and for each feature, there is string in format:
namespace^feature:hashindex:value:weight[@ssgrad]

Then we can use get_human_readable_explanation() function to transform explanation string into more
interpretable structure:

7.3. Explaining predictions 17

https://www.kaggle.com/learn/machine-learning-explainability
https://www.kaggle.com/learn/machine-learning-explainability

subwabbit Documentation, Release 2.0.0

subwabbit.base.VowpalWabbitBaseFormatter.get_human_readable_explanation(self,
ex-
pla-
na-
tion_string:
str,
fea-
ture_translator:
Any
=
None)
→
List[Dict[KT,
VT]]

Transform explanation string into more readable form. Every feature used for prediction is translated into this
structure:

{
For each feature used in higher interaction there is a 2-tuple
'names': [('Human readable namespace name 1', 'Human readable feature name 1

→˓'), ...],
'original_feature_name': 'c^c8*f^f102' # feature name how vowpal sees it,
'hashindex': 123, # Vowpal's internal hash of feature name
'value': 0.123, # value for feature in input line
'weight': -0.534, # weight learned by VW for this feature
'potential': value * weight,
'relative_potential': abs(potential) / sum_of_abs_potentials_for_all_features

}

Parameters

• explanation_string – Explanation string from explain_vw_line()

• feature_translator – Any object that can help you with translation of fea-
ture names into human readable form, for example some database connection. See
parse_element()

Returns List of dicts, sorted by contribution to final score

You may also want to overwrite parse_element() method on your formatter to translate Vowpal feature names
into human readable form, for example translate IDs to their names, potentialy using some mapping in database.

7.3.2 Example

Feature importances can also be visualized in Jupyter notebook, see complete example of how to use subwabbit for
explaining predictions:

pip install jupyter
jupyter notebook examples/Explaining-prediction.ipynb

7.3.3 Notes

Note: This explanation is valid if you use sparse features, since expected value of every feature is close to zero. When
you use dense features, you should normalize your features. If you do not normalize to zero mean, explaining features

18 Chapter 7. Contents

subwabbit Documentation, Release 2.0.0

by their absolute contribution is not informative because you also need to consider how feature value differs from
some expected value of that feature. In this case, you should use SHAP values for better interpretability, see https:
//www.kaggle.com/learn/machine-learning-explainability for more details. You still may find subwabbit explaining
functionality useful, but interpreting results results won’t be straightforward.

Note: In case you have correlated features, it is better to sum their potentials and consider them as single feature,
otherwise you may underestimate influence of these features.

7.4 API

7.4.1 Base classes

class subwabbit.base.VowpalWabbitBaseFormatter
Formatter translates structured information about context and items to Vowpal Wabbit’s input format: https:
//github.com/VowpalWabbit/vowpal_wabbit/wiki/Input-format

It also can implement reverse translation, from Vowpal Wabbits feature names into human readable feature
names.

format_common_features(common_features: Any, debug_info: Any = None)→ str
Return part of VW line with features that are common for one call of predict/train. This method will
run just once per one call of subwabbit.base.VowpalWabbitBaseModel’s predict() or train()
method.

Parameters

• common_features – Features common for all items

• debug_info – Optional dict that can be filled by information useful for debugging

Returns Part of line that is common for each item in one call. Returned string has to start with
‘|’ symbol.

format_item_features(common_features: Any, item_features: Any, debug_info: Any = None)→
str

Return part of VW line with features specific to each item. This method will run for each item per one call
of subwabbit.base.VowpalWabbitBaseModel’s predict() or train() method.

Note: It is a good idea to cache results of this method.

Parameters

• common_features – Features common for all items

• item_features – Features for item

• debug_info – Optional dict that can be filled by information useful for debugging

Returns

Part of line that is specific for item. Depends on whether namespaces are used or not in
format_common_features method:

• namespaces are used: returned string has to start with '|NAMESPACE_NAME' where
NAMESPACE_NAME is the name of some namespace

7.4. API 19

https://www.kaggle.com/learn/machine-learning-explainability
https://www.kaggle.com/learn/machine-learning-explainability
https://github.com/VowpalWabbit/vowpal_wabbit/wiki/Input-format
https://github.com/VowpalWabbit/vowpal_wabbit/wiki/Input-format

subwabbit Documentation, Release 2.0.0

• namespaces are not used: returned string should not contain ‘|’ symbol

get_formatted_example(common_line_part: str, item_line_part: str, label: Optional[float] =
None, weight: Optional[float] = None, debug_info: Optional[Dict[Any,
Any]] = None)

Compose valid VW line from its common and item-dependent parts.

Parameters

• common_line_part – Part of line that is common for each item in one call.

• item_line_part – Part of line specific for each item

• label – Label of this row

• weight – Optional weight of row

• debug_info – Optional dict that can be filled by information useful for debugging

Returns One VW line in input format: https://github.com/VowpalWabbit/vowpal_wabbit/wiki/
Input-format

get_human_readable_explanation(explanation_string: str, feature_translator: Any = None)
→ List[Dict[KT, VT]]

Transform explanation string into more readable form. Every feature used for prediction is translated into
this structure:

{
For each feature used in higher interaction there is a 2-tuple
'names': [('Human readable namespace name 1', 'Human readable feature

→˓name 1'), ...],
'original_feature_name': 'c^c8*f^f102' # feature name how vowpal sees it,
'hashindex': 123, # Vowpal's internal hash of feature name
'value': 0.123, # value for feature in input line
'weight': -0.534, # weight learned by VW for this feature
'potential': value * weight,
'relative_potential': abs(potential) / sum_of_abs_potentials_for_all_

→˓features
}

Parameters

• explanation_string – Explanation string from explain_vw_line()

• feature_translator – Any object that can help you with translation of fea-
ture names into human readable form, for example some database connection. See
parse_element()

Returns List of dicts, sorted by contribution to final score

get_human_readable_explanation_html(explanation_string: str, feature_translator: Any =
None, max_rows: Optional[int] = None)

Visualize importance of features in Jupyter notebook.

Parameters

• explanation_string – Explanation string from explain_vw_line()

• feature_translator – Any object that can help you with translation, e.g. some
database connection.

• max_rows – Maximum number of most important features. None return all used features.

20 Chapter 7. Contents

https://github.com/VowpalWabbit/vowpal_wabbit/wiki/Input-format
https://github.com/VowpalWabbit/vowpal_wabbit/wiki/Input-format

subwabbit Documentation, Release 2.0.0

Returns IPython.core.display.HTML

parse_element(element: str, feature_translator: Any = None)→ Tuple[str, str]
This method is supposed to translate namespace name and feature name to human readable form.

For example, element can be “a_item_id^i123” and result can be (‘Item ID’, ‘News of the day: ID of item
is 123’)

Parameters

• element – namespace name and feature name, e.g. a_item_id^i123

• feature_translator – Any object that can help you with translation, e.g. some
database connection

Returns tuple(human understandable namespace name, human understandable feature name)

class subwabbit.base.VowpalWabbitDummyFormatter
Formatter that assumes that either common features and item features are already formatted VW input format
strings.

class subwabbit.base.VowpalWabbitBaseModel(formatter: subwab-
bit.base.VowpalWabbitBaseFormatter)

Declaration of Vowpal Wabbit model interface.

explain_vw_line(vw_line: str, link_function: bool = False)
Uses VW audit mode to inspect weights used for prediction. Audit mode has to be turned on by passing
audit_mode=True to constructor.

Parameters

• vw_line – String in VW line format

• link_function – If your model use link function, pass True

Returns (raw prediction without use of link function, explanation string)

predict(common_features: Any, items_features: Iterable[Any], timeout: Optional[float] = None, de-
bug_info: Any = None, metrics: Optional[Dict[KT, VT]] = None, detailed_metrics: Op-
tional[Dict[KT, VT]] = None)→ Iterable[float]

Transforms iterable with item features to iterator of predictions.

Parameters

• common_features – Features common for all items

• items_features – Iterable with features for each item

• timeout – Optionally specify how much time in seconds is desired for computing pre-
dictions. In case timeout is passed, returned iterator can has less items that items features
iterable.

• debug_info – Some object that can be filled by information useful for debugging.

• metrics – Optional dict that is populated with some metrics that are good to monitor.

• detailed_metrics – Optional dict with more detailed (and more time consuming)
metrics that are good for debugging and profiling.

Returns Iterable with predictions for each item from items_features

train(common_features: Any, items_features: Iterable[Any], labels: Iterable[float], weights: Iter-
able[Optional[float]], debug_info: Any = None)→ None

Transform features, label and weight into VW line format and send it to Vowpal.

Parameters

7.4. API 21

subwabbit Documentation, Release 2.0.0

• common_features – Features common for all items

• items_features – Iterable with features for each item

• labels – Iterable with same length as items features with label for each item

• weights – Iterable with same length as items features with optional weight for each item

• debug_info – Some object that can be filled by information useful for debugging

7.4.2 Blocking implementation

class subwabbit.blocking.VowpalWabbitProcess(formatter: subwab-
bit.base.VowpalWabbitBaseFormatter,
vw_args: List[T], batch_size: int = 20,
write_only: bool = False, audit_mode:
bool = False)

Class representing Vowpal Wabbit model. It runs vw command through subprocess library and communicates
through pipes.

__init__(formatter: subwabbit.base.VowpalWabbitBaseFormatter, vw_args: List[T], batch_size: int
= 20, write_only: bool = False, audit_mode: bool = False)

Parameters

• formatter – Instance of subwabbit.base.VowpalWabbitBaseFormatter

• vw_args – List of command line arguments for vw command, eg. [‘-q’, ‘::’] This list
MUST NOT specify -p argument for vw command

• batch_size – Number of lines communicated to Vowpal in one system call, has influ-
ence on performance. Smaller batches slightly reduces latencies and throughput.

• write_only – whether we expect to get predictions or we will just train This can greatly
improve training performance but disables predicting.

• audit_mode – When set to True, VW is launched in audit mode with -
a argument (overwrites -t argument). This allows to run explain_vw_line and
get_human_readable_explanation methods.

Warning: WARNING: When audit_mode is turned on, it is not possible to call other methods then
explain_vw_line.

close()
Gracefully stop Vowpal Wabbit process

explain_vw_line(vw_line: str, link_function=False)
Uses VW audit mode to inspect weights used for prediction. Audit mode has to be turned on by passing
audit_mode=True to constructor.

Parameters

• vw_line – String in VW line format

• link_function – If your model use link function, pass True

Returns (raw prediction without use of link function, explanation string)

22 Chapter 7. Contents

subwabbit Documentation, Release 2.0.0

predict(common_features: Any, items_features: Iterable[Any], timeout: Optional[float] = None, de-
bug_info: Any = None, metrics: Optional[Dict[KT, VT]] = None, detailed_metrics: Op-
tional[Dict[KT, VT]] = None)→ Iterable[float]

Transforms iterable with item features to iterator of predictions.

Parameters

• common_features – Features common for all items

• items_features – Iterable with features for each item

• timeout – Optionally specify how much time in seconds is desired for computing pre-
dictions. In case timeout is passed, returned iterator can has less items that items features
iterable.

• debug_info – Some object that can be filled by information useful for debugging.

• metrics – Optional dict populated with metrics that are good to monitor:

– prepare_time - Time from call start to start of prediction loop, including
format_common_features call

– total_time - Total time spend in predict call

– num_lines - Count of predictions performed

• detailed_metrics –

Optional dict with more detailed (and more time consuming) metrics that are good
for debugging and profiling:

– generating_lines_time - time spent by generating VW line

– sending_lines_time - time spent by sending VW lines to OS pipe buffer

– receiving_lines_time - time spent by reading predictions from OS pipe buffer

For each key, there will be list of tuples (time, metric value).

Returns Iterable with predictions for each item from items_features

train(common_features: Any, items_features: Iterable[Any], labels: Iterable[float], weights: Iter-
able[Optional[float]], debug_info: Any = None)→ None

Transform features, label and weight into VW line format and send it to Vowpal.

Parameters

• common_features – Features common for all items

• items_features – Iterable with features for each item

• labels – Iterable with same length as items features with label for each item

• weights – Iterable with same length as items features with optional weight for each item

• debug_info – Some object that can be filled by information useful for debugging

7.4. API 23

subwabbit Documentation, Release 2.0.0

7.4.3 Nonblocking implementation

class subwabbit.nonblocking.VowpalWabbitNonBlockingProcess(formatter: subwab-
bit.base.VowpalWabbitBaseFormatter,
vw_args: List[T],
batch_size: int =
20, audit_mode:
bool = False,
max_pending_lines:
int = 20,
write_timeout_ms:
float = 0.001,
pipe_buffer_size_bytes:
Optional[int] =
None)

Class representing Vowpal Wabbit model. It runs vw bash command through subprocess library and communi-
cates through non-blocking pipes.

Warning: Available on Linux only.

__init__(formatter: subwabbit.base.VowpalWabbitBaseFormatter, vw_args: List[T], batch_size: int
= 20, audit_mode: bool = False, max_pending_lines: int = 20, write_timeout_ms: float =
0.001, pipe_buffer_size_bytes: Optional[int] = None)

Parameters

• formatter – Instance of subwabbit.base.VowpalWabbitBaseFormatter

• vw_args – List of command line arguments for vw command, eg. [‘-q’, ‘::’] This list
MUST NOT specify -p argument for vw command

• batch_size – Maximum number of lines communicated to Vowpal in one system call.
Smaller batches means less system calls overhead, but also higher risk of keeping mess for
other calls.

• audit_mode – When turned on, VW is launched in audit mode with -
a argument (overwrites -t argument). This allows to run explain_vw_line and
get_human_readable_explanation methods.

• max_pending_lines – How many lines can wait for prediction in buffers. Recom-
mended to set it to same value as batch_size, but it can be higher.

• write_timeout_ms – When predict is called with timeout, then write_timeout_ms
before timeout sending lines to vowpal stops. It provides time to finish work without
keeping mess that next call have to clean.

• pipe_buffer_size_bytes – Optionally set size of system buffer for sending
lines to Vowpal. None means use default buffer size, for more details see http:
//man7.org/linux/man-pages/man7/pipe.7.html and detailed_metrics argument of
predict() method

Warning: WARNING: When audit_mode is turned on, it is not possible to call other methods then
explain_vw_line.

cleanup(deadline: Optional[float] = None, debug_info: Any = None)
Cleans buffers after previous calls

24 Chapter 7. Contents

http://man7.org/linux/man-pages/man7/pipe.7.html
http://man7.org/linux/man-pages/man7/pipe.7.html

subwabbit Documentation, Release 2.0.0

Parameters deadline – Optional unix timestamp to end

explain_vw_line(vw_line: str, link_function=False)
Uses VW audit mode to inspect weights used for prediction. Audit mode has to be turned on by passing
audit_mode=True to constructor.

Parameters

• vw_line – String in VW line format

• link_function – If your model use link function, pass True

Returns (raw prediction without use of link function, explanation string)

predict(common_features: Any, items_features: Iterable[Any], timeout: Optional[float] = None, de-
bug_info: Any = None, metrics: Optional[Dict[KT, VT]] = None, detailed_metrics: Op-
tional[Dict[KT, VT]] = None)→ Iterable[float]

Transforms iterable with item features to iterator of predictions.

Parameters

• common_features – Features common for all items

• items_features – Iterable with features for each item

• timeout – Optionally specify how much time in seconds is desired for computing pre-
dictions. In case timeout is passed, returned iterator can has less items that items features
iterable.

• debug_info – Some object that can be filled by information useful for debugging.

• metrics – Optional dict populated with metrics that are good to monitor:

– cleanup_time - Time spent on cleaning buffers after last calls

– before_cleanup_pending_lines - Count of lines pending in buffers before
cleaning

– after_cleanup_pending_lines - Count of lines pending in buffers after clean-
ing

– prepare_time - Time from call start to start of prediction loop, including
format_common_features call

– total_time - Total time spend in predict call

– num_lines - Count of predictions performed

• detailed_metrics –

Optional dict with more detailed (and more time consuming) metrics that are good
for debugging and profiling:

– sending_bytes - number of bytes (VW lines) sent to OS pipe buffer

– receiving_bytes - number of bytes (predictions) received from OS pipe buffer

– pending_lines - number of pending lines sent to VW at the time

– generating_lines_time - time spent by generating VW lines batch

– sending_lines_time - time spent by sending lines to OS pipe buffer

– receiving_lines_time - time spent by receiving predictions from OS pipe buffer

For each key, there will be list of tuples (time, metric value).

7.4. API 25

subwabbit Documentation, Release 2.0.0

Returns Iterable with predictions for each item from items_features

train(common_features: Any, items_features: Iterable[Any], labels: Iterable[float], weights: Iter-
able[Optional[float]], debug_info: Any = None)→ None

Transform features, label and weight into VW line format and send it to Vowpal.

Parameters

• common_features – Features common for all items

• items_features – Iterable with features for each item

• labels – Iterable with same length as items features with label for each item

• weights – Iterable with same length as items features with optional weight for each item

• debug_info – Some object that can be filled by information useful for debugging

26 Chapter 7. Contents

CHAPTER 8

Indices and tables

• genindex

• modindex

• search

27

subwabbit Documentation, Release 2.0.0

28 Chapter 8. Indices and tables

Index

Symbols
__init__() (subwab-

bit.blocking.VowpalWabbitProcess method),
22

__init__() (subwab-
bit.nonblocking.VowpalWabbitNonBlockingProcess
method), 24

C
cleanup() (subwab-

bit.nonblocking.VowpalWabbitNonBlockingProcess
method), 24

close() (subwabbit.blocking.VowpalWabbitProcess
method), 22

E
explain_vw_line() (subwab-

bit.base.VowpalWabbitBaseModel method),
21

explain_vw_line() (subwab-
bit.blocking.VowpalWabbitProcess method),
22

explain_vw_line() (subwab-
bit.nonblocking.VowpalWabbitNonBlockingProcess
method), 25

F
format_common_features() (subwab-

bit.base.VowpalWabbitBaseFormatter method),
19

format_item_features() (subwab-
bit.base.VowpalWabbitBaseFormatter method),
19

G
get_formatted_example() (subwab-

bit.base.VowpalWabbitBaseFormatter method),
20

get_human_readable_explanation() (sub-
wabbit.base.VowpalWabbitBaseFormatter
method), 20

get_human_readable_explanation_html()
(subwabbit.base.VowpalWabbitBaseFormatter
method), 20

P
parse_element() (subwab-

bit.base.VowpalWabbitBaseFormatter method),
21

predict() (subwabbit.base.VowpalWabbitBaseModel
method), 21

predict() (subwabbit.blocking.VowpalWabbitProcess
method), 22

predict() (subwab-
bit.nonblocking.VowpalWabbitNonBlockingProcess
method), 25

T
train() (subwabbit.base.VowpalWabbitBaseModel

method), 21
train() (subwabbit.blocking.VowpalWabbitProcess

method), 23
train() (subwabbit.nonblocking.VowpalWabbitNonBlockingProcess

method), 26

V
VowpalWabbitBaseFormatter (class in subwab-

bit.base), 19
VowpalWabbitBaseModel (class in subwab-

bit.base), 21
VowpalWabbitDummyFormatter (class in subwab-

bit.base), 21
VowpalWabbitNonBlockingProcess (class in

subwabbit.nonblocking), 24
VowpalWabbitProcess (class in subwab-

bit.blocking), 22

29

	Documentation
	Requirements
	Installation
	Example use
	More advanced use

	Benchmarks
	Benchmark results

	License
	Contents
	Throughput vs. latency
	Monitoring and debugging
	Explaining predictions
	API

	Indices and tables
	Index

