

Welcome to Subscribe-HR Developer Resources

Subscribe-HR [http://subscribe-hr.com.au] is a leading cloud HR software provider. We offer a range of applications to help
businesses to effectively manage their work force. Subscribe-HR is more than just a system.
All our software is built on a platform that offers a range of comprehensive development
and configuration tools. This documentation is designed to help technical resources to use
Subscribe-HR development platform.

If you are looking for information about our RESTful API it can be found here [https://subscribehr.docs.apiary.io/#].

Developer Documentation

	Getting Started

	Apps
	Getting Started

	Server API Reference

	Front End API Reference

	Integration Tool (SHaRpi)
	Authentication

	Architecture

	JsonPath

	Date Formatting

	Reference

	Tutorial

	SSQL
	Overview

	SSQL Terminology

	Supported Expressions

	Object Relationships

	Common Fields

	Learning By Example

Getting Started

The easiest way to start building new functionality with the Subscribe-HR platform is to sign up for a
free trial [https://www.subscribe-hr.com.au/free-trial]. Do let us know if you are developing an app for our
marketplace. We will ensure your account stays active while the work is being completed. An account with Subscribe-HR
platform will provide access to a range of technical automation tools to extend existing or add new functionality.

Apps

Our developers are always trying to come up with clever code names for dev tools and SHaRpi is no exception.
SHaRpi is an integration app that allows linking of two or more APIs together using only a JSON template.
It also includes detailed logging and integration with common Subscribe-HR features like SSQL.

The definition is a combination of independent blocks each with its own purpose. Blocks are then combined into a
pipeline which outlines where the data is coming from, how it should be transformed and where it should be saved.
This documentation will provide full API reference for each block and include examples of real configurations.

Sections

	Getting Started
	Introduction

	To App or not to App

	Components

	Component Architecture

	Server API Reference
	Classes

	Modules

	Front End API Reference
	Classes

	Modules

Getting Started

Introduction

Welcome to Subscribe-HR development platform. Use this guide to extend Subscribe-HR functionality by building apps,
tasks, or develop any other type of extensions. Subscribe-HR platform provides a wide range of tools like SSQL query language, search capabilities, built in RESTful API and much more to utilise when building your apps.

To App or not to App

Before venturing on the journey of extending Subscribe-HR functionality you need to make a decision whether this new
functionaity is going to be an app available via app store or just an extension for a particular system or client.
It’s important to make that decision early on as naming convention for fields and entities will be different. Global
apps will have an app code added to the names to maintain uniqueness across the platform.

If you decide to buld a global app then it’s important to ensure that Belongs to App field is always linked to
your app. Failing to set that field will result in app failure after installation.

Items that can be packaged into an app:

	Objects or Entities

	Elements or Fields

	Scripts

	Workflow Tasks

	System Tasks

	Labels

	Messages

	Components

	Authentication Records

	Integration Processes

Components

You will find a lot of references to components throughout this documentation. What are components? They are small
(or sometimes not so small) pieces of functionality developed for a specific purpose. There are four types of components that can be created in Subscribe-HR.

	Tool - application that sits outside of a module. Usually a custom tool to extend existing functionality or provide additional capabilities.

	Widget - a tile on the dashboard. Dashboard can have up to ten tiles dropped to a single bucket at a time. Each tile can be an application with its own permissions and functionality.

	Wizard - a stepped wizard to enhance usability of the system. WIzards are available from Start option on the dashboard.
Wizards can also be triggered from other places. For example widgets.

Under the hood each component uses the same core functionality therefore documentation will reference them as such unless
there is a specific function that is designed for a particular component type.

Component Architecture

This provides a brief breakdown of component structure. More detailed examples will be provided in later chapters.
There are six main parts:

	API - Allows creation of RESTful API. See Server Side API Reference for
available functions.

	Template - Template that gets loaded when the component is first initiated. Generated on the server side.

	Front End Javascript - Heading says it all. Front End API Reference for
available functions and libraries.

	CSS - Stylesheet.

	Permissions - JSON structure describing permissions required for this component.

Server API Reference

Classes

PermissionManager

Provides access to user defined permissions for a component.

	
hasPermission(code)

	Returns true if current user has access to specified permission code.

	Parameters

	code – (string) permission code

	Return type

	boolean

Modules

Environment (Shr.Env)

The environment module provides access to a set of internal platform functions.

	
Shr.Env.log(variable)

	Displays information about a variable in a readable way.

	Parameters

	variable – (mixed) variable to format

	Return type

	string

	
Shr.Env.getBaseUrl()

	Returns system base URL (e.g. https://app.subscribe-hr.com).

	Return type

	string

	
Shr.Env.getAppUrl()

	Returns application URL (e.g. https://app.subscribe-hr.com/cb/app).

	Return type

	string

	
Shr.Env.getModuleUrl()

	Returns current module URL (e.g. https://app.subscribe-hr.com/cb/app/hr).

	Return type

	string

	
Shr.Env.getComponentApiUrl(id, function, options)

	Creates request URL for component API function.

	Parameters

	
	id – (string) component id

	function – (string) function name

	options – (object) URL parameters

	Return type

	string

	
Shr.Env.getComponentPermissions(id)

	Returns component permission manager.

	Parameters

	id – (string) component id

	Return type

	PermissionManager

Request (Shr.Request)

Request module provides access to information about the client request.
This information can be accessed via the following methods.

	
Shr.Request.getParameter(name)

	Extracts client parameter from POST or GET request.

	Parameters

	name – (string) parameter name

	Return type

	mixed

UI / Template (Shr.UI)

UI module provides functions to help generate user interface.

	
Shr.UI.createField(options)

	Generates form field in the template.

	Parameters

	options – (arguments) series of arguments depending on the type of field being generated

	Return type

	string

Util (Shr.Util.Base64)

Module to encode and decode base64 strings.

	
Shr.Util.Base64.encode(content)

	Encodes string in base64 format.

	Parameters

	content – (string) string to encode

	Return type

	string

	
Shr.Util.Base64.decode(content)

	Decodes a base64 string.

	Parameters

	content – (string) string to decode

	Return type

	string

Util (Shr.Util.File)

Module to work with files Subscribe-HR virtual storage.

	
Shr.Util.File.create(name, content, isTemp)

	Creates file in virtual storage.

	Parameters

	
	name – (string) file name

	content – (string) file content

	isTemp – (boolean) is file temporary (temporary files are removed after 24 hours if they are not attached to records)

	Return type

	string - file id

	
Shr.Util.File.update(id, name, content)

	Update file.

	Parameters

	
	name – (string) file id

	name – (string) file name

	content – (string) file content

	Return type

	string - file id

Front End API Reference

Classes

PermissionManager

Provides access to user defined permissions for a component.

	
hasPermission(code)

	Returns true if current user has access to specified permission code.

	Parameters

	code – (string) permission code

	Return type

	boolean

Modules

Environment (Shr.Env)

The environment module provides access to a set of internal platform functions.

	
Shr.Env.log(variable)

	Displays information about a variable in a readable way.

	Parameters

	variable – (mixed) variable to format

	Return type

	string

	
Shr.Env.getBaseUrl()

	Returns system base URL (e.g. https://app.subscribe-hr.com).

	Return type

	string

	
Shr.Env.getAppUrl()

	Returns application URL (e.g. https://app.subscribe-hr.com/cb/app).

	Return type

	string

	
Shr.Env.getModuleUrl()

	Returns current module URL (e.g. https://app.subscribe-hr.com/cb/app/hr).

	Return type

	string

	
Shr.Env.getComponentApiUrl(id, function, options)

	Creates request URL for component API function.

	Parameters

	
	id – (string) component id

	function – (string) function name

	options – (object) URL parameters

	Return type

	string

	
Shr.Env.getComponentPermissions(id)

	Returns component permission manager.

	Parameters

	id – (string) component id

	Return type

	PermissionManager

Request (Shr.Request)

Request module provides access to information about the client request.
This information can be accessed via the following methods.

	
Shr.Request.getParameter(name)

	Extracts client parameter from POST or GET request.

	Parameters

	name – (string) parameter name

	Return type

	mixed

UI / Template (Shr.UI)

UI module provides functions to help generate user interface.

	
Shr.UI.createField(options)

	Generates form field in the template.

	Parameters

	options – (arguments) series of arguments depending on the type of field being generated

	Return type

	string

Util (Shr.Util.Base64)

Module to encode and decode base64 strings.

	
Shr.Util.Base64.encode(content)

	Encodes string in base64 format.

	Parameters

	content – (string) string to encode

	Return type

	string

	
Shr.Util.Base64.decode(content)

	Decodes a base64 string.

	Parameters

	content – (string) string to decode

	Return type

	string

Util (Shr.Util.File)

Module to work with files Subscribe-HR virtual storage.

	
Shr.Util.File.create(name, content, isTemp)

	Creates file in virtual storage.

	Parameters

	
	name – (string) file name

	content – (string) file content

	isTemp – (boolean) is file temporary (temporary files are removed after 24 hours if they are not attached to records)

	Return type

	string - file id

	
Shr.Util.File.update(id, name, content)

	Update file.

	Parameters

	
	name – (string) file id

	name – (string) file name

	content – (string) file content

	Return type

	string - file id

Integration Tool (SHaRpi)

Our developers are always trying to come up with clever code names for dev tools and SHaRpi is no exception.
SHaRpi is an integration app that allows linking of two or more APIs together using only a JSON template.
It also includes detailed logging and integration with common Subscribe-HR features like SSQL.

The definition is a combination of independent blocks each with its own purpose. Blocks are then combined into a
pipeline which outlines where the data is coming from, how it should be transformed and where it should be saved.
This documentation will provide full API reference for each block and include examples of real configurations.

Sections

	Authentication
	OAuth 2

	Authorization Header

	Architecture
	Actions

	Operation

	Iterator

	Map

	Function

	Pipeline

	JsonPath
	Expression Syntax

	Example

	Date Formatting
	Syntax

	Reference
	Runtime Settings

	Connection

	Operation

	Pagination

	Mapping

	Function

	Pipeline

	Tutorial
	Template Structure

	Setting Up Connections

	Adding Operations

	Adding Iterator

	Adding Another Operation

	Adding Mappings

	Adding Function

	Adding New Pipeline

	Putting It All Together

Authentication

Most connections will require some sort of authentication to occur to enable access to remote resources. Authentication
configuration is performed through Integration > Authentication screen and then linked to configuration file using
record Id. A number of authentication types are supported. Additional types will be added as required.

OAuth 2

This is probably the most common authentication type used with RESTful APIs. Multiple Grant Types are supported
including Authorization Code. OAuth dance can be performed through this page by clicking on Generate link.
SHaRpi will then keep track of access and refresh tokens (if available) and request new tokens as required.

[image: _images/auth_oauth2.png]

Authorization Header

A simple header authentication method where access token is passed as a header with each request. This type allows
users to specify header name, method (e.g. Bearer) and access code.

[image: _images/auth_custom_header.png]

Architecture

SHaRpi is architected to be highly configurable to ensure that interfaces to third party products can be easily setup
and adjusted based on client requirements. Usually customers have unique needs in relation to data flow
directions, field mappings, scheduling and accessibility of end points. By using SHaRpi these modifications are easily
implemented in a configuration file rather than by performing complex customisations.

The architecture of the tool consists of a number of predefined blocks (or as we call them actions) each with its own
purpose. Actions then get connected together to form a pipeline. Each action performs a unique task like extracting
data from data source or transforming it into another format. Each action is logged into the Subscribe-HR logging
platform including input and output making it easy to debug.

The data format that is used to pass information between blocks is JSON. Some operations may not always be capable of
returning JSON in which case conversion is performed. Below you will find examples of input and output data from
different action types.

Actions

The following table outlines all possible actions that can be defined within a pipeline. For detailed reference
refer to Pipeline Action.

	Action

	Description

	Operation

	Performs CRUD operation on a given connection

	Iterator

	Iterates over a dataset

	Map

	Transforms data from one format into another

	Function

	Executes a javascript function

	Pipeline

	Triggers a pipeline

Operation

Operations can be of different types and require different parameters to be passed into them. Return data can also vary.
For example with RESTful APIs it may be important to be able to access response headers as well as set request headers
based on information that was received from another operation. For a Datum connection however headers are not required
and it would not make sense to pass them in. Examples below show different formats for input and output for each action
type.

RESTful Input

Parameters.Url

Will be merged into operation path which makes it possible to add parameters directly to URL. If path is set to /api/v1/employee/:Id the following input will change it to /api/v1/employee/100.

Parameters.Form

Will be added as variables to request.

Headers

Will be appended to request headers.

Data

Sent in request body and encoded as JSON or supplied Content Type.

{
 "Parameters": {
 "Url": {
 "Id": "100"
 }
 "Form": {
 "Name": "Alex"
 }
 },
 "Headers": {
 "Content-Type": "application\/json"
 },
 "Data": [
 {
 "Id": 1,
 "Company": 1,
 "FirstName": "Alex"
 }
]
}

RESTful Output

Headers

Response headers.

StatusCode

Response status code.

Status

Response status text.

Data

Based on return format specified in operation.

{
 "Headers": {
 "Cache-Control": [
 "no-cache, must-revalidate"
],
 "Content-Type": [
 "application\/json"
],
 "Date": [
 "Sat, 26 May 2018 07:28:18 GMT"
],
 "Expires": [
 "0"
],
 "Server": [
 "Apache"
]
 },
 "StatusCode": 200,
 "Status": "OK",
 "Data": [
 {
 "Id": 1,
 "Company": 1,
 "FirstName": "Alex",
 "LastName": "Agafonov"
 }
]
}

Datum Input

Parameters

Parameters to merge into query. For example if query is set to SELECT e FROM Employee e WHERE e.Id = :Id the following input will change it to SELECT e FROM Employee e WHERE e.Id = 71.

Data

Data to write into entity.

{
 "Parameters": {
 "Id": 300
 },
 "Data": [
 {
 "Surname": "Brounders",
 "FirstName": "Maria",
 "DateOfBirth": "1970-11-05",
 "EyeTest": "2013-01-08",
 "DateLeft": null,
 "EmploymentType": {
 "Value": "fulltime"
 }
 }
]
}

Datum Output

Data

Returns output of a query. Data for each entity is divided using entity name e.g. “Employee”. If SSQL query is executed across multiple entities then multiple entity names are returned.

{
 "Data": [
 {
 "Employee": {
 "Id": 71,
 "CreatedBy": 4,
 "CreatedDate": "2009-06-22T13:26:21+10:00",
 "LastModifiedBy": 1,
 "LastModifiedDate": "2018-05-18T09:07:03+10:00",
 "Surname": "Brounders",
 "FirstName": "Maria",
 "DateOfBirth": "1970-11-05",
 "EyeTest": "2013-01-08",
 "DateLeft": null,
 "EmploymentType": {
 "Value": "fulltime",
 "Text": "Full Time"
 }
 },
 "EmployeeAddress": [
 {
 "Type": {
 "Value": "residential",
 "Text": "Residential"
 },
 "Address1": "..."
 },
 {
 "Type": {
 "Value": "postal",
 "Text": "Postal"
 },
 "Address1": "..."
 }
]
 }
]
}

Iterator

Iterator action will loop through the data. It can be thought of as standard for loop in programming. Selector
attribute will determine what data needs to be iterated over.

Conside the following example which is an output from Datum operation.

{
 "Data": [
 {
 "Employee": {
 "Id": 71
 }
 },
 {
 "Employee": {
 "Id": 72
 }
 },
 {
 "Employee": {
 "Id": 73
 }
 }
]
}

Assuming that iterator selector is set to $.Data[*] the first entry that will be returned is

{
 "Employee": {
 "Id": 71
 }
}

Map

Map action will receive an input perform data transformation based on mappings specified and return transformed data
structure.

Consider the following example which is a sample output from another operation.

{
 "Data": {
 "Employee": {
 "Id": 71
 }
 }
}

The following transformation will then be applied.

{
 "SampleMappings": [
 {
 "FromField": "$.Data.Employee.Id",
 "ToField": "$.Result.EmployeeCode",
 }
]
}

Which will result in the following output.

{
 "Result": {
 "EmployeeCode": 71
 }
}

Function

Functions add ability to perform complex mapping logic or make routing decisions based on output that is returned from
previous operation. There are two different function types that can be used. Logical for routing and mapping for
transforming data. Functions can be created inline or predefined and then called inside a pipeline. Function language
is javascript. Engine that we use behind the scenes is v8 which supports most of ECMAScript 2015 (ES6) [http://www.ecma-international.org/ecma-262/6.0/]. More
information on each function type is available below.

Logical Function

Logical functions are designed to make complex routing decisions based on input data.

Consider the following example of predefined function

{
 "DecisionFunction1": {
 "Type": "Logical",
 "Code": function(input) {
 if (input.Data.length == 0) {
 return "Pipeline2";
 }
 return "Pipeline3";
 }
 }
}

If input is

{
 "Data": []
}

Then function will return “Pipeline2” otherwise “Pipeline3”. Putting it into simple terms, if Data element is empty
then execution will move on to Pipeline2 otherwise it will trigger Pipeline3. It is also possible to return array with
multiple pipelines e.g. ["Pipeline4", "Pipeline5"] which will then execute two pipelines.

Mapping Function

Mapping functions are designed to make complex transformations where it may not be sufficient to use JsonPath.

Consider the following example of inline function within mapping definition

{
 "SampleMappings": [
 {
 "FromField": "$.Data",
 "ToField": "$.Result.EmplType",
 "Code": function(input) {
 if (input.EmploymentType === "f") {
 return "FullTime";
 }
 return "PartTime";
 }
 }
]
}

We will then pass in the following input

{
 "Data": {
 "EmploymentType": "f"
 }
}

And get the following output

{
 "Result": {
 "EmplType": "FullTime"
 }
}

Pipeline

Pipeline actions are used to split execution into multiple streams either to make configuration files easier to read or
to create reusable pieces of logic. Pipeline take input from previous operation and continue executing actions
defined within them.

Note

Pipeline action must be the last action in the sequence. It is not possible to return output from pipeline
and continue executing another action. This design ensures that there is no retrace within execution plan to
minimise errors and keep pipelines linear.

Example of pipeline action definition

{
 "Type": "Pipeline",
 "Id": ["Pipeline43", "Pipeline2"],
}

JsonPath

JsonPath is an XPath-like expression language for filtering, flattening and extracting data. JsonPath uses special
notation to represent nodes and their connections to adjacent nodes in a JsonPath. Tables below outline syntax and
provide some examples on how to apply it in transformations. JsonPath is used in iterators and mappings to help find
and transform information. Most of the time it is sufficient to use JsonPath without applying functions to manipulate
data because of its reach functionality.

Expression Syntax

	Symbol

	Description

	$

	The root object/element (not strictly necessary)

	@

	The current object/element

	. or []

	Child operator

	..

	Recursive descent

	*

	Wildcard. All child elements regardless their index.

	[,]

	Array indices as a set

	[start:end:step]

	Array slice operator borrowed from ES4/Python.

	?() | Filters a result set by a script expression

	() | Uses the result of a script expression as the index

Example

{
 "store":
 {
 "book":
 [
 {
 "category": "reference",
 "author": "Nigel Rees",
 "title": "Sayings of the Century",
 "price": 8.95,
 "available": true
 },
 {
 "category": "fiction",
 "author": "Evelyn Waugh",
 "title": "Sword of Honour",
 "price": 12.99,
 "available": false
 },
 {
 "category": "fiction",
 "author": "Herman Melville",
 "title": "Moby Dick",
 "isbn": "0-553-21311-3",
 "price": 8.99,
 "available": true
 },
 {
 "category": "fiction",
 "author": "J. R. R. Tolkien",
 "title": "The Lord of the Rings",
 "isbn": "0-395-19395-8",
 "price": 22.99,
 "available": false
 }
],
 "bicycle":
 {
 "color": "red",
 "price": 19.95,
 "available": true
 }
 },
 "authors":
 [
 "Nigel Rees",
 "Evelyn Waugh",
 "Herman Melville",
 "J. R. R. Tolkien"
]
}

	JsonPath

	Result

	$.store.bicycle.price

	All books.

	$.store.book[*]

	The current object/element

	$.store.book[1,3]

	The second and fourth book.

	$.store.book[1:3]

	From the second book to the fourth.

	$.store.book[:2]

	From the first book to the third.

	$.store.book[x:y:z]

	Books from x to y with a step of z.

	[start:end:step]

	Array slice operator borrowed from ES4/Python.

	$..book[?(@.category == ‘fiction’)]

	All books with category == ‘fiction’.

	$..*[?(@.available == true)].price

	All prices of available products.

	$..book[?(@.price < 10)].title

	The title of all books with price lower than 10.

	$..book[?(@.author==$.authors[3])]

	All books by “J. R. R. Tolkien”

	$[store]

	The store.

	$..book[*][title, ‘category’, “author”]

	title, category and author of all books.

Date Formatting

There is no specific enforced date format that must be used. Mappings provide two attributes DateFormatFrom and
DateFormatTo. Syntax for those attributes provided in the table below. A wide range of symbols is supported.

Syntax

	Format Character

	Description

	Example

	Day

	d and j

	Day of the month, 2 digits with or without leading zeros

	01 to 31 or 1 to 31

	D and l

	A textual representation of a day

	Mon through Sun or Sunday through Saturday

	S

	English ordinal suffix for the day of the month, 2 characters. It’s ignored while processing.

	st, nd, rd or th.

	z

	The day of the year (starting from 0)

	0 through 365

	Month

	F and M

	A textual representation of a month, such as January or Sept

	January through December or Jan through Dec

	m and n

	Numeric representation of a month, with or without leading zeros

	01 through 12 or 1 through 12

	Year

	Y

	A full numeric representation of a year, 4 digits

	1999 or 2003

	y

	A two digit representation of a year (which is assumed to be in the range 1970-2069, inclusive)

	99 or 03 (which will be interpreted as 1999 and 2003, respectively)

	Time

	a and A

	Ante meridiem and Post meridiem

	am or pm

	g and h

	12-hour format of an hour with or without leading zero

	1 through 12 or 01 through 12

	G and H

	24-hour format of an hour with or without leading zeros

	0 through 23 or 00 through 23

	i

	Minutes with leading zeros

	00 to 59

	s

	Seconds, with leading zeros

	00 through 59

	u

	Microseconds (up to six digits)

	45, 654321

	Timezone

	e, O, P and T

	Timezone identifier, or difference to UTC in hours, or difference to UTC with colon between hours and minutes, or timezone abbreviation

	UTC, GMT, Atlantic/Azores or+0200 or +02:00 or EST, MDT

	Full Date/Time

	U

	Seconds since the Unix Epoch (January 1 1970 00:00:00 GMT)

	1292177455

	Whitespace and Separators

	(space)

	One space or one tab

	

	#

	One of the following separation symbols: ; : / . , - ()

	/

	; : / . , - ()

	The specified character.

	-

Reference

Runtime Settings

Runtime settings define common configuration parameters on how it should be executed.

Parameters

Version

Type: String

Required: No

Default: 1.0

Description: Engine version number.

Name

Type: String

Required: No

Example: “My Integration Config”

Description: Configuration file name.

LogPayload

Type: Boolean

Required: No

Default: false

Example: true

Description: Determines whether payload (input and output) should be logged. It is recommended to do so to help with debugging. Some integrations may use up a lot of disk however.

EntryPipelineId

Type: String

Required: Yes

Example: Pipeline1

Description: Starting point of execution.

Connection

Connection represents a physical connection to a local or a remote resource. Following sections describe supported
connection types in more details.

RESTful

Connection definition for HTTP RESTful API. A RESTful API is an application program interface (API) that uses HTTP
requests to GET, PUT, POST and DELETE data.

Parameters

Type

Type: String

Required: Yes

Accepts: Restful, Datum

Description: Connection type.

Name

Type: String

Required: Yes

Example: My connection name

Description: Connection name. It will be referenced in logs.

Url

Type: String

Required: Yes

Validation: Must be valid URL

Example: https://api.my-company.com/v1

Description: Connection base URL

Authentication

Type: Integer

Required: Yes

Example: 5

Description: Id of Authentication entity. Must be created in Integration > Authentication form.

Datum

Datum is the name of the internal Subscribe-HR data layer. It is used to perform direct read and write operations from
and to Subscribe-HR. Unlike API connection Datum is fast and does not require additional parameters or authentication
to be defined.

Parameters

Type

Type: String

Required: Yes

Accepts: Restful, Datum

Description: Connection type.

Name

Type: String

Required: Yes

Example: My connection name

Description: Connection name. It will be referenced in logs.

Operation

Operation represents an action that can be performed through a given connection. For example a GET requests
through RESTful API or query operation through a database connection.

RESTful

Operation definition for HTTP RESTful API. Must reference RESTful connection.

Parameters

Name

Type: String

Required: Yes

Example: My read operation

Description: Operation name. It will be referenced in logs.

Connection

Type: String

Required: Yes

Example: MyRestfulConnection

Description: Connection reference key that was used in the definition.

Method

Type: String

Required: Yes

Accepts: GET, POST, PUT, PATCH, DELETE

Example: GET

Description: HTTP request method.

Path

Type: String

Required: Yes

Example: /api/v1/employees/:Id

Description: HTTP end point path. Supports merge parameters e.g. :Id. Will be merged from Parameters.Url when passed in input.

ErrorHandlingStyle

Type: String

Required: No

Accepts: warn, halt

Default: halt

Example: warn

Description: Indicates how to handle errors when they are encountered. For example if operation received an error when trying to write data warn will produce a warning and continue execution of next record. Halt will completely terminate the process.

ErrorStatusCodes

Type: Array

Required: No

Default: [‘4xx’, ‘5xx’]

Example: [400, ‘5xx’]

Description: HTTP status codes that constitue errors. Supports wild card declaration e.g. 5xx will include all 500 error codes.

ErrorStatusCodeExceptions

Type: Array

Required: No

Default: [404]

Example: [403, 404]

Description: HTTP status codes that should be ignored even if they are defined in ErrorStatusCodes field. Supports wild card declaration e.g. 5xx will include all 500 error codes.

OutputType

Type: String

Required: No

Accepts: json, raw

Default: json

Example: json

Description: Output format to expect operation to return.

Datum

Operation definition for Datum connection type. Must reference Datum connection.

Parameters

Name

Type: String

Required: Yes

Example: My read operation

Description: Operation name. It will be referenced in logs.

Connection

Type: String

Required: Yes

Example: MyDatumConnection

Description: Connection reference key that was used in the definition.

Action

Type: String

Required: Yes

Accepts: Create, Update, Get, Delete, Query

Example: Get

Description: Type of operation to perform.

Entity

Type: String

Required: Yes unless Action is Query

Validation: Valid Subscribe-HR entity name

Example: Employee

Description: Subscribe-HR entity name. Can be found in Development > Objects > System Name.

Query

Type: String

Required: Yes only if Action is Query

Validation: Valid SSQL query

Example: SELECT e FROM Employee e

Description: Must provide full SSQL query if Action is Query. Otherwise only where clause condition e.g. Id = :Id.

ErrorHandlingStyle

Type: String

Required: No

Accepts: warn, halt

Default: halt

Example: warn

Description: Indicates how to handle errors when they are encountered. For example if operation received an error when trying to write data warn will produce a warning and continue execution of next record. Halt will completely terminate the process.

Pagination

Type: Object (Pagination)

Required: No

Example: { MaxItemsPerPage: 10 }

Description: Pagination parameters allow splitting requests into batches. There may be cases where a lot of data needs to be processed at once. Due to resource allocation limits it is best practice to paginate your operations to return 100 or less records at a time. The limit is not enforced. This may change in the future. Pagination parameter can only be used with Action of type Get and Query.

OutputType

Type: String

Required: No

Accepts: json, raw

Default: json

Example: json

Description: Output format to expect operation to return.

Pagination

Pagination defines how operations paginate requests.

Datum

Pagination definition for Datum operations.

Parameters

MaxItemsPerPage

Type: Integer

Required: Yes

Example: 100

Description: Number of records to return per page.

Mapping

Mapping defines how source field is transformed into destination field. Mappings utilise JsonPath [http://goessner.net/articles/JsonPath/] syntax to perform transformations making it very flexible to manipulate data. Mappings only deal with JSON format. Any operation that returns any other type of data will need to be converted into JSON first.

Parameters

FromField

Type: String

Required: Yes if no Default specified

Example: $.id

Description: JsonPath pattern to extract source field value.

ToField

Type: String

Required: Yes

Example: $.Data.Surname

Description: JsonPath pattern for destination field.

Tag

Type: String

Required: No

Example: MyEarlierTag

Description: Perform mapping from a data tag instead of input data.

Default

Type: String

Required: Yes if no FromField specified

Example: Some string

Description: Default value to assign to a field if from field is NULL or an empty string. Alternatively if FromField is not specified default value will be written into destination field.

Translations

Type: Object

Required: No

Example: {"m": "male"}

Description: Transformation object if field needs to be transformed to a different value. For example source value may be set to m which should be translated into male in destination field.

DateFormatFrom

Type: String

Required: Yes if DateFormatTo is specified

Example: d-m-Y

Description: For date fields indicates what format to expect dates in.

DateFormatTo

Type: String

Required: No

Example: Y-m-d

Description: For date fields indicates what format to output dates into.

Note

If only DateFormatFrom attribute is specified the default output format will be set to Y-m-d H:i:s.

FunctionId

Type: Object (Function)

Required: No

Example: MyMappingFunction

Description: Reference to predefined function to use to perform the mapping.

Code

Type: Function

Required: No

Example: function(input) { const output = input; return output; }

Description: Inline function definition to perform the mapping.

Function

Users can define javascript functions to use during pipeline execution.
The syntax is function(input) { const output = input; return output; }. Javascript engine that we use behind the
scenes is v8 which has support for ECMAScript 2015 (ES6) [http://www.ecma-international.org/ecma-262/6.0/].

Logical

Logical functions control the flow of pipeline execution process and determine what pipelines should be executed next
based on the input. One of the most common use cases will be to determine if API has returned a status code of 404 and
then execute record creation pipeline otherwise perform an update. Expected output of the function is a string with
a pipeline name or an array with multiple names to be executed next.

Parameters

Type

Type: String

Required: Yes

Accepts: Logical, Mapping

Example: Logical

Description: Defines function type.

Code

Type: Function

Required: Yes

Validation: Valid javascript function

Example: function(input) { if (input.StatusCode == “404”) { return “Pipeline2”; } return “Pipeline3”; }

Description: Function code.

Mapping

Mapping functions are used to assist with performing mapping operations. Input comes from a selector or a previous
action. Function can then manipulate the input and produce an output that is then passed back to the execution action.

Parameters

Type

Type: String

Required: Yes

Accepts: Logical, Mapping

Example: Mapping

Description: Defines function type.

Code

Type: Function

Required: Yes

Validation: Valid javascript function

Example: function(input) { if (input.EmploymentType == “f”) { return “fulltime”; } }

Description: Function code.

Pipeline

Pipeline is a list of actions that need to be performed in a sequence. Pipelines can be nested and trigger other
pipelines. There are a number of action types that can be performed within pipeline which are outlined below.

Common Action Parameters

Type

Type: String

Required: Yes

Accepts: Operation, Iterator, Map, Function, Pipeline

Example: Operation

Description: Defines action type to execute.

InputTag

Type: String

Required: No

Example: MyEmployeeRecord

Description: Tags input data to reuse later on in the pipeline.

OutputTag

Type: String

Required: No

Example: MyEmployeeOutputRecord

Description: Tags output data to reuse later on in the pipeline.

Operation Action

Triggers an operation.

Parameters

Inherits all Common Action Parameters

Id

Type: String

Required: Yes

Example: MyApiGetOperation

Description: Operation Id to execute.

Iterator Action

Iterates over a data set.

Parameters

Inherits all Common Action Parameters

Selector

Type: String

Required: Yes

Example: $.Data.content[*]

Description: JsonPath expression to indicate which data to iterate over.

Map Action

Iterates over a data set.

Parameters

Inherits all Common Action Parameters

Id

Type: String

Required: Yes

Example: MyEmployeeMappings

Description: Mapping Id to execute.

Function Action

Executes a javascript function. Can either be an inline function or reference to a predefined function.

Parameters

Inherits all Common Action Parameters

Id

Type: String

Required: Yes if using a predefined function

Example: MyPredefinedFunction1

Description: Predefined function Id.

FunctionType

Type: String

Required: Yes if it is an inline function

Accepts: Logical, Mapping

Example: MyPredefinedFunction1

Description: Predefined function Id.

Code

Type: String

Required: Yes if it is an inline function

Example: function(input) { const output = input; return output; }

Description: Inline function definition.

Pipeline Action

Executes a pipeline or a series of pipelines.

Note

Pipeline action must be the last action in the sequence. It is not possible to return output from pipeline
and continue executing another action. This design ensures that there is no retrace within execution plan to minimise
errors and keep pipelines linear.

Parameters

Inherits all Common Action Parameters

Id

Type: String or Array

Required: Yes

Example: [“Pipeline2”, “Pipeline3”]

Description: One or multiple pipelines to execute.

Tutorial

This tutorial will outline how to extract data from Subscribe-HR and then send it to a RESTful API end point.

Template Structure

The following array represents bare-bones configuration file that will be used to run our export. If you tried to
run it now it would not pass validation because our main pipeline is empty. Following sections will detail creation of
components in the file to create a fully working configuration.

var configuration = {
 RuntimeSettings: {
 Version: "1.0",
 Name: "SampleExport",
 LogPayload: true,
 EntryPipelineId: "Pipeline1"
 },
 Connections: {},
 Operations: {},
 Mappings: {},
 Functions: {},
 Pipelines: {
 Pipeline1: []
 }
};

Setting Up Connections

The first thing that we need to do is to add some connections. Operations cannot be performed without connections.
One way to describe connections is they are client libraries designed to handle specific protocols. They establish line
of communication to local or remote resources and allow operations to perform actions.

Because we are trying to export data from Subscribe-HR the first connection that needs to be created is Datum. Datum
is the internal name of data layer that is used in the Subscribe-HR platform to handle all underlying data actions.
Think of it as our proprietary ORM library.

Datum connection definition is simple because all information about it is already available through the system.
It simply looks like this.

ShrConnection: {
 Type: "Datum",
 Name: "Datum Connection"
}

Next we need to create a connection to RESTful API. It requires couple more parameters than Datum connection. We provide
base URL for all requests and authentication record Id so that our connection knows how to handle authentication.

ApiConnection: {
 Type: "Restful",
 Name: "RESTful API Connection",
 Url: "https://api.somesystem.com.au",
 Authentication: 1
}

Adding Operations

Having connections is great but not very useful without being able to perform operations. So what we will do next is
to create some operations that we can use in execution pipelines.

Because we are trying to export some employee data, first operation will query it through Datum connection. Key
parameters are Action and Query. We are executing SSQL query. Pagination parameter is also defined with max
items set to 10 which means that if there are more than 10 records this operation will run in batches. It will not
happen in this case because we are querying 2 employees only.

GetShrEmployees: {
 Name: "Get Shr Employees",
 Connection: "ShrConnection",
 Action: "Query",
 Query: "SELECT e FROM Employee e WHERE e.Id IN (71, 72)",
 ErrorHandlingStyle: "halt",
 Pagination: {
 MaxItemsPerPage: 10
 }
}

Now that first operation has been defined we can update our configuration template. It now looks like this. Also note
that GetShrEmployees operation was added to Pipeline1 as first action.

var configuration = {
 RuntimeSettings: {
 Version: "1.0",
 Name: "SampleExport",
 LogPayload: true,
 EntryPipelineId: "Pipeline1"
 },
 Connections: {
 ShrConnection: {
 Type: "Datum",
 Name: "Datum Connection"
 },
 ApiConnection: {
 Type: "Restful",
 Name: "RESTful API Connection",
 Url: "https://api.somesystem.com.au",
 Authentication: 1
 }
 },
 Operations: {
 GetShrEmployees: {
 Name: "Get Shr Employees",
 Connection: "ShrConnection",
 Action: "Query",
 Query: "SELECT e FROM Employee e WHERE e.Id IN (71, 72)",
 ErrorHandlingStyle: "halt",
 Pagination: {
 MaxItemsPerPage: 10
 }
 }
 },
 Mappings: {},
 Pipelines: {
 Pipeline1: [
 {
 Type: "Operation",
 Id: "GetShrEmployees"
 }
]
 }
};

Now let’s run the above configuration to see what it does. To do that you will need to first create Process record
in the system by going to Integration > Processes and clicking Create button. Enter process name and paste
configuration into code editor. Press Save button. No errors should be generated at this stage as our configuration
meets minimal requirements. At this point Run Process button will appear. Once the button is pressed you will see a
loading icon. At this stage a message has been sent to the worker in the background to let it know that the process
needs to run immediately. It may take few minutes for it to complete depending on the volume of data being processed.
To see what’s going on with the process, go to Events tab. It will show all the actions that have been executed.

Note

While testing your configuration ensure that volume of data that is being sent or received is limit to few records
only. It will make it easier to debug and save a lot of waiting time.

The following image shows entries in my Events tab after executing above configuration. Returned data can be seen in
detailed view output field.

[image: _images/sharpi_log.png]

Adding Iterator

What are iterators? They help us to run through multiple records. Above example returns two employee records. If we
were working with operation that supports importing multiple employees then at this stage we can just perform data
transformation and call the operation. It however is not the case with a lot of APIs. From our experience the
standard data flow is Get Data => Loop => Transform => Check If New / Existing => Create / Update. So let’s create
an iterator for our two records.

{
 Type: "Iterator",
 Selector: "$.Data",
 OutputTag: "ShrEmployee"
}

Above example will iterate over $.Data[*]. You will also notice that the record gets tagged at this point.
This is to ensure that if we need to access original data later on in the transformation process that it can easily be
done without performing additional actions.

Adding Another Operation

OK so now we have two employee records that we loop over. As mentioned above at this point we probably want to check
if this employee already exists in the destination system before trying to create it. There is a number of ways to do
this. One, we can create a flag that tracks whether employee has already been exported or not. Two, we can try to
always create it and just let it fail. If it fails we then trigger an update pipeline. Three, and this is the method
I personally prefer as it is pretty fail safe, we check whether record already exists in destination system and then
trigger appropriate pipeline. So let’s add an operation that checks if record exists or not.

LookupApiEmployee: {
 Name: "API Lookup Single Employee",
 Connection: "ApiConnection",
 Method: "GET",
 Path: "/api/v1/employees/:EmployeeId"
}

It can be seen in the definition above that this operation will require a URL parameter :EmployeeId to be passed in.
This can be done using mappings or a function. I prefer mappings as relying on functions can make it harder to maintain
configuration files.

Adding Mappings

Above operation requires EmployeeId parameter to be passed in for it to work correctly. We already know from
RESTful Input that URL parameters can be passed using Parameters.Url attribute so we define
some mappings to create this structure.

LookupApiEmployeeMappings: [
 {
 FromField: "$.Employee.EmployeeCode",
 ToField: "$.Parameters.Url.EmployeeId"
 }
]

Now let’s update our configuration file and add the latest changes.

var configuration = {
 RuntimeSettings: {
 Version: "1.0",
 Name: "SampleExport",
 LogPayload: true,
 EntryPipelineId: "Pipeline1"
 },
 Connections: {
 ShrConnection: {
 Type: "Datum",
 Name: "Datum Connection"
 },
 ApiConnection: {
 Type: "Restful",
 Name: "RESTful API Connection",
 Url: "https://api.somesystem.com.au",
 Authentication: 1
 }
 },
 Operations: {
 GetShrEmployees: {
 Name: "Get Shr Employees",
 Connection: "ShrConnection",
 Action: "Query",
 Query: "SELECT e FROM Employee e WHERE e.Id IN (71, 72)",
 ErrorHandlingStyle: "halt",
 Pagination: {
 MaxItemsPerPage: 10
 }
 },
 LookupApiEmployee: {
 Name: "API Lookup Single Employee",
 Connection: "ApiConnection",
 Method: "GET",
 Path: "/api/v1/employees/:EmployeeId"
 }
 },
 Mappings: {
 LookupApiEmployeeMappings: [
 {
 FromField: "$.Employee.EmployeeCode",
 ToField: "$.Parameters.Url.EmployeeId"
 }
]
 },
 Pipelines: {
 Pipeline1: [
 {
 Type: "Operation",
 Id: "GetShrEmployees"
 },
 {
 Type: "Iterator",
 Selector: "$.Data",
 OutputTag: "ShrEmployee"
 },
 {
 Type: "Map",
 Id: "LookupApiEmployeeMappings"
 },
 {
 Type: "Operation",
 Id: "LookupApiEmployee"
 }
]
 }
};

Quick summary of the changes in the pipeline:

	Call GetShrEmployees operation which will return two employee records

	Iterate over results

	Map record to produce URL parameter

	Call LookupApiEmployee to see if record already exists in the destination system

So far so good. Now how do we actually test result of the last operation. This is where logical functions can be
very useful.

Adding Function

Because last operation is of type RESTful API the response will contain headers, status codes and response body. Refer
to RESTful Output for more details. If the API end point is implemented correctly then we should
receive status code 404 if record does not exist. Let’s define action of type function with inline function to test for
it.

{
 Type: "Function",
 FunctionType: "Logical",
 Code: function(input) {
 if (input.StatusCode == "404") {
 return "Pipeline2";
 }
 return "Pipeline3";
 }
}

Deciphering the above. If response code is 404 then trigger Pipeline2 (creation of new record) otherwise go
to Pipeline3 (update existing record).

Adding New Pipeline

Now we can add new pipeline to handle record creation. It only requires two actions, Map and Operation. Let’s create
another operation and mappings to use in the new pipeline.

Note

Each subsequent action will inherit output of previous action. Tags can be used to work around this issue.

Adding create employee operation.

{
 CreateApiEmployee: {
 Name: "API Lookup Single Employee",
 Connection: "ApiConnection",
 Method: "POST",
 Path: "/api/v1/employees"
 }
}

Adding mappings.

MapShrEmployeeToApi: [
 {
 FromField: "$.Employee.Id",
 ToField: "$.Data[0].id"
 },
 {
 FromField: "$.Employee.Surname",
 ToField: "$.Data[0].surname"
 },
 {
 FromField: "$.Employee.FirstName",
 ToField: "$.Data[0].firstNames"
 },
 {
 FromField: "$.Employee.StartDate",
 ToField: "$.Data[0].startDate",
 DateFormatFrom: "Y-m-d",
 DateFormatTo: "d-M-Y"
 },
 {
 FromField: "$.Employee.Gender.Value",
 ToField: "$.Data[0].gender",
 Translations: {
 male: "Male",
 female: "Female"
 }
 }
]

Putting It All Together

The following configuration can now be used as a template for all integration processes. It should be expanded to add
Pipeline3 which should looks very similar to Pipeline2 with small difference in mappings and operator call.

var configuration = {
 RuntimeSettings: {
 Version: "1.0",
 Name: "SampleExport",
 LogPayload: true,
 EntryPipelineId: "Pipeline1"
 },
 Connections: {
 ShrConnection: {
 Type: "Datum",
 Name: "Datum Connection"
 },
 ApiConnection: {
 Type: "Restful",
 Name: "RESTful API Connection",
 Url: "https://api.somesystem.com.au",
 Authentication: 1
 }
 },
 Operations: {
 GetShrEmployees: {
 Name: "Get Shr Employees",
 Connection: "ShrConnection",
 Action: "Query",
 Query: "SELECT e FROM Employee e WHERE e.Id IN (71, 72)",
 ErrorHandlingStyle: "halt",
 Pagination: {
 MaxItemsPerPage: 10
 }
 },
 LookupApiEmployee: {
 Name: "API Lookup Single Employee",
 Connection: "ApiConnection",
 Method: "GET",
 Path: "/api/v1/employees/:EmployeeId"
 },
 CreateApiEmployee: {
 Name: "API Lookup Single Employee",
 Connection: "ApiConnection",
 Method: "POST",
 Path: "/api/v1/employees"
 }
 },
 Mappings: {
 LookupApiEmployeeMappings: [
 {
 FromField: "$.Employee.EmployeeCode",
 ToField: "$.Parameters.Url.EmployeeId"
 }
],
 MapShrEmployeeToApi: [
 {
 FromField: "$.Employee.Id",
 ToField: "$.Data[0].id"
 },
 {
 FromField: "$.Employee.Surname",
 ToField: "$.Data[0].surname"
 },
 {
 FromField: "$.Employee.FirstName",
 ToField: "$.Data[0].firstNames"
 },
 {
 FromField: "$.Employee.StartDate",
 ToField: "$.Data[0].startDate",
 DateFormatFrom: "Y-m-d",
 DateFormatTo: "d-M-Y"
 },
 {
 FromField: "$.Employee.Gender.Value",
 ToField: "$.Data[0].gender",
 Translations: {
 male: "Male",
 female: "Female"
 }
 }
]
 },
 Pipelines: {
 Pipeline1: [
 {
 Type: "Operation",
 Id: "GetShrEmployees"
 },
 {
 Type: "Iterator",
 Selector: "$.Data",
 OutputTag: "ShrEmployee"
 },
 {
 Type: "Map",
 Id: "LookupApiEmployeeMappings"
 },
 {
 Type: "Operation",
 Id: "LookupApiEmployee"
 },
 {
 Type: "Function",
 FunctionType: "Logical",
 Code: function(input) {
 if (input.StatusCode == "404") {
 return "Pipeline2";
 }
 return "Pipeline3";
 }
 }
],
 Pipeline2: [
 {
 Type: "Map",
 InputTag: "ShrEmployee",
 Id: "MapShrEmployeeToApi"
 },
 {
 Type: "Operation",
 Id: "CreateApiEmployee"
 }
]
 }
};

SSQL

Overview

Subscribe-HR Structured Query Language is a subset of SQL language which is used to query data within Subscribe-HR
object relational model. Queries can be performed using either server side data access module or RESTful API
query end point.

SSQL Terminology

The following terminology will be used when referencing SSQL statements. SSQL left, SQL right.

	Entity / Object - table

	Field - column

Supported Expressions

Statement Types

	SELECT

	INSERT

	UPDATE

	DELETE

Joins

	JOIN / INNER JOIN

	LEFT JOIN

	RIGHT JOIN

	CROSS JOIN

Operators

	Operator

	Description

	=

	Comparison equal operator

	<=>

	
NULL-safe equal. This operator performs an equality comparison like

the = operator, but returns 1 rather than NULL if both operands are

NULL, and 0 rather than NULL if one operand is NULL

	>

	Greater than

	>=

	Greater than or equals to

	<

	Less than

	<=

	Less than or equals to

	<>

	Not equal

	LIKE

	Uses wildcard operators to compare a value to similar values.

	NOT

	Reverses the meaning of the logical operator e.g. NOT IN

	AND

	It allows the existence of multiple conditions

	OR

	It is used to combine multiple conditions

	IN

	It is used to compare a value in a list of literal values

	IS

	Tests a value against a boolean value e.g. IS NULL

	+

	Addition

	-

	Subtraction

	/

	Division

	*

	Multiplication

Functions

	Function

	Description

	Example

	ABS

	Returns the absolute value of a number

	
ABS(-5)

Result: 5

	CEIL

	
Returns the smallest integer value not less than the number specified

as an argument

	
CEIL(1.2)

Result: 2

	FLOOR

	
Returns the largest integer value not greater than the number

specified as an argument

	
FLOOR(1.2)

Result: 1

	SQRT

	Square root

	
SQRT(25)

Result: 5

	MOD

	Returns the remainder of dividend divided by divisor

	
MOD(17,5)

Result: 2

	LENGTH

	Returns the length of a string

	
LENGTH(‘hi’)

Result: 2

	SUBSTRING

	Extract a substring from a string

	
SUBSTRING(‘Subscribe’, 2, 5)

Result: ubscr

	LOWER

	Convert the text to lower-case

	
LOWER(‘HI’)

Result: hi

	UPPER

	Convert the text to upper-case

	
UPPER(‘hi’)

Result: HI

	CONCAT

	Adds several strings together

	
CONCAT(‘h’, ‘i’)

Result: hi

	COALESCE

	Returns the first non-null value in a list

	
COALESCE(NULL, 1)

Result: 1

Aggregate Function

	Function

	Description

	AVG

	Average

	COUNT

	Count a number of records in a group

	MAX

	Maximum value in a set

	MIN

	Minimum value in a set

	STD

	Standard deviation

	SUM

	Sum of values in a group

	VARIANCE

	Population standard variance

	GROUP_CONCAT

	Returns a string with concatenated non-NULL value from a group

Object Relationships

Subscribe-HR objects and fields can be created dynamically using development tool. These objects and fields
can then be queried using SSQL. Objects can also have parent child relationships. One parent object can have many
child objects related to it. At the same time, a child can only have one parent. For performance reasons no
nested relationships are allowed.

Note

To find object names go to Development > Objects. You will see Object System Name column.

Common Fields

The following fields are common for every object.

	Field Name

	Description

	Id

	Unique record Id

	CreatedBy

	Creator user Id

	CreatedDate

	Date when record was first created

	LastModifiedBy

	User id that last modified the record

	LastModifiedDate

	Date when record was last modified

	__ParentId

	Foreign key (only child objects)

Learning By Example

Simple Statement

SELECT e FROM Employee e WHERE e.FirstName = 'Maria';

Return all employees with the first name Maria.

Note

Select * (star) expression is not supported. You must specify list of aliases or field names.

Note

All entities in from clause must have an alias.

Join Statement

SELECT e, ea FROM Employee e LEFT JOIN EmployeeAddress ea ON (e.Id = ea.__ParentId) WHERE e.FirstName = 'Maria';

Return all employees with the first name Maria and their addresses.

Index

 H
 | S

H

 	
 	hasPermission() (built-in function), [1]

S

 	
 	Shr.Env.getAppUrl() (built-in function), [1]

 	Shr.Env.getBaseUrl() (built-in function), [1]

 	Shr.Env.getComponentApiUrl() (built-in function), [1]

 	Shr.Env.getComponentPermissions() (built-in function), [1]

 	Shr.Env.getModuleUrl() (built-in function), [1]

 	Shr.Env.log() (built-in function), [1]

 	
 	Shr.Request.getParameter() (built-in function), [1]

 	Shr.UI.createField() (built-in function), [1]

 	Shr.Util.Base64.decode() (built-in function), [1]

 	Shr.Util.Base64.encode() (built-in function), [1]

 	Shr.Util.File.create() (built-in function), [1]

 	Shr.Util.File.update() (built-in function), [1]

 _static/plus.png

_static/up.png

_static/sharpi_log.png
idl Date Type Message
» 879 2018-05-31 02:15:43 info Completed task (Pipeline: Pipeline1) "Pipeline1".

v 878 2018-05-31 02:15:42 info Retrieved page 1 (Operation: Get Shr Employees) "Pipeline1-0".

"pipelineId": "Pipelinel",

"taskId": "Pipelinel-0",

"inputTag": null,

"outputTag": null,

"output": {

"Data": [
{
"Employee": {

"Id": 71,
"CreatedBy": 4,
"CreatedDate": "2009-06-22T13:26:21+10:00",
"LastModifiedBy": 1,
"LastModifiedDate": "2018-05-18T09:07:03+10:00",
"Surname": "Brounders",

_static/up-pressed.png

_images/auth_oauth2.png
NAME %

TYPE %

GRANT TYPE *

URL *

ACCESS TOKEN URL *

CLIENT ID *

CLIENT SECRET *

SCOPE

REQUEST PARAMETERS

ACCESS TOKEN EXPIRY

ACCESS TOKEN

Payroll System

OAuth 2.0 v

Authorization Code v

https://api.somesystem.com.au/oauth/authorize

https://api.somesystem.com.au/oauth/token

X=X =X = XXX = XXX

<Encrypted> Edit

employees timesheets leavebalances payslips costceni

29/05/2018 13:43

Regenerate

&

C)

_images/sharpi_log.png
idl Date Type Message
» 879 2018-05-31 02:15:43 info Completed task (Pipeline: Pipeline1) "Pipeline1".

v 878 2018-05-31 02:15:42 info Retrieved page 1 (Operation: Get Shr Employees) "Pipeline1-0".

"pipelineId": "Pipelinel",

"taskId": "Pipelinel-0",

"inputTag": null,

"outputTag": null,

"output": {

"Data": [
{
"Employee": {

"Id": 71,
"CreatedBy": 4,
"CreatedDate": "2009-06-22T13:26:21+10:00",
"LastModifiedBy": 1,
"LastModifiedDate": "2018-05-18T09:07:03+10:00",
"Surname": "Brounders",

_images/auth_custom_header.png
NAME %

TYPE %

HEADER NAME %

AUTHORISATION METHOD

ACCESS TOKEN *

ACCESS TOKEN EXPIRY

Payroll System

Authorization Header

Bearer

<Encrypted> Edit

29/05/2018 13:43

v

&

C)

_static/ajax-loader.gif

_static/auth_custom_header.png
NAME %

TYPE %

HEADER NAME %

AUTHORISATION METHOD

ACCESS TOKEN *

ACCESS TOKEN EXPIRY

Payroll System

Authorization Header

Bearer

<Encrypted> Edit

29/05/2018 13:43

v

&

C)

_static/auth_oauth2.png
NAME %

TYPE %

GRANT TYPE *

URL *

ACCESS TOKEN URL *

CLIENT ID *

CLIENT SECRET *

SCOPE

REQUEST PARAMETERS

ACCESS TOKEN EXPIRY

ACCESS TOKEN

Payroll System

OAuth 2.0 v

Authorization Code v

https://api.somesystem.com.au/oauth/authorize

https://api.somesystem.com.au/oauth/token

X=X =X = XXX = XXX

<Encrypted> Edit

employees timesheets leavebalances payslips costceni

29/05/2018 13:43

Regenerate

&

C)

nav.xhtml

 Table of Contents

 		
 Welcome to Subscribe-HR Developer Resources

 		
 Getting Started

 		
 Apps

 		
 Getting Started

 		
 Introduction

 		
 To App or not to App

 		
 Components

 		
 Component Architecture

 		
 Server API Reference

 		
 Classes

 		
 Modules

 		
 Front End API Reference

 		
 Classes

 		
 Modules

 		
 Integration Tool (SHaRpi)

 		
 Authentication

 		
 OAuth 2

 		
 Authorization Header

 		
 Architecture

 		
 Actions

 		
 Operation

 		
 Iterator

 		
 Map

 		
 Function

 		
 Pipeline

 		
 JsonPath

 		
 Expression Syntax

 		
 Example

 		
 Date Formatting

 		
 Syntax

 		
 Reference

 		
 Runtime Settings

 		
 Connection

 		
 Operation

 		
 Pagination

 		
 Mapping

 		
 Function

 		
 Pipeline

 		
 Tutorial

 		
 Template Structure

 		
 Setting Up Connections

 		
 Adding Operations

 		
 Adding Iterator

 		
 Adding Another Operation

 		
 Adding Mappings

 		
 Adding Function

 		
 Adding New Pipeline

 		
 Putting It All Together

 		
 SSQL

 		
 Overview

 		
 SSQL Terminology

 		
 Supported Expressions

 		
 Statement Types

 		
 Joins

 		
 Operators

 		
 Functions

 		
 Aggregate Function

 		
 Object Relationships

 		
 Common Fields

 		
 Learning By Example

 		
 Simple Statement

 		
 Join Statement

_static/comment-close.png

_static/comment.png

_static/comment-bright.png

_static/file.png

_static/down-pressed.png

_static/down.png

_static/minus.png

