
Sublime Text Unofficial Documentation
Documentation

Release 3.0

Chinese by baiting, Author:guillermooo

October 10, 2013

CONTENTS

1 Indices and tables 3

i

ii

CHAPTER

ONE

Sublime Text

sublime?

Sublime Text

Happy learning!

1

http://www.sublimetext.com

Sublime Text Unofficial Documentation Documentation, Release 3.0

2 Chapter 1.

CHAPTER

TWO

INSTALLATION

The process of installing Sublime Text is different for each platform.

Make sure to read the conditions for use on the official site. Sublime Text is not free.

2.1 32 bits or 64 bits?

Choose the 64-bit version if you’re running a 64-bit operating system, otherwise the 32-bit version.

On Windows, if in doubt, choose the 32-bit version. Modern 64-bit versions of Windows can run 32-bit software.

On Linux run this command in your terminal to check your operating system’s type:

uname -m

For OS X, you can ignore this section: there is only one version of Sublime Text for OS X.

2.2 Windows

2.2.1 Portable or Not Portable?

Sublime Text comes in two flavors for Windows: normal, and portable. If you need the portable installation, you
probably know already. Otherwise, go with the normal one.

Normal installations separate data between two folders: the installation folder proper, and the data directory. These
concepts are explained later in this guide. Normal installations also integrate Sublime Text with the Windows context
menu.

Portable installations will keep all files Sublime Text needs to run in one single folder. You can then move this folder
around and the editor will still work.

2.2.2 How to Install the Normal Version of Sublime Text

Download the installer, doubleclick on it and follow the onscreen instructions.

2.2.3 How to Install the Portable Version of Sublime Text

Download the package and uncompress it to a folder of your choice. You will find the sublime_text.exe executable
inside that folder.

3

http://www.sublimetext.com/buy

Sublime Text Unofficial Documentation Documentation, Release 3.0

2.3 OS X

Download and open the .dmg file, and then drag the Sublime Text 2 bundle into the Applications folder.

2.4 Linux

You can download the package and uncompress it manually. Alternatively, you can use the command line.

For i386

cd ~
wget http://c758482.r82.cf2.rackcdn.com/Sublime\ Text\ 2.0.1.tar.bz2
tar vxjf Sublime\ Text\ 2.0.1.tar.bz2

For x64

cd ~
wget http://c758482.r82.cf2.rackcdn.com/Sublime Text 2.0.1 x64.tar.bz2
tar vxjf Sublime\ Text\ 2.0.1\ x64.tar.bz2

Now we should move the uncompressed files to an appropriate location.

sudo mv Sublime\ Text\ 2 /opt/

Lastly, we create a symbolic link to use at the command line.

sudo ln -s /opt/Sublime\ Text\ 2/sublime_text /usr/bin/sublime

In Ubuntu, if you also want to add Sublime Text to the Unity luncher, read on.

First we need to create a new file.

sudo sublime /usr/share/applications/sublime.desktop

Then copy the following into it.

[Desktop Entry]
Version=2.0.1
Name=Sublime Text 2
Only KDE 4 seems to use GenericName, so we reuse the KDE strings.
From Ubuntu’s language-pack-kde-XX-base packages, version 9.04-20090413.
GenericName=Text Editor

Exec=sublime
Terminal=false
Icon=/opt/Sublime Text 2/Icon/48x48/sublime_text.png
Type=Application
Categories=TextEditor;IDE;Development
X-Ayatana-Desktop-Shortcuts=NewWindow

[NewWindow Shortcut Group]
Name=New Window
Exec=sublime -n
TargetEnvironment=Unity

If you’ve registered your copy of Sublime Text, but every time you open it you’re asked to enter your license, you
should try running this command.

4 Chapter 2. Installation

Sublime Text Unofficial Documentation Documentation, Release 3.0

sudo chown -R username:username /home/username/.config /sublime-text-2

Just replace username with your account’s username. This should fix the permission error in the case that you opened
up Sublime Text as root when you first entered the license.

2.5 Living Dangerously... or Not

Sublime Text has three release channels:

• Stable (default)

• Dev

• Nightly

If you are working on a NASA project or are on a tight deadline, keep using the stable releases and stop reading here.
Stable releases are better tested and more reliable for everyday use than the others. They come out roughly once a
month. The majority of users will want to use stable releases only.

The dev and nightly channels are unstable, which likely means that builds published through them will contain bugs
and not work reliably. They are updated more often than stable releases.

Dev builds are available for everyone. On average, they’re released twice a month. While not yet ready for everyday
use, they showcase new features in a mostly unbroken fashion.

Finally, nightly builds are the bleeding edge, with frequent updates and also frequent problems of various degrees of
severity. They are fun to try out, but do so at your own risk. Nightly builds are only available for registered users.

2.5. Living Dangerously... or Not 5

http://www.sublimetext.com/2
http://www.sublimetext.com/dev
http://www.sublimetext.com/nightly

Sublime Text Unofficial Documentation Documentation, Release 3.0

6 Chapter 2. Installation

CHAPTER

THREE

3.1

3.2

Windows

, Packages/User, data* *data

non-English ****Sublime Text

3.3

Sublime Texthacker

Sublime Text

Sublime Text

Sublime Text

3.4 Data

data

• Windows: %APPDATA%\Sublime Text 3

• OS X: ~/Library/Application Support/Sublime Text 3

• Linux: ~/.config/sublime-text-3

portable installations(), Sublime Text 3/Data* *Sublime Text 3

Data data

Packages

This is a key directory: all resources for supported programming and markup languages are stored here. A package
is a directory containing related files having a special meaning for Sublime Text.

You can access the packages directory from the main menu (Preferences | Browse Packages...), or by means of an API
call: sublime.packages_path(). In this guide, we refer to this location as Packages, packages path, packages
folder or packages directory.

7

Sublime Text Unofficial Documentation Documentation, Release 3.0

3.4.1 The User Package

Packages/User is a catch-all directory for custom plugins, snippets, macros, etc. Consider it your personal area in the
packages folder. Sublime Text will never overwrite the contents of Packages/User during upgrades.

3.5 The Python Console and the Python API

This information is especially interesting for programmers. For other users, you just need to know that Sublime Text
enables users with programming skills to add their own features to the editor. (So go learn how to program; it’s great
fun!)

Sublime Text comes with an embedded Python interpreter. It’s an useful tool to inspect the editor’s settings and to
quickly test API calls while developing plugins.

To open the Python console, press Ctrl+‘ or select View | Show Console from the main menu.

Confused? Let’s try again more slowly:

Python is a programming language known to be easy for beginners and very powerful at the same time. API is
short for ‘Application Programming Interface’, which is a fancy way of saying that Sublime Text 3 is prepared to be
programmed by the user. Put differently, Subime Text gives the user access to its internals through Python. Finally, a
console is a little window inside Sublime Text that lets you type in short snippets of Python code and run them. The
console also shows text output by Sublime Text or its plugins.

3.5.1 Your System’s Python vs the Sublime Text 3 Embedded Python

On Windows and Linux, Sublime Text 3 comes with its own Python interpreter and it’s separate from your system’s
Python installation.

On OS X, the system Python is used instead. Modifying your system version of Python, such as replacing it with the
MacPorts version, can cause problems for Sublime Text.

The embedded interpreter is intended only to interact with the plugin API, not for general development.

3.6 Packages, Plugins, Resources and Other Things That May Not
Make Sense to You Now

Almost every aspect of Sublime Text can be tweaked, extended or customized. This is all you need to understand for
now. Well, that and that this vast flexibility is the reason why you’ll learn about so many configuration files: there
simply must be a place to specify all your preferences.

Among other things, you can modify the editor’s behavior, add macros and snippets, extend menus... and even create
whole new features –where feature means ‘anything you can think of’. OK, right, there might be things you can’t do,
but you’re definitely spoiled for choice.

These configuration files are simple text files following a special structure or format: JSON predominates, but you’ll
find XML files and Python files too.

In this guide, for brevity we refer collectively to all these disparate configuration files as resources.

Sublime Text will look for resources inside the packages folder. To keep things tidy, the editor has a notion of a
package, which is a folder containing resources that belong together (maybe they all help compose emails faster, write
HTML efficiently, enhance the coding experience for C, Ruby, Go...).

8 Chapter 3.

Sublime Text Unofficial Documentation Documentation, Release 3.0

3.7 Textmate Compatibility

This information is mainly useful for Textmate expats who’ve found a new home in Sublime Text. Textmate is an
editor for the Mac.

Sublime Text compatibility with Textmate bundles is good excluding commands, which are incompatible. Addition-
ally, Sublime Text requires all syntax definitions to have the .tmLanguage extension, and all preferences files to have
the .tmPreferences extension. This means that .plist files will be ignored, even if they are located under a Syntaxes or
Preferences subdirectory.

3.8 Vi/Vim Emulation

This information is mainly useful for dinosaurs and people who like to drop the term RSI in conversations. Vi is an
ancient modal editor that lets the user perform all operations from the keyboard. Vim, a modern version of vi, is still
in widespread use.

Sublime Text provides vi emulation through the Vintage package. The Vintage package is ignored by default. Read
more about Vintage in the official documentation.

An evolution of Vintage called Vintageous offers a better Vi editing experience and is updated more often than Vintage.
Vintageous is an open source project, just as Vintage.

3.9 Emacs

This information is hardly useful for anyone. Emacs is... Well, nobody really knows what emacs is, but some people
edit text with it.

If you are an emacs user, you’re probably not reading this.

3.10 Be Sublime, My Friend

Borrowing from Bruce Lee’s wisdom, Sublime Text can become almost anything you need it to be. In skilled hands,
blah, blah, blah.

Empty your mind; be sublime, my friend.

3.7. Textmate Compatibility 9

http://www.sublimetext.com/docs/3/vintage.html
http://guillermooo.bitbucket.org/Vintageous
http://guillermooo.bitbucket.org/Vintageous
http://www.sublimetext.com/docs/3/vintage.html
http://www.youtube.com/watch?v=7ijCSu87I9k

Sublime Text Unofficial Documentation Documentation, Release 3.0

10 Chapter 3.

CHAPTER

FOUR

EDITING

4.1 Overview

Sublime Text is brim-full of editing features. This topic just scratches the surface of what’s possible.

4.2 Column Selection

Column Selection can be used to select a rectangular area of a file. Column selection doesn’t operate via a separate
mode, instead it makes use of multiple selections.

You can use additive selections to select multiple blocks of text, or subtractive selections to remove a block.

4.2.1 Using the Mouse

Windows

• Right Mouse Button +

• OR: Middle Mouse Button

• Add to selection: Ctrl

• Subtract from selection: Alt

Linux

• Right Mouse Button +

• Add to selection: Ctrl

• Subtract from selection: Alt

OS X

• Left Mouse Button +

• OR: Middle Mouse Button

• Add to selection:

• Subtract from selection: +

11

Sublime Text Unofficial Documentation Documentation, Release 3.0

4.2.2 Using the Keyboard

Windows: Ctrl + Alt + Up and Ctrl + Alt + Down

Linux: Alt + + Up and Alt + + Down

OS X: + + Up and + + Down

4.3 Multiple Selections

Multiple selections let you make sweeping changes to your text efficiently. Any praise about multiple selections is an
understatement. This is why:

Select some text and press Ctrl + D to add more instances. If you want to skip the current instance, press Ctrl
+ K, Ctrl + D.

If you go too far, press Ctrl + U to deselect the current instance.

4.4 Transforming Multiple Selections into Lines

Ctrl + L expands the selections to the end of the line. Ctrl + Shift + L splits the selections into lines.

You can copy multiple selected lines to a separate buffer, edit them there, select the content again as multiple lines and
then paste them back into place in the first buffer.

4.5 Other Ways of Selecting Text

The list is long; all available options can be found under Selection. To name a few:

• Select subwords (Alt + Shift + <arrow>)

• Expand selection to brackets (Ctrl + Shift + M)

• Expand selection to indentation (Ctrl + Shift + J)

• Expand selection to scope (Ctrl + Shift + Space)

4.6 Transposing Things

Need to swap two letters or, better yet, two words? Experiment with Ctrl + T.

4.7 And much, much more...

The Edit, Selection, Find and Goto menus are good places to look for handy editing tools. You might end up using
just a few of them, but the rest will still be there for when you need them.

12 Chapter 4. Editing

CHAPTER

FIVE

SEARCH AND REPLACE

Sublime Text features two main types of search:

5.1 Search and Replace - Single File

5.1.1 Searching

To open the search panel for buffers, press Ctrl + F. Some options in the search panel and search actions can be
controlled with the keyboard:

Toggle Regular Expressions Alt + R
Toggle Case Sensitivity Alt + C
Toggle Exact Match Alt + W
Find Next Enter
Find Previous Shift + Enter
Find All Alt + Enter

5.1.2 Incremental Search

The incremental search panel can be brought up with Ctrl + I. The only difference with the regular search panel
lies in the behavior of the Enter key: in incremental searches, it will select the next match in the buffer and dismiss
the search panel for you. Choosing between this panel or the regular search panel is mainly a matter of preference.

5.1.3 Replacing Text

You can open the replace planel with Ctrl + H.

Replace All: Ctrl + Alt + Enter

5.1.4 Tips

Other Ways of Searching in Buffers

Goto Anything provides the operator # to search in the current buffer. The search term will be the part following the
operator.

13

Sublime Text Unofficial Documentation Documentation, Release 3.0

Other Key Bindings to Search in Buffers

These key bindings work when the search panel is hidden.

Search Forward Using Most Recent Pattern F3
Search Backwards Using Most Recent Pattern Shift + F3
Select All Matches Using Most Recent Pattern Alt + F3

Multiline Search

You can type a multiline search pattern. To enter a newline character, press Ctrl + Enter in the search panel.
Note that the search panel is resizable too.

5.2 Search and Replace - Multiple Files

5.2.1 Searching

To open the search panel for files, press Ctrl + Shift + F. You can use the keyboard to control the search panel
and some search actions:

Toggle Regular Expressions Alt + R
Toggle Case Sensitivity Alt + C
Toggle Exact matches Alt + W
Find Next Enter

5.2.2 Search Scope

The Where field in the search panel determines where to search. You can define the scope of the search in several
ways:

• Adding individual directories (Unix-style paths, even on Windows)

• Adding/excluding files based on a pattern

• Adding symbolic locations (<open folders>, <open files>)

You can combine these filters separating them with commas, for example:

/C/Users/Joe/Top Secret,-*.html,<open files>

Press the ... button in the search panel to display a menu containing these options.

5.2.3 Results Format

In the search panel, you can find the following options to customize the results format:

• Show in Separate Buffer/Output Panel

• Show Context

14 Chapter 5. Search and Replace

Sublime Text Unofficial Documentation Documentation, Release 3.0

5.2.4 Navigating Results

If the search yields matches, you can move through the sequence using the following key bindings:

Next match F4
Previous match Shift + F4

We’ll examine them in turn, but first let’s talk about a powerful tool for searching text: regular expressions.

5.3 Regular Expressions

Regular Expressions find complex patterns in text. To take full advantage of the search and replace facilities in Sublime
Text, you should at least learn the basics of regular expressions. In this guide we won’t explain how to use regular
expressions.

Typing out regular expression gets boring fast, and saying it actually is even more annoying, so instead nerds usually
shorten that to regexp or regex.

This is how a regex might look:

(?:Sw|P)i(?:tch|s{2})\s(?:it\s)?of{2}!

Regexes are known to hurt people’s feelings.

To use regular expressions, first you need to activate them in the various search panels. Otherwise, the search term
will be interpreted literally.

Sublime Text uses the Boost syntax for regular expressions.

5.3. Regular Expressions 15

http://www.boost.org/doc/libs/1_47_0/libs/regex/doc/html/boost_regex/syntax/perl_syntax.html

Sublime Text Unofficial Documentation Documentation, Release 3.0

16 Chapter 5. Search and Replace

CHAPTER

SIX

BUILD SYSTEMS (BATCH
PROCESSING)

Build systems let you run your files through external programs like make, tidy, interpreters, etc.

Executables called from build systems must be in your PATH. For more information about making sure the PATH seen
by Sublime Text is set correctly, see Troubleshooting Build Systems.

6.1 File Format

Build systems are JSON files and have the extension .sublime-build.

6.1.1 Example

Here’s an example of a build system:

{
"cmd": ["python", "-u", "$file"],
"file_regex": "^[]*File \"(...*?)\", line ([0-9]*)",
"selector": "source.python"

}

cmd Required. This option contains the actual command line to be executed:

python -u /path/to/current/file.ext

file_regex A Perl-style regular expression to capture error information from an external program’s output. This
information is used to help you navigate through error instances with F4.

selector If the Tools | Build System | Automatic option is set, Sublime Text will automatically find the corre-
sponding build system for the active file by matching selector to the file’s scope.

In addition to options, you can use some variables in build systems too, as we have done above with $file, which
expands to the active buffer’s filename.

6.2 Where to Store Build Systems

Build systems must be located somewhere under the Packages folder (e.g. Packages/User). Many packages include
their own build systems.

17

Sublime Text Unofficial Documentation Documentation, Release 3.0

6.3 Running Build Systems

Build systems can be run by pressing F7 or from Tools | Build.

See Also:

Reference for build systems Complete documentation on all available options, variables, etc.

18 Chapter 6. Build Systems (Batch Processing)

CHAPTER

SEVEN

FILE NAVIGATION AND FILE
MANAGEMENT

7.1 Goto Anything

Use Goto Anything to navigate your project’s files swiftly. (More about projects later.)

To open Goto Anything, press Ctrl+P. As you type into the input area, all file names of files open within the editor
(and of files in added folders too) will be searched, and a preview of the best match will be shown. This preview is
transient; that is, it won’t become the actual active view until you perform some operation on it. Transient views go
away when you press Esc. You will see transient views in other situations too.

But Goto Anything lives up to its name—there’s more to it than searching files:

To perform a fuzzy text search using Goto Anything, append # and keep typing, like this:

isl#trsr

This makes Sublime Text perform a fuzzy search for trsr in files whose name loosely matches isl. For example, you
could find the word treasure inside a file named island.

To perform a fuzzy search in the current view, press Ctrl+;.

Fuzzy searches can detect transposed characters for clumsy fingers.

And there’s more:

To search symbols in the current view, press Ctrl+R. As in the case of #, the @ operator can be used after file names
too.

To go to a line number, press Ctrl+G. Again, the operator : can be used after file names, just as # and @.

Searching for symbols will only work if the active file type has symbols defined for it. Symbols are defined in
.tmLanguage files.

7.2 Sidebar

The sidebar gives an overview of the active project. Files and folders added to the sidebar will be available in Goto
Anything as well as for project-wide actions (like project-wide searches).

Projects and the sidebar are very closely related. It’s important to note that there’s always an active project, whether
it’s explicit or implicit.

To toggle the sidebar, press Ctrl+K, Ctrl+B.

19

Sublime Text Unofficial Documentation Documentation, Release 3.0

The sidebar can be navigated with the arrow keys, but first you need to give it the focus by pressing Ctrl+0. To
return the focus to the view, press Esc. Alternatively, you can use the mouse to the same effect.

Files opened from the sidebar create semi-transient views. Unlike transient views, semi-transient views show up as a
new tab. You will be able to tell semi-transient views from other views because their tab text is shown in italics. When
a new semi-transient view is opnened, any existing semi- transient view in the same pane gets automatically closed.

The sidebar provides basic file management operations through its context menu.

7.3 Projects

Projects group sets of files and folders to keep your work organized. Set up a project by adding folders in a way that
suits you, and then save your new configuration.

To save a project, go to Project | Save Project As....

To switch projects quickly, press Ctrl+Alt+P.

Project data is stored in JSON files with a .sublime-project extension. Wherever there’s a .sublime-project file, you
may find one or more .sublime-workspace files. Workspaces are explained later.

Project files can define settings specific to that project. More information in the official documentation.

You can open a project from the command line by passing the .sublime- project file as an argument to the Sublime
Text executable.

7.4 Workspaces

Workspaces can be seen as different views into the same project. For example, you may want to have only a selected
few files open while working on Feature A. Or perhaps you use a different pane layout when you’re writing tests, etc.
Workspaces help in these situations.

**Workspaces behave very much like projects. To create a new workspace, select **Project | New Workspace for
Project. To save the current workspace, select **Project | Save Workspace As....

Workspaces data is stored in JSON files with the .sublime-workspace extension.

Contrary to .sublime-project files, .sublime-workspace files are not meant to be shared or edited manually. Never
commit .sublime-workspace files into a source code repository.

To switch between different workspaces, use Ctrl+Alt+P, exactly as you do with projects.

As with projects, you can open a workspace from the command line by passing the desired .sublime-workspace file
as an argument to the Sublime Text executable.

7.5 Panes

Panes are groups of Views. In Sublime Text you can have multiple panes open at the same time.

To create a new pane, press Ctrl+K, Ctrl+Up. To destroy a pane, press Ctrl+K, Ctrl+Down.

To find further pane management commands, look under View | Layout and related submenus.

20 Chapter 7. File Navigation and File Management

http://www.sublimetext.com/docs/2/projects.html

CHAPTER

EIGHT

CUSTOMIZING SUBLIME TEXT

Sublime Text is highly customizable. In the topics below, we’ll explain to you how you can adapt it to your needs and
preferences.

8.1 Settings

Sublime Text stores configuration data in .sublime-settings files. Flexibility comes at the price of a slightly complex
system for applying settings. However, here’s a rule of thumb:

Always place your personal settings files under Packages/User to guarantee they will take precedence over any other
conflicting settings files.

With that out of the way, let’s unveil, to please masochistic readers, the mysteries of how settings work.

8.1.1 Format

Settings files use JSON and have the .sublime-settings extension.

8.1.2 Types of Settings

The purpose of each .sublime-settings file is determined by its name. These names can be descriptive (like Preferences
(Windows).sublime-settings or Minimap.sublime-settings), or they can be related to what the settings file is controlling.
For example, file type settings need to carry the name of the .tmLanguage syntax definition for the file type. Thus, for
the

.py file type, whose syntax definition is contained in Python.tmLanguage, the corresponding settings file
would be called Python.sublime-settings.

Also, some settings files only apply to specific platforms. This can be inferred from the filenames: Preferences
(Windows).sublime-settings, Preferences (Linux).sublime-settings, etc.

This is important: Platform-specific settings files in the Packages/User folder are ignored. In this way, you can be
sure that a single Platform-specific settings file will override all others.

8.1.3 How to Access and Edit Common Settings Files

Unless you need very fine-grained control over settings, you can access the main configuration files through the
Preferences | Settings - User and Preferences | Settings - More menu items. Editing Preferences - Settings Default

21

Sublime Text Unofficial Documentation Documentation, Release 3.0

isn’t a smart thing to do, because changes will be reverted with every update to the software. However, you can use
that file for reference: it contains comments explaining the purpose of all available global and file type settings.

8.1.4 Order of Precedence of .sublime-settings Files

The same settings file (such as Python.sublime-settings) can appear in multiple places. All settings defined in identi-
cally named files will be merged together and overwritten according to predefined rules. See Merging and Order of
Precedence for more information.

Let us remember again that any given settings file in Packages/User ultimately overrides every other settings file of
the same name.

In addition to settings files, Sublime Text maintains session data—settings for the particular set of files being currently
edited. Session data is updated as you work on files, so if you adjust settings for a particular file in any way (mainly
through API calls), they will be recorded in the session and will take precedence over any applicable .sublime-settings
files.

To check the value of a setting for a particular file being edited, use view.settings().get(<setting_name>) from the
console.

Finally, it’s also worth noting that some settings may be automatically adjusted for you. Keep this in mind if you’re
puzzled about some setting’s value. For instance, this is the case for certain whitespace-related settings and the
syntax setting.

Below, you can see the order in which Sublime Text would process a hypothetical hierarchy of settings for Python files
on Windows:

• Packages/Default/Preferences.sublime-settings

• Packages/Default/Preferences (Windows).sublime-settings

• Packages/User/Preferences.sublime-settings

• Packages/Python/Python.sublime-settings

• Packages/User/Python.sublime-settings

• Session data for the current file

• Auto adjusted settings

8.1.5 Global Editor Settings and Global File Settings

These settings are stored in Preferences.sublime-settings and Preferences (<platform>).sublime-settings files. The
defaults can be found in Packages/Default.

Valid names for <platform> are Linux, OSX, and Windows.

8.1.6 File Type Settings

If you want to target a specific file type, name the .sublime-settings file after the file type’s syntax definition. For
example, if our syntax definition was called Python.tmLanguage, we’d need to call our settings file Python.sublime-
settings.

Settings files for specific file types usually live in packages, like Packages/Python, but there can be multiple settings
files in separate locations for the same file type.

Similarly to global settings, one can establish platform-specific settings for file types. For example, Python
(Linux).sublime-settings would be consulted only under Linux.

22 Chapter 8. Customizing Sublime Text

Sublime Text Unofficial Documentation Documentation, Release 3.0

Also, let us stress that, under Packages/User, only Python.sublime-settings would be read, but not any Python
(<platform>).sublime-settings variants.

Regardless of its location, any file-type-specific settings file has precedence over every global settings file affecting
the file type.

8.1.7 Where to Store User Settings (Once Again)

Whenever you want to save settings, especially if they should be preserved between software updates, place the
corresponding .sublime-settings file in Packages/User.

8.2 Indentation

See Also:

Indentation Official Sublime Text Documentation.

8.3 Key Bindings

See Also:

Reference for key bindings Complete documentation on key bindings.

Key bindings let you map sequences of key presses to actions.

8.3.1 File Format

Key bindings are defined in JSON and stored in .sublime-keymap files. In order to integrate better with each
platform, there are separate key map files for Linux, OSX and Windows. Only key maps for the corresponding
platform will be loaded.

Example

Here’s an excerpt from the default key map for Windows:

[
{ "keys": ["ctrl+shift+n"], "command": "new_window" },
{ "keys": ["ctrl+o"], "command": "prompt_open_file" }

]

8.3.2 Defining and Overriding Key Bindings

Sublime Text ships with a default key map (for example, Packages/Default/Default
(Windows).sublime-keymap). In order to override the key bindings defined there, or to add new ones,
you can store them in a separate key map of higher precedence: for example Packages/User/Default
(Windows).sublime-keymap.

See Merging and Order of Precedence for more information on how Sublime Text sorts files for merging.

8.2. Indentation 23

http://www.sublimetext.com/docs/2/indentation.html

Sublime Text Unofficial Documentation Documentation, Release 3.0

8.3.3 Advanced Key Bindings

Simple key bindings consist of a key combination and a command to be executed. However, there are more complex
syntaxes for passing arguments and contextual awareness.

Passing Arguments

Arguments are specified in the args key:

{ "keys": ["shift+enter"], "command": "insert", "args": {"characters": "\n"} }

Here, \n is passed to the insert command when you press Shift+Enter.

Contexts

Contexts determine whether a given key binding will be enabled based on the caret’s position or some other state.

{ "keys": ["escape"], "command": "clear_fields", "context":
[

{ "key": "has_next_field", "operator": "equal", "operand": true }
]

}

This key binding translates to clear snippet fields and resume normal editing if there is a next field available. Thus,
unless you are cycling through snippet fields, pressing ESC will not trigger this key binding. (However, something
else might occur instead if ESC happens to be bound to a different context too—and that’s likely to be the case for
ESC.)

8.4 Menus

No documentation is available about this topic.

But here’s Bruce Lee, screaming

24 Chapter 8. Customizing Sublime Text

http://splicd.com/LMUsa66JQc4/392/396

CHAPTER

NINE

EXTENDING SUBLIME TEXT

As can be seen from the long list of topics below, Sublime Text is a very extensible editor.

9.1 Commands

Commands are ubiquitous in Sublime Text: key bindings, menu items and macros all work through the command
system. They are found in other places too.

Some commands are implemented in the editor’s core, but many of them are provided as Python plugins. Every
command can be called from a Python plugin.

9.1.1 Command Dispatching

Normally, commands are bound to the application object, a window object or a view object. Window objects, however,
will dispatch commands based on input focus, so you can issue a view command from a window object and the correct
view instance will be found for you.

9.1.2 Anatomy of a Command

Commands have a name separated by underscores (snake_case) like hot_exit, and can take a dictionary of argu-
ments whose keys must be strings and whose values must be JSON types. Here are a few examples of commands run
from the Python console:

view.run_command("goto_line", {"line": 10})
view.run_command(’insert_snippet’, {"contents": "<$SELECTION>"})
view.window().run_command("prompt_select_project")

See Also:

Reference for commands Command reference.

9.2 Macros

Macros are a basic automation facility comprising sequences of commands. Use them whenever you need to repeat
the exact same steps to perform an operation.

Macro files are JSON files with the extension .sublime-macro. Sublime Text ships with a few macros providing
core functionality, such as line and word deletion. You can find these under Tools | Macros.

25

Sublime Text Unofficial Documentation Documentation, Release 3.0

9.2.1 How to Record Macros

To start recording a macro, press Ctrl+q and subsequently execute the desired steps one by one. When you’re done,
press Ctrl+q again to stop the macro recorder. Your new macro won’t be saved to a file, but kept in the macro buffer
instead. Now you will be able to run the recorded macro by pressing Ctrl+Shift+q, or save it to a file by selecting
Tools | Save macro...

Note that the macro buffer will remember only the latest recorded macro. Also, macros only record commands sent to
the buffer: window-level commands, such creating a new file, will be ignored.

9.2.2 How to Edit Macros

As an alternative to recording a macro, you can edit it by hand. Just save a new file with the extension
.sublime-macro under PackagesUser and add commands to it. Macro files have this format:

[
{"command": "move_to", "args": {"to": "hardeol"}},
{"command": "insert", "args": {"characters": "\n"}}

]

See the ../core/commands section for more information on commands.

If you’re editing a macro by hand, you need to escape quotation marks, blank spaces and backslashes by preceding
them with \.

9.2.3 Where to Store Macros

Macro files can be stored in any package folder, and then will show up under Tools | Macros | <PackageName>.

9.3 Snippets

Whether you are coding or writing the next vampire best-seller, you’re likely to need certain short fragments of text
again and again. Use snippets to save yourself tedious typing. Snippets are smart templates that will insert text for
you, adapting it to their context.

To create a new snippet, select Tools | New Snippet... Sublime Text will present you with an skeleton for it.

Snippets can be stored under any package’s folder, but to keep it simple while you’re learning, you can save them to
your Packages/User folder.

9.3.1 Snippets File Format

Snippets typically live in a Sublime Text package. They are simplified XML files with the extension
sublime-snippet. For instance, you could have a greeting.sublime-snippet inside an Email pack-
age.

The structure of a typical snippet is as follows (including the default hints Sublime Text inserts for your convenience):

<snippet>
<content><![CDATA[Type your snippet here]]></content>
<!-- Optional: Tab trigger to activate the snippet -->
<tabTrigger>xyzzy</tabTrigger>
<!-- Optional: Scope the tab trigger will be active in -->
<scope>source.python</scope>

26 Chapter 9. Extending Sublime Text

Sublime Text Unofficial Documentation Documentation, Release 3.0

<!-- Optional: Description to show in the menu -->
<description>My Fancy Snippet</description>

</snippet>

The snippet element contains all the information Sublime Text needs in order to know what to insert, whether to
insert and when. Let’s see all of these parts in turn.

content The actual snippet. Snippets can range from simple to fairly complex templates. We’ll look at examples
of both later.

Keep the following in mind when writing your own snippets:

• If you want to get a literal $, you have to escape it like this: \$.

• When writing a snippet that contains indentation, always use tabs. When the snippet is inserted, the tabs
will be transformed into spaces if the option translateTabsToSpaces is true.

• The content must be included in a <![CDATA[...]]> section. Snippets won’t work if you don’t do
this!

• The content of your snippet must not contain]]> because this string of characters will prematurely
close the <![CDATA[...]]> section, resulting in an XML error. To work around this pitfall, you can
insert an undefined variable into the string like this:]]$NOT_DEFINED>. This modified string passes
through the XML parser without closing the content element’s <![CDATA[...]]> section, but Sublime
Text will replace $NOT_DEFINED with an empty string before inserting the snippet into your document.
In other words,]]$NOT_DEFINED> in your snippet file content will be written as]]> when you
trigger the snippet.

tabTrigger Defines the sequence of keys that must be pressed to insert this snippet. After typing this sequence,
the snippet will kick in as soon as you hit the Tab key.

A tab trigger is an implicit key binding.

scope Scope selector determining the context where the snippet will be active. See Scopes for more information.

description Used for displaying the snippet in the Snippets menu. If unavailable, Sublime Text defaults to the
name of the snippet.

With this information, you can start writing your own snippets as described in the next sections.

Note: In the interest of brevity, we’re only including the content element’s text in examples unless otherwise
noted.

9.3.2 Snippet Features

Environment Variables

Snippets have access to contextual information in the form of environment variables. Sublime Text automatically sets
the values of the variables listed below.

You can also add your own variables to provide extra information. These custom variables are defined in
.sublime-options files.

Let’s see a simple example of a snippet using variables:

====================================
USER NAME: $TM_FULLNAME
FILE NAME: $TM_FILENAME
TAB SIZE: $TM_TAB_SIZE

9.3. Snippets 27

Sublime Text Unofficial Documentation Documentation, Release 3.0

SOFT TABS: $TM_SOFT_TABS
====================================

Output:
====================================
USER NAME: guillermo
FILE NAME: test.txt
TAB SIZE: 4

SOFT TABS: YES
====================================

Fields

With the help of field markers, you can cycle through positions within the snippet by pressing the Tab key. Fields are
used to walk you through the customization of a snippet after it’s been inserted.

First Name: $1
Second Name: $2
Address: $3

In the example above, the cursor will jump to $1 if you press Tab once. If you press Tab a second time, it will
advance to $2, etc. You can also move backwards in the series with Shift+Tab. If you press Tab after the highest
tab stop, Sublime Text will place the cursor at the end of the snippet’s content, enabling you to resume normal editing.

If you want to control where the exit point should be, use the $0 mark.

You can break out of the field cycle any time by pressing Esc.

Mirrored Fields

Identical field markers mirror each other: when you edit the first one, the rest will be populated in real time with the
same value.

First Name: $1
Second Name: $2
Address: $3
User name: $1

In this example, “User name” will be filled out with the same value as “First Name”.

Placeholders

By expanding the field syntax a little bit, you can define default values for a field. Placeholders are useful whenever
there’s a general case for your snippet, but still you still want to keep it customizable.

#####.. code-block:: perl

First Name: ${1:Guillermo} Second Name: ${2:López} Address: ${3:Main Street 1234} User name: $1

Variables can be used as placeholders:

#####.. code-block:: perl

First Name: ${1:Guillermo} Second Name: ${2:López} Address: ${3:Main Street 1234} User name:
${4:$TM_FULLNAME}

28 Chapter 9. Extending Sublime Text

Sublime Text Unofficial Documentation Documentation, Release 3.0

And you can nest placeholders within other placeholders too:

#####.. code-block:: perl

Test: ${1:Nested ${2:Placeholder}}

Substitutions

Warning: This section is a draft and may contain inaccurate information.

In addition to the placeholder syntax, tab stops can specify more complex operations with substitutions. Use substitu-
tions to dynamically generate text based on a mirrored tab stop.

The substitution syntax has the following syntaxes:

• ${var_name/regex/format_string/}

• ${var_name/regex/format_string/options}

var_name The variable name: 1, 2, 3...

regex Perl-style regular expression: See the Boost library reference for regular expressions.

format_string See the Boost library reference for format strings.

options

Optional. May be any of the following:

i Case-insensitive regex.

g Replace all occurrences of regex.

m Don’t ignore newlines in the string.

With substitutions you can, for instance, underline text effortlessly:

Original: ${1:Hey, Joe!}
Transformation: ${1/./=/g}

Output:

Original: Hey, Joe!
Transformation: =========

9.4 Completions

See Also:

Reference for completions Complete documentation on all available options.

Sublime Text Documentation Official documentation on this topic.

In the spirit of IDEs, completions suggest terms and insert snippets. Completions work through the completions list
or, optionally, by pressing Tab.

Note that, in the broader sense of words that Sublime Text will look up and insert for you, completions aren’t limited
to completions files, because other sources contribute to the list of words to be completed, namely:

• Snippets

9.4. Completions 29

http://www.boost.org/doc/libs/1_44_0/libs/regex/doc/html/boost_regex/syntax/perl_syntax.html
http://www.boost.org/doc/libs/1_44_0/libs/regex/doc/html/boost_regex/format/perl_format.html
http://www.sublimetext.com/docs/2/tab_completion.html

Sublime Text Unofficial Documentation Documentation, Release 3.0

• API-injected completions

• Buffer contents

However, the most explicit way Sublime Text provides you to feed it completions is by means of
.sublime-completions files. This topic deals with the creation of a .sublime-completions file as well
as with the interactions among all sources for completions.

9.4.1 File Format

Completions are JSON files with the .sublime-completions extension. Entries in completions files can contain
either snippets or plain strings.

Example

Here’s an excerpt from Sublime Text’s HTML completions:

{
"scope": "text.html - source - meta.tag, punctuation.definition.tag.begin",

"completions":
[

{ "trigger": "a", "contents": "$0" },
{ "trigger": "abbr", "contents": "<abbr>$0</abbr>" },
{ "trigger": "acronym", "contents": "<acronym>$0</acronym>" }

]
}

scope Determines when the completions list will be populated with this list of completions. See Scopes for more
information.

In the example above, we’ve only used trigger-based completions, but completions files support simple completions
too. Simple completions are just plain strings. Expanding our example with a few simple completions results in a list
like this:

{
"scope": "text.html - source - meta.tag, punctuation.definition.tag.begin",

"completions":
[

{ "trigger": "a", "contents": "$0" },
{ "trigger": "abbr", "contents": "<abbr>$0</abbr>" },
{ "trigger": "acronym", "contents": "<acronym>$0</acronym>" },

"ninja",
"robot",
"pizza"

]
}

9.4.2 Sources for Completions

Completions not only originate in .sublime-completions files. Here is the exhaustive list of sources for com-
pletions:

• Snippets

30 Chapter 9. Extending Sublime Text

Sublime Text Unofficial Documentation Documentation, Release 3.0

• API-injected completions

• .sublime-completions files

• Words in buffer

Priority of Sources for Completions

This is the order in which completions are prioritized:

• Snippets

• API-injected completions

• .sublime-completions files

• Words in the buffer

Snippets will always win if the current prefix matches their tab trigger exactly. For the rest of the completion sources,
a fuzzy match is performed. Furthermore, snippets always lose with fuzzy matches.

But this is relevant only when the completion is inserted automatically. When a list of completions is shown, snippets
will still be listed alongside the other items, even if the prefix only partially matches the snippets’ tab triggers.

9.4.3 How to Use Completions

There are two methods for using completions. Even though, when screening them, the priority given to completions
always stays the same, the two methods produce different results, as explained next.

Completions can be inserted in two ways:

• Through the completions list (Ctrl+spacebar).

• By pressing Tab.

The Completions List

The completions list (Ctrl+spacebar) does its work in two ways: by bringing up a list of suggested words to be
completed, or by inserting the best match directly.

If the choice of best completion is ambiguous, an interactive list will be presented to the user, who then will have
to select an item himself. Unlike other items, snippets in this list are displayed in the format: <tab_trigger> :
<name>, where <tab_trigger> and <name> are variable.

Using Ctrl+spacebar, the completion choice will be automatic only if the list of completion candidates can be
narrowed down to one unambiguous choice, given the current prefix.

Tab-Completed Completions

If you want to be able to tab-complete completions, the setting tab_completion must be true, which is the
default. Snippets’ tab-completion is unaffected by this setting: they always will be completed, or not, according to
their tab trigger.

With tab_completion enabled, completion of items is always automatic. This means, unlike the case of the
completions list, that Sublime Text will always make the decision for you. The rules for selecting the best completion
are the same as described above, but in case of ambiguity, Sublime Text will insert the item it deems most suitable.

9.4. Completions 31

Sublime Text Unofficial Documentation Documentation, Release 3.0

Inserting a Literal Tab Character

When tab_completion is enabled, you can press Shift+Tab to insert a literal tab character.

9.5 Command Palette

See Also:

Reference for Command Palette Complete documentation on the command palette options.

9.5.1 Overview

The command palette bound to Ctrl+Shift+P is an interactive list whose purpose is to execute commands. The
command palette is fed by entries in .sublime-commands files. Usually, commands that don’t warrant creating a
key binding of their own are good candidates for inclusion in a .sublime- commands files.

9.5.2 File Format (Commands Files)

Commands files use JSON and have the .sublime-commands extension.

Here’s an excerpt from Packages/Default/Default.sublime-commands:

[
{ "caption": "Project: Save As", "command": "save_project_as" },
{ "caption": "Project: Close", "command": "close_project" },
{ "caption": "Project: Add Folder", "command": "prompt_add_folder" },

{ "caption": "Preferences: Default File Settings", "command": "open_file", "args": {"file": "${packages}/Default/Base File.sublime-settings"} },
{ "caption": "Preferences: User File Settings", "command": "open_file", "args": {"file": "${packages}/User/Base File.sublime-settings"} },
{ "caption": "Preferences: Default Global Settings", "command": "open_file", "args": {"file": "${packages}/Default/Global.sublime-settings"} },
{ "caption": "Preferences: User Global Settings", "command": "open_file", "args": {"file": "${packages}/User/Global.sublime-settings"} },
{ "caption": "Preferences: Browse Packages", "command": "open_dir", "args": {"dir": "$packages"} }

]

caption Text for display in the command palette.

command Command to be executed.

args Arguments to pass to command.

9.5.3 How to Use the Command Palette

1. Press Ctrl+Shift+P

2. Select command

The command palette filters entries by context. This means that whenever you open it, you won’t always see all the
commands defined in every .sublime-commands file.

32 Chapter 9. Extending Sublime Text

Sublime Text Unofficial Documentation Documentation, Release 3.0

9.6 Syntax Definitions

Syntax definitions make Sublime Text aware of programming and markup languages. Most noticeably, they work
together with colors to provide syntax highlighting. Syntax definitions define scopes that divide the text in a buffer
into named regions. Several editing features in Sublime Text make extensive use of this fine-grained contextual
information.

Essentially, syntax definitions consist of regular expressions used to find text, as well as more or less arbitrary, dot-
separated strings called scopes or scope names. For every occurrence of a given regular expression, Sublime Text
gives the matching text its corresponding scope name.

9.6.1 Prerequisites

In order to follow this tutorial, you will need to install AAAPackageDev, a package intended to ease the creation of
new syntax definitions for Sublime Text. It lives in a public Mercurial repository at Bitbucket.

Download the latest .sublime-package file and install it as described in Installation of .sublime-package Files.

Mercurial and Bitbucket

Mercurial is a distributed version control system (DVCS). Bitbucket is an online service that provides hosting for
Mercurial repositories. If you want to install Mercurial, there are freely available command-line and graphical
clients.

9.6.2 File format

Sublime Text uses property list (Plist) files to store syntax definitions. However, because editing XML files is a cum-
bersome task, we’ll use JSON instead, and convert it to Plist format afterwards. This is where the AAAPackageDev
package (mentioned above) comes in.

Note: If you experience unexpected errors during this tutorial, chances are AAAPackageDev is to blame. Don’t
immediately think your problem is due to a bug in Sublime Text.

By all means, do edit the Plist files by hand if you prefer to work in XML, but always keep in mind their differing
needs in regards to escape sequences, etc.

9.6.3 Scopes

Scopes are a key concept in Sublime Text. Essentially, they are named text regions in a buffer. They don’t do anything
by themselves, but Sublime Text peeks at them when it needs contextual information.

For instance, when you trigger a snippet, Sublime Text checks the scope bound to the snippet and looks at the caret’s
position in the file. If the caret’s current position matches the snippet’s scope selector, Sublime Text fires it off.
Otherwise, nothing happens.

9.6. Syntax Definitions 33

https://bitbucket.org/guillermooo/aaapackagedev
http://mercurial.selenic.com/
http://bitbucket.org
http://mercurial.selenic.com/downloads/
http://en.wikipedia.org/wiki/Property_list
http://en.wikipedia.org/wiki/JSON

Sublime Text Unofficial Documentation Documentation, Release 3.0

Scopes vs Scope Selectors

There’s a slight difference between scopes and scope selectors: scopes are the names defined in a syntax defi-
nition, while scope selectors are used in items like snippets and key bindings to target scopes. When creating a
new syntax definition, you care about scopes; when you want to constrain a snippet to a certain scope, you use a
scope selector.

Scopes can be nested to allow for a high degree of granularity. You can drill down the hierarchy very much like with
CSS selectors. For instance, thanks to scope selectors, you could have a key binding activated only within single
quoted strings in Python source code, but not inside single quoted strings in any other language.

Sublime Text inherits the idea of scopes from Textmate, a text editor for Mac. Textmate’s online manual contains
further information about scope selectors that’s useful for Sublime Text users too.

9.6.4 How Syntax Definitions Work

At their core, syntax definitions are arrays of regular expressions paired with scope names. Sublime Text will try to
match these patterns against a buffer’s text and attach the corresponding scope name to all occurrences. These pairs of
regular expressions and scope names are known as rules.

Rules are applied in order, one line at a time. Each rule consumes the matched text region, which therefore will
be excluded from the next rule’s matching attempt (save for a few exceptions). In practical terms, this means that
you should take care to go from more specific rules to more general ones when you create a new syntax definition.
Otherwise, a greedy regular expression might swallow parts you’d like to have styled differently.

Syntax definitions from separate files can be combined, and they can be recursively applied too.

9.6.5 Your First Syntax Definition

By way of example, let’s create a syntax definition for Sublime Text snippets. We’ll be styling the actual snippet
content, not the .sublime-snippet file.

Note: Since syntax definitions are primarily used to enable syntax highlighting, we’ll use the phrase to style to mean
to break down a source code file into scopes. Keep in mind, however, that colors are a different thing from syntax
definitions and that scopes have many more uses besides syntax highlighting.

Here are the elements we want to style in a snippet:

• Variables ($PARAM1, $USER_NAME...)

• Simple fields ($0, $1...)

• Complex fields with placeholders (${1:Hello})

• Nested fields (${1:Hello ${2:World}!})

• Escape sequences (\\$, \\<...)

• Illegal sequences ($, <...)

Note: Before continuing, make sure you’ve installed the AAAPackageDev package as explained above.

34 Chapter 9. Extending Sublime Text

http://manual.macromates.com/en/

Sublime Text Unofficial Documentation Documentation, Release 3.0

Creating A New Syntax Definition

To create a new syntax definition, follow these steps:

• Go to Tools | Packages | Package Development | New Syntax Definition

• Save the new file in your Packages/User folder as a .JSON-tmLanguage file.

You now should see a file like this:

{ "name": "Syntax Name",
"scopeName": "source.syntax_name",
"fileTypes": [""],
"patterns": [
],
"uuid": "ca03e751-04ef-4330-9a6b-9b99aae1c418"

}

Let’s examine now the key elements.

uuid Located at the end, this is a unique identifier for this syntax definition. Each new syntax definition gets its own
uuid. Don’t modify them.

name The name that Sublime Text will display in the syntax definition drop-down list. Use a short, descriptive name.
Typically, you will use the name of the programming language you are creating the syntax definition for.

scopeName The top level scope for this syntax definition. It takes the form source.<lang_name> or
text.<lang_name>. For programming languages, use source. For markup and everything else, use
text.

fileTypes This is a list of file extensions. When opening files of these types, Sublime Text will automatically
activate this syntax definition for them.

patterns A container for your patterns.

For our example, fill the template with the following information:

{ "name": "Sublime Snippet (Raw)",
"scopeName": "source.ssraw",
"fileTypes": ["ssraw"],
"patterns": [
],
"uuid": "ca03e751-04ef-4330-9a6b-9b99aae1c418"

}

Note: JSON is a very strict format, so make sure to get all the commas and quotes right. If the conversion to Plist
fails, take a look at the output panel for more information on the error. We’ll explain later how to convert a syntax
definition in JSON to Plist.

9.6.6 Analyzing Patterns

The patterns array can contain several types of elements. We’ll look at some of them in the following sections. If
you want to learn more about patterns, refer to Textmate’s online manual.

9.6. Syntax Definitions 35

Sublime Text Unofficial Documentation Documentation, Release 3.0

Regular Expressions’ Syntax In Syntax Definitions

Sublime Text uses Oniguruma‘s syntax for regular expressions in syntax definitions. Several existing syntax
definitions make use of features supported by this regular expression engine that aren’t part of perl-style regular
expressions, hence the requirement for Oniguruma.

Matches

Matches take this form:

{ "match": "[Mm]y \s+[Rr]egex",
"name": "string.ssraw",
"comment": "This comment is optional."

}

match A regular expression Sublime Text will use to find matches.

name The name of the scope that should be applied to any occurrences of match.

comment An optional comment about this pattern.

Let’s go back to our example. Make it look like this:

{ "name": "Sublime Snippet (Raw)",
"scopeName": "source.ssraw",
"fileTypes": ["ssraw"],
"patterns": [
],
"uuid": "ca03e751-04ef-4330-9a6b-9b99aae1c418"

}

That is, make sure the patterns array is empty.

Now we can begin to add our rules for Sublime snippets. Let’s start with simple fields. These could be matched with
a regex like so:

\$[0-9]+
or...
\$\d+

However, because we’re writing our regex in JSON, we need to factor in JSON’s own escaping rules. Thus, our
previous example becomes:

\\$\\d+

With escaping out of the way, we can build our pattern like this:

{ "match": "\\$\\d+",
"name": "keyword.source.ssraw",
"comment": "Tab stops like $1, $2..."

}

36 Chapter 9. Extending Sublime Text

http://www.geocities.jp/kosako3/oniguruma/doc/RE.txt

Sublime Text Unofficial Documentation Documentation, Release 3.0

Choosing the Right Scope Name

Naming scopes isn’t obvious sometimes. Check the Textmate online manual for guidance on scope names. It
is important to re-use the basic categories outlined there if you want to achieve the highest compatibility with
existing colors.
Colors have hardcoded scope names in them. They could not possibly include every scope name you can think
of, so they target the standard ones plus some rarer ones on occasion. This means that two colors using the same
syntax definition may render the text differently!
Bear in mind too that you should use the scope name that best suits your needs or preferences. It’d be perfectly
fine to assign a scope like constant.numeric to anything other than a number if you have a good reason to
do so.

And we can add it to our syntax definition too:

{ "name": "Sublime Snippet (Raw)",
"scopeName": "source.ssraw",
"fileTypes": ["ssraw"],
"patterns": [

{ "match": "\\$\\d+",
"name": "keyword.source.ssraw",
"comment": "Tab stops like $1, $2..."

}
],
"uuid": "ca03e751-04ef-4330-9a6b-9b99aae1c418"

}

We’re now ready to convert our file to .tmLanguage. Syntax definitions use Textmate’s .tmLanguage extension
for compatibility reasons. As explained above, they are simply XML files, but in Plist format.

Follow these steps to perform the conversion:

• Select Json to tmLanguage in Tools | Build System

• Press F7

• A .tmLanguage file will be generated for you in the same folder as your .JSON-tmLanguage file

• Sublime Text will reload the changes to the syntax definition

You have now created your first syntax definition. Next, open a new file and save it with the extension .ssraw. The
buffer’s syntax name should switch to “Sublime Snippet (Raw)” automatically, and you should get syntax highlighting
if you type $1 or any other simple snippet field.

Let’s proceed to creating another rule for environment variables.

{ "match": "\\$[A-Za-z][A-Za-z0-9_]+",
"name": "keyword.source.ssraw",
"comment": "Variables like $PARAM1, $TM_SELECTION..."

}

Repeat the above steps to update the .tmLanguage file, and restart Sublime Text.

Fine Tuning Matches

You might have noticed, for instance, that the entire text in $PARAM1 is styled the same way. Depending on your
needs or your personal preferences, you may want the $ to stand out. That’s where captures come in. Using
captures, you can break a pattern down into components to target them individually.

Let’s rewrite one of our previous patterns to use captures:

9.6. Syntax Definitions 37

Sublime Text Unofficial Documentation Documentation, Release 3.0

{ "match": "\\$([A-Za-z][A-Za-z0-9_]+)",
"name": "keyword.ssraw",
"captures": {

"1": { "name": "constant.numeric.ssraw" }
},
"comment": "Variables like $PARAM1, $TM_SELECTION..."

}

Captures introduce complexity to your rule, but they are pretty straightforward. Notice how numbers refer to paren-
thesized groups left to right. Of course, you can have as many capture groups as you want.

Arguably, you’d want the other scope to be visually consistent with this one. Go ahead and change it too.

Begin-End Rules

Up to now we’ve been using a simple rule. Although we’ve seen how to dissect patterns into smaller components,
sometimes you’ll want to target a larger portion of your source code that is clearly delimited by start and end marks.

Literal strings enclosed by quotation marks or other delimiting constructs are better dealt with by begin-end rules.
This is a skeleton for one of these rules:

{ "name": "",
"begin": "",
"end": ""

}

Well, at least in their simplest version. Let’s take a look at one that includes all available options:

{ "name": "",
"begin": "",
"beginCaptures": {
"0": { "name": "" }

},
"end": "",
"endCaptures": {
"0": { "name": "" }

},
"patterns": [

{ "name": "",
"match": ""

}
],
"contentName": ""

}

Some elements may look familiar, but their combination might be daunting. Let’s see them individually.

begin Regex for the opening mark for this scope.

end Regex for the end mark for this scope.

beginCaptures Captures for the begin marker. They work like captures for simple matches. Optional.

endCaptures Same as beginCaptures but for the end marker. Optional.

contentName Scope for the whole matched region, from the begin marker to the end marker (inclusive). Effec-
tively, this will create nested scopes for beginCaptures, endCaptures and patterns defined within
this rule. Optional.

38 Chapter 9. Extending Sublime Text

Sublime Text Unofficial Documentation Documentation, Release 3.0

patterns An array of patterns to match only against the begin-end’s content—they aren’t matched against the text
consumed by begin or end themselves.

We’ll use this rule to style nested complex fields in snippets:

{ "name": "variable.complex.ssraw",
"begin": "(\\$)(\\{)([0-9]+):",
"beginCaptures": {

"1": { "name": "keyword.ssraw" },
"3": { "name": "constant.numeric.ssraw" }

},
"patterns": [

{ "include": "$self" },
{ "name": "string.ssraw",

"match": "."
}

],
"end": "\\}"

}

This is the most complex pattern we’ll see in this tutorial. The begin and end keys are self-explanatory: they define
a region enclosed between ${<NUMBER>: and }. beginCaptures further divides the begin mark into smaller
scopes.

The most interesting part, however, is patterns. Recursion, and the importance of ordering, have finally made their
appearance here.

We’ve seen above that fields can be nested. In order to account for this, we need to style nested fields recursively.
That’s what the include rule does when we furnish it the $self value: it recursively applies our entire syntax
definition the text captured by our begin-end rule. This portion excludes the text individually consumed by the regexes
for begin and end.

Remember, matched text is consumed; thus, it is excluded from the next match attempt.

To finish off complex fields, we’ll style placeholders as strings. Since we’ve already matched all possible tokens inside
a complex field, we can safely tell Sublime Text to give any remaining text (.) a literal string scope.

Final Touches

Lastly, let’s style escape sequences and illegal sequences, and then we can wrap up.

{ "name": "constant.character.escape.ssraw",
"match": "\\\\(\\$|\\>|\\<)"

},

{ "name": "invalid.ssraw",
"match": "(\\$|\\<|\\>)"

}

The only hard thing here is getting the number of escape characters right. Other than that, the rules are pretty straight-
forward if you’re familiar with regular expressions.

However, you must take care to place the second rule after any others matching the $ character, since otherwise you
may not get the desired results.

Also, even after adding these two additional rules, note that our recursive begin-end rule from above continues to work
as expected.

At long last, here’s the final syntax definition:

9.6. Syntax Definitions 39

Sublime Text Unofficial Documentation Documentation, Release 3.0

{ "name": "Sublime Snippet (Raw)",
"scopeName": "source.ssraw",
"fileTypes": ["ssraw"],
"patterns": [

{ "match": "\\$(\\d+)",
"name": "keyword.ssraw",
"captures": {

"1": { "name": "constant.numeric.ssraw" }
},

"comment": "Tab stops like $1, $2..."
},

{ "match": "\\$([A-Za-z][A-Za-z0-9_]+)",
"name": "keyword.ssraw",
"captures": {

"1": { "name": "constant.numeric.ssraw" }
},

"comment": "Variables like $PARAM1, $TM_SELECTION..."
},

{ "name": "variable.complex.ssraw",
"begin": "(\\$)(\\{)([0-9]+):",
"beginCaptures": {

"1": { "name": "keyword.ssraw" },
"3": { "name": "constant.numeric.ssraw" }

},
"patterns": [

{ "include": "$self" },
{ "name": "string.ssraw",
"match": "."

}
],
"end": "\\}"

},

{ "name": "constant.character.escape.ssraw",
"match": "\\\\(\\$|\\>|\\<)"

},

{ "name": "invalid.ssraw",
"match": "(\\$|\\>|\\<)"

}
],
"uuid": "ca03e751-04ef-4330-9a6b-9b99aae1c418"

}

There are more available constructs and code reuse techniques, but the above explanations should get you started with
the creation of syntax definitions.

9.7 Plugins

See Also:

API Reference More information on the Python API.

Plugins Reference More information about plugins.

40 Chapter 9. Extending Sublime Text

Sublime Text Unofficial Documentation Documentation, Release 3.0

Sublime Text is programmable with Python scripts. Plugins reuse existing commands or create new ones to build a
feature. Plugins are a logical entity, rather than a physical one.

9.7.1 Prerequisites

In order to write plugins, you must be able to program in Python.

9.7.2 Where to Store Plugins

Sublime Text will look for plugins directly in these places:

• Packages

• Packages/<pkg_name>/

Consequently, any plugin nested deeper in Packages won’t be loaded.

Keeping plugins just under Packages is discouraged, because Sublime Text sorts packages in a predefined way
before loading them. So, you might get confusing results if your plugins live outside a package.

9.7.3 Your First Plugin

Let’s write a “Hello, World!” plugin for Sublime Text:

1. Select Tools | New Plugin... in the menu.

2. Save to Packages/User/hello_world.py.

You’ve just written your first plugin! Let’s put it to use:

1. Create a new buffer (Ctrl+n).

2. Open the Python console (Ctrl+‘).

3. Type: view.run_command("example") and press enter.

You should see the text “Hello, World!” in your new buffer.

9.7.4 Analyzing Your First Plugin

The plugin created in the previous section should look roughly like this:

import sublime, sublime_plugin

class ExampleCommand(sublime_plugin.TextCommand):
def run(self, edit):

self.view.insert(edit, 0, "Hello, World!")

Both the sublime and sublime_plugin modules are provided by Sublime Text.

All new commands derive from the *Command classes defined in sublime_plugin (more on this later).

The rest of the code is concerned with the particulars of TextCommand or with the API. We’ll discuss those topics
in later sections.

Before moving on, though, we’ll look at how we invoked the new command. First we opened the Python console, and
then we issued a call to view.run_command(). This is rather an inconvenient way of using plugins, but it’s often
useful when you’re in the development phase of a plugin. For now, keep in mind that your commands can be accessed
both through key bindings and by other means, just like other commands.

9.7. Plugins 41

http://www.python.org

Sublime Text Unofficial Documentation Documentation, Release 3.0

Conventions for Command Names

You might have noticed that our command is defined with the name ExampleCommand, but we pass the string
example to the API call instead. This is necessary because Sublime Text normalizes command names, stripping the
Command suffix and separating CamelCasedPhrases with underscores, like this: snake_cased_phrases.

New commands should follow the CamelCase pattern for class names.

9.7.5 Types of Commands

You can create the following types of commands:

• Application commands (ApplicationCommand)

• Window commands (WindowCommand)

• Text commands (TextCommand)

When writing plugins, consider your goal and choose the appropriate type of commands for your plugin.

Shared Traits of Commands

All commands need to implement a .run() method in order to work. Additionally, they can receive an arbitrarily
long number of keyword parameters.

Application Commands

Application commands derive from sublime_plugin.ApplicationCommand and can be executed with
sublime.run_command().

Window Commands

Window commands operate at the window level. This doesn’t mean you can’t manipulate views from window com-
mands, but rather that you don’t need views in order for window commands to be available. For instance, the built-in
command new_file is defined as a WindowCommand so it works, even when no view is open. Requiring a view
to exist in that case wouldn’t make sense.

Window command instances have a .window attribute to point to the window instance that created them.

The .run() method of a window command needn’t be passed any positional arguments.

Text Commands

Text commands operate at the buffer level, so they require a buffer to exist in order to be available.

View command instances have a .view attribute pointing to the view instance that created them.

The .run() method of a text command needs to accept an edit instance as the first positional argument.

42 Chapter 9. Extending Sublime Text

Sublime Text Unofficial Documentation Documentation, Release 3.0

Text Commands and the edit Object

The edit object groups any modifications to the view so as to enable undo and macros to work sensibly.

You are responsible for creating and closing edit objects. To do so, you can call view.begin_edit() and
edit.end_edit(). For convenience, the currently open edit object gets passed to text commands’ run method
automatically. Additionally, many View methods require an edit object.

Responding to Events

Any command deriving from EventListener will be able to respond to events.

Another Plugin Example: Feeding the Completions List

Let’s create a plugin that fetches data from Google’s Autocomplete service and then feeds it to the Sublime Text
completions list. Please note that, as ideas for plugins go, this a very bad one.

import sublime, sublime_plugin

from xml.etree import ElementTree as ET
from urllib import urlopen

GOOGLE_AC = r"http://google.com/complete/search?output=toolbar&q=%s"

class GoogleAutocomplete(sublime_plugin.EventListener):
def on_query_completions(self, view, prefix, locations):

elements = ET.parse(
urlopen(GOOGLE_AC % prefix)

).getroot().findall("./CompleteSuggestion/suggestion")

sugs = [(x.attrib["data"],) * 2 for x in elements]

return sugs

Note: Make sure you don’t keep this plugin around after trying it or it will interfere with Sublime Text’s autocomple-
tion.

9.7.6 Learning the API

In order to create plugins, you need to get acquainted with the Sublime Text API and the available commands. Doc-
umentation on both is scarce at the time of this writing, but you can read existing code and learn from it too. In
particular, the Packages/Default folder contains many examples of undocumented commands and API calls.

9.8 Packages

Packages are simply folders under Packages. They exist mainly for organizational purposes, but Sublime Text
follows a few rules when dealing with them. More on this later.

Here’s a list of the typical resources living inside packages:

• build systems (.sublime-build)

9.8. Packages 43

Sublime Text Unofficial Documentation Documentation, Release 3.0

• key maps (.sublime-keymap)

• macros (.sublime-macro)

• menus (.sublime-menu)

• plugins (.py)

• preferences (.tmPreferences)

• settings (.sublime-settings)

• syntax definitions (.tmLanguage)

• snippets (.sublime-snippet)

• themes (.sublime-theme)

Some packages may include support files for other packages or core features. For example, the spell checker uses
PackagesLanguage - English as a data store for English dictionaries.

9.8.1 Types of Packages

In this guide, in order to talk about packages, we divide them into groups. This division is artificial, and just useful for
clarity when discussing this topic. Sublime Text doesn’t use this division in any way.

core packages Sublime Text requires these packages in order to work.

shipped packages Sublime Text includes these packages in every installation, though technically they are not re-
quired. These shipped packages enhance Sublime Text out of the box. They may have been contributed by users
or third parties.

user packages Packages installed by the user to extend Sublime Text’s functionaility. They are not part of any Sub-
lime Text installation, and always are contributed by users or third parties.

installed packages Any package that, if deleted, Sublime Text will be able to restore.

Let’s emphasize again that you don’t need to memorize this classification.

Also, it’s worth noting that by third party we mainly refer to users of other editors, such as Textmate.

9.8.2 Installation of Packages

There are two main ways to install packages:

• .sublime-package files

• version control systems

Ultimately, installing a package is simply a matter of copying a folder containing Sublime Text resources thato
Packages. The only thing that changes from one system to another is how you copy these files.

Installing Packages vs Installed Packages

Note that “installing a package” actually doesn’t make that package a Sublime Text installed package. Installed
packages are .sublime-package files residing in the Installed Packages folder. In this guide, we
use install a package to mean copying a package to Packages.
Sublime Text can restore any package located in Installed Packages, but can’t automatically restore the
packages located in Packages.

44 Chapter 9. Extending Sublime Text

Sublime Text Unofficial Documentation Documentation, Release 3.0

Installation of .sublime-package Files

Copy the .sublime-package file to the Installed Packages folder and restart Sublime Text. If the
Installed Packages folder doesn’t exist, you can create it.

Note that .sublime-package files simply are .zip archives with a custom file extension.

Installation of Packages from a Version Control System

Explaining how to use version control systems (VCSs) is outside the scope of this guide, but there are many user
packages available free of charge on public repositories like Google Code, GitHub and Bitbucket.

Also, a Sublime Text organization at GitHub is open to contributors.

9.8.3 Packages and Magic

Sublime Text deals with packages quite simply, without much hidden magic. There are two notable exceptions:
Macros defined in any package automatically appear under Tools | Macros | <Your Package>, and snippets from any
package appear under Tools | Snippets | <Your Package>.

However, as mentioned at the beginning, Sublime Text follows some rules for packages. For instance,
Package/User will never be clobbered during updates to the software.

The User Package

Usually, unpackaged resources are stored in Packages/User. If you have a few loose snippets, macros or
plugins, this is a good place to keep them.

Merging and Order of Precedence

Packages/Default and Packages/User also receive special treatment when merging files (e.g.
.sublime-keymap and .sublime-settings files). Before merging can take place, the files have to be ar-
ranged in some order. To that end, Sublime Text sorts them alphabetically by name, with the exception of the folders
Default and User. Files contained in Default will always go to the front of the list and, those in User, to the
end.

9.8.4 Restoring Packages

Sublime Text keeps a copy of all installed packages so it can recreate them as needed. This means it can reinstall
core packages, shipped packages and, potentially, user packages alike. However, only user packages installed as
sublime-packages are added to its registry of installed packages. Packages installed in alternative ways will be
lost completely if you delete them.

Reverting Sublime Text to Its Default Configuration

To revert Sublime Text to its default configuration, delete the data directory and restart the editor. Keep in mind,
though, that the Installed Packages folder will be deleted too, so you’ll lose all your installed packages.

Always make sure to back up your data before taking an extreme measure like this one.

9.8. Packages 45

http://github.com/SublimeText

Sublime Text Unofficial Documentation Documentation, Release 3.0

9.8.5 The Installed Packages Directory

You will find this folder in the data directory. It contains a copy of every sublime-package installed. It is used to
restore Packages.

9.8.6 The Pristine Packages Directory

You will find this folder in the data directory. It contains a copy of every shipped and core package. It is used to restore
Packages.

46 Chapter 9. Extending Sublime Text

CHAPTER

TEN

COMMAND LINE USAGE

See Also:

OS X Command Line Official Sublime Text Documentation

47

http://www.sublimetext.com/docs/2/osx_command_line.html

Sublime Text Unofficial Documentation Documentation, Release 3.0

48 Chapter 10. Command Line Usage

CHAPTER

ELEVEN

REFERENCE

In this section you will find concise information about many aspects of Sublime Text.

If you’re looking for a slow-paced introduction to any of these topics, try the general index.

11.1 Snippets

11.1.1 Compatibility with Textmate

Generally, Sublime Text snippets are compatible with Textmate snippets.

11.1.2 File Format

Snippet files are XML files with the sublime-snippet extension.

<snippet>
<content><![CDATA[]]></content>
<tabTrigger></tabTrigger>
<scope></scope>
<description></description>

</snippet>

content Actual snippet content.

tabTrigger Implicit key binding for this snippet. The last key (implicit) is TAB.

scope Scope selector to activate this snippet.

description Friendly description to be used when the snippet is shown as a menu item.

11.1.3 Escape Sequences

\$ Literal $.

49

Sublime Text Unofficial Documentation Documentation, Release 3.0

11.1.4 Environment Variables

$PARAM1 .. $PARAMn Arguments passed to the insertSnippet command.
$SELECTION The text that was selected when the snippet was triggered.
$TM_CURRENT_LINE Content of the line the cursor was in when the snippet was triggered.
$TM_CURRENT_WORD Current word under the cursor when the snippet was triggered.
$TM_FILENAME Filename of the file being edited including extension.
$TM_FILEPATH Path to the file being edited.
$TM_FULLNAME User’s user name.
$TM_LINE_INDEX Column where the snippet is being inserted, 0 based.
$TM_LINE_NUMBER Row where the snippet is being inserted, 1 based.
$TM_SELECTED_TEXT An alias for $SELECTION.
$TM_SOFT_TABS YES if translateTabsToSpaces is true, otherwise NO.
$TM_TAB_SIZE Spaces per-tab (controlled by the tabSize option).

11.1.5 Fields

Marked positions to cycle through, by pressing TAB or SHIFT + TAB.

Syntax: $1 .. $n

$0 Exit mark. The position where normal text editing should be resumed. By default, Sublime Text implicitly sets
this mark at the end of the snippet’s content element.

Fields with the same name mirror each other.

11.1.6 Placeholders

Fields with a default value.

Syntax: ${1:PLACE_HOLDER} .. ${n:PLACE_HOLDER}

Fields and placeholders can be combined, and nested within other placeholders.

11.1.7 Substitutions

Syntax:

• ${var_name/regex/format_string/}

• ${var_name/regex/format_string/options}

var_name The name of the field to base the substitution on: 1, 2, 3...

regex Perl-style regular expression: See the Boost library documentation for more on regular expressions.

format_string See the Boost library documentation for more on format strings.

options

Optional. Any of the following:

i Case-insensitive regex.

g Replace all occurrences of regex.

m Don’t ignore newlines in the string.

50 Chapter 11. Reference

http://www.boost.org/doc/libs/1_44_0/libs/regex/doc/html/boost_regex/syntax/perl_syntax.html
http://www.boost.org/doc/libs/1_44_0/libs/regex/doc/html/boost_regex/format/perl_format.html

Sublime Text Unofficial Documentation Documentation, Release 3.0

11.2 Syntax Definitions

Warning: This topic is a draft and may contain wrong information.

11.2.1 Compatibility with Textmate

Generally, Sublime Text syntax definitions are compatible with Textmate language files.

11.2.2 File Format

Textmate syntax definitions are Plist files with the tmLanguage extension. However, for convenience in this refer-
ence document, JSON is shown instead.

{ "name": "Sublime Snippet (Raw)",
"scopeName": "source.ssraw",
"fileTypes": ["ssraw"],
"patterns": [

{ "match": "\\$(\\d+)",
"name": "keyword.ssraw",
"captures": {

"1": { "name": "constant.numeric.ssraw" }
},
"comment": "Tab stops like $1, $2..."

},
{ "match": "\\$([A-Za-z][A-Za-z0-9_]+)",

"name": "keyword.ssraw",
"captures": {

"1": { "name": "constant.numeric.ssraw" }
},
"comment": "Variables like $PARAM1, $TM_SELECTION..."

},
{ "name": "variable.complex.ssraw",

"begin": "(\\$)(\\{)([0-9]+):",
"beginCaptures": {

"1": { "name": "keyword.control.ssraw" },
"3": { "name": "constant.numeric.ssraw" }

},
"patterns": [

{ "include": "$self" },
{ "name": "string.ssraw",
"match": "."

}
],
"end": "\\}"

},
{ "name": "constant.character.escape.ssraw",

"match": "\\\\(\\$|\\>|\\<)"
},
{ "name": "invalid.ssraw",

"match": "(\\$|\\>|\\<)"
}

],
"uuid": "ca03e751-04ef-4330-9a6b-9b99aae1c418"

}

11.2. Syntax Definitions 51

Sublime Text Unofficial Documentation Documentation, Release 3.0

name Descriptive name for the syntax definition. Shows up in the syntax definition dropdown menu located in the
bottom right of the Sublime Text interface. It’s usually the name of the programming language or equivalent.

scopeName Name of the top-level scope for this syntax definition. Either source.<lang> or text.<lang>.
Use source for programming languages and text for everything else.

fileTypes An array of file type extensions for which this syntax automatically should be activated. Include the
extensions without the leading dot.

uuid Unique indentifier for this syntax definition. Currently ignored.

foldingStartMarker Currently ignored. Used for code folding.

foldingStopMarker Currently ignored. Used for code folding.

patterns Array of patterns to match against the buffer’s text.

repository Array of patterns abstracted out from the patterns element. Useful to keep the syntax definition tidy
as well as for specialized uses like recursive patterns. Optional.

11.2.3 The Patterns Array

Elements contained in the patterns array.

match Contains the following elements:

match Pattern to search for.
name Scope name to be assigned to matches of match.
comment Optional. For information only.
captures Optional. Refinement of match. See below.

In turn, captures can contain n of the following pairs of elements:

0..n Name of the group referenced.
name Scope to be assigned to the group.

Examples:

// Simple

{ "name": "constant.character.escape.ssraw",
"match": "\\\\(\\$|\\>|\\<)"
"comment". "Sequences like \$, \> and \<"

}

// With captures

{ "match": "\\$(\\d+)",
"name": "keyword.ssraw",
"captures": {

"1": { "name": "constant.numeric.ssraw" }
},

"comment": "Tab stops like $1, $2..."
}

include Includes items in the repository, other syntax definitions or the current one.

References:

$self The current syntax definition.
#itemName itemName in the repository.
source.js External syntax definitions.

52 Chapter 11. Reference

Sublime Text Unofficial Documentation Documentation, Release 3.0

Examples:

// Requires presence of DoubleQuotedStrings element in the repository.
{ "include": "#DoubleQuotedStrings" }

// Recursively includes the current syntax definition.
{ "include": "$self" }

// Includes and external syntax definition.
{ "include": "source.js" }

begin..end Defines a scope potentially spanning multiple lines

Contains the following elements:

begin The start marker pattern.
end The end marker pattern.
name Scope name for the whole region.
beginCaptures captures for begin. See captures.
endCaptures captures for end. See captures.
patterns patterns to be matched against the content.
contentName Scope name for the content excluding the markers.

Example:

{ "name": "variable.complex.ssraw",
"begin": "(\\$)(\\{)([0-9]+):",
"beginCaptures": {

"1": { "name": "keyword.control.ssraw" },
"3": { "name": "constant.numeric.ssraw" }

},
"patterns": [

{ "include": "$self" },
{ "name": "string.ssraw",
"match": "."

}
],
"end": "\\}"

}

11.2.4 Repository

Can be referenced from patterns or from itself in an include element. See include for more information.

The repository can contain the following elements:

• Simple elements:

"elementName": {
"match": "some regexp",
"name": "some.scope.somelang"

}

• Complex elements:

"elementName": {
"patterns": [

{ "match": "some regexp",
"name": "some.scope.somelang"

11.2. Syntax Definitions 53

Sublime Text Unofficial Documentation Documentation, Release 3.0

},
{ "match": "other regexp",

"name": "some.other.scope.somelang"
}

]
}

Examples:

"repository": {
"numericConstant": {
"patterns": [

{ "match": "\\d*(?<!\\.)(\\.)\\d+(d)?(mb|kb|gb)?",
"name": "constant.numeric.double.powershell",
"captures": {
"1": { "name": "support.constant.powershell" },
"2": { "name": "support.constant.powershell" },
"3": { "name": "keyword.other.powershell" }
}

},
{ "match": "(?<!\\w)\\d+(d)?(mb|kb|gb)?(?!\\w)",

"name": "constant.numeric.powershell",
"captures": {
"1": { "name": "support.constant.powershell" },
"2": { "name": "keyword.other.powershell" }
}

}
]

},
"scriptblock": {
"begin": "\\{",
"end": "\\}",
"name": "meta.scriptblock.powershell",
"patterns": [

{ "include": "$self" }
]

},
}

11.2.5 Escape Sequences

Be sure to escape JSON/XML sequences as needed.

11.3 Build Systems

Build systems let you run your files through external programs without leaving Sublime Text, and see the output they
generate.

Build systems consist of two—or optionally three—parts:

• Configuration data in JSON format (the .sublime-build file contents)

• A Sublime Text command driving the build process

• An optional, external executable file (script or binary file)

54 Chapter 11. Reference

Sublime Text Unofficial Documentation Documentation, Release 3.0

Essentially, .sublime-build files are configuration data for an external program, as well as for a Sublime Text command
(just mentioned). In them, you specify the switches, options and environment information you want forwarded.

The Sublime Text command then receives the data stored in the .sublime-build file. At this point, it can do whatever
it needs to do, to build the files. By default, build systems will use the exec command implemented by Pack-
ages/Default/exec.py. As explained below, you can override this command.

Finally, the external program may be a shell script you’ve created to process your files, or a well-known utility like
make or tidy. Usually, these executable files will receive paths to files or directories, along with switches and options
to run with.

Note that build systems can but don’t need to call external programs; a valid build system could be implemented
entirely in Python in a Sublime Text command.

11.3.1 File Format

.build-system files use JSON. Here’s an example:

{
"cmd": ["python", "-u", "$file"],
"file_regex": "^[]*File \"(...*?)\", line ([0-9]*)",
"selector": "source.python"

}

11.3.2 Options

cmd Array containing the command to run and its desired arguments. If you don’t specify an absolute path, the
external program will be searched in your PATH, one of your system’s environmental variables.

On Windows, GUIs are supressed.

file_regex Optional. Regular expression (Perl-style) to capture error output of cmd. See the next section for
details.

line_regex Optional. If file_regex doesn’t match on the current line, but line_regex exists, and it does
match on the current line, then walk backwards through the buffer until a line matching file regex is found,
and use these two matches to determine the file and line to go to.

selector Optional. Used when Tools | Build System | Automatic is set to true. Sublime Text uses this scope
selector to find the appropriate build system for the active view.

working_dir Optional. Directory to change the current directory to before running cmd. The original current
directory is restored afterwards.

encoding Optional. Output encoding of cmd. Must be a valid Python encoding. Defaults to UTF-8.

target Optional. Sublime Text command to run. Defaults to exec (Packages/Default/exec.py). This command
receives the configuration data specified in the .build-system file.

Used to override the default build system command. Note that if you choose to override the default command
for build systems, you can add arbitrary variables in the .sublime-build file.

env Optional. Dictionary of environment variables to be merged with the current process’ before passing them to
cmd.

Use this element, for example, to add or modify environment variables without modifying your system’s settings.

shell Optional. If true, cmd will be run through the shell (cmd.exe, bash...).

11.3. Build Systems 55

Sublime Text Unofficial Documentation Documentation, Release 3.0

path Optional. This string will replace the current process’ PATH before calling cmd. The old PATH value will be
restored after that.

Use this option to add directories to PATH without having to modify your system’s settings.

variants Optional. A list of dictionaries of options to override the main build system’s options. Variant ‘‘name‘‘s
will appear in the Command Palette for easy access if the build system’s selector matches for the active file.

name Only valid inside a variant (see variants). Identifies variant build systems. If name is Run, the variant
will show up under the Tools | Build System menu and be bound to Ctrl + Shift + B.

Capturing Error Output with file_regex

The file_regex option uses a Perl-style regular expression to capture up to four fields of error information from
the build program’s output, namely: filename, line number, column number and error message. Use groups in the
pattern to capture this information. The filename field and the line number field are required.

When error information is captured, you can navigate to error instances in your project’s files with F4 and Shift+F4.
If available, the captured error message will be displayed in the status bar.

Platform-specific Options

The windows, osx and linux elements let you provide platform-specific data in the build system. Here’s an
example:

{
"cmd": ["ant"],
"file_regex": "^ *\\[javac\\] (.+):([0-9]+):() (.*)$",
"working_dir": "${project_path:${folder}}",
"selector": "source.java",

"windows":
{

"cmd": ["ant.bat"]
}

}

In this case, ant will be executed for every platform except Windows, where ant.bat will be used instead.

Variants

Here’s a contrived example of a build system with variants:

{
"selector": "source.python",
"cmd": ["date"],

"variants": [

{ "cmd": ["ls -l *.py"],
"name": "List Python Files",
"shell": true

},

{ "cmd": ["wc", "$file"],
"name": "Word Count (current file)"

},

56 Chapter 11. Reference

Sublime Text Unofficial Documentation Documentation, Release 3.0

{ "cmd": ["python", "-u", "$file"],
"name": "Run"

}
]

}

Given these settings, Ctrl + B would run the date command, Crtl + Shift + B would run the Python interpreter and the
remaining variants would appear in the Command Palette whenever the build system was active.

11.3.3 Build System Variables

Build systems expand the following variables in .sublime-build files:

$file_path The directory of the current file, e.g., C:\Files.
$file The full path to the current file, e.g., C:\Files\Chapter1.txt.
$file_name The name portion of the current file, e.g., Chapter1.txt.
$file_extension The extension portion of the current file, e.g., txt.
$file_base_name The name-only portion of the current file, e.g., Document.
$packages The full path to the Packages folder.
$project The full path to the current project file.
$project_path The directory of the current project file.
$project_name The name portion of the current project file.
$project_extension The extension portion of the current project file.
$project_base_name The name-only portion of the current project file.

Placeholders for Variables

Features found in snippets can be used with these variables. For example:

${project_name:Default}

This will emit the name of the current project if there is one, otherwise Default.

${file/\.php/\.txt/}

This will emit the full path of the current file, replacing .php with .txt.

11.3.4 Running Build Systems

Select the desired build system from Tools | Build System, and then select Tools | Build or press F7.

11.3.5 Troubleshooting Build Systems

Build systems will look for executables in your PATH, unless you specify an absolute path to the executable. Therefore,
your PATH variable must be set correctly.

On some operating systems, the value of PATH may vary between terminal windows and graphical applications. Thus,
in your build system, even if the command you are using works in the command line, it may not work from Sublime
Text. This is due to user profiles in shells.

To solve this issue, make sure you set the desired PATH so that graphical applications such as Sublime Text can find
it. See the links below for more information.

11.3. Build Systems 57

Sublime Text Unofficial Documentation Documentation, Release 3.0

Alternatively, you can use the path element in .sublime-build files to override the PATH used to locate the executable
specified in cmd. This new value for PATH will be in effect only as long as your build system is running. After that,
the old PATH will be restored.

See Also:

Managing Environment Variables in Windows Search Microsoft knowledge base for this topic.

Setting environment variables in OSX StackOverflow topic.

11.4 Key Bindings

Key bindings map key presses to commands.

11.4.1 File Format

Key bindings are stored in .sublime-keymap files and defined in JSON. All key map filenames need to follow this
pattern: Default (<platform>).sublime-keymap. Otherwise, Sublime Text will ignore them.

Platform-Specific Key Maps

Each platform gets its own key map:

• Default (Windows).sublime-keymap

• Default (OSX).sublime-keymap

• Default (Linux).sublime-keymap

Separate key maps exist to abide by different vendor-specific HCI guidelines.

Structure of a Key Binding

Key maps are arrays of key bindings. Below you’ll find valid elements in key bindings.

keys An array of case-sensitive keys to be pressed. Modifiers can be specified with the + sign. Chords are built by
adding elements to the array, e.g. ["ctrl+k","ctrl+j"]. Ambiguous chords are resolved with a timeout.

command Name of the command to be executed.

args Dictionary of arguments to be passed to command. Keys must be the names of parameters to command.

context Array of contexts to selectively enable the key binding. All contexts must be true for the key binding to
trigger. See Structure of a Context below.

Here’s an example illustrating most of the features outlined above:

{ "keys": ["shift+enter"], "command": "insert_snippet", "args": {"contents": "\n\t$0\n"}, "context":
[

{ "key": "setting.auto_indent", "operator": "equal", "operand": true },
{ "key": "selection_empty", "operator": "equal", "operand": true, "match_all": true },
{ "key": "preceding_text", "operator": "regex_contains", "operand": "\\{$", "match_all": true },
{ "key": "following_text", "operator": "regex_contains", "operand": "^\\}", "match_all": true }

]
}

58 Chapter 11. Reference

http://goo.gl/F77EM
http://stackoverflow.com/q/135688/1670
http://en.wikipedia.org/wiki/Human%E2%80%93computer_interaction

Sublime Text Unofficial Documentation Documentation, Release 3.0

Structure of a Context

key Name of a context operand to query.

operator Type of test to perform against key.

operand Value against which the result of key is tested.

match_all Requires the test to succeed for all selections. Defaults to false.

Context Operands

auto_complete_visible Returns true if the autocomplete list is visible.

has_next_field Returns true if a next snippet field is available.

has_prev_field Returns true if a previous snippet field is available.

num_selections Returns the number of selections.

overlay_visible Returns true if any overlay is visible.

panel_visible Returns true if any panel is visible.

following_text Restricts the test just to the text following the caret.

preceding_text Restricts the test just to the text preceding the caret.

selection_empty Returns true if the selection is an empty region.

setting.x Returns the value of the x setting. x can be any string.

text Restricts the test just to the selected text.

selector Returns the current scope.

panel_has_focus Returns true if the current focus is on a panel.

panel Returns true if the panel given as operand is visible.

Context Operators

equal, not_equal Test for equality.

regex_match, not_regex_match Match against a regular expression.

regex_contains, not_regex_contains Match against a regular expression (containment).

11.4.2 Command Mode

Sublime Text provides a command_mode setting to prevent key presses from being sent to the buffer. This is useful
when emulating Vim’s modal behavior.

11.4.3 Bindable Keys

Keys may be specified literally or by name. Here’s the list of valid names:

• up

• down

11.4. Key Bindings 59

Sublime Text Unofficial Documentation Documentation, Release 3.0

• right

• left

• insert

• home

• end

• pageup

• pagedown

• backspace

• delete

• tab

• enter

• pause

• escape

• space

• keypad0

• keypad1

• keypad2

• keypad3

• keypad4

• keypad5

• keypad6

• keypad7

• keypad8

• keypad9

• keypad_period

• keypad_divide

• keypad_multiply

• keypad_minus

• keypad_plus

• keypad_enter

• clear

• f1

• f2

• f3

• f4

• f5

60 Chapter 11. Reference

Sublime Text Unofficial Documentation Documentation, Release 3.0

• f6

• f7

• f8

• f9

• f10

• f11

• f12

• f13

• f14

• f15

• f16

• f17

• f18

• f19

• f20

• sysreq

• break

• context_menu

• browser_back

• browser_forward

• browser_refresh

• browser_stop

• browser_search

• browser_favorites

• browser_home

Modifiers

• shift

• ctrl

• alt

• super (Windows key, Command key...)

Warning about Bindable Keys

If you’re developing a package, keep this in mind:

• Ctrl+Alt+<alphanum> should not be used for any Windows key bindings.

• Option+<alphanum> should not be used for any OS X key bindings.

11.4. Key Bindings 61

Sublime Text Unofficial Documentation Documentation, Release 3.0

In both cases, the user’s ability to insert non-ASCII characters would be compromised.

If you are the end-user, you are free to remap those key combinations.

11.4.4 Keeping Key Maps Organized

Sublime Text ships with default key maps under Packages/Default. Other packages may include their own key
map files. The recommended storage location for your personal key map is Packages/User.

See Merging and Order of Precedence for information about how Sublime Text sorts files for merging.

11.4.5 International Keyboards

Due to the way Sublime Text maps key names to physical keys, there might be a mismatch between the two.

11.4.6 Troubleshooting

To enable command logging, see sublime.log_commands(flag). This may help in debugging key maps.

11.5 Settings (Reference)

11.5.1 Global Settings

Target file: Global.sublime-settings.

theme Theme to be used. Accepts a file base name (for example, Default.sublime-theme).

remember_open_files Determines whether to reopen the buffers that were open when Sublime Text was last
closed.

folder_exclude_patterns Excludes the matching folders from the side bar, GoTo Anything, etc.

file_exclude_patterns Excludes the matching files from the side bar, GoTo Anything, etc.

scroll_speed Set to 0 to disable smooth scrolling. Set to a value between 0 and 1 to scroll slower, or set to a
value larger than 1 to scroll faster.

show_tab_close_buttons If false, hides the tabs’ close buttons until the mouse hovers over the tab.

mouse_wheel_switches_tabs If true, scrolling the mouse wheel will cause tabs to switch if the cursor is in
the tab area.

open_files_in_new_window OS X only. When filters are opened from Finder, or by dragging onto the dock
icon, this controls whether a new window is created or not.

11.5.2 File Settings

Target files: Base File.sublime-settings, <file_type>.sublime-settings.

62 Chapter 11. Reference

http://www.sublimetext.com/docs/2/api_reference.html

Sublime Text Unofficial Documentation Documentation, Release 3.0

Whitespace and Indentation

auto_indent Toggles automatic indentation.

tab_size Number of spaces a tab is considered equal to.

translate_tabs_to_spaces Determines whether to replace a tab character with tab_size number of spaces
when Tab is pressed.

use_tab_stops If translate_tabs_to_spaces is true, will make Tab and Backspace insert/delete
tab_size number of spaces per key press.

trim_automatic_white_space Toggles deletion of white space added by auto_indent.

detect_indentation Set to false to disable detection of tabs vs. spaces whenever a buffer is loaded. If set to
true, it automatically will modify translate_tabs_to_spaces and tab_size.

draw_white_space Valid values: none, selection, all.

trim_trailing_white_space_on_save Set to true to remove white space on save.

Visual Settings

color_scheme Sets the colors used for text highlighting. Accepts a path rooted at the data directory (for example,
Packages/Color Scheme - Default/Monokai Bright.tmTheme).

font_face Font face to be used for editable text.

font_size Size of the font for editable text.

font_options Valid values: bold, italic, no_antialias, gray_antialias,
subpixel_antialias, directwrite (Windows).

gutter Toggles display of gutter.

rulers Columns in which to display vertical rules. Accepts a list of numeric values (such as [79, 89, 99]) or
a single numeric value (for example, 79).

draw_minimap_border Set to true to draw a border around the minimap’s region corresponding to the the
view’s currently visible text. The active color scheme’s minimapBorder key controls the border’s color.

highlight_line Set to false to stop highlighting lines with a cursor.

line_padding_top Additional spacing at the top of each line, in pixels.

line_padding_bottom Additional spacing at the bottom of each line, in pixels.

scroll_past_end Set to false to disable scrolling past the end of the buffer. If true, Sublime Text will leave
a wide, empty margin between the last line and the bottom of the window.

line_numbers Toggles display of line numbers in the gutter.

word_wrap If set to false, long lines will be clipped instead of wrapped. Scroll the screen horizontally to see the
clipped text.

wrap_width If greater than 0, wraps long lines at the specified column as opposed to the window width. Only takes
effect if wrap_width is set to true.

indent_subsequent_lines If set to false, wrapped lines will not be indented. Only takes effect if
wrap_width is set to true.

draw_centered If set to true, text will be drawn centered rather than left-aligned.

match_brackets Set to false to disable underlining the brackets surrounding the cursor.

11.5. Settings (Reference) 63

Sublime Text Unofficial Documentation Documentation, Release 3.0

match_brackets_content Set this to false if you’d rather have brackets highlighted only when the cursor is
next to one.

match_brackets_square Set to false to stop highlighting square brackets. Only takes effect if
match_brackets is true.

match_bracktets_braces Set to false to stop highlighting curly brackets. Only takes effect if
match_brackets is true.

match_bracktets_angle Set to false to stop highlighting angle brackets. Only takes effect if
match_brackets is true.

Automatic Behavior

auto_match_enabled Toggles automatic pairing of quotes, brackets, etc.

save_on_focus_lost Set to true to save files automatically when switching to a different file or application.

find_selected_text If true, the selected text will be copied into the find panel when it’s shown.

word_separators Characters considered to divide words for actions like advancing the cursor, etc. Not used for
every context where a notion of a word separator is useful (for example, word wrapping). In some contexts, the
text might be tokenized based on other criteria (for example, the syntax definition rules).

ensure_newline_at_eof_on_save Always adds a new line at the end of the file if not present when saving.

System and Miscellaneous Settings

is_widget Returns true if the buffer is an input field in a dialog, as opposed to a regular buffer.

spell_check Toggles the spell checker.

dictionary Word list to be used by the spell checker. Accepts a path rooted at the data directory (such as
Packages/Language - English/en_US.dic). You can add more dictionaries.

fallback_encoding The encoding to use when the encoding can’t be determined automatically. ASCII, UTF-8
and UTF-16 encodings will be detected automatically .

default_line_ending Determines what characters to use to designate new lines. Valid values: system (OS-
dependant), windows (CRLF) and unix (LF).

tab_completion Determines whether pressing Tab will insert completions.

Build and Error Navigation Settings

result_file_regex Regular expression used to extract error information from some output dumped into a view
or output panel. Follows the same rules as error capturing in build systems.

result_line_regex Regular expression used to extract error information from some output dumped into a view
or output panel. Follows the same rules as error capturing in build systems.

result_base_dir Folder to start looking for offending files based on information extracted with
result_file_regex and result_line_regex.

build_env List of paths to add to build systems by default.

File and Directory Settings

default_dir Sets the default save folder for the view.

64 Chapter 11. Reference

http://extensions.services.openoffice.org/en/dictionaries

Sublime Text Unofficial Documentation Documentation, Release 3.0

Input Settings

command_mode If set to true, the buffer will ignore key strokes. Useful when emulating Vim’s modal behavior.

11.6 Command Palette

The command palette is fed entries with .sublime-commands files.

11.6.1 File Format (.sublime-commands Files)

Here’s an excerpt from Packages/Default/Default.sublime-commands:

[
{ "caption": "Project: Save As", "command": "save_project_as" },
{ "caption": "Project: Close", "command": "close_project" },
{ "caption": "Project: Add Folder", "command": "prompt_add_folder" },

{ "caption": "Preferences: Default File Settings", "command": "open_file", "args": {"file": "${packages}/Default/Base File.sublime-settings"} },
{ "caption": "Preferences: User File Settings", "command": "open_file", "args": {"file": "${packages}/User/Base File.sublime-settings"} },
{ "caption": "Preferences: Default Global Settings", "command": "open_file", "args": {"file": "${packages}/Default/Global.sublime-settings"} },
{ "caption": "Preferences: User Global Settings", "command": "open_file", "args": {"file": "${packages}/User/Global.sublime-settings"} },
{ "caption": "Preferences: Browse Packages", "command": "open_dir", "args": {"dir": "$packages"} }

]

caption Text for display in the command palette.

command Command to be executed.

args Arguments to pass to command. Note that to locate the packages folder you need to use a snippet-like variable:
${packages} or $packages. This differs from other areas of the editor due to different implementations in
the lower layers.

11.6.2 How to Use the Command Palette

1. Press Ctrl+Shift+P

2. Select command

Entries are filtered by current context. Not all entries will be visible at all times.

11.7 Completions

Completions provide an IDE-like functionality to insert dynamic content through the completions list or by pressing
Tab.

11.7.1 File Format

Completions are JSON files with the .sublime-completions extension.

11.6. Command Palette 65

Sublime Text Unofficial Documentation Documentation, Release 3.0

11.7.2 Structure of a Completions List

scope Determines whether the completions are to be sourced from this file. See Scopes for more information.

completions Array of completions.

Here’s an excerpt from the html completions:

{
"scope": "text.html - source - meta.tag, punctuation.definition.tag.begin",

"completions":
[

{ "trigger": "a", "contents": "$0" },
{ "trigger": "abbr", "contents": "<abbr>$0</abbr>" },
{ "trigger": "acronym", "contents": "<acronym>$0</acronym>" }

]
}

11.7.3 Types of Completions

Plain Strings

Plain strings are equivalent to an entry where the trigger is identical to the contents:

"foo"

is equivalent to:

{ "trigger": "foo", "contents": "foo" }

Trigger-based Completions

trigger Text that will be displayed in the completions list and will cause the contents to be inserted when
validated.

contents Text to be inserted in the buffer. Can use snippet features.

11.7.4 Sources for Completions

These are the sources for completions the user can control:

• .sublime-completions

• EventListener.on_query_completions()

Additionally, other completions are folded into the final list:

• Snippets

• Words in the buffer

66 Chapter 11. Reference

Sublime Text Unofficial Documentation Documentation, Release 3.0

Priority of Sources for Completions

• Snippets

• API-injected completions

• .sublime-completions files

• Words in buffer

Snippets will only be automatically completed against an exact match of their tab trigger. Other sources for comple-
tions are filtered with a case insensitve fuzzy search instead.

11.7.5 The Completions List

To use the completions list:

• Press Ctrl+spacebar to open

• Optionally, press Ctrl+spacebar again to select next entry

• Press Enter or Tab to validate selection

Note: The current selection in the completions list can in fact be validated with any punctuation sign that isn’t itself
bound to a snippet.

Snippets show up in the completions list following the pattern: <tab_trigger> : <name>. For the other
completions, you will see just the text to be inserted.

If the list of completions can be narrowed down to one choice, the autocomplete dialog will be bypassed and the
corresponding content will be inserted right away according to the priority rules stated above.

11.7.6 Enabling and Disabling Tab Completion for Completions

The tab_completion setting is true by default. Set it to false if you want Tab to stop sourcing the most likely
completion. This setting has no effect on triggers defined in .sublime-snippet files, so snippets will always be
inserted after a Tab.

With tab_completion on, the same order of priority stated above applies, but, unlike the case of the completions
list, Sublime Text always will insert a completion, even if faced with an ambiguous choice.

Inserting a Literal Tab

If tab_completion is true, you can press Shift+Tab after a prefix to insert a literal tab character.

11.8 Plugins

See Also:

API Reference More information on the Python API.

Plugins are Python scripts implementing *Command classes from sublime_plugin.

11.8. Plugins 67

Sublime Text Unofficial Documentation Documentation, Release 3.0

11.8.1 Where to Store Plugins

Sublime Text will look for plugins in these places:

• Packages

• Packages/<pkg_name>

Any plugin nested deeper in Packages won’t be loaded.

All plugins should live inside a folder of their own and not directly under Packages.

11.8.2 Conventions for Command Names

By convention, Sublime Text command class names are suffixed with Command and written as
CamelCasedPhrases.

However, Sublime Text transforms the class names from CamelCasedPhrases to snake_cased_phrases.
So, ExampleCommand would turn into example and AnotherExampleCommand would turn into
another_example.

For class definition names, use CamelCasedPhrasesCommand. To call a command from the API, use the nor-
malized name (snake_cased_phrases).

11.8.3 Types of Commands

• sublime_plugin.ApplicationCommand

• sublime_plugin.WindowCommand

• sublime_plugin.TextCommand

• sublime_plugin.EventListener

Instances of WindowCommand have a .window attribute pointing to the window instance that created them. Simi-
larly, instances of TextCommand have a .view attribute.

Shared Traits for Commands

All commands must implement a .run() method. All commands can receive an arbitrarily long number of keyword
arguments, but they all must be valid JSON types.

11.8.4 How to Call Commands from the API

Use a reference to a View or a Window, or sublime depending on the type of command, and call
object.run_command(’command_name’). In addition, commands accept a dictionary whose keys are the
names of valid parameters for them:

window.run_command("echo", {"Tempus": "Irreparabile", "Fugit": "."})

11.8.5 Command Arguments

All user-provided arguments to commands must be valid JSON types. Only Sublime Text itself can pass other types
of arguments to commands (such as edit objects, view instances, etc.).

68 Chapter 11. Reference

Sublime Text Unofficial Documentation Documentation, Release 3.0

11.8.6 Text Commands and the edit Object

The two API functions of interest are view.begin_edit(), which takes an optional command name and an
optional dictionary of arguments, and view.end_edit(), which finishes the edit.

All actions done within an edit are grouped as a single undo action. Callbacks such as on_modified() and
on_selection_modified() are called when the edit is finished.

It’s important to call view.end_edit() after each view.begin_edit(), otherwise the buffer will be left in
an inconsistent state. An attempt will be made to fix errors when the edit object gets collected, but often that doesn’t
happen when you expect, and will result in a warning printed to the console. In other words, you should always bracket
an edit in a try..finally block.

The command name passed to begin_edit() is used for repeat, macro recording, and for describing the action
when undoing/redoing it. If you’re making an edit outside of a TextCommand, you should almost never supply a
command name.

If you have created an edit object, and call a function that creates another one, that’s fine: the edit is considered finished
only when the outermost call to end_edit() runs.

As well as for grouping modifications, you can use edit objects for grouping changes to the selection so that they’re
undone in a single step.

11.8.7 Responding to Events

Any subclass of EventListener will be able to respond to events. You cannot make a class derive both from
EventListener and from any other type of command.

A Word of Warning about EventListener

Expensive operations in event listeners can cause Sublime Text to become unresponsive, especially in events
triggered frequently, like on_modified and on_selection_modified. Be careful of how much work is
done in these and don’t implement events you don’t need, even if they just pass.

11.8.8 Python and the Standard Library

Sublime Text ships with a trimmed down standard library. The Tkinter, multiprocessing and sqlite3 modules are among
the missing ones.

11.8.9 Automatic Plugin Reload

Sublime Text will reload top-level Python modules from packages as they change (perhaps because you are editing
a .py file). By contrast, Python subpackages won’t be reloaded automatically, and this can lead to confusion while
you’re developing plugins. Generally speaking, it’s best to restart Sublime Text after you’ve made changes to plugin
files, so all changes can take effect.

11.8.10 Multithreading

Only the .set_timeout() function is safe to call from different threads.

11.8. Plugins 69

Sublime Text Unofficial Documentation Documentation, Release 3.0

11.9 Python API

See Also:

Official Documentation API documentation.

11.9.1 Exploring the API

A quick way to see the API in action:

1. Add Packages\Default (Preferences | Browse Packages...) to your project.

2. CTRL + SHIFT + F

3. Enter *.py in the In Files: field

4. Check Use Buffer option

5. Search API name

6. F4

7. Study relevant source code

11.10 Commands

11.10.1 Overview

This list of commands is a work in progress.

11.10.2 About Paths in Command Arguments

Some commands take paths as parameters. Among these, some support snippet-like syntax, while others don’t. A
command of the first kind would take a parameter like ${packages}/SomeDir/SomeFile.Ext whereas a command of the
second kind would take a parameter like Packages/SomeDir/SomeFile.Ext.

Generally, newer commands support the snippet-like syntax.

Often, relative paths in arguments to commands are assumed to start at the Data directory.

Variables in Paths as Arguments

The same variables available to build systems are expanded in arguments to commands. See Build System Variables
for more information.

11.10.3 Commands

build Runs a build system.

• variant [String]: Optional. The name of the variant to be run.

run_macro_file Runs a .sublime-macro file.

• file [String]: Path to the macro file.

70 Chapter 11. Reference

http://www.sublimetext.com/docs/2/api_reference.html

Sublime Text Unofficial Documentation Documentation, Release 3.0

insert_snippet Inserts a snippet from a string or .sublime-snippet file.

• contents [String]: Snippet as a string to be inserted.

• name [String]: Path to the .sublime-snippet file to be inserted.

insert Inserts a string.

• characters [String]: String to be inserted.

move Advances the caret by predefined units.

• by [Enum]: Values: characters, words, word_ends, subwords, subword_ends, lines, pages, stops.

• forward [Bool]: Whether to advance or reverse in the buffer.

• word_begin [Bool]

• empty_line [Bool]

• punct_begin [Bool]

• separators [Bool]

move_to Advances the caret to predefined locations.

• to [Enum]: Values: bol, eol, bof, eof, brackets.

• extend [Bool]: Whether to extend the selection. Defaults to false.

new_window Opens a new window.

close_window Closes the active window.

switch_file Switches between two files with the same name and different extensions.

• extensions [[String]]: Extensions (without leading dot) for which switching will be enabled.

close Closes the active view.

close_file Closes the active view and, under certain circumsances, the whole application. XXX Sounds kinda wrong.

save Saves the active file.

prompt_save_as Prompts for a new file name and saves the active file.

toggle_sidebar Shows or hides the sidebar.

toggle_full_screen Toggles full screen mode on or off.

toggle_distraction_free Toggles distraction free mode on or off.

left_delete Deletes the character right before the caret.

right_delete Deletes the character right after the caret.

undo Undoes the latest action.

redo Reapplies the latest undone action.

redo_or_repeat Performs the latest action again.

soft_undo Undoes each action stepping through granular edits.

soft_redo Redoes each action stepping through granular edits.

cut Removes the selected text and sends it to the system clipboard. Put differently, it cuts.

copy Sends the selected text to to the system clipboard.

paste Inserts the clipboard contents after the caret.

11.10. Commands 71

Sublime Text Unofficial Documentation Documentation, Release 3.0

paste_and_indent Inserts the clipboard contents after the caret and indents contextually.

select_lines Adds a line to the current selection.

• forward [Bool]: Whether to add the next or previous line. Defaults to true.

scroll_lines Scrolls lines in the view.

• amount [Float]: Positive values scroll lines down and negative values scroll lines up.

prev_view Switches to the previous view.

next_view Switches to the next view.

next_view_in_stack Switches to the most recently active view.

previous_view_in_stack Switches to the view that was active before the most recently active view. I don’t think this
is very clear or even true.

select_all Select the view’s content.

split_selection_into_lines Unsurprisingly, it splits the selection into lines.

single_selection Collapses multiple selections into a single selection.

clear_fields Breaks out of the active snippet field cycle.

hide_panel Hides the active panel.

• cancel [Bool]: Notifies the panel to restore the selection to what it

was when the panel was opened. (Only incremental find panel.)

hide_overlay Hides the active overlay. Show the overlay using the show_overlay command.

hide_auto_complete Hides the auto complete list.

insert_best_completion Inserts the best completion that can be inferred from the current context. XXX Probably
useless. XXX

• default [String]: String to insert failing a best completion.

replace_completion_with_next_completion XXX Useless for users. XXX

reindent XXX ??? XXX

indent Increments indentation.

next_field Advances the caret to the text snippet field in the current snippet field cycle.

prev_field Moves the caret to the previous snippet field in the current snippet field cycle.

commit_completion Inserts into the buffer the item that’s currently selected in the auto complete list. XXX Probably
not useful for users. XXX

unindent Unindents.

toggle_overwrite Toggles overwriting on or off.

expand_selection Extends the selection up to predifined limits.

• to [Enum]: Values: bol, hardbol, eol, hardeol, bof, eof, brackets, line.

find_under_expand Adds a new selection based on the current selection or expands the selection to the current word.

close_tag Surrounds the current inner text with the appropiate tags.

toggle_record_macro Starts or stops the macro recorder.

run_macro Runs the macro stored in the macro buffer.

72 Chapter 11. Reference

Sublime Text Unofficial Documentation Documentation, Release 3.0

show_overlay Shows the requested overlay. Use the hide_overlay command to hide it.

• overlay [Enum]: The type of overlay to show. Possible values:

– goto: Show the Goto Anything overlay.

– command_palette: Show the command palette.

• show_files [Bool]: If using the goto overlay, start by displaying files rather than an empty widget.

• text [String]: The initial contents to put in the overlay.

show_panel Shows a panel.

• panel [Enum]: Values: incremental_find, find, replace, find_in_files, console

• reverse [Bool]: Whether to search backwards in the buffer.

• toggle [Bool]: Whether to hide the panel if it’s already visible.

find_next Finds the next occurrence of the current search term.

find_prev Finds the previous occurrence of the current search term.

find_under Finds the next occurrence of the current selection or the current word.

find_under_prev Finds the previous occurrence of the current selection or the current word.

find_all_under Finds all occurrences of the current selection or the current word.

slurp_find_string Copies the current selection or word into the “find” field of the find panel.

slurp_replace_string Copies the current selection or word into the “replace” field of the find and replace panel.

next_result Advance to the next captured result.

prev_result Move to the previous captured result.

toggle_setting Toggles the value of a boolean setting.

• setting [String]: The name of the setting to be toggled.

next_misspelling Advance to the next misspelling

prev_misspelling Move to the previous misspelling.

swap_line_down Swaps the current line with the line below.

swap_line_up Swaps the current line with the line above.

toggle_comment Comments or uncomments the active lines.

• block [Bool]: Whether to use a block comment.

join_lines Joins the current line with the next one.

duplicate_line Duplicates the current line.

auto_complete Opens the auto comeplete list.

replace_completion_with_auto_complete XXX Useless for users. XXX

show_scope_name Shows the name for the caret’s scope in the status bar.

exec Runs an external process asynchronously.

XXX Document all options.

transpose Makes stuff dance.

sort_lines Sorts lines.

11.10. Commands 73

http://docs.sublimetext.info/en/latest/file_management/file_management.html#goto-anything
http://docs.sublimetext.info/en/latest/extensibility/command_palette.html

Sublime Text Unofficial Documentation Documentation, Release 3.0

• case_sensitive [Bool]: Whether the sort should be case sensitive.

set_layout XXX

focus_group XXX

move_to_group XXX

select_by_index XXX

next_bookmark Select the next bookmarked region.

prev_bookmark Select the previous bookmarked region.

toggle_bookmark Sets or unsets a bookmark for the active region(s). (Bookmarks can be accessed via the regions
API using "bookmarks" as the key.)

clear_bookmarks Removes all bookmarks.

select_all_bookmarks Selects all bookmarked regions.

wrap_lines Wraps lines. By default, it wraps lines at the first ruler’s column.

• width [Int]: Specifies the column at which lines should be wrapped.

upper_case Makes the selection upper case.

lower_case Makes the selection lower case.

title_case Capitalizes the selection’s first character and turns the rest into lower case.

swap_case Swaps the case of each character in the selection.

set_mark XXX

select_to_mark XXX

delete_to_mark XXX

swap_with_mark XXX

yank XXX

show_at_center XXX

increase_font_size Increases the font size.

decrease_font_size Decreases the font size.

fold XXX

unfold XXX

fold_by_level XXX

context_menu Shows the context menu.

11.11 Keyboard Shortcuts - Windows/Linux

Warning: This topic is a draft and may contain wrong information.

74 Chapter 11. Reference

Sublime Text Unofficial Documentation Documentation, Release 3.0

11.11.1 Editing

Keypress Command
Ctrl + X Delete line
Ctrl + Insert line after
Ctrl + + Insert line before
Ctrl + + ↑ Move line/selection up
Ctrl + + ↓ Move line/selection down
Ctrl + L Select line - Repeat to select next lines
Ctrl + D Select word - Repeat select others occurrences
Ctrl + M Jump to closing parentheses Repeat to jump to opening parentheses
Ctrl + + M Select all contents of the current parentheses
Ctrl + KK Delete from cursor to end of line
Ctrl + K + Delete from cursor to start of line
Ctrl +] Indent current line(s)
Ctrl + [Un-indent current line(s)
Ctrl + + D Duplicate line(s)
Ctrl + J Join line below to the end of the current line
Ctrl + / Comment/un-comment current line
Ctrl + + / Block comment current selection
Ctrl + Y Redo, or repeat last keyboard shortcut command
Ctrl + + V Paste and indent correctly
Ctrl + Space Select next auto-complete suggestion
Ctrl + U soft undo; jumps to your last change before undoing change when repeated

Windows

Ctrl + Alt + Up Column selection up
Ctrl + Alt + Down Column selection down

Linux

Alt + + Up Column selection up
Alt + + Down Column selection up

11.11.2 Navigation/Goto Anywhere

Keypress Command
Ctrl + P Quick-open files by name
Ctrl + R Goto symbol
Ctrl + ; Goto word in current file
Ctrl + G Goto line in current file

11.11.3 General

Keypress Command
Ctrl + + P Command prompt
Ctrl + KB Toggle side bar
Ctrl + + Alt + P Show scope in status bar

11.11. Keyboard Shortcuts - Windows/Linux 75

Sublime Text Unofficial Documentation Documentation, Release 3.0

11.11.4 Find/Replace

Keypress Command
Ctrl + F Find
Ctrl + H Replace
Ctrl + + F Find in files

11.11.5 Tabs

Keypress Command
Ctrl + + t Open last closed tab
Ctrl + PgUp Cycle up through tabs
Ctrl + PgDn Cycle down through tabs
Ctrl + Find in files
Alt + [NUM] Switch to tab number [NUM] where [NUM] <= number of tabs

11.11.6 Split window

Keypress Command
Alt + + 2 Split view into two columns
Alt + + 1 Revert view to single column
Alt + + 5 Set view to grid (4 groups)
Ctrl + [NUM] Jump to group where num is 1-4
Ctrl + + [NUM] Move file to specified group where num is 1-4

11.11.7 Bookmarks

Keypress Command
Ctrl + F2 Toggle bookmark
F2 Next bookmark
+ F2 Previous bookmark
Ctrl + + F2 Clear bookmarks

11.11.8 Text manipulation

Keypress Command
Ctrl + KU Transform to Uppercase
Ctrl + KL Transform to Lowercase

11.12 Keyboard Shortcuts - OSX

Warning: This topic is a draft and may contain wrong information.

76 Chapter 11. Reference

Sublime Text Unofficial Documentation Documentation, Release 3.0

11.12.1 Editing

Keypress Command
+ X Delete line
+ Insert line after
+ + Insert line before
+ + ↑ Move line/selection up
+ + ↓ Move line/selection down
+ L Select line - Repeat to select next lines
+ D Select word - Repeat select others occurrences
+ M Jump to closing parentheses Repeat to jump to opening parentheses
+ + M Select all contents of the current parentheses
+ K, + K Delete from cursor to end of line
+ K + Delete from cursor to start of line
+] Indent current line(s)
+ [Un-indent current line(s)
+ + D Duplicate line(s)
+ J Join line below to the end of the current line
+ / Comment/un-comment current line
+ + / Block comment current selection
+ Y Redo, or repeat last keyboard shortcut command
+ + V Paste and indent correctly
+ Space Select next auto-complete suggestion
+ U Soft undo; jumps to your last change before undoing change when repeated
+ + Up Column selection up
+ + Down Column selection down

11.12.2 Navigation/Goto Anywhere

Keypress Command
+ P Quick-open files by name
+ R Goto symbol

Goto word in current file
+ G Goto line in current file

11.12.3 General

Keypress Command
+ + P Command prompt
+ K, + B Toggle side bar
+ + P Show scope in status bar

11.12.4 Find/Replace

Keypress Command
+ F Find
+ + F Replace
+ + F Find in files

11.12. Keyboard Shortcuts - OSX 77

Sublime Text Unofficial Documentation Documentation, Release 3.0

11.12.5 Tabs

Keypress Command
+ + t Open last closed tab
^ + Tab Cycle up through tabs
+ ^ + Tab Cycle down through tabs

Find in files

11.12.6 Split window

Keypress Command
+ + 2 Split view into two columns
+ + 1 Revert view to single column
+ + 5 Set view to grid (4 groups)
+ [NUM] Jump to group where num is 1-4
+ + [NUM] Move file to specified group where num is 1-4

11.12.7 Bookmarks

Keypress Command
+ F2 Toggle bookmark
F2 Next bookmark
+ F2 Previous bookmark
+ + F2 Clear bookmarks

11.12.8 Text manipulation

Keypress Command
+ K, + U Transform to Uppercase
+ K, + L Transform to Lowercase

78 Chapter 11. Reference

CHAPTER

TWELVE

GLOSSARY

buffer Data of a loaded file and additional metadata, associated with one or more views. The distinction between
buffer and view is technical. Most of the time, both terms can be used interchangeably.

view Graphical display of a buffer. Multiple views can show the same buffer.

plugin A feature impemented in Python, which can consist of a single command or multiple commands. It can be
contained in one .py file or many .py files.

package This term is ambiguous in the context of Sublime Text, because it can refer to a Python package (unlikely),
a folder inside Packages or a .sublime-package file. Most of the time, it means a folder inside Packages
containing resources that belong together, which build a new feature or provide support for a programming or
markup language.

panel An input/output widget, such as a search panel or the output panel.

overlay An input widget of a special kind. For example, Goto Anything is an overlay.

79

	Indices and tables

