

 Navigation

 	
 index

 	
 next |

 	style-guides latest documentation

Coding style guides

This repository contains my personal misc coding conventions.

	C++ coding style guide

	Makefile style guide

	CMake coding style guide

 Copyright .
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	style-guides latest documentation

C++ coding style guide

Why yet another C++ coding style? Because there is no standard style. Each
company, organization has it’s own. Most of them don’t satisfy me. They are
similar to java coding style. Personally, I want to stay close to Bjarne
Stroustrup’s and STL, Boost coding styles. Why? Because this looks more like
C++ and code becomes more consistent when it integrates nicer with standard
libraries.

Formatting

Lines

Maximum of 80 charactes should be used on a single line. Why?:

	Humans read narrower columns faster.

	http://www.emacswiki.org/emacs/EightyColumnRule

Indentation

Tabs. Tab size is 8 spaces.

Namespaces

	1
2
3
4
5
6

	namespace log
{

...

}

Classes

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10

	class employee : public person {
public:
 employee(const std::string& name, const std::string& profession);

protected:
 ...

private:
 ...
};

Enums

enum severity_level {
 debug, info, warning, error
}

Or

	1
2
3
4
5
6

	enum severity_level {
 debug, // Most verbose logs.
 info, // General info logs.
 warning, //Llogs that need attention.
 error // Something unexpected happened.
}

Try, catch

	1
2
3
4
5
6

	try {
 new int[10000000000];
}
catch (std::bad_alloc e) {
 cout << e.what() << '\n';
}

If, else

	1
2
3
4
5
6
7
8

	bool success = false;
...
if (success) {
 // on success.
}
else {
 // on error.
}

Switch

	1
2
3
4
5
6
7
8
9

	switch (http_method) {
HTTP_GET:
 break;

HTTP_POST:
 breaj;

default:
}

Naming

Files

To easier distinguish between C and C++ code header files should be named
*.hpp and source files *.cpp.

Macros

In general, macros should be avoided, but if you have ones, you should
capitalize them:

#define VERSION 0x010A03

Classes, enums

Their names consist of all lower case letters and words are separated with an
unserscore. underscore_based_classes simply read easier than
CamelCaseClassNames.

	1
2
3
4
5
6
7

	class http_server {
...
};

enum http_methods {
...
};

Class fields, methods

They start with lower case letters and each word is separated with underscore.

class http_server {
public:
 void set_uri_handler(...);
};

Private fields

Private class fields end with underscore:

class http_server {
private:
 unsigned int port_;
};

Constants

Use same naming convention as for usual variables, no UPPER CASE NAMES:

	1
2
3
4
5

	class http_server {
public:
 static const std::string protocol_version = "1.1";
...
};

Setter, getter methods

Setters and getters have the same name. They are named after the variable they
set. Setter accepts parameter to set. Getter method does not accept any
parameters.

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22

	class http_server {
public:
 void port(unsigned int port_);
 unsigned int port(void) const;

private:
 unsigned int port_;

};

void
http_server::port(unsigned int port_)
{
 this->port_ = port_;
}

unsigned int
Http_server::port(void) const
{
 return this->port_;
}

Error handling

Different forms of error reporting should be used as follows:[1]

	Static assertions To prevent invalid instantiations of templates and to
check other compile-time conditions.

	Exceptions To let some calling code know that a function was unable to
fulfil its contract due to some run-time problems.

	Error codes To report run-time conditions that are part of a function’s
contract and considered normal behavior.

	Run-time assertions To perform sanity checks on internal operations at
run-time and ensure that major bugs do not enter production builds.

Exceptions

Catch exceptions by reference:

	1
2
3
4
5
6

	try {
 // ...
}
catch (const std::runtime_error& e) {
 // ...
}

Misc

Accessing class members

When accessing private class members always refer to them via this:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12

	class person {
public:
 std::string
 name() const
 {
 return this->name_;
 }

private:
 std::string name_;

};

This makes it clear where variable name_ came from without further
code investigation. And avoids errors in some situations [2].

TODO

	In source documentation: do not document what’s obvious. E.g. std::string get_name();

References

	[1]	http://josephmansfield.uk/articles/exceptions-error-codes-assertions-c++.html

	[2]	http://www.parashift.com/c++-faq-lite/nondependent-name-lookup-members.html

 Copyright .
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	style-guides latest documentation

Makefile style guide

Makefile is a text file that defines targets and rules which are executed by
Make utility. This document describes conventions for writing the Makefiles.

Naming

Files

The recommended name for make files is Makefile [f2]. Misc make files with
common targets or variables should have extension .mk. This helps
text redactors to identify that this is a makefile and enable syntax
highlighting.

Targets

Target names should use lower case letters. Words are separated with a
hyphen ‘-‘. E.g.:

test-debug:
 $(build_dir)/debug/bin

Variables

Variables which are not special to make or inherited from the environment
should be in lowercase. Words should be separated with underscore symbol ‘_’.
E.g.:

src_dir = $(CURDIR)/src
build_dir = $(CURDIR)/build

Special targets

Phony targets

Phony target declarations should follow appropriate target declarations rather
than be defined in one place [f1]. This way it’s easier to maintain targets.

Good:

all: build test
.PHONY: all

Bad:

.PHONY: all build test

all: build test

References

	[f1]	http://clarkgrubb.com/makefile-style-guide#phony-targets

	[f2]	https://www.gnu.org/software/make/manual/html_node/Makefile-Names.html

 Copyright .
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 previous |

 	style-guides latest documentation

CMake coding style guide

Naming

Commands

Use lowercase letters:

add_executable(main main.cpp)

Variables

Local variable names should use all lowercase letters:

set(src_dir "${CMAKE_CURRENT_SOURCE_DIR}/src)

References

	[f1]	https://techbase.kde.org/Policies/CMake_Coding_Style

 Copyright .
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	style-guides latest documentation

Index

 Copyright .
 Created using Sphinx 1.2.2.

 _static/down-pressed.png

README.html

 Navigation

 		
 index

 		style-guides latest documentation »

Coding style guides

This repository contains my personal misc coding conventions.

		C++ coding style guide

		Makefile style guide

		CMake coding style guide

 © Copyright .
 Created using Sphinx 1.2.2.

search.html

 Navigation

 		
 index

 		style-guides latest documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright .
 Created using Sphinx 1.2.2.

_static/plus.png

_static/minus.png

_static/comment.png

_static/up.png

_static/down.png

_static/ajax-loader.gif

_static/comment-close.png

_static/up-pressed.png

_static/comment-bright.png

_static/file.png

