

Studio.ml

Github [https://github.com/pypa/pip] |
pip [https://pypi.org/project/studioml/] |

Studio is a model management framework written in Python to help simplify and expedite your model building experience. It was developed to minimize the overhead involved with scheduling, running, monitoring and managing artifacts of your machine learning experiments. No one wants to spend their time configuring different machines, setting up dependencies, or playing archeologist to track down previous model artifacts.

Most of the features are compatible with any Python machine learning framework (Keras [https://github.com/fchollet/keras], TensorFlow [https://github.com/tensorflow/tensorflow], PyTorch [https://github.com/pytorch/pytorch], scikit-learn [https://github.com/scikit-learn/scikit-learn], etc) without invasion of your code; some extra features are available for Keras and TensorFlow.

Use Studio to:

	Capture experiment information- Python environment, files, dependencies and logs- without modifying the experiment code. Monitor and organize experiments using a web dashboard that integrates with TensorBoard.

	Run experiments locally, remotely, or in the cloud (Google Cloud or Amazon EC2)

	Manage artifacts

	Perform hyperparameter search

	Create customizable Python environments for remote workers.

 Installation

Installation

Installation Packaging

pip install studioml from the master pypi repositry:

pip install studioml

or, install the source and development environment for Studio from the git project directory:

git clone https://github.com/studioml/studio && cd studio && pip install -e .

A setup.py is included in the top level of the git repository to
allow the creation of tar archives for installation on runners and
other systems where git is not the primary means of handling Python
artifacts. To create the installable, use the following command from the
top level directory of a cloned repository:

python setup.py sdist

This command will create a file dist/studio-x.x.tar.gz that can be used
with pip as follows:

pip install studio-x.x.tar.gz

Certain types of runners can make use of the Studio software
distribution to start projects without any intervention, i.e. devops-less
runners. To include the software distribution, add the tar.gz file to
your workspace directory under a dist subdirectory. Runners supporting
software distribution will unroll the software and install it using
virtualenv.

We recommend setting up a virtual
environment [https://github.com/pypa/virtualenv].

CI/CD pipeline

The Studio project distributes official releases using a travis based
build and deploy pipeline. The Travis project that builds the official
github repository for Studio has associated encrypted user and
password credentials that the Travis .yml file refers to. These secrets
can be updated using the Travis configuration found at
https://travis-ci.com/SentientTechnologies/studio/settings. The
PYPI_PASSWORD and PYPI_USER variables should point at an owner account
for the project. To rotate these values, remove the old ones using the
settings page and re-add the same variables with new values.

When code is pushed to the master branch in the github repository, a
traditional build will be performed by Travis. To push a release after
the build is complete, add a server compatible version number as a tag
to the repository and do a ‘git push –tags’ to trigger the deployment
to pypi. Non-tagged builds are never pushed to pypi. Any tag will result
in a push to pypi, so care should be taken to manage the visible
versions using the PYPI_USER account.

Release process

Studio is released as a binary or source distribution using a hosted
package at pypi.python.org. To release Studio, you must have
administrator role access to the Studio Package on the
https://pypi.python.org/ web site. Releases are done using the setup
packaging found inside the setup.py files.

When working with the pypi command line tooling you should create a
~/.pyirc file with your account details, for example:

[distutils]
index-servers=
 pypi
 testpypi

[testpypi]
repository = https://testpypi.python.org/pypi
username = {your pipy account}
password = {your password}

[pypi]
username = {your pipy account}

The command to push a release is as follows.

python setup.py sdist upload

If you wish to test releases and not pollute our pypi production release
train and numbering, please use the ‘-r’ option to specify the test pypi
repository. pypi releases are idempotent.

Running tests

To run the unit and regression tests, run

python $(which nosetests) --processes=8 --process-timeout=600

Note that simply running nosetests tends to not use virtualenv
correctly. If you have application credentials configured to work with
distributed queues and cloud workers, those will be tested as well.
Otherwise, such tests will be skipped. The total test runtime,
when run in parallel as in the command above, should be no more than 10
minutes. Most of the tests are I/O limited, so parallel execution speeds
up things quite a bit. The longest test is the gpu cloud worker test in
EC2 cloud (takes about 500 seconds due to installation of the drivers /
CUDA on the EC2 instance).

 Authentication

Authentication

Currently, Studio uses GitHub auth for authentication. For command-line tools
(studio ui, studio run etc) the authentication is done via personal
access tokens. When no token is present (e.g. when you run studio for
the first time), you will be asked to input your github username and
password. Studio DOES NOT store your username or password, instead,
those are being sent to GitHub API server in exchange to an access token.
The access token is being saved and used from that point on.
The personal access tokens do not expire, can be transferred from one
machine to another, and, if necessary, can be revoked by going to
GitHub -> Settings -> Developer Settings -> Personal Access Tokens

Authentication for the hosted UI server (https://zoo.studio.ml) follows
the standard GitHub Auth flow for web apps.

 Command-line interface

Command-line interface

In some cases, a (semi-)programmatic way of keeping track of experiments may be preferred. On top of the Python and HTTP API, we provide
a command-line tool to get a quick overview of exising experiments and take actions on them. Commands available
at the moment are:

	studio runs list users - lists all users

	studio runs list projects - lists all projects

	studio runs list [user] - lists your (default) or someone else’s experiments

	studio runs list project <project> - lists all experiments in a project

	studio runs list all - lists all experiments

	studio runs kill <experiment> - deletes experiment

	studio runs stop <experiment> - stops experiment

Note that for now if the experiment is running, killing it will NOT automatically stop the runner. You should stop the experiment first, ensure its status has been changed to stopped, and then kill it. This is a known issue, and we are working on a solution.

 Artifact management

Artifact management

This page describes facilities that Studio provides for
management of experiment artifacts. For now, artifact storage is backed
by Google Cloud storage.

Basic usage

The goal of artifact management is three-fold:

	With no coding overhead capture data the experiment depends on (e.g. dataset).

	With no coding overhead save, and with minimal overhead visualize, the results of the experiment (neural network weights, etc).

	With minimal coding overhead make experiments reproducible on any machine (without manual data download, path correction etc).

Below we provide the examples of each use case.

Capture data

Let’s imagine that file train_nn.py in the current directory trains a
neural network based on data located in ~/data/. In order to capture
the data, we need to invoke studio run as follows:

studio run --capture-once=~/data:data train_nn.py

Flag --capture-once (or -co) specifies that data at path ~/data
needs to be captured once at experiment startup. Additionally, the tag
data (provided as a value after :) allows the script to access data
in a machine-independent way, and also distinguishes the dataset in the
web-ui (the Web UI page of the experiment will contain download link for
tar-gzipped folder ~/data).

Save the result of the experiment

Let’s now consider an example of a python script that periodically saves
some intermediate data (e.g. weights of a neural network). The following
example can be made more concise using the keras or tensorflow built-in
checkpointers, but we’ll leave that as an exercise for the reader.
Consider the following contents of file train_linreg.py (also
located in studio/examples/general/ in repo):

import numpy as np
import pickle
import os

no_samples = 100
dim_samples = 5

learning_rate = 0.01
no_steps = 10

X = np.random.random((no_samples, dim_samples))
y = np.random.random((no_samples,))

w = np.random.random((dim_samples,))

for step in range(no_steps):
 yhat = X.dot(w)
 err = (yhat - y)
 dw = err.dot(X)
 w -= learning_rate * dw
 loss = 0.5 * err.dot(err)

 print("step = {}, loss = {}, L2 norm = {}".format(step, loss, w.dot(w)))

 with open(os.path.expanduser('~/weights/lr_w_{}_{}.pck'.format(step, loss)), 'w') as f:
 f.write(pickle.dumps(w))

The reader can immediately see that we are solving a linear regression
problem by gradient descent and saving weights at each step to
~/weights folder.

In order to simply save the weigths, we can run the following command:

studio run --capture=~/weights:weights train_linreg.py

Flag --capture (or -c) specifies that data from folder
~/weights needs to be captured continously - every minute (the frequency
can be changed in a config file), and at the end of the experiment. In
the Web ui page of the experiment we now have a link to weights
artifact. This simple script should finish almost immediately, but for
longer running jobs upload happens every minute of runtime (the upload
happens in a separate thread, so this should not slow down the actual
experiment).

Machine-independent access to the artifacts

So far we have been assuming that all experiments are being run on a
local machine, and the only interaction with artifacts has been to save
them for posterity’s sake. But what if our experiments are growing a bit
too big to be run locally? Fortunately, Studio comes with a dockerized
worker that can run your jobs on a beefy gpu server, or on a cloud
instance. But how do we make
local data available to such a worker? Clearly, a local path along the
lines of /Users/john.doe/weights/ will not always be reproducible on
a remote worker. Studio provides a way to access files in a
machine-independent way, as follows. Let us replace the last three lines in
the script above by:

from studio import fs_tracker
with open(os.path.join(fs_tracker.get_artifact('weights'),
 'lr_w_{}_{}.pck'.format(step, loss)),
 'w') as f:
 f.write(pickle.dumps(w))

We can now run the script locally, the exact same way as before:

studio run --capture=~/weights:weights train_linreg.py

Or, if we have a worker listening to the queue work_queue:

studio run --capture=~/weights:weights --queue work_queue train_linreg.py

In the former case, the call fs_tracker.get_artifact('weights') will
simply return os.path.expanduser('~/weights'). In the latter case, a
remote worker will set up a cache directory that corresponds to the artifact
tagged as weights and copy existing data from storage into it (so that
data can be read from that directory as well). The call
fs_tracker.get_artifact('weights') will return the path to that
directory. In both cases, the --experiment flag is not mandatory; if you don’t specify a name,
a random uuid will be generated.

Re-using artifacts from other experiments

A neat side-benefit of using machine-independent access to the artifacts
is the ability to plug different datasets into an experiment without touching
the script at all - simply provide different paths for the same tag in the
--capture(-once) flags. More importantly, one can reuse datasets
(or any artifacts) from another experiment using the --reuse flag. First,
let’s imagine we’ve run the train_linreg.py script, this time giving the
experiment a name:

studio run --capture=~/weights:weights --experiment linear_regression train_linreg.py

Say we now want to print the L2 norm of the last set of weights. Let’s
consider the following script (print_norm_linreg.py):

import glob
import os
from studio import fs_tracker
import pickle

weights_list = glob.glob(os.path.join(fs_tracker.get_artifact('w'),'*.pck'))
weights_list.sort()

print('*****')
print(weights_list[-1])
with open(weights_list[-1], 'r') as f:
 w = pickle.load(f)

print w.dot(w)
print('*****')

We can run it via

studio run --reuse=linear_regression/weights:w print_norm_linreg.py

The flag reuse tells studio run that artifact weights from experiment
linear_regression will be used in the current experiment with a tag
w. There is a bit of a catch - for download optimization, all
artifacts from other experiments are considered immutable, and cached as
such. If you re-run the experiment with the same name and would like to
use new artifacts from it, clean the cache folder
~/.studioml/blobcache/.

Default artifacts

Each experiment gets default artifacts that it can use via
fs_tracker.get_artifact() even without the --reuse or --capture(-once)
flags. Those are:

	workspace- this artifact always gets cached to/from . folder, thus creating a copy of the working directory on a remote machine and saving the state of the scripts

	output- this artifact is a file with the stdout and stderr produced by running the script

	modeldir- it is recommended to save weights to this directory because Studio will try to do some analysis on it, such as count the number of checkpoints etc.

	tb- it is recommended to save Tensorboard logs to this directory, this way Studio will be able to automatically feed them into Tensorboard

All of the default artifacts are considered mutable (i.e. are stored
continously). The default artifacts can be overwritten by
–capture(-once) flags.

Ignoring Files

By placing an .studioml_ignore file inside the directory of the script invoked by studio run, you can specify certain directories or files to avoid being uploaded. These files will not exist in the workspace directory when the script is running remotely.

Custom storage

The Firebase API is great for small projects, but it is easy to grow beyond its
free storage limits (5 Gb as of 08/02/2017), after which it
becomes very expensive. Studio can utilize Google Cloud
storage directly for artifact storage if your projects don’t fit into
Firebase (support for Amazon S3 is on the way).

For now, the downside of using Google Cloud storage is that Google service account credentials
are used, which means that all users in possession of the credential’s
file have read/write access to the objects in the storage, so in
principle one user can delete the experiments of another. See
here [http://docs.studio.ml/en/latest/gcloud_setup.html] for instructions on how to generate service
account credentials. Once you have generated a credentials file, uncomment the
“storage” section in your config.yaml file, set the type of storage to
gcloud, and specify a storage bucket. Note that the bucket name needs to
be unique, and an error will be thrown if a bucket with that name cannot
be created. The safest approach is to create a bucket manually from the
Google Cloud console, and then specify it in config.yaml. Folder/file
structure within the bucket is the same as for Firebase storage, so if
you want to migrate all your Firebase experiments to the new storage
you can copy the Firebase storage bucket and point config.yaml to the
copy (you could point config.yaml to the original, but then you’ll be
paying the same Firebase prices).

 Hyperparameter search

Hyperparameter search

This page describes facilities that Studio provides for
hyperparameter search and optimization.

Basics

For now, Studio can launch a batch of experiments using regex
substitution of variables inside the script. These experiments are
launched in a separate project, and can be compared in tensorboard or by
the value of some scalar metrics reported in tensorboard logs.

Consider the following code snippet (code in
here [https://github.com/studioml/studio/blob/master/examples/keras/train_mnist_keras.py]):

lr=0.01
print('learning rate = {}'.format(lr))
model.compile(loss='categorical_crossentropy', optimizer=optimizers.SGD(lr=lr))

some data preparation code

tbcallback = TensorBoard(log_dir=fs_tracker.get_tensorboard_dir(),
 histogram_freq=0,
 write_graph=True,
 write_images=False)

model.fit(
 x_train, y_train, validation_data=(
 x_test,
 y_test),
 epochs=int(sys.argv[1]),
 callbacks=[tbcallback])

We compile a keras model with the specified learning rate for stochastic
gradient descent. What if we want to search a range of learning rates to
determine the best value? (as a side note, in the train_mnist_keras.py you can
simply use an adaptive learning rate optimizer such as adam to get better
results, but let’s forget about that for demonstration purposes)

We can add the following argument to studio run call:

studio run --hyperparam=lr=0.01:0.01:0.1 train_mnist_keras.py 30

This will create a new project with 10 experiments. For each experiment,
a copy of the working directory will be put in the studioml cache, and
within each copy of the script
train_mnist_keras.py regex substitution of lr not followed by
= (i.e. located in right-hand side of an expression) will be performed
to for values from 0.01 to 0.1 with a step size of 0.01. Those
experiments will then be submitted to the queue (to the local queue in the version of the
call above) and executed. The progress of the
experiments can be seen in the Studio WebUI. The last argument 30 refers to
number of training epochs, as can be seen in the code snippet above.

Metrics

But wait, do you have to go and check each experiment individually to
figure out which one has done best? Wouldn’t it be nice if we could
look at the project and immediately figure out which experiments have
done better than the others? There is indeed such a feature. We can
specify an option --metric to studio run to specify which
tensorflow / tensorboard variable to report as a metric, and how to
accumulate it throughout experiment. For keras experiments, that would
most often be val_loss, but in principle any scalar reported in
tensorboard can be used. Note that tensorboard logs need to be written
for this feature to work. Let’s modify the command line above a bit:

studio run --hyperparam=lr=0.01:0.01:0.1 --metric=val_loss:min train_mnist_keras.py

This will report the smallest value of val_loss so far in the projects page
or in the WebUI dashboard. Together with the column sorting feature of the
dashboard you can immediately figure out the best experiment.
The reason why this option is given to the runner and not in the WebUI
after the run is because we are planning to incorporate more complicated
hyperparameter search where new experiments actually depend on
previously seen values of metric. Other allowed values for the
--metric parameter suffix are “:max” for maximum value seen
throughout experiment, or empty for the last value.

Specifying hyperparameter ranges for grid search

Scanning learning rate in constant steps is not always the best idea,
especially if we want to cover several orders of magnitude. We can
specify range with a log step as follows:

--hyperparam=lr=1e-5:l5:0.1

which will make 10 steps spaced logarithmically between 1e-5 and 0.1
(that is, 1e-5, 1e-4, 1e-3, 0.01, 0.1 - matlab style rather than numpy)
Other options are:

	lr=1e-5:10:0.1 or lr=1e-5:u10:0.1 will generate a uniformly
spaced grid from 1e-5 to 0.1 (bad idea - the smaller end of the range
will be spaced very coarsely)

	no_layers=0:3 or nolayers=:3 will generate uniformly spaced
grid with a step 1 (0,1,2,3 - endpoints are handled in matlab style,
not numpy style)

	lr=0.1 will simply substitute lr with 0.1

	no_layers=2,5,6 will generate three values - 2,5 and 6

Note that option --hyperparam/-hp can be used several times for
different hyperparameters; however, keep in mind that grid size grows
exponentially with number of hyperparameters to try.

Specifying hyperparameter ranges for plugin optimizers

Plugin optimizers are also supported. They can be enabled with the
-opt/--optimizer flag. Either the name of the optimizer (or its file path)
can be specified as argument. The format is slightly different for plugin
optimizers. Below are some examples:

--hyperparam=lr=0:1:10:urla

--hyperparam=lr=0:5:l

--hp=lr=5:5:10:alu

The general format is [min range]:[max range]:{array length}:{flags},
where {array length} and {flags} are optional arguments. The following
flags are supported:

	{u}: whether or not to constrain hyperparameters to [min range]:[max range]
(default is constrained).

	{r}: whether to initialize hyperparameters with random value between
[min range]:[max range] or right in the middle (default is nonrandom).

	{l}: whether to use log scaling for the hyperparameter (default is nonlog).

	{a}: whether the hyperparameter is a numpy array or a scalar. If the
hyperparameter is a numpy array, then the {array length} field must be
present as well (default is scalar).

In addition, the python script whose hyperparameters are being optimized must
contain a line with the fitness printed to stdout as shown below. For
hyperparameters whose contents are numpy arrays, they must be loaded using
the fs_tracker.get_artifact function call as shown below:

from studio import fs_tracker

lr = np.load(fs_tracker.get_artifact('lr'))

print "fitness: %s" % np.sum(lr)

Cloud workers

Waiting till your local machine runs all experiments one after another
can be time consuming. Fortunately, we can outsource the compute to Google
Cloud or Amazon EC2. Please refer to this page [http://docs.studio.ml/en/latest/cloud.html] for setup
instructions; all the custom hardware configuration options can be
applied to the hyperparameter search as well.

studio run --hyperparam=lr=0.01:0.01:0.1 --metric=val_loss:min --cloud=gcloud --num-workers=4 train_mnist_keras.py

will spin up 4 cloud workers, connect the to the queue and run
experiments in parallel. Beware of spinning up too many workers - if a
worker starts up and finds that everything in the queue is done, it will
(for now) listen to the queue indefinitely waiting for the work, and
won’t shut down automatically.

 Trained model pipelines

Trained model pipelines

Both Keras and TensorFlow handle data that has been packaged into
tensors gracefully. However, real-world data is often not properly formatted,
especially at the time of prediction. It may come as a
collection (a list, set, or generator) of urls, have non-numeric
metadata that needs to be converted into tensor format, etc. Some of
the data may actually be missing or cause exceptions in preprocessing /
prediction stages.

Keras provides some features for image preprocessing to address this issue, and
TensorFlow has functions to include non-tensor values into the
computational graph. Both approaches have limitations - neither of them
can handle missing data while retaining performance. As a concrete example, let us consider the following
(which is a basis of the unit test ModelPipeTest.test_model_pipe_mnist_urls in
studio/tests/model_util_test.py):

We are training a network to classify mnist digits, and then trying to
predict images from urls. The simplest way to achieve this would be:

from PIL import Image
from io import BytesIO
import urlllib
import numpy as np

from studio import model_util

setup and train keras model
#
urls is a list of urls

labels = []
for url in urls:
 data = urllib.urlopen(url).read()
 img = Image.open(BytesIO(data))

 # resize image to model input, and convert to tensor:
 img_t = model_util.resize_to_model_input(model)(img)

 labels.append(np.argmax(model.predict(img_t)))

The function model_util.resize_to_model_input(model) is used for
brevity and performes conversion of an image into a tensor with values
between 0 and 1, and shaped accoring to model input size. np.argmax
in the last line is used to convert output class probablilities into the
class label.

Ok, so why do we need anything else? The code
above has two problems: 1) it does not handle exceptions (though that is
easy to fix) and 2) it processes the data sequentially. To address 2, we
could have spawned a bunch of child processes, and if the model is
evaluated on a CPU that probably would have been ok. But modern neural
networks get a substantial speed boost from using GPUs that don’t do
well with hundreds of processes trying to run different instructions.
To leverage GPU speedup, we’ll need to create batches of data and
feed them to the GPU (preferrably in parallel with urls being fetched).

Keras offers a built in mechanism to do this:
keras.models.predict_generator. The relevant part of the code above
can then become:

labels = []
batch_size = 32
tensor_generator = (model_util.resize_to_model_input(model)(Image.open(BytesIO(urllib.urlopen(url).read()))) for url in urls)
output = model.predict_generator(tensor_generator, batch_size = batch_size, num_workers=4, no_batches = len(urls) / batch_size)

for out_t in output:
 labels = np.stack(labels, np.argmax(out_t, axis=1))

We are handling de-batching implicitly when doing stacking of the labels
from different batches. This code will spin up 4 workers that will read
from the tensor_generator and prepare the next batch in the background
at the same time as the heavy lifting of prediction is handled by GPU.
So is that good enough? Not really. Rememeber our problem 1) - what
if there is an exception in the pre-processing / url is missing etc? By
default the entire script will come to a halt at that point. We could
filter out the missing urls by passing an exception-handling function
into the generator, but filtering out bad values will ruin the mapping
from url to label, rendering values after exception just as useless as
if the script were to stop.

The least ugly solution using Keras is to add another
input to the model, so that model applies to a key:tensor value; and
then after prediction sort out which ones were successfull. But this
process really doesn’t have to be that complicated.

Studio provides primitives that make this job (that is
conceptually very simple) simple in code; and similar in usage to Keras.
The code above becomes (see unit test
ModelPipeTest.test_model_pipe_mnist_urls in
studio/tests/model_util_test.py)

pipe = model_util.ModelPipe()
pipe.add(lambda url: urllib.urlopen(url).read(), num_workers=4, timeout=5)
pipe.add(lambda img: Image.open(BytesIO(img)))
pipe.add(model_util.resize_to_model_input(model))
pipe.add(lambda x: 1-x)
pipe.add(model, num_workers=1, batch_size=32, batcher=np.vstack)
pipe.add(lambda x: np.argmax(x, axis=1))

output_dict = pipe({url:url for url in urls})

This runs the preprocessing logic (getting the url, converting it to
an image, resizing the image, and convering to a tensor) using 4 workers that populate the
queue. The prediction is run using 1 worker with batch size 32 using the
same queue as input. Conversion of class probabilities to class labels
is also now a part of the model pipeline. In this example the input is a
dictionary mapping url to url. The functions will be applied only to the
values, so the output will become url: label. The pipeline can also be
applied to lists, generators and sets, in which case it returns the same
type of collection (if the input was list, it returns list etc) with
tuples (index, label) If any step of the preprocessing raises an
exception, it is caught, and corresponding output is filtered out. We are using
additional function lambda x: 1-x because in the mnist dataset the
digits are white on black background, whereas in the test urls digits
are black on white background.

The timeout parameter controls how long the workers wait if the queue is
empty (e.g. when urls take too long to fetch). Note that this also means
that the call pipe() will not return for a number of seconds specified
by the last (closest to output) timeout value.

Note that pipe.add() calls that don’t specify a number of workers,
timeout, batch_size, or batcher (function to assemble list of values
into a batch digestable by a function that operates on batches) are
composed with the function in previous calls to pipe.add() directly,
so that there is no unnecessary queues / buffers / workers.

Benchmark

For a benchmark, we use
StyleNet [http://ieeexplore.ieee.org/document/7780408/] inference on
a dataset of 7k urls, some of which are missing / broken. The benchmark
is being run using EC2 p2.xlarge instances (with nVidia Tesla K80 gpus).
The one-by-one experiment is running inference one image at a time, pipe is
using model pipe primitives as described above. Batch size is number of
images being processed as a single call to model.predict, and
workers is number of prefetching workers

	Experiment

	Time (s)

	Time per url (s)

	One-by-one

	6994

	~ 0.98

	Pipe (batch 64, workers 4)

	1581

	~ 0.22

	Pipe (batch 128, workers 32)

	157

	~ 0.02

 Setting up a database and API server

Setting up a database and API server

This page describes the process of setting up your own database /
storage for the models. This puts you in full control of who has access
to the experiment data. For the moment, Studio only supports Firebase
(https://firebase.google.com/) as a database backend, and
firebase / google cloud storage (GCS) / Amazon S3 as storage
backends.

Introduction

Firebase and Firebase Storage provide fairly simple rules to control use access
to experiments. Additionally, GCS and S3 don’t work directly with Firebase
authentication tokens, so one cannot create access rules for the storage.
In order to provide more rigorous rules, we are employing
an API server that proxies database requests and can provide arbitrarily complex
access rules (at the moment the access rules are still very simple - anyone can
read any experiment, and only user who created the experiment can delete / overwrite
it). Also, API server should allow one to swap database backends
(i.e. from Firebase to DynamoDB)
completely seamlessly for the users, without even updating the users’ config
files. Yet another reason to use the API server is that GCS and S3 are
much cheaper than Firebase Storage for large amounts of data.

Generally, the outline of the API server / database / storage interaction is
as follows:

	API server has read/write access to database and storage

	When getting/writing the data about experiment, user signs the HTTP request
with firebase authentication token. The API server then validates that user
indeed has permissions to do so, and either
returns data about experiment (for /api/get_experiment method) or
writes the expeirment data

	Artifacts are being read and written via communicating with storage
directly using signed urls, generated by API server

The detailed instructions on setting up the API server (we’ll use
google app engine, GAE, but these steps can be trivially adapted
for heroku or just running API server on a dedicated instance)

Prerequisites

If deploying onto google app engine, you’ll need to have Google Cloud SDK
installed (https://cloud.google.com/sdk/downloads)

In what follows, deployment machine means either the local machine
(when deploying on GAE) or the instance on which you are
planning to run the API server

Deploying the API server

	Create a new Firebase project: go to https://firebase.google.com,
sign in, click add project, specify project name

	Enable authentication using google accounts (in the left-hand pane
select Authentication, then tab “Sign-in method”, click on
“Google”, select “Enabled”)

	Go to project settings (little cogwheel next to “Overview” on the
left-hand pane), tab “General”

	Copy the Web API key and paste it in apiKey of the database section of
studio/apiserver_config.yaml

	Copy the project ID and paste it in projectId of the database section of
config yaml file.

	Go to Service Accounts tab and generate a new key for the firebase
service account. This key is a json file that will give API server admin
access to the database. Save it to the deployment machine.

	Modify other entries of the apiserver_config.yaml file to your specs
(e.g. storage type and bucket)

	On the deployment machine in the folder studio/studio, run

./deploy_apiserver.sh gae

for GAE and

./deploy_apiserver.sh local <port>

when running on a dedicated instance (where port is the port on which
the server will be listening). When prompted, input path to
the firebase admin credentials json file generated in step 6.

Configuring studio to work with the API server

For clients to work with the API server, you’ll
need to modify their config.yaml files as follows:

	Remove storage section

	In the database section, set type: http,
serverUrl: <url of your deployed server>.
When deploying to GAE, the url will have format
https://<project_name>.appspot.com. When deploying
on a dedicated instance, don’t forget to specify the
port.

 Setting up a remote worker

Setting up a remote worker

This page describes a procedure for setting up a remote worker for
Studio. Remote workers listen to the queue; once a worker
receives a message from the queue, it starts the experiments.

Getting credentials

	Remote workers work by listening to a distributed queue. Right now the
distributed queue is backed by Google PubSub, so to access it you’ll
need application credentials from Google (in the future, it may be
implemented via Firebase itself, in which case this step should
become obsolete). If you’ve made it this far, you are likely to have a
Google Cloud Compute account set up, but if not, go to
http://cloud.google.com and either set up an account or sign in.

	Next, create a project if you don’t have a project corresponding to
Studio just yet.

	Then go to API Manager -> Credentials, and click “Create credentials”
-> “Service account key”

	Choose “New service account” from the “Select accout” dropdown, and
keep key type as JSON.

	Enter a name of your liking for the account (Google will convert it to a
unique name), and choose “PubSub Editor” for a role (technically, you
can create 2 keys, and keep the publisher on a machine that submits work,
and subscriber key on a machine that implements the work). If you are
planning to use cloud workers, it is also recommended to add Compute
Engine / Compute Engine Admin (v1).

	Save a json credentials file. It is recommended that the credential
file be saved in a safe location such as your ~/.ssh directory and
that you use the ‘chmod 0600 file.json’ command to help secure the
file within your Linux user account.

	Add the GOOGLE_APPLICATION_CREDENTIALS variable to the environment
that points to the saved json credentials file both on the work submitter
and work implementer.

Enabling Google PubSub for the Google Application

In order to use Google queues for your own remote workers, as opposed to
the Google Cloud Platform workers, PubSub API services will need to be
enabled for the project. To do this go to the Google API Manager
Dashboard within the Google Cloud Platform console and select the Enable
API drop down, which is located at the top of the Dashboard with a ‘+’
icon beside it. From here you will see a panel of API services that can
be enabled, choose the PubSub API. In the PubSub Dashboard there is an
option to enable the API at the top of the Dashboard.

Setting up remote worker

If you don’t have your own docker container to run jobs in, follow the
instructions below. Otherwise, jump to the next section.

	Install docker, and nvidia-docker to use gpus

	Clone the repo

git clone https://github.com/ilblackdragon/studio && cd studio && pip install -e .

To check the success of the installation, you can run python $(which nosetests) --processes=10 --process-timeout=600 to run the tests (may take about 10 min to finish)

	Start the worker (queue name is a name of the queue that will define
where submit work to)

studio start remote worker --queue=<queue-name>

Setting up a remote worker with exising docker image

This section applies when you already have a docker
image/container and would like the Studio remote worker to run inside it.

	Make sure that the image has python-dev, python-pip, and git installed,
as well as Studio. The easiest way is to make your Dockerfile inherit
from from the Studio Dockerfile (located in the Studio root
directory). Otherwise, copy relevant contents of Studio Dockerfile
into yours.

	Bake the credentials into your image. Run

studio add credentials [--base_image=<image>] [--tag=<tag>] [--check-gpu]

where <image> is the name of your image (default is peterzhokhoff/studioml); <tag> is the tag of the image with credentials (default is <image>_creds). Add option check-gpu if you are planning to use image on the same machine you are running the script from. This will check for presence of the CUDA toolbox and uninstall tensorflow-gpu if not found.

	Start the remote worker passing --image=<tag>:

studio start remote worker --image=<tag> --queue=<queue-name>

You can also start the container and remote worker within it manually, by running:

studio remote worker --queue=<queue-name>

within the container - this is essentially what the studio-start-remote-worker script does, plus mounting cache directories ~/.studioml/experiments and ~/.studioml/blobcache

Submitting work

On a submitting machine (usually local):

studio run --queue <queue-name> <any_other_args> script.py <script_args>

This script should quit promptly, but you’ll be able to see experiment
progress in the Studio WebUI.

 Custom environments

Custom environments

Using custom environment variables at runtime

You can add an env section to your yaml configuration file in order to send environment variables into your runner environment variables table. Variables can be prefixed with a $ sign if you wish to substitute local environment variables into your run configuration. Be aware that all values are stored in clear text. If you wish to exchange secrets you will need to encrypt them into your configuration file and then decrypt your secrets within your python code used during the experiment.

Customization of python environment for the workers

Sometimes your experiment relies on an older / custom version of some
python package. For example, the Keras API has changed quite a bit between
versions 1 and 2. What if you are using a new environment locally, but
would like to re-run old experiments that needed older version of
packages? Or, for example, you’d like to see if your code would work
with the latest version of a package. Studio gives you this
opportunity.

studio run --python-pkg=<package_name>==<package_version> <script.py>

allows you to run <script.py> on a remote / cloud worker with a
specific version of a package. You can also omit ==<package_version>
to install the latest version of the package (which may not be
equal to the version in your environment). Note that if a package with a
custom version has dependencies conflicting with the current version, the situation
gets tricky. For now, it is up to pip to resolve conflicts. In some
cases it may fail and you’ll have to manually specify dependencies
versions by adding more --python-pkg arguments.

 Cloud computing

Cloud computing

Studio can be configured to submit jobs to the cloud. Right
now, only Google Cloud is supported (CPU only), as well as Amazon EC2
(CPU and GPU).
Once configured (see configuration instructions for Google
Cloud [http://docs.studio.ml/en/latest/gcloud_setup.html], and
Amazon AWS [http://docs.studio.ml/en/latest/ec2_setup.html]) the command

studio run --cloud={gcloud|ec2|gcspot|ec2spot} my_script.py

will create an instance, set up the python environment, run
my_script.py, and shutdown the instance. You’ll be able to see the
progress of the job in studio ui. Different experiments might require
different hardware. Fortunately, Google Cloud offers flexibility of
instance configuration, and Amazon EC2 offers a variety of instances to
select from; Studio can leverage either. To specify the number of
cpus or gpus needed, use flags --cpus and --gpus respectively. That is,
the command:

studio run --cloud={gcloud|ec2|gcspot|ec2spot} --cpus=8 --gpus=1 my_script.py

will create an instance with 8 cpus and 1 gpu. The top of the line gpu
in Amazon EC2 is Tesla K80 at the moment, and that’s the only one
available through Studio; we might provide some gpu selection flags
in the future as well.

The amount of ram and hard drive space can be configured via the
--ram / --hdd flags (using standard suffixes like g(G,Gb,GiB), m(M,MiB)).
Note that the amount of RAM will be rounded up to the next factor of 256 Mb.
Also note that for now extended RAM for Google Cloud is not supported,
which means the amount of RAM per CPU should be between 1 and 6 Gb.
For Amazon EC2, Studio will find the cheapest instances with higher specs than required,
or throw an exception for too extravagant of a request.

Running on EC2 spot instances

Basics

Amazon EC2 offers so-called spot instances that are provided with a
substantial discount with the assumption that they can be taken from
the user at any moment. Google Compute Engine has a similar product called
preemptible instances, but Studio does not support it just yet. In
short, for spot instances the user specifies the max price to pay per
instance-hour. As long as the instance-hour price is below the specified
limit (bid), the user is pays the current price and uses the instance.
Otherwise, the instance shuts down and is given to the higher
bidder. For a more detailed explanation, refer to the spot instances user guide
https://aws.amazon.com/ec2/spot/.

As you might have guessed,
when running with the --cloud=ec2spot option the job is submitted to
spot instances. You can additionally specify how much are you
willing to pay for these instances via --bid=<bid_in_usd> or
--bid=<percent_of_ondemand_price>%. The latter format specifies bid
in percent of on-demand price. Unless you feel very generous towards
Amazon there is no reason to specify a price above 100% the on-demand
price (in fact, the spot instance user guide discourages users from doing
so).

Note that bid is the max price for one instance; number of instances will
vary (see below).

Autoscaling and number of instances

Given the ephemeral nature of spot workers, we need an additional mechanism
controlling / balancing number of such instances. This mechanism is
called auto-scaling, and in the simplest setting it tries to keep number
of running instances constant. Studio handles downsizing of the
auto-scaling groups when some workers are done and there is no work left
in the queue. You can specify this behaviour by setting the
--num-workers flag.

Autoscaling allows more complex behaviour, such
as spinning up extra machines if there are too many messages in the queue.
The default behaviour of Studio is as follows - start start with one spot
worker, and scale up when the number of outstanding work messages in the
queue is above 0.

Running on Google Cloud spot (preemptible) instances

Google Cloud’s analog of EC2 spot instances are called preemptible
instances [https://cloud.google.com/preemptible-vms/].
Preemptible instances are similar to EC2 spot instances in that
they are much cheaper than regular (on-demand) instances and that
they can be taken away at any moment with very little or no notice. They
are different from EC2 spot instances in the bidding / market system -
the prices on preemptible instances are fixed and depend only on
hardware configuration. Thus, --bid has no effect when running with
--cloud=gcspot.

Also, autoscaling on a queue for Google Cloud is in
an alpha state and has some serious limitations; as such, we do not
support it just yet. The required number of workers has to be
specified via --num-workers (the default is 1), and Google group will
try to keep it constant (that is, if the instances are taken away, it
will try to spin up their replacements). When instances run out
of work, they automatically spin down and eventually the instance group is deleted.

 Setting up Amazon EC2

Setting up Amazon EC2

This page describes the process of configuring Studio to work
with Amazon EC2. We assume that you already have AWS credentials
and an AWS account set up.

Install boto3

Studio interacts with AWS via the boto3 API. Thus, in order to use EC2
cloud you’ll need to install boto3:

pip install boto3

Set up credentials

Add credentials to a location where boto3 can access them. The
recommended way is to install the AWS CLI:

pip install awscli

and then run

aws configure

and enter your AWS credentials and region. The output format cam be left as
None. Alternatively, use any method of letting boto3 know the
credentials described here:
http://boto3.readthedocs.io/en/latest/guide/configuration.html

 Setting up Google Cloud Compute

Setting up Google Cloud Compute

This page describes the process of setting up Google Cloud and
configuring Studio to integrate with it.

Configuring Google Cloud Compute

Create and select a new Google Cloud project

Go to the Google Cloud console (https://console.cloud.google.com), and
either choose a project that you will use to back cloud
computing or create a new one. If you have not used the Google console
before and there are no projects, there will be a big button “create
project” in the dashboard. Otherwise, you can create a new project by
selecting the drop-down arrow next to current project name in the top
panel, and then clicking the “+” button.

Enable billing for the project

Google Cloud computing actually bills you for the compute time you
use, so you must have billing enabled. On the bright side, when you
sign up with Google Cloud they provide $300 of promotional credit, so
really in the beginning you are still using it for free. On the not so
bright side, to use machines with gpus you’ll need to show
that you are a legitimate customer and add $35 to your billing account.
In order to enable billing, go to the left-hand pane in the Google Cloud
console, select billing, and follow the instructions to set up your payment
method.

Generate service credentials

The machines that submit cloud jobs will need to be authorized with
service credentials. Go to the left-hand pane in the Google Cloud console and
select API Manager -> Credentials. Then click the “Create credentials”
button, choose service account key, leave key type as JSON, and in the
“Service account” drop-down select “New service account”. Enter a
service account name (the name can be virtually anything and won’t
matter for the rest of the instructions). The important part is selecting a
role. Click the “Select a role” dropdown menu, in “Project” select “Service
Account Actor”, and then scroll down to “Compute Engine” and select “Compute
Engine Admin (v1)”. Then scroll down to “Pub/Sub”, and add a role
“Pub/Sub editor” (this is required to create queues, publish and read
messages from them). If you are planning to use Google Cloud storage
(directly, without the Firebase layer) for artifact storage, select the Storage
Admin role as well. You can also add other roles if you are planning to use
these credentials in other applications. When done, click “Create”.
Google Cloud console should generate a json credentials file and save it
to your computer.

Configuring Studio

Adding credentials

Copy the json file credentials to the machine where Studio will be
run, and create the environment variable GOOGLE_APPLICATION_CREDENTIALS
that points to it. That is, run

export GOOGLE_APPLICATION_CREDENTIALS=/path/to/credentials.json

Note that this variable will be gone when you restart the terminal, so
if you want to reuse it, add it to ~/.bashrc (linux) or
~/.bash_profile (OS X)

Modifying the configuration file

In the config file (the one that you use with the --config flag, or, if you
use the default, in the studio/default_config.yaml), go to the cloud
section. Change projectId to the project id of the Google project for which
you enabled cloud computing. You can also modify the default instance
parameters (see Cloud computing for studio [http://docs.studio.ml/en/latest/cloud.html] for
limitations though).

Test

To test if things are set up correctly, go to
studio/examples/general and run

studio run --cloud=gcloud report_system_info.py

Then run studio locally, and watch the new experiment. In a little
while, it should change its status to “finished” and show the system
information (number of cpus, amount of ram / hdd) of a default instance.
See Cloud computing for studio [http://docs.studio.ml/en/latest/cloud.html] for more instructions on
using an instance with specific hardware parameters.

 Index

Index

 Containerized experiments

Containerized experiments

Some experiments may require more than just a specific python environment to be run reproducibly. For instance, 2017 NIPS running
competition relied on a specific set of system-level pacakges for walker physics simulations. To address such experiments, Studio.ML
supports execution in containers by using Singularity (https://singularity.lbl.gov). Singularity supports both Docker and its own format
of containers. Containers can be used in two main ways:

1. Running experiment using container environment

In this mode, an environment is set up within the container, but the python code is outside. Studio.ML with help of Singularity
mounts copy of current directory and artifacts into the container and executes the script. Typical command line will look like

studio run --container=/path/to/container.simg script.py args

Note that if your script is using Studio.ML library functions (such as fs_tracker.get_artifact()), Studio.ML will need to be
installed within the container.

2. Running experiment using executable container

Both singularity and docker support executable containers. Studio.ML experiment can consist solely out of an executable container:

studio run --container=/path/to/container.simg

In this case, the code does not even need to be python, but all Studio.ML perks (such as cloud execution with hardware selection,
keeping track of inputs and outputs of the experiment etc) still apply. There is even an artifact management - artifacts will be
seen in the container in the folder one level up from working directory.

Containers can be located either locally as *.simg files, or in the Singularity/Docker hub. In the latter case, provide a link that
starts with shub:// or dockerhub://

 Frequently Asked Questions

Frequently Asked Questions

Join us on Slack! [https://studioml.now.sh/]

	What is the complete list of tools Studio.ML is compatible with?

	Is Studio.ML compatible with Python 3?

	Do I need to change my code to use Studio.ML?

	How can I track the training of my models?

	How does Studio.ml integrate with Google Cloud or Amazon EC2?

	Is it possible to view the experiment artifacts outside of the Web UI?

What is the complete list of tools Studio.ML is compatible with?

Keras, TensorFlow, PyTorch, scikit-learn, pandas - anything that runs in python

Is Studio.ML compatible with Python 3?

Yes! Studio.ML is now compatible to use with Python 3.

Can I use Studio.ML with my jupyter / ipython notebooks?

Yes! The basic usage pattern is import magics module from studio,
and then annotate cells that need to be run via studio with
%%studio_run cell magic (optionally followed by the same command-line arguments that
studio run accepts. Please refer to <jupyter.rst> the for more info

Do I need to change my code to use Studio.ML?

Studio is designed to minimize any invasion of your existing code. Running an experiment with Studio should be as simple as replacing python with studio run in your command line with a few flags for capturing your workspace or naming your experiments.

How can I track the training of my models?

You can manage any of your experiments- current, old or queued- through the web interface. Simply run studio ui to launch the UI to view details of any of your experiments.

How does Studio.ml integrate with Google Cloud or Amazon EC2?

We use standard Python tools like Boto and Google Cloud Python Client to launch GPU instances that are used for model training and de-provision them when the experiment is finished.

Is it possible to view the experiment artifacts outside of the Web UI?

Yes!

from studio import model

with model.get_db_provider() as db:
 experiment = db.get_experiment(<experiment_key>)

will return an experiment object that contains all the information about the experiment with key <experiment key>, including artifacts.
The artifacts can then be downloaded:

with model.get_db_provider() as db:
 artifact_path = db.get_artifact(experiment.artifacts[<artifact-tag>])

will download an artifact with tag <artifact-tag> and return a local path to it in artifact_path variable

 Jupyter / ipython notebooks

Jupyter / ipython notebooks

Studio can be used not only with scripts, but also with
jupyter notebooks. The main idea is as follows -
the cell annotated with a special cell magic is being treated
as a separate script; and the variables are being passed in and
out as artifacts (this means that all variables the cell
depends on have to be pickleable). The script can then be run
either locally (in which case the main benefit of studio
is keeping track of all runs of the cell), or in the cloud / remotely.

To use Studio in your notebook, add

from studio import magics

to the import section of your notebook.

Then annotate the cell that you’d like to run via studio with

%%studio_run <optional_arguments>

This will execute the statements in the cell using studio,
also passing <optional_arguments> to the runner.
For example, let’s imagine that a variable x is declared in
your notebook. Then

%%studio_run --cloud=gcloud
x += 1

will do the increment of the variable x in the notebook namespace
using a google cloud compute
instance (given that increment of a variable in python does not take a millisecond,
spinning up an entire instance to do that is probably the most wasteful thing you
have seen today, but you get the idea :). The %%studio_run cell magic
accepts the same arguments as the studio run command, please refer to
<cloud.rst> for a more involved discussion of cloud and hardware selection options.

Every run with studio will get a unique key and can be viewed as an experiment in
studio ui.

The only limitation to using studio in a notebook is that variables being used
in a studio-run cell have to be pickleable. That means that, for example, you
cannot use lambda functions defined elsewhere, because those are not
pickleable.

 Cloud agnostic deployment

Cloud agnostic deployment

StudioML contains two enduring places where data is stored, and tasks
are queued. For individual consumers of StudioML using cloud based
resources to provision storage and queuing facilities is often the best
fit both costwise and complexity. This iis appropriate when public datasets
are being used and when results do not have privacy or integrity issues
around their use.

In the case of instituational or commercial users of Machine Learning
these requirements are more strigent and could easily involve requirements
related to privacy by design, and data movement among many other concerns.
Other motivations related to cost can also lead users into on-premise
or edge based computing.

StudioML does not directly address the requirements of legislation such
as GDPR or the data security requirements that users might have, but it
does offer the ability for users to deploy StudioML into environments
that they choose to address these needs.

Users of StudioML who wish to make use of private infrastructure have
the option to selectively attach to message queues offered by cloud vendors
or to make use of local disk based queues.

StudioML additional option exists to make use of privately hosted
RabbitMQ message queues and/or privately hosted Minio.io S3 storage.
When deployed in conjunction with Kubernetes users of StudioML are free to
implement a solution that has as much or as little security as they require.

This document describes the use of RabbitMQ support with StudioML, and also
describes how a Kubernetes, and Minio based deployment can be achieved.

Running RabbitMQ

RabbitMQ (RMQ) can be installed using the instructions found at
https://www.rabbitmq.com/install-debian.html. It should be noted that
this software relies on the Erlang runtime which should be installed first
anf for which instructions can also be found on the same web page at
https://www.rabbitmq.com/install-debian.html#erlang-requirementes.

RMQ can be deployed in many different contexts including :

	A standalone on-premise server

	A cloud compute instance
- Microsoft VM template (Bitnami)
- Amazon Marketplace AMI (Bitnami)
- Google Cloud Platform Launcher as both container and VM images

The choice taken will largely depend upon your operational criteria. In any event
once the installation has been completed you should ensure that the 5672, and
15672 ports are open for access and that the user name and password you intend on
using with the StudioML client have been added.

When running RabbitMQ care should be made to ensure that the log files being
generated do not fill your server and cause failures. Adding the following
block to your RabbitMQ servers rabbitmq.config file will prevent this.

	::

	
	{log, [

	
	{file, [{file, “/var/log/rabbitmq/rabbitmq.log”}, %% log.file

	{level, info}, %% log.file.info
{date, “$D0”}, %% log.file.rotation.date
{size, 1024}, %% log.file.rotation.size
{count, 15} %% log.file.rotation.count

]}

]},

It is also highly recommended that the number of concurrent connections be also limited
using the web adminitsration interface.

The StudioML tools need to access the RMQ server using its management
interface. The following example shows an example of accessing a RabbitMQ server
on a local host. The user name password and the host name will also be used
by system to determine where queues identified in the ‘studio run’ command
are hosted.

cloud:
 queue:
 rmq: "amqp://guest@guest@localhost:15672/"

When running your experiment you should use a rmq_ prefixed queue name and option
on the command line for the RabbitMQ parameters, for example:

studio run … –queue=rmq_StudioML …

Local Deployment

If you are installing RabbitMQ on a local environment you might find the
management tools for it quite useful. These can be installed using instructions
that can be found at https://www.rabbitmq.com/management.html.

rabbitmq-plugins enable rabbitmq_management

When deploying to the cloud using templates or launchers the management component
will in most cases be present already.

Running Minio

In order to make use of StudioML storage features within an on-premise environment
or within a cloud environment in a vendor neutral manner, minio can be used. Minio
support the S3 v4 API and is 100% compatible with the S3 protocol. If you are
using a cloud deployment minio can also be used as a shim above the storage tier
that is cloud vendor specific, this applies to Azure for example allowing Azure blob
stores to be reflected as S3 storage.

Minio can be run in a default configuration mode by simply starting the server
after installation without configuring it. If you do this the Minio console
will output a generated AWS_ACCESS_KEY_ID, and AWS_SECRET_ACCESS_KEY. However,
We recommend doing your own configuration.

To do this add a database and storage section to your experiments yaml configuration file
that points to a deployment of Minio and add the Access Key ID and Secret Access Key
to the file as follows:

	database:

	type: s3
endpoint: http://41.11.110.221:9000/
bucket: “studioml-meta”
authentication: none

	storage:

	type: s3
endpoint: http://41.11.110.221:9000/
bucket: “kmutch-azure-minio”

	server:

	authentication: None

	env:

	AWS_ACCESS_KEY_ID: J27XQZC2IYBGXH56NO2
AWS_DEFAULT_REGION: us-west-2
AWS_SECRET_ACCESS_KEY: “zMohtbV2O+scofEyNgdxmPAdjQKrT+vfu1Uh23hm”
PATH: “%PATH%:./bin”

When running the experiment ensure that the Minio specific AWS environment variables
are defined within your terminal session.

 Serving models with Studio.ML

Serving models with Studio.ML

Once the model is trained, it is a frequent task to make it available as a service.
This is usually a tedious task because of two reasons:

	It requires certain DevOps knowledge, configuration
of firewalls and ports on the instance etc.

	Trained models need some extra pre/post processing
steps or data fetching steps (this happens when interaction with
the data is different at the training and inference stage, which
is pretty much always)

Studio.ML can execute entire process of serving a model from a single
command (which mainly caters to the first bullet point). It also provides
simple and powerful primitives for pre / post processing with
arbitrary python code.

Basics

The basic command for serving is

studio serve <experiment_key>

where <experiment_key> is a key of the experiment responsible for training models.
This command takes the same cloud execution arguments as studio run, which
means that serving a model on a EC2 instance with a GPU is as simple as adding
–cloud=ec2 –gpus=1 flags.
To figure out which model to serve, studio serve fetches the artifact modeldir of the experiment.
By default (as of now, only Keras models are supported by default), it studio serve takes the last
training checkpoint. Served model expects POST request with data being dictionary of the form

{key1: <pickled numpy array1>, key2: <pickled numpy array2>, ...}

and returns the dictionary of the form

{key1: <pickled inference result1, key2: <pickled inference result2>, ...}

The pickling is necessary because numpy arrays are not JSON serializable.
If no checkpoints are found, an identity model is served (i.e. the model that returns its input)

Wrappers for pre/post processing

To customize our model (for instance, if we want to pass image urls as an input, and model
needs to fetch the image data before inference), can specify a model wrapper.
A model wrapper is a python file or module that has function create_model()
This function takes path to a directory with experiment checkpoints and returns
a python function converting dictionary to dictionary.
As a concrete example (see <../studio/tests/model_increment.py>), the following snippet
is a wrapper that ignores experiment checkpoints and returns a model that increments inputs
by 1:

import six

def create_model(modeldir):
 def model(data):
 retval = {}
 for k, v in six.iteritems(data):
 retval[k] = v + 1
 return retval

 return model

Wrappers play nicely with model pipelines provided by Studio.ML <docs/model_pipelines.rst>. For example, the following code is a wrapper
that downloads the urls in multiple threads, and batched prediction:

import glob
from studio import model_util

def create_model(modeldir):

 # load latest keras model
 hdf5_files = [
 (p, os.path.getmtime(p))
 for p in
 glob.glob(modeldir + '/*.hdf*')]

 last_checkpoint = max(hdf5_files, key=lambda t: t[1])[0]
 keras_model = keras.models.load_model(last_checkpoint)

 # create model pipe
 pipe = model_util.ModelPipe()
 pipe.add(lambda url: urllib.urlopen(url).read(), num_workers=4, timeout=5)
 pipe.add(lambda img: Image.open(BytesIO(img)))
 pipe.add(model_util.resize_to_model_input(model))
 pipe.add(model, num_workers=1, batch_size=32, batcher=np.vstack)

 return pipe

Command-line options

	
	–wrapper specifies a python script with create_model function that generates the model to be served

	(see above)

	
	–port specifies port on which the model will be served. For cloud instances this port is

	automatically added into the firewall rules

	
	–killafter by default, the model serving shuts down after an hour of inactivity. Use this option to

	modify inactive (no requests) time after which the server shuts down.

	–host can be either 0.0.0.0 - serve the model to the world, or losthost - serve internally (model will only
be available from the same server)

_static/file.png

_static/logo.png

_static/up-pressed.png

_static/minus.png

_static/p