

Welcome to skypac’s documentation!

Content

	Sky matching for image mosaic

	SkyLine (chip outline on the sky) management for image mosaic

	Utility functions for parsing user catalog files for skypac

	Polygon filling algorithm

	Sky statistics functions for skypac

	Utility functions for skypac

	Pixel Area Map (PAM) utilities

	LICENSE

Indices and tables

	Index

	Module Index

	Search Page

Sky matching for image mosaic

A module that provides functions for matching sky in overlapping images.

	Authors

	Mihai Cara, Warren Hack, Pey-Lian Lim

	License

	LICENSE

	
stsci.skypac.skymatch.TEAL_SkyMatch(input, skymethod='globalmin+match', match_down=True, skystat='mode', lower=None, upper=None, nclip=5, lsigma=4.0, usigma=4.0, binwidth=0.1, skyuser_kwd='SKYUSER', units_kwd='BUNIT', invsens_kwd=None, readonly=True, subtractsky=False, dq_bits=None, optimize='balanced', clobber=False, clean=True, verbose=True, logfile='skymatch.log')

	TEAL interface for skymatch(). Most parameters are identical
to those of the skymatch(). Here we mention only the differences:

	Parameters

	
	logfile: str, optional
	Store execution log in this file. Always openned in append mode.
If not given (logfile is None [https://docs.python.org/3/library/constants.html#None]), print to screen instead.
NOTE: Unlike skymatch(), logfile can only be either
a string file name or None [https://docs.python.org/3/library/constants.html#None].

	
stsci.skypac.skymatch.skymatch(input, skymethod='globalmin+match', \ skystat='mode', lower=None, upper=None, nclip=5, lsigma=4.0, usigma=4.0, \ binwidth=0.1, skyuser_kwd='SKYUSER', units_kwd='BUNIT', readonly=True, \ subtractsky=False, dq_bits=None, optimize='balanced', clobber=False, \ clean=True, verbose=True, flog='skymatch_log.txt')

	
Standalone task to compute and/or “equalize” sky in input images.

Note

Sky matching (“equalization”) is possible only for overlapping
exposures.

Warning

When readonly is False [https://docs.python.org/3/library/constants.html#False], image headers will be modified
and image data will be background-subtracted if subtractsky is
True [https://docs.python.org/3/library/constants.html#True]. Remember to back up original copies as desired.

Warning

Unlike previous sky subtraction algorithm used by
astrodrizzle [http://stsdas.stsci.edu/stsci_python_sphinxdocs_2.13/drizzlepac/astrodrizzle.html], skymatch() accounts for
differences in chip sensitivities by performing sky computations on
data multiplied by inverse sensitivity (e.g., value of PHOTFLAM
in image headers – see “Notes” section below).

	Parameters

	
	input: str, list of FileExtMaskInfo
	
A list of of FileExtMaskInfo objects
or a string containing one of the following:

	a comma-separated list of valid science image file names
(see note below) and (optionally) extension specifications,
e.g.: 'j1234567q_flt.fits[1], j1234568q_flt.fits[sci,2]';

	an @-file name, e.g., '@files_to_match.txt'. See notes
section for details on the format of the @-files.

Note

Valid science image file names are:

	file names of existing FITS, GEIS, or WAIVER FITS files;

	partial file names containing wildcard characters, e.g.,
'*_flt.fits';

	Association (ASN) tables (must have _asn, or _asc
suffix), e.g., 'j12345670_asn.fits'.

Warning

@-file names MAY NOT be followed by an extension
specification.

Warning

If an association table or a partial file name with wildcard
characters is followed by an extension specification, it will be
considered that this extension specification applies to each
file name in the association table or each file name
obtained after wildcard expansion of the partial file name.

skymethod: {‘localmin’, ‘globalmin+match’, ‘globalmin’, ‘match’}, optional

Select the algorithm for sky computation:

	‘localmin’: compute a common sky for all members of
an exposure (see “Notes” section below). For a typical use, it
will compute sky values for each chip/image extension (marked for
sky subtraction in the input [https://docs.python.org/3/library/functions.html#input] parameter) in an input image,
and it will subtract the previously found minimum sky value
from all chips (marked for sky subtraction) in that image.
This process is repeated for each input image.

Note

This setting is recommended when regions of overlap between images
are dominated by “pure” sky (as opposite to extended, diffuse
sources).

Note

This is similar to the “skysub” algorithm used in previous
versions of astrodrizzle.

	‘globalmin’: compute a common sky value for all members of
all exposures (see “Notes” section below). It will compute
sky values for each chip/image extension (marked for sky
subtraction in the input parameter) in all input
images, find the minimum sky value, and then it will
subtract the same minimum sky value from all chips
(marked for sky subtraction) in all images. This method may
useful when input images already have matched background values.

	‘match’: compute differences in sky values between images
in common (pair-wise) sky regions. In this case computed sky values
will be relative (delta) to the sky computed in one of the
input images whose sky value will be set to (reported to be) 0.
This setting will “equalize” sky values between the images in
large mosaics. However, this method is not recommended when used
in conjunction with astrodrizzle [http://stsdas.stsci.edu/stsci_python_sphinxdocs_2.13/drizzlepac/astrodrizzle.html] because
it computes relative sky values while astrodrizzle needs
“measured” sky values for median image generation and CR rejection.

	‘globalmin+match’: first find a minimum “global” sky value
in all input images and then use 'match' method to
equalize sky values between images.

Note

This is the recommended setting for images
containing diffuse sources (e.g., galaxies, nebulae)
covering significant parts of the image.

	match_down: bool, optional
	Specifies whether the sky differences should be subtracted from
images with higher sky values (match_down is True [https://docs.python.org/3/library/constants.html#True]) to match the
image with the lowest sky or sky differences should be added to the
images with lower sky values to match the sky of the image with the
highest sky value (match_down is False [https://docs.python.org/3/library/constants.html#False]).

Note

This setting applies only when skymethod parameter is
either 'match' or 'globalmin+match'.

	skystat: {‘mode’, ‘median’, ‘mode’, ‘midpt’}, optional
	Statistical method for determining the sky value from the image
pixel values. See computeSky for more detals.

	lower: float, None, optional
	Lower limit of usable pixel values for computing the sky.
This value should be specified in the units of the input image(s).

	upper: float, None, optional
	Upper limit of usable pixel values for computing the sky.
This value should be specified in the units of the input image(s).

	nclip: int, optional
	A non-negative number of clipping iterations to use when computing
the sky value.

	lsigma: float, optional
	Lower clipping limit, in sigma, used when computing the sky value.

	usigma: float, optional
	Upper clipping limit, in sigma, used when computing the sky value.

	binwidth: float, optional
	Bin width, in sigma, used to sample the distribution of pixel
brightness values in order to compute the sky background statistics.

	skyuser_kwd: str, optional
	Name of header keyword which records the sky value previously
subtracted (if subtractsky is True [https://docs.python.org/3/library/constants.html#True]) from the image data or
the computed (if subtractsky is False [https://docs.python.org/3/library/constants.html#False]) sky value.
This keyword’s value will be updated by skymatch() (if
readonly is False [https://docs.python.org/3/library/constants.html#False]).

Warning

When subtractsky is True [https://docs.python.org/3/library/constants.html#True] then skyuser_kwd is treated as a
cummulative value. That is, subtracted sky value will be
added to the skyuser_kwd value and thus skyuser_kwd
represents total sky subtracted from the image by the user
over the entire “history” of the image.
If skyuser_kwd is missing in the input image,
“previous” sky value will be considered to be 0.0.

When subtractsky is False [https://docs.python.org/3/library/constants.html#False] then skyuser_kwd represents
computed sky value and it is not treated as a
cummulative value. Any previous value of the skyuser_kwd
header keyword will be overwritten with the newly computed
value.

Because of different meanings of the value represented by the
skyuser_kwd header keyword depending on the value of the
subtractsky parameter, it is important to be consistent
and not to mix the two modes when using skymatch()
multiple times on the same images.

	units_kwd: str, optional
	Name of header keyword which records the units of the data in the
image.

	invsens_kwd: str, None, optional
	Name of header keyword which records the inverse sensitivity of the
detector used to acquire data. For HST detectors, 'PHOTFLAM' is
proportional to detector’s inverse sensitivity. It is used
to convert electron counts-like to photon counts by multiplying
count-like data (or count-rates) by the value indicated by this
keyword.

By performing matching using photon counts (“flux units”), one can
match images from heterogeneous instruments. Default value ''
or None [https://docs.python.org/3/library/constants.html#None] turns off use of inverse sensitivity.

	readonly: bool, optional
	Report the sky matching values but do not modify the input files.

	subtractsky: bool, optional
	Subtract computed sky value from image data and add this value to the
existing value represented by skyuser_kwd (subtracted sky)
or simply report the computed sky value in the header keyword
specified by skyuser_kwd (computed sky).

Warning

Because subtractsky changes the meaning of the value of the
header keyword skyuser_kwd it is important to be consistent
in using subtractsky parameter: inconsistent use may lead
to sky values reported in skyuser_kwd header keyword that do not
reflect correct sky value computed for or subtracted from
flat-fielded images. A possible workaround is to use different
keywords for subtracted and computed sky, keeping in mind that the
order of operation will affect reported computed sky values.

Also see warning for skyuser_kwd parameter.

Note

When readonly is True [https://docs.python.org/3/library/constants.html#True], reported sky values will be consistent
with the setting specified by subtractsky (as if readonly is
False [https://docs.python.org/3/library/constants.html#False]), however sky values will NOT be subtracted from
the image data when subtractsky is True [https://docs.python.org/3/library/constants.html#True].

Note

astrodrizzle [http://stsdas.stsci.edu/stsci_python_sphinxdocs_2.13/drizzlepac/astrodrizzle.html]
does not subtract computed sky values from input
flat-fielded images. Therefore, when using skymatch() on
images that subsequently will be processed by
astrodrizzle [http://stsdas.stsci.edu/stsci_python_sphinxdocs_2.13/drizzlepac/astrodrizzle.html]
it is recommended to use the following suggestions:

	If one plans to turn on sky subtraction step in
astrodrizzle [http://stsdas.stsci.edu/stsci_python_sphinxdocs_2.13/drizzlepac/astrodrizzle.html] that
will involve additional sky computation (as opposite to using
astrodrizzle’s skyuser or skyfile parameters), then
it is recommended to set subtractsky to False [https://docs.python.org/3/library/constants.html#False] and set
skyuser_kwd to the default value used by astrodrizzle:
MDRIZSKY.

	If one wants to effectively subtract the computed sky values
from the flat-fielded image data, then it is recommended to
set subtractsky to True [https://docs.python.org/3/library/constants.html#True], skyuser_kwd parameter to
something different from MDRIZSKY, (e.g., SKYUSER),
and set skyuser parameter in
astrodrizzle [http://stsdas.stsci.edu/stsci_python_sphinxdocs_2.13/drizzlepac/astrodrizzle.html]
to the same value as the values of skyuser_kwd used
in the call to skymatch().

	dq_bits: int, str, None, optional
	Integer sum of all the DQ bit values from the input image’s
DQ array that should be considered “good” when building masks for
sky computations. For example, if pixels in the DQ array can be
combinations of 1, 2, 4, and 8 flags and one wants to consider DQ
“defects” having flags 2 and 4 as being acceptable for sky
computations, then dq_bits should be set to 2+4=6. Then a DQ pixel
having values 2,4, or 6 will be considered a good pixel, while a
DQ pixel with a value, e.g., 1+2=3, 4+8=12, etc. will be flagged as
a “bad” pixel.

Alternatively, one can enter a comma- or ‘+’-separated list
of integer bit flags that should be added to obtain the
final “good” bits. For example, both 4,8 and 4+8
are equivalent to setting dq_bits to 12.

Default value (0) will make all non-zero
pixels in the DQ mask to be considered “bad” pixels, and the
corresponding image pixels will not be used for sky computations.

Set dq_bits to None [https://docs.python.org/3/library/constants.html#None] to turn off the use of image’s DQ array
for sky computations.

In order to reverse the meaning of the dq_bits
parameter from indicating values of the “good” DQ flags
to indicating the “bad” DQ flags, prepend ‘~’ to the string
value. For example, in order not to use pixels with
DQ flags 4 and 8 for sky computations and to consider
as “good” all other pixels (regardless of their DQ flag),
set dq_bits to ~4+8, or ~4,8. To obtain the
same effect with an int [https://docs.python.org/3/library/functions.html#int] input value (except for 0),
enter -(4+8+1)=-13. Following this convention,
a dq_bits string value of '~0' would be equivalent to
setting dq_bits=None.

Note

DQ masks (if used), will be combined with user masks
specified in the input @-file.

	optimize: {‘balanced’, ‘speed’, ‘inmemory’}, optional
	Specifies whether to optimize execution for speed (maximum memory
usage - loaded masks and images are not unloaded until the end
of the execution) or use a balanced approach in which a minimal
amount of image data is kept in memory and retrieved from
disk as needed. The ‘inmemory’ option is similar to the ‘speed’
setting except that masks are never saved to the files on a
physical disk but are created in memory. The default setting
is recommended for most systems.

	clobber: bool, optional
	When a input image file is in GEIS or WAIVER FITS format it must be
converted to simple/MEF FITS file format before it can be used by
skymatch(). This setting specifies whether any existing
simple/MEF files be overwritten during this conversion process. If
clobber is False [https://docs.python.org/3/library/constants.html#False], existing simple/MEF FITS files will be opened.
If clobber is True [https://docs.python.org/3/library/constants.html#True], input GEIS or WAIVER FITS will be first
converted to simple FITS/MEF format overwritting (if necessary)
existing files and then these newly created simple FITS/MEF files
will be opened.

	clean: bool, optional
	Specifies whether to delete at the end of the execution any temporary
files created by skymatch().

	verbose: bool, optional
	Specifies whether to print warning messages.

	flog: str, file object, MultiFileLog, None, optional
	Log file to which messages shoul be written. It can be a file name,
file object, or a MultiFileLog object. The later two allow the
log to be written to an existing open output stream passed
from the calling function such as
astrodrizzle [http://stsdas.stsci.edu/stsci_python_sphinxdocs_2.13/drizzlepac/astrodrizzle.html]. Log file is always openned in append
mode. If not provided (None [https://docs.python.org/3/library/constants.html#None]), print messages to screen only.

	Raises

	
	RuntimeError
	
Could not add an image to mosaic. Possibly this SkyLine does
not intersect the mosaic.

	TypeError
	The input [https://docs.python.org/3/library/functions.html#input] argument must be either a Python list of
FileExtMaskInfo objects, or a string
either containing either a comma-separated list file names,
or an @-file name.

Notes

skymatch() provides new algorithms for sky value computations
and enhances previously available algorithms used by, e.g.,
astrodrizzle [http://stsdas.stsci.edu/stsci_python_sphinxdocs_2.13/drizzlepac/astrodrizzle.html].

First, the standard sky computation algorithm
(see skymethod = 'localmin') was upgraded to be able to use
DQ flags and user supplied masks to remove “bad” pixels from being
used for sky statistics computations. Values different from zero in
user-supplied masks indicate “good” data pixels.

Second, two new methods have been introduced: 'globalmin' and
'match', as well as a combination of the two – 'globalmin+match'.

	The 'globalmin' method computes the minimum sky value across all
chips in all input images. That sky value is then considered to be
the background in all input images.

	The 'match' algorithm is somewhat
similar to the traditional sky subtraction method
(skymethod = 'localmin') in the sense that it measures the sky
indipendently in input images (or detector chips). The major differences
are that, unlike the traditional method,

	'match' algorithm computes relative sky values with regard
to the sky in a reference image chosen from the input list
of images; and

	Sky statistics is computed only in the part of the image
that intersects other images.

This makes 'match' sky computation algorithm particularly useful
for “equalizing” sky values in large mosaics in which one may have
only (at least) pair-wise intersection of images without having
a common intersection region (on the sky) in all images.

The 'match' method works in the following way: for each pair
of intersecting images, an equation is written that
requires that average surface brightness in the overlapping part of
the sky be equal in both images. The final system of equations is then
solved for unknown background levels.

Warning

Current algorithm is not capable of detecting cases when some groups of
intersecting images (from the input list of images) do not intersect
at all other groups of intersecting images (except for the simple
case when single images do not intersect any other images). In these
cases the algorithm will find equalizing sky values for each group.
However since these groups of images do not intersect each other,
sky will be matched only within each group and the “inter-group”
sky mismatch could be significant.

Users are responsible for detecting such cases and adjusting processing
accordingly.

Warning

Because this method computes relative sky values compared to a
reference image (which will have its sky value set to 0), the sky
values computed with this method usually are smaller than the
“absolute” sky values computed, e.g., with the 'localmin'
algorithm. Since astrodrizzle [http://stsdas.stsci.edu/stsci_python_sphinxdocs_2.13/drizzlepac/astrodrizzle.html] expects
“true” (as opposite to relative) sky values in order to
correctly compute the median image or to perform cosmic-ray
detection, this algorithm in not recommended to be used alone
for sky computations to be used with astrodrizzle.

For the same reason, IVM weighting in astrodrizzle should not
be used with 'match' method: sky values reported in MDRIZSKY
header keyword will be relative sky values (sky offsets) and derived
weights will be incorrect.

	The 'globalmin+match' algorithm combines 'match' and
'globalmin' methods in order to overcome the limitation of the
'match' method described in the note above: it uses 'globalmin'
algorithm to find a baseline sky value common to all input images
and the 'match' algorithm to “equalize” sky values in the mosaic.
Thus, the sky value of the “reference” image will be equal to the
baseline sky value (instead of 0 in 'match' algorithm alone)
making this method acceptable for use in conjunction with
astrodrizzle.

	“Surface Brightness”:
	skymatch() converts “raw” sky values (in image data units)
obtained directly from image data to “surface brightness”-like units and
all computations are performed in these units. Computed sky surface
brightness values are converted back to image data units before being
subtracted from the image data and/or reported in the skyuser_kwd
in the image header.

This conversion from image data units to “surface brightness”-like units
is necessary in order to perform correct sky computations for data
from various intsruments/detectors. It accounts for differences in
exposure times (if image data are in “counts” units) in each input
image, differences in pixel scales of different detector chips
(instruments), and detector sensitivities.

For images with data in “counts”-like units, the conversion from data
units to surface brightness is given by:

\[sky_{\mathrm{surface\: brightness}} = sky_{\mathrm{data\: units}} \
\cdot \mathrm{PHOTFLAM} / (\mathrm{pixel\: Area}^2 \cdot \
\mathrm{EXPTIME})\]

and for image data in “count-rate”-like units, this conversion is given
by:

\[sky_{\mathrm{surface\: brightness}} = sky_{\mathrm{data\: units}} \
\cdot \mathrm{PHOTFLAM} / \mathrm{pixel\: Area}^2 .\]

	Important Header Keywords:
	As discussed above, skymatch() uses values of various keywords
in image headers to perform conversion of sky values to/from data units
from/to surface brightness units. The most important keywords are:

	BUNIT describes the units of the image data. The units of data are
determined from the BUNIT header keyword by searching its value
for the division sign '/'. If the division sign is not found, then
the units are assumed to be “counts”. If the division sign is found
in the BUNIT value and if the numerator is one of the following:
'ELECTRONS', 'COUNTS', or 'DN', and denumerator is
either 'S', 'SEC', or 'SECOND', then
the units are assumed to be count-rate.

If BUNIT is missing then for non-HST images the units will
be assumed to be “count-rate”, while for HST images
(header keyword TELESCOP = 'HST') the 'INSTRUME'
and 'DETECTOR' keywords will be used to infer the units. For the
NICMOS instrument, 'UNITCORR' will be used to infer the units.
If relevant keywords are missing, the units of image data will
be assumed to be “count-rate”. Check the log file for selected units.

	EXPTIME – total exposure time, assumed to be in seconds. While
the units of EXPTIME are not important for sky computation, it is
important that all input images to skymatch() use the same
units. This keyword is used only when inferred units for image
data are “count-rates”. If EXPTIME is missing when image data
units are counts, then variations in exposure time WILL NOT be
accounted for. First, the primary header of the image file is
searched for EXPTIME and if it is not found in the primary header,
then image extension is searched for the presense of EXPTIME
keyword.

	PHOTFLAM – inverse sensitivity of the detector. At first
skymatch() will try to detect PHOTFLAM in the image
extension header and if not found, it will look for PHOTFLAM
in the primary header. If PHOTFLAM is not
present at all, the variations in detector sensitivity WILL NOT
be accounted for.

	Glossary:
	Exposure – a subset of FITS image extensions in an input image
that correspond to different chips in the detector used to acquire
the image. The subset of image extensions that form an exposure
is defined by specifying extensions to be used with input images
(see parameter input).

See help for stsci.skypac.parseat.parse_at_line() for details
on how to specify image extensions.

Footprint – the outline (edge) of the projection of a chip or
of an exposure on the celestial sphere.

Note

	Footprints are managed by the
SphericalPolygon class.

	Both footprints and associated exposures (image data, WCS
information, and other header information) are managed by the
SkyLine class.

	Each SkyLine object contains one
or more SkyLineMember objects
that manage both footprints and associated chip data that
form an exposure.

	Remarks:
	
	skymatch() works directly on geometrically distorted
flat-fielded images thus avoiding the need to perform an additional
drizzle step to perform distortion correction of input images.

Initially, the footprint of a chip in an image is aproximated by a
2D planar rectangle representing the borders of chip’s distorted
image. After applying distortion model to this rectangle and
progecting it onto the celestial sphere, it is approximated by
spherical polygons. Footprints of exposures and mosaics are
computed as unions of such spherical polygons while overlaps
of image pairs are found by intersecting these spherical polygons.

	@-File Format:
	A catalog file containing a science image file
and extension specifications and optionally followed by a
comma-separated list of mask files and extension specifications
(or None).

File names will be stripped of leading and trailing white spaces. If it
is essential to keep these spaces, file names may be enclosed in single
or double quotation marks. Quotation marks may also be required when
file names contain special characters used to separate file names and
extension specifications: ,[]{}

Extension specifications must follow the file name and must be delimited
by either square or curly brackets. Curly brackets allow specifying
multiple comma-separated extensions: integer extension numbers and/or
tuples (‘ext name’, ext version).

	Some possible ways of specifying extensions:
	[1] – extension number

[‘sci’,2] – extension name and version

{1,4,(‘sci’,3)} – multiple extension specifications, including tuples

{(‘sci’,*)} – wildcard extension versions (i.e., all extensions with
extension name ‘sci’)

[‘sci’] – equivalent to [‘sci’,1]

{‘sci’} – equivalent to {(‘sci’,*)}

For extensions in the science image for which no mask file is provided,
the corresponding mask file names may be omitted (but a comma must still
be used to show that no mask is provided in that position) or None can
be used in place of the file name. NOTE: ‘None’ (in quotation marks)
will be interpreted as a file named None.

	Some examples of possible user input:
	image1.fits{1,2,(‘sci’,3)},mask1.fits,,mask3.fits[0]

In this case:

image1.fits[1] is associated with mask1.fits[0];

image1.fits[2] does not have an associated mask;

image1.fits[‘sci’,3] is associated with mask3.fits[0].

– Assume image2.fits has 4 ‘SCI’ extensions:

image2.fits{‘sci’},None,,mask3.fits

In this case:

image2.fits[‘sci’,1] and image2.fits[‘sci’,2] and
image2.fits[‘sci’,4] do not have an associated mask;

image2.fits[‘sci’,3] is associated with mask3.fits[0]

Note

User mask data that indicate what pixels in the input image should
be used for sky computations (1) and which pixels should not
be used for sky computations (0).

	Limitations and Discussions:
	Primary reason for introducing “sky match” algorithm was to try to
equalize the sky in large mosaics in which computation of the
“absolute” sky is difficult due to the presence of large diffuse
sources in the image. As discussed above, skymatch()
accomplishes this by comparing “sky values” in a pair of images in the
overlap region (that is common to both images). Quite obviously the
quality of sky “matching” will depend on how well these “sky values”
can be estimated. We use quotation marks around sky values because
for some image “true” background may not be present at all and the
measured sky may be the surface brightness of large galaxy, nebula, etc.

Here is a brief list of possible limitations/factors that can affect
the outcome of the matching (sky subtraction in general) algorithm:

	Since sky subtraction is performed on flat-fielded but
not distortion corrected images, it is important to keep in mind
that flat-fielding is performed to obtain uniform surface brightness
and not flux. This distinction is important for images that have
not been distortion corrected. As a consequence, it is advisable that
point-like sources be masked through the user-supplied mask files.
Values different from zero in user-supplied masks indicate “good” data
pixels. Alternatively, one can use upper parameter to limit the use
of bright objects in sky computations.

	Normally, distorted flat-fielded images contain cosmic rays. This
algorithm does not perform CR cleaning. A possible way of minimizing
the effect of the cosmic rays on sky computations is to use
clipping (nclip > 0) and/or set upper parameter to a value
larger than most of the sky background (or extended source) but
lower than the values of most CR pixels.

	In general, clipping is a good way of eliminating “bad” pixels:
pixels affected by CR, hot/dead pixels, etc. However, for
images with complicated backgrounds (extended galaxies, nebulae,
etc.), affected by CR and noise, clipping process may mask different
pixels in different images. If variations in the background are
too strong, clipping may converge to different sky values in
different images even when factoring in the “true” difference
in the sky background between the two images.

	In general images can have different “true” background values
(we could measure it if images were not affected by large diffuse
sources). However, arguments such as lower and upper will
apply to all images regardless of the intrinsic differences
in sky levels.

Examples

	This task can be used to match skies of a set of ACS
images simply with:

>>> from stsci.skypac import skymatch
>>> skymatch.skymatch('j*q_flt.fits')

	The TEAL GUI can be used to run this task using:

>>> from stsci.skypac import skymatch
>>> epar skymatch

or from a general Python command line:

>>> from stsci.skypac import skymatch
>>> from stsci.tools import teal
>>> teal.teal('skymatch')

SkyLine (chip outline on the sky) management for image mosaic

This module provides support for working with footprints
on the sky. Primary use case would use the following
generalized steps:

	Initialize SkyLine objects for each input image.
This object would be the union of all the input
image’s individual chips WCS footprints.

	Determine overlap between all images. The
determination would employ a recursive operation
to return the extended list of all overlap values
computed as [img1 vs [img2,img3,…,imgN],img2 vs
[img3,…,imgN],…]

	Select the pair with the largest overlap, or the
pair which produces the largest overlap with the
first input image. This defines the initial
reference SkyLine object.

	Perform some operation on the 2 images: for example,
match sky in intersecting regions, or aligning
second image with the first (reference) image.

	Update the second image, either apply the sky value
or correct the WCS, then generate a new SkyLine
object for that image.

	Create a new reference SkyLine object as the union
of the initial reference object and the newly
updated SkyLine object.

	Repeat Steps 2-6 for all remaining input images.

This process will work reasonably fast as most operations
are performed using the SkyLine objects and WCS information
solely, not image data itself.

	Authors

	Mihai Cara, Warren Hack, Pey-Lian Lim

	License

	LICENSE

	
class stsci.skypac.skyline.SkyLine(mlist)

	Manage outlines on the sky.

Skylines are designed to capture and manipulate HST WCS image
information as spherical polygons. They are represented by
the SkyLine class, which is an
extension of SphericalPolygon
class.

Each skyline has a list of members,
members, and a composite spherical polygon,
polygon, members. The polygon has all
the functionalities of SphericalPolygon.

Each SkyLine has a list of members and
a composite polygon with all the
functionalities of SphericalPolygon.

Each member in members belongs
to the SkyLineMember class, which contains
image name (with path if given), science extension(s),
and composite WCS and polygon of the extension(s). All skylines start
out with a single member from a single image. When operations are used
to find composite or intersecting skylines, the
resulting skyline can have multiple members.

For example, a skyline from an ACS/WFC full-frame image would give 1
member, which is a composite of extensions 1 and 4. A skyline from the
union of 2 such images would have 2 members, and so forth.

	Parameters

	
	fname: str
	FITS image. None [https://docs.python.org/3/library/constants.html#None] to create empty SkyLine.

	ext: a list of tuples (‘extname’,extver).
	

	
add_image(other)

	Return a new SkyLine that is the union of self
and other.

Warning

SkyLine.union only returns polygon without members.

	Parameters

	
	other: `SkyLine` object
	

Examples

>>> s1 = SkyLine('image1.fits')
>>> s2 = SkyLine('image2.fits')
>>> s3 = s1.add_image(s2)

	
find_intersection(other)

	Return a new SkyLine that is the intersection of
self and other.

Warning

SkyLine.intersection only returns
polygon without members.

	Parameters

	
	other: `SkyLine` object
	

Examples

>>> s1 = SkyLine('image1.fits')
>>> s2 = SkyLine('image2.fits')
>>> s3 = s1.find_intersection(s2)

	
find_max_overlap(skylines)

	Find SkyLine from a list of skylines that overlaps
the most with self.

	Parameters

	
	skylines: list
	A list of SkyLine instances.

	Returns

	
	max_skyline: SkyLine instance or None [https://docs.python.org/3/library/constants.html#None]
	SkyLine that overlaps the most or None [https://docs.python.org/3/library/constants.html#None] if no
overlap found. This is not a copy.

	max_overlap_area: float
	Area of intersection.

	
property is_mf_mosaic

	returns True if SkyLine members are from distinct image files
(multi-file mosaic) and False otherwise.

	
static max_overlap_pair(skylines)

	Find a pair of skylines with maximum overlap.

	Parameters

	
	skylines: list
	A list of SkyLine instances.

	Returns

	
	max_pair: tuple
	Pair of SkyLine objects with max overlap
among given skylines. If no overlap found,
return None [https://docs.python.org/3/library/constants.html#None]. These are not copies.

	
property members

	List of SkyLineMember objects that belong to self.
Duplicate members are discarded. Members are kept in
the order of their additions to self.

	
property polygon

	SphericalPolygon portion of SkyLine
that contains the composite skyline from members
belonging to self.

	
to_wcs()

	Combine HSTWCS objects from all members and return
a new HSTWCS object. If no members, return None [https://docs.python.org/3/library/constants.html#None].

Warning

This cannot return WCS of intersection.

	
class stsci.skypac.skyline.SkyLineMember(image, ext, dq_bits=0, dqimage=None, dqext=None, usermask=None, usermask_ext=None)

	Container for SkyLine members that holds information about
properties of a single extension (chip) in a FITS image such as:

	WCS of the chip image;

	bounding spherical polygon;

	file name and extension from which the chip’s image has originated;

	information required for unit conversions (EXPTIME,
PHOTFLAM, BUNIT, etc.);

	user mask and DQ array associated with chip’s image data.

	Parameters

	
	image: ImageRef
	An ImageRef object that refers
to an open FITS file

	ext: tuple, int, str
	Extension specification in the image the SkyLineMember
object will be associated with.

An int ext specifies extension number. A tuple in the form
(str, int) specifies extension name and number. A string ext
specifies extension name and the extension version is assumed
to be 1. See documentation for astropy.io.fits.getData
for examples.

	dq_bits: int, None (Default = 0)
	Integer sum of all the DQ bit values from the
input image’s DQ array that should be considered “good”
when building masks for sky computations. For example,
if pixels in the DQ array can be combinations of 1, 2, 4,
and 8 flags and one wants to consider DQ “defects” having
flags 2 and 4 as being acceptable for sky computations,
then dq_bits should be set to 2+4=6. Then a DQ pixel
having values 2,4, or 6 will be considered a good pixel,
while a DQ pixel with a value, e.g., 1+2=3, 4+8=12, etc.
will be flagged as a “bad” pixel.

Default value (0) will make all non-zero
pixels in the DQ mask to be considered “bad” pixels,
and the corresponding image pixels will not be used
for sky computations.

Set dq_bits to None [https://docs.python.org/3/library/constants.html#None] to turn off the use of
image’s DQ array for sky computations.

Note

DQ masks (if used), will be combined with user masks
specified by the usermask parameter.

	dqimage: ImageRef
	An ImageRef object that refers
to an open FITS file that has DQ data of the input image.

Note

When DQ data are located in the same FITS file as the
science image data (e.g., HST/ACS, HST/WFC3, etc.),
dqimage may point to the
same ImageRef object.
In this case the reference count of the
ImageRef object must be
increased adequately.

	dqext: tuple, int, str
	Extension specification of the dqimage that contains
image’s DQ information. See help for ext for more
details on acceptable formats for this parameter.

	usermask: ImageRef
	An ImageRef object that refers
to an open FITS file that has user mask data that indicate
what pixels in the input image should be used for sky
computations (1) and which pixels should not be used
for sky computations (0).

	usermask_ext: tuple, int, str
	Extension specification of the usermask mask file that
contains user’s mask data that should be associated with
the input image and ext. See help for ext for more
details on acceptable formats for this parameter.

Utility functions for parsing user catalog files for skypac

Module for parsing @-files or user input strings for use
by stsci.skypac module.

	Authors

	Mihai Cara

	License

	LICENSE

	
class stsci.skypac.parseat.FileExtMaskInfo(default_ext=('SCI', '*'), default_mask_ext=0, clobber=False, doNotOpenDQ=False, fnamesOnly=False, im_fmode='update', dq_fmode='readonly', msk_fmode='readonly')

	A class that holds image, dq, user masks, and extensions to be used with
these files. It is designed to facilitate keeping track of user input in
catalog files.

This class is intended to be used primarily for functions such as
parse_at_line() and other related functions as a return value.
It is also used to initialize skypac.skyline.SkyLine objects.

FileExtMaskInfo was designed to be used in a specific ordered
workflow. Below is a typical use of this class:

	Initialize the object with the desired settings for default
extensions to be used with the files (when a specific extension
for a file is not provided) and the open modes for the files;

	Add image file using image();

	Add image’s extension(s) using append_ext();

	[Optional; can be performed at any later stage] Add DQ file and
extensions using DQimage() and dqext() methods;

	Append mask files and extensions using append_mask();

	[Optional] Finalize the FileExtMaskInfo() object.

	Parameters

	
	default_ext: int, tuple, optional
	Default extension to be used with image files that to not have
an extension specified.

	default_mask_ext: int, tuple, optional
	Default extension to be used with image mask files that to not have
an extension specified.

	clobber: bool, optional
	If a file being appended is in GEIS or WAIVER FITS format, should
any existing MEF files be overwritten?

	doNotOpenDQ: bool, optional
	Should the DQ files be oppened when simultaneously with the image
files?

	fnamesOnly: bool, optional
	Return file names only, or open the files and return
ImageRef objects?

	im_fmode: str, optional
	File mode to be used to open image FITS file.
See astropy.io.fits.open [https://docs.astropy.org/en/stable/io/fits/api/files.html#astropy.io.fits.open] for more details.

	dq_fmode: str, optional
	File mode to be used to open DQ FITS file. This is valid only if the
DQ model of the image file is ‘external’ (see documentation for
ImageRef for more details). For ‘intrinsic’
DQ model the DQ files will use the same setting as for im_fmode.

	msk_fmode: str, optional
	File mode to be used to open mask files.

	Attributes

	
	clobber: bool
	If a file being appended is in GEIS or WAIVER FITS format, should
any existing MEF files be overwritten?

	dq_bits: int
	Bitmask specifying what pixels in the mask should be removed
(or kept) with the precise interpretation being left to the user.
This flag is not used by this class but was designed to be
passed to other functions that will use FileExtMaskInfo.

	
property DQimage

	DQ image (file or ImageRef
object depending on the fnamesOnly value).

	Getter

	Get the ImageRef DQ image object.

	Setter

	Set the DQ file.

	Type

	str [https://docs.python.org/3/library/stdtypes.html#str], ImageRef

	
append_ext(ext)

	Append extensions to the list of “selected” extensions for the
image file.

Note

This function appends the extensions. If it is desired
to set the extensions, use replace_ext() instead.

	Parameters

	
	ext: int, tuple, None, list
	Extension specification: None, an integer extension number,
a tuple (extension number, extension version)
where extension version can be '*' which will be replaced with
the extension versions of all extensions having given extension
name. If ext is None, it will be replaced with the default
extension specification set during the initialization of the
FileExtMaskInfo object.

	
append_mask(mask, ext, mask_stat=None)

	Append a mask image and its extension(s).

Note

Mask files and extensions are kept in ordered lists and their
order is significant: the first mask file-extension pair is
associated with the first extension of the science image file
set with append_ext() and so on.

	Parameters

	
	mask: str, ImageRef, None
	Mask image file. Can be a string file name,
an ImageRef object (only if
fnamesOnly is False [https://docs.python.org/3/library/constants.html#False]), or None [https://docs.python.org/3/library/constants.html#None] (to act as a place
holder in the ordered list of extensions).

	ext: int, tuple, None, list
	Extension specification: None, an integer extension number,
a tuple (extension number, extension version)
where extension version can be '*' which will be replaced with
the extension versions of all extensions having given extension
name. If ext is None, it will be replaced with the default
extension specification for mask images set during
the initialization of the FileExtMaskInfo object.

	mask_stat: `os.stat_result`, optional
	An os.stat_result [https://docs.python.org/3/library/os.html#os.stat_result] structure for the input mask file.
If None [https://docs.python.org/3/library/constants.html#None], then append_mask() will compute stat [https://docs.python.org/3/library/stat.html#module-stat] for
the input mask file.

	Raises

	
	RuntimeError
	Raised if attempting to add masks when the science image
was not yet set.

	AssertionError
	Raised if finalized is True [https://docs.python.org/3/library/constants.html#True].

	TypeError
	Raised if mask is an ImageRef
object but fnamesOnly is True [https://docs.python.org/3/library/constants.html#True] or if mask
argument is of incorrect type.

	ValueError
	If mask is an ImageRef, it must
not be closed.

	
clear_masks()

	Remove all attached mask files and extensions.

	
convert2ImageRef()

	Replace any existing file names with opened
ImageRef
objects and change the fnamesOnly property to False [https://docs.python.org/3/library/constants.html#False].

Note

The finalized property will not be modified.

Warning

The FileExtMaskInfo must not have been finalized
(finalized is False [https://docs.python.org/3/library/constants.html#False]) and must contain file
names only (fnamesOnly is True [https://docs.python.org/3/library/constants.html#True]).

	Raises

	
	AssertionError
	Raised if finalized is True [https://docs.python.org/3/library/constants.html#True] or
fnamesOnly is False [https://docs.python.org/3/library/constants.html#False].

See also

	release_all_images
	

	
property count

	Number of extensions associated with the image file.

	
property dqext

	FITS extensions associated with the DQ file.

	
property fext

	FITS extensions associated with the image file.

	
finalize(toImageRef=False)

	Finalize the object by trimming or extending mask image lists to
match the number of science image extensions.

In principle, the number of mask files and their extensions need not
be equal to the number of extensions specified for the science image.
If the number of masks/extensions is smaller than the number of
science extensions, the list of mask extensions will be appended with
None (if fnamesOnly is True [https://docs.python.org/3/library/constants.html#True]) or dummy
ImageRef (if fnamesOnly is
False [https://docs.python.org/3/library/constants.html#False]) until the number of mask extensions is equal to the number
of science image extensions. If the number of mask extensions is
larger than the number of science image extensions, the list
of mask extensions will be trimmed to match the number of science
image extensions. The trimmed out mask files (if represented by
ImageRef) will be “released”.

	
property finalized

	Is the FileExtMaskInfo object finalized?

	
property fnamesOnly

	Was the FileExtMaskInfo initialized to return file names or the
ImageRef objects?

	
property image

	Image file name or the associated ImageRef
object (depending on the fnamesOnly value).

	Getter

	Get the ImageRef image object.

	Setter

	Set the image file.

	Type

	str [https://docs.python.org/3/library/stdtypes.html#str], ImageRef, None

Note

Setting the image will re-initialize FileExtMaskInfo. All
previous settings will be lost and previously attached files
will be released/deleted.

	
info()

	Print information about the state of the object.

	
property mask_images

	Mask image file names or ImageRef
object depending on the fnamesOnly value.

	
property maskext

	FITS extensions associated with the mask files.

	
release_all_images()

	Release all images if fnamesOnly is False [https://docs.python.org/3/library/constants.html#False] and replace any
existing ImageRef with their original file names.

Note

This will set the fnamesOnly property to True [https://docs.python.org/3/library/constants.html#True] and
the finalized property to False.

See also

	convert2ImageRef
	

	
replace_fext(ext)

	Replace/set image file extension list.

See also

	append_ext
	

	
stsci.skypac.parseat.parse_at_file(fname, default_ext=('SCI', '*'), default_mask_ext=0, clobber=False, fnamesOnly=False, doNotOpenDQ=False, match2Images=None, im_fmode='update', dq_fmode='readonly', msk_fmode='readonly', logfile=None, verbose=False)

	This function is similar to parse_at_line(), the main
difference being that is can parse multiple (EOL terminated) lines
of the format described in the documentation for
parse_at_line().

Below we describe only differences bewtween this function and
parse_at_line().

	Parameters

	
	fname: str
	File name of the catalog file.

	match2Images: list of str, list of ImageRef, None, optional
	List of file names or ImageRef objects whose mask specifications
are to be read from the catalog file. Mask specifications
for other files in the catalog that do not match the files in the
match2Images list will be ignored. If match2Images is None [https://docs.python.org/3/library/constants.html#None],
then all files from the catalog will be read.

	logfile: str, file, MultiFileLog, None, optional
	Specifies the log file to which the messages should be printed.
It can be a file name, a file object, a MultiFileLog object, or
None [https://docs.python.org/3/library/constants.html#None].

	Returns

	
	list
	Returns a list of filenames if fnamesOnly is True [https://docs.python.org/3/library/constants.html#True] or a list of
FileExtMaskInfo objects if fnamesOnly is False [https://docs.python.org/3/library/constants.html#False].

	
stsci.skypac.parseat.parse_at_line(fstring, default_ext=('SCI', '*'), default_mask_ext=0, \ clobber=False, fnamesOnly=False, doNotOpenDQ=False, \ im_fmode='update', dq_fmode='readonly', msk_fmode='readonly', verbose=False)

	
Parse a line from a catalog file containing a science image file
and extension specifications and optionally followed by a
comma-separated list of mask files and extension specifications
(or None [https://docs.python.org/3/library/constants.html#None]).

File names will be stripped of leading and trailing white spaces. If it
is essential to keep these spaces, file names may be enclosed in single
or double quotation marks. Quotation marks may also be required when file
names contain special characters used to separate file names and
extension specifications: ,[]{}

Extension specifications must follow the file name and must be delimited
by either square or curly brackets. Curly brackets allow specifying
multiple comma-separated extensions: integer extension numbers and/or
tuples (‘ext name’, ext version).

	Some possible ways of specifying extensions:
	[1] – extension number

[‘sci’,2] – extension name and version

{1,4,(‘sci’,3)} – multiple extension specifications, including tuples

{(‘sci’,*)} – wildcard extension versions (i.e., all extensions with
extension name ‘sci’)

[‘sci’] – equivalent to [‘sci’, 1]

{‘sci’} – equivalent to {(‘sci’,*)}

For extensions in the science image for which no mask file is provided,
the corresponding mask file names may be omitted (but a comma must still
be used to show that no mask is provided in that position) or None can
be used in place of the file name. NOTE: 'None' (in quotation marks)
will be interpreted as a file named 'None'.

	Some examples of possible user input:
	image1.fits{1,2,('sci',3)},mask1.fits,,mask3.fits[0]

In this case:

image1.fits[1] is associated with mask1.fits[0];

image1.fits[2] does not have an associated mask;

image1.fits['sci',3] is associated with mask3.fits[0].

– Assume image2.fits has 4 ‘SCI’ extensions:

image2.fits{'sci'},None,,mask3.fits

In this case:

image2.fits['sci', 1] and image2.fits['sci', 2] and
image2.fits['sci', 4] do not have an associated mask;
image2.fits['sci', 3] is associated with mask3.fits[0]

Note

Wildcard extension version in extension specification can be
expanded only when fnamesOnly is False [https://docs.python.org/3/library/constants.html#False].

	Parameters

	
	fstring: str
	
A comma-separated string describing the image file name
and (optionally) followed by the extension specifier
(e.g., [sci,1,2], or [sci]). The image file name may be followed
(comma-separated) by optional mask file names (and their extension
specifier).

File and extension names may NOT contain leading and/or trailing
spaces, commas, and/or square or curly brakets.

	default_ext: int, tuple, optional
	Default extension to be used with image files that to not have
an extension specified.

	default_mask_ext: int, tuple, optional
	Default extension to be used with image mask files that to not have
an extension specified.

	fnamesOnly: bool, optional
	Return file names only, or open the files and return
ImageRef objects?

	doNotOpenDQ: bool, optional
	Should the DQ files be oppened when simultaneously with the image
files?

	im_fmode: str, optional
	File mode to be used to open image FITS file.
See astropy.io.fits.open [https://docs.astropy.org/en/stable/io/fits/api/files.html#astropy.io.fits.open] for more details.

	dq_fmode: str, optional
	File mode to be used to open DQ FITS file. This is valid only if the
DQ model of the image file is ‘external’ (see documentation for
ImageRef for more details). For ‘intrinsic’
DQ model the DQ files will use the same setting as for im_fmode.

	msk_fmode: str, optional
	File mode to be used to open mask files.

	verbose: bool, optional
	Specifies whether to print warning messages.

	Returns

	
	FileExtMaskInfo
	A FileExtMaskInfo object.

	Raises

	
	ValueError
	
	Input argument ‘fstring’ must be a Python string.

	Input argument ‘fstring’ contains either unbalanced
or nested square brackets.

	Extension specification must be preceeded by a valid image file name.

	
stsci.skypac.parseat.parse_cs_line(csline, default_ext=('SCI', '*'), clobber=False, fnamesOnly=False, doNotOpenDQ=False, im_fmode='update', dq_fmode='readonly', msk_fmode='readonly', logfile=None, verbose=False)

	This function is similar to parse_at_line(), the main
difference being the content of the input string: a list of
comma-separated science image file names. No masks can be specified and
file names must be valid (i.e., None [https://docs.python.org/3/library/constants.html#None] is not allowed). Extension
specifications are allowed and must folow the same sintax as
described for parse_at_line().

Below we describe only differences bewtween this function and
parse_at_line().

	Parameters

	
	csline: str
	User input string that needs to be parsed containing one of the
following:

	a comma-separated list of valid science image file names
(see note below) and (optionally) extension specifications,
e.g.: 'j1234567q_flt.fits[1], j1234568q_flt.fits[sci,2]';

	an @-file name, e.g., '@files_to_match.txt'.

Note

Valid science image file names are:

	file names of existing FITS, GEIS, or WAIVER FITS files;

	partial file names containing wildcard characters, e.g.,
'*_flt.fits';

	Association (ASN) tables (must have _asn, or _asc
suffix), e.g., 'j12345670_asn.fits'.

Warning

@-file names MAY NOT be followed by an extension
specification.

Warning

If an association table or a partial file name with wildcard
characters is followed by an extension specification, it will be
considered that this extension specification applies to each
file name in the association table or each file name
obtained after wildcard expansion of the partial file name.

	logfile: str, file, MultiFileLog, None, optional
	Specifies the log file to which the messages should be printed.
It can be a file name, a file object, a MultiFileLog object, or None.

	Returns

	
	list
	Returns a list of filenames if fnamesOnly is True [https://docs.python.org/3/library/constants.html#True] or a list of
FileExtMaskInfo objects if fnamesOnly is False [https://docs.python.org/3/library/constants.html#False].

Polygon filling algorithm

Polygon filling algorithm.

	Authors

	Nadezhda Dencheva, Mihai Cara

	License

	LICENSE

	
class stsci.skypac.region.Edge(name=None, start=None, stop=None, next=None)

	Edge representation

An edge has a “start” and “stop” (x, y) vertices and an entry in the
GET table of a polygon. The GET entry is a list of these values:

[ymax, x_at_ymin, delta_x/delta_y]

	
compute_AET_entry(edge)

	Compute the entry for an edge in the current Active Edge Table

[ymax, x_intersect, 1/m]
note: currently 1/m is not used

	
compute_GET_entry()

	Compute the entry in the Global Edge Table

[ymax, x@ymin, 1/m]

	
class stsci.skypac.region.Polygon(rid, vertices, coord_system='Cartesian')

	Represents a 2D polygon region with multiple vertices

	Parameters

	
	rid: string
	polygon id

	vertices: list of (x,y) tuples or lists
	The list is ordered in such a way that when traversed in a
counterclockwise direction, the enclosed area is the polygon.
The last vertex must coincide with the first vertex, minimum
4 vertices are needed to define a triangle.

	coord_system: string
	coordinate system

	
get_edges()

	Create a list of Edge objects from vertices

	
scan(data)

	This is the main function which scans the polygon and creates the mask

	Parameters

	
	data: array
	the mask array
it has all zeros initially, elements within a region are set to
the region’s ID

Notes

Algorithm summary:

	Set the Global Edge Table (GET)

	Set y to be the smallest y coordinate that has an entry in GET

	Initialize the Active Edge Table (AET) to be empty

	For each scan line:

	Add edges from GET to AET for which ymin==y

	Remove edges from AET fro which ymax==y

	Compute the intersection of the current scan line with all
edges in the AET

	Sort on X of intersection point

	Set elements between pairs of X in the AET to the Edge’s ID

	
update_AET(y, AET)

	Update the Active Edge Table (AET)

Add edges from GET to AET for which ymin of the edge is
equal to the y of the scan line.
Remove edges from AET for which ymax of the edge is
equal to y of the scan line.

	
class stsci.skypac.region.Region(rid, coordinate_system)

	Base class for regions.

	Parameters

	
	rid: int or string
	region ID

	coordinate_system: astropy.wcs.CoordinateSystem instance or a string
	in the context of WCS this would be an instance of wcs.CoordinateSysem

	
scan(mask)

	Sets mask values to region id for all pixels within the region.
Subclasses must define this method.

	Parameters

	
	mask: ndarray
	a byte array with the shape of the observation to be used as a mask

	Returns

	
	mask: array where the value of the elements is the region ID or 0 (for
	pixels which are not included in any region).

Sky statistics functions for skypac

Sky statistics computation class for skymatch and
_weighted_sky.

	Authors

	Mihai Cara

	License

	LICENSE

	
class stsci.skypac.skystatistics.SkyStats(skystat='mean', **kwargs)

	This is a superclass build on top of
stsci.imagestats.ImageStats. Compared to ImageStats,
SkyStats has “persistent settings” in the sense
that object’s parameters need to be set once and these settings
will be applied to all subsequent computations on different data.

Initializes the SkyStats object.

	Parameters

	
	skystat: str
	Sets the statistics that will be returned by the
calc_sky. The following statistics are supported:
'mean', 'mode', 'midpt', and 'median'.
First three statistics have the same meaning as in
stsdas.toolbox.imgtools.gstatistics [http://stsdas.stsci.edu/cgi-bin/gethelp.cgi?gstatistics]
while skystat='median' will compute the median of the
distribution.

	kwargs: dict
	A dictionary of optional arguments to be passed to ImageStats.

	
calc_sky(data)

	Computes statistics on data.

	Parameters

	
	data: numpy.ndarray
	A numpy array of values for which the statistics needs to be
computed.

	Returns

	
	statistics: tuple
	A tuple of two values: (skyvalue, npix), where skyvalue
is the statistics specified by the skystat parameter during
the initialization of the SkyStats object and npix is the
number of pixels used in comuting the statistics reported in
skyvalue.

	
class stsci.skypac.skystatistics.SkyStats(skystat='mean', **kwargs)

	This is a superclass build on top of
stsci.imagestats.ImageStats. Compared to ImageStats,
SkyStats has “persistent settings” in the sense
that object’s parameters need to be set once and these settings
will be applied to all subsequent computations on different data.

Initializes the SkyStats object.

	Parameters

	
	skystat: str
	Sets the statistics that will be returned by the
calc_sky. The following statistics are supported:
'mean', 'mode', 'midpt', and 'median'.
First three statistics have the same meaning as in
stsdas.toolbox.imgtools.gstatistics [http://stsdas.stsci.edu/cgi-bin/gethelp.cgi?gstatistics]
while skystat='median' will compute the median of the
distribution.

	kwargs: dict
	A dictionary of optional arguments to be passed to ImageStats.

	
calc_sky(data)

	Computes statistics on data.

	Parameters

	
	data: numpy.ndarray
	A numpy array of values for which the statistics needs to be
computed.

	Returns

	
	statistics: tuple
	A tuple of two values: (skyvalue, npix), where skyvalue
is the statistics specified by the skystat parameter during
the initialization of the SkyStats object and npix is the
number of pixels used in comuting the statistics reported in
skyvalue.

Utility functions for skypac

This module provides utility functions for use
by stsci.skypac module.

	Authors

	Mihai Cara

	License

	LICENSE

	
class stsci.skypac.utils.ImageRef(hdulist_refcnt=None)

	A lightweight class that supports reference counting for FITS images
and holds a ResourceRefCount object. It provides several
attributes that describe main characteristics of the image (file) and
essential functions for manipulating reference count.

	Parameters

	
	hdulist_refcnt: ResourceRefCount
	A ResourceRefCount object holding a
astropy.io.fits.HDUList [https://docs.astropy.org/en/stable/io/fits/api/hdulists.html#astropy.io.fits.HDUList] object.

	Attributes

	
	filename: str
	Name of the opened file. Can be None [https://docs.python.org/3/library/constants.html#None] for in-memory created
astropy.io.fits.HDUList [https://docs.astropy.org/en/stable/io/fits/api/hdulists.html#astropy.io.fits.HDUList] objects.

	can_reload_data: bool
	True [https://docs.python.org/3/library/constants.html#True] for files attached to a physical file, False [https://docs.python.org/3/library/constants.html#False] for in-memory
astropy.io.fits.HDUList [https://docs.astropy.org/en/stable/io/fits/api/hdulists.html#astropy.io.fits.HDUList] objects.

	original_fname: str
	Original name of the file as requested by the user. Note: may be
different from filename if the orininal file was in GEIS or
WAIVER FITS format and subsequently was converted to a MEF FITS
format. In that case this attribute will show the name of the
original GEIS or WAIVER FITS file.

	original_ftype: str
	Type of the original file. Can take one of the following values:
‘MEF’, ‘SIMPLE’, ‘GEIS’, ‘WAIVER’, or ‘UNKNOWN’.

	original_exists: bool
	Indicates if the physical file exists. It is False [https://docs.python.org/3/library/constants.html#False] for in-memory
images.

	mef_fname: str, None
	Name of the MEF FITS file if exists, None [https://docs.python.org/3/library/constants.html#None] otherwise.

	mef_exists: bool
	Indicates whether the MEF FITS file exists.

	DQ_model: str, None
	Type of the DQ model: ‘external’ for WFPC, WFPC2, and FOC
instruments (or non-HST data if set so) that have DQ data in a
separate (from image) file and ‘intrinsic’ for ACS, etc. images
that have DQ extensions in the image file. It is None [https://docs.python.org/3/library/constants.html#None] if
the image does not have DQ data.

	telescope: str
	Telescope that acquired the image.

	instrument: str
	Instrument used to acquire data.

	fmode: str
	File mode used to open FITS file. See astropy.io.fits.open [https://docs.astropy.org/en/stable/io/fits/api/files.html#astropy.io.fits.open] for
more details.

	memmap: bool
	Is the astropy.io.fits.HDUList [https://docs.astropy.org/en/stable/io/fits/api/hdulists.html#astropy.io.fits.HDUList] memory mapped?

	
property closed

	Is the ImageRef object closed?

	
property extname

	Extension name of the first extension.

	
property hdu

	astropy.io.fits.HDUList [https://docs.astropy.org/en/stable/io/fits/api/hdulists.html#astropy.io.fits.HDUList] of the attached image.

	
hold()

	Increment the reference count of the attached resource.

	
info(self, fh=sys.stdout)

	Print a summary of the object attributes.

	
property refcount

	Reference count of the attached astropy.io.fits.HDUList [https://docs.astropy.org/en/stable/io/fits/api/hdulists.html#astropy.io.fits.HDUList].

	
release()

	Decrement reference count of the attached resource. If the reference
count reaches zero, the attached ResourceRefCount object
will be closed and set to None [https://docs.python.org/3/library/constants.html#None].

	
set_HDUList_RefCount(hdulist_refcnt=None)

	Set (attach) a new ResourceRefCount object that holds
a astropy.io.fits.HDUList [https://docs.astropy.org/en/stable/io/fits/api/hdulists.html#astropy.io.fits.HDUList] object. This is allowed only if the already
attached ResourceRefCount can be closed. The reference
count of the ResourceRefCount being attached will be
incremented.

	Parameters

	
	hdulist_refcnt: ResourceRefCount, None
	A ResourceRefCount object containing a
astropy.io.fits.HDUList [https://docs.astropy.org/en/stable/io/fits/api/hdulists.html#astropy.io.fits.HDUList] object. If it is None [https://docs.python.org/3/library/constants.html#None],it will release
and close the attached ResourceRefCount object.

	Raises

	
	ValueError
	The (already) attached ResourceRefCount must have
reference count <= 1 so that it can be closed before being
replaced with a new resource.

	ValueError
	The resource being attached must be in an open state.

	
class stsci.skypac.utils.MultiFileLog(console=True, enableBold=True, flog=None, append=True, autoflush=True, appendEOL=True)

	This is a class that facilitates writting to multiple files.
MultiFileLog stores multiple file objects and can write the same
log entry to all of them. It also facilitates controlling when a
function can close a log file. Finally, it provides some utility
functions that automate such things as appending EOL at the end of the
log entry, flushing the files (to avoid losing log entries in case of
uncaught exceptions), displaying WARNING, ERROR, etc. in bold
on standard streams (sys.stdout [https://docs.python.org/3/library/sys.html#sys.stdout], etc.)

	Parameters

	
	console: bool, optional
	Enables writting to the standard output.

	enableBold: bool, optional
	Enable or disable writing bold text to console, e.g., 'WARNING:'
'ERROR:', etc.

	flog: str, file, None, list of str or file objects, optional
	File name or file object to be added to MultiFileLog during the
initialization. More files can be added lated with
add_logfile().

	append: bool, optional
	Default open mode for the files that need to be opened (e.g., that
are passed as file names). If append is True [https://docs.python.org/3/library/constants.html#True], new files added
to a MultiFileLog object will be opened in the “append”
mode: new log entries will be appended to existing files – same as
mode ‘a’ of standard function open() [https://docs.python.org/3/library/functions.html#open]. When append is
False [https://docs.python.org/3/library/constants.html#False], any existing files will be overwritten.

	autoflush: bool, optional
	Indicates whether or not to flush files after each log entry.

	appendEOL: bool, optional
	Indicates whether or not to add EOL at the end of each log entry.

	
add_logfile(flog, initial_skip=2, can_close=None, mode=None)

	Add (and open, if necessary) a log file to the MultiFileLog object.

	Parameters

	
	flog: str, file, None, list of str or file objects, optional
	File name or file object to be added.

	initial_skip: int, optional
	The number of blank line to be written to the file if not
at the beginning of the file.

	can_close: bool, None, optional
	Indicates whether the file object can be closed by the
close() function:

	can_close is True [https://docs.python.org/3/library/constants.html#True] – file can be closed by the
close() function;

	can_close is False [https://docs.python.org/3/library/constants.html#False] – file will not be closed by the
close() function;

	can_close is None [https://docs.python.org/3/library/constants.html#None] – automatic selection based on the type
of the flog argument: True [https://docs.python.org/3/library/constants.html#True] if flog is a string
(e.g., file name), False [https://docs.python.org/3/library/constants.html#False] otherwise.

	mode: str, None, optional
	File open mode: same meaning as the mode parameter of the
Python’s built-in open() [https://docs.python.org/3/library/functions.html#open] function. If None [https://docs.python.org/3/library/constants.html#None], the mode
will be inherited from file open mode set during initialization.

	Returns

	
	flog: file object
	File object of newly opened (or attached) file.

	
close()

	Close all files opened by MultiFileLog.

It will close all files opened by MultiFileLog - essentially,
all files added as file name. It will not close files added
as file handles.

	
property count

	Return the number of files attached to the MultiFileLog object
excluding the sys.stdout [https://docs.python.org/3/library/sys.html#sys.stdout] file.

	
enable_console(enable=True, enableBold=True)

	Enable output to the standard console – sys.stdout [https://docs.python.org/3/library/sys.html#sys.stdout].

	Parameters

	
	enable: bool, optional
	Enable or disable output to sys.stdout [https://docs.python.org/3/library/sys.html#sys.stdout].

	enableBold: bool, optional
	Enable or disable writing bold text to console, e.g.,
'WARNING:', 'ERROR:', etc.

	
error(msg, *fmt)

	Prints an error message. The word ‘ERROR:’ will be printed as bold
on the console and enclosed in asterisks (*) in a disk file.

	
flush()

	Flush all files.

	
important(msg, *fmt)

	Prints an “important” message. The word ‘IMPORTANT:’ will be printed
as bold on the console and enclosed in asterisks (*) in a disk file.

	
logentry(msg, *fmt, **skip)

	Write a log entry to the log files.

	Parameters

	
	msg: str
	String to be printed. Can contain replacement fields delimited
by braces {}.

	fmt
	Parameters to be passed to str.format() [https://docs.python.org/3/library/stdtypes.html#str.format] method for
formatting the string msg.

	skip: int
	Number of empty lines that should follow the log message.

Examples

>>> logentry('Sky background for chip {} is {}', 'SCI1', 10.0, skip=2)
will print:
Sky background for chip SCI1 is 10.0
followed by two blank lines.

	
print_endlog_msg()

	Print a message (“Log written to…”) indicating the end of the log.

	
set_close_flag(fh, can_close=True)

	Modify the “can be closed” status of a given file.

	Parameters

	
	fh: file object
	

	can_close: bool, optional
	Indicates if the file can be closed by the close()
function.

Note

File object fh must have been already added to
the MultiFileLog object.

	
skip(nlines=1)

	Skip a specified number of blank lines.

	Parameters

	
	nlines: int, optional
	

	
unclose_copy()

	Return a copy of the MultiFileLog object with all the attached files
marked as “keep open”, that is, the close() will not close
these files.

This is useful before passing the MultiFileLog object to a function
that may add its own log files, and then attempt to close the files
with the close() method. Thus, by passing an “unclose copy”,
one can be sure that the files opened at the top level will not be
closed by other functions to which the MultiFileLog object may be
passed.

	
warning(msg, *fmt)

	Prints a warning message. The word ‘WARNING:’ will be printed as bold
on the console and enclosed in asterisks (*) in a disk file.

	
class stsci.skypac.utils.ResourceRefCount(resource, *close_args, resource_close_fnct=None, **close_kwargs)

	A class that implements reference counting for various resources:
file objects, FITS HDU lists, etc. It is intended to be used as a
mechanism of controlling the “lifespan” of resources that can be used
in different parts of the code “indipendently”. The resource is kept
open as long as the reference count is larger than zero. Once the
reference count is decreased to 0, the resource is automatically closed.

Note

The reference count of the newly created ResourceRefCount object
is set to 0. It is user’s responsibility to increment the reference
count of this object through the call to hold() function.

	Parameters

	
	resource
	An object who must be kept open or closed based on reference count.

	close_args: tuple
	Positional arguments to be passed to the
resource_close_fnct() function.

	resource_close_fnct: function, optional
	The function (usually a method of the attached resource), that can
“close” the resource.

	close_kwargs: dict
	Keyword arguments to be passed to the resource_close_fnct()
function.

	
property closed

	Indicates if the resource is “closed”.

	
hold()

	Increment the reference count of the attached resource.

	
is_subscribed_on_close(obj)

	Check if the object is subscribed to on close notifications.

	
property refcount

	Reference count.

	
release()

	Decrement reference count of the attached resource. If the reference
count reaches zero, call all registered “on close” notify callbacks,
and then call the “close” method on the resource which was set
at initialization of the ResourceRefCount object. Finally,
the resource property of the ResourceRefCount object will be
set to None [https://docs.python.org/3/library/constants.html#None].

	
property resource

	Resource attached to a ResourceRefCount object.

	
subscribe_close_notify(obj, callback=None)

	Set the object and its method that need to be called when the resource
is about to be closed.

	
unsubscribe_close_notify(obj)

	Remove the object (and its method) from the list of callbacks that
need to be notified of impending closing of the resource.

	
stsci.skypac.utils.almost_equal(arr1, arr2, fp_accuracy=None, fp_precision=None)

	Compares two values, or values of numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray] and verifies that these
values are close to each other. For exact type (integers and boolean) the
comparison is exact. For inexact types (float [https://docs.python.org/3/library/functions.html#float], numpy.float32 [https://numpy.org/doc/stable/reference/arrays.scalars.html#numpy.float32], etc.)
it checks that the values (or all values in a numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray])
satisfy the following inequality:

\[|v1-v2| \leq a + 10^{-p} \cdot |v2|,\]

where a is the accuracy (“absolute error”) and p is precision
(“relative error”).

	Parameters

	
	arr1: float, int, bool, str, numpy.ndarray, None, etc.
	First value or array of values to be compared.

	arr2: float, int, bool, str, numpy.ndarray, None, etc.
	Second value or array of values to be compared.

	fp_accuracy: int, float, None, optional
	Accuracy to withing values should be close. Default value will use
twice the value of the machine accuracy (machine epsilon) for
the input type. This parameter has effect only when the values
to be compared are of inexact type (e.g., float [https://docs.python.org/3/library/functions.html#float]).

	fp_precision: int, float, None, optional
	Accuracy to withing values should be close. Default value will use
twice the value of the machine precision (resolution) for the
input type. This parameter has effect only when the values
to be compared are of inexact type (e.g., float [https://docs.python.org/3/library/functions.html#float]).

	Returns

	
	almost_equal: bool
	Returns True [https://docs.python.org/3/library/constants.html#True] if input values are close enough to each other
or False [https://docs.python.org/3/library/constants.html#False] otherwise.

	Raises

	
	ValueError
	If fp_accuracy is negative.

	TypeError
	If fp_precision is not int [https://docs.python.org/3/library/functions.html#int], float [https://docs.python.org/3/library/functions.html#float], or None [https://docs.python.org/3/library/constants.html#None].

	
stsci.skypac.utils.count_extensions(img, extname='SCI')

	Return the number of extname extensions in the input image img.
If extname is None [https://docs.python.org/3/library/constants.html#None], return the number of all image-like extensions.

Input parameters are identical to those of get_extver_list().

See also

	get_extver_list, get_ext_list
	

Examples

>>> count_extensions('j9irw1rqq_flt.fits',extname='SCI')
2
>>> count_extensions('j9irw1rqq_flt.fits',extname=None)
10

	
stsci.skypac.utils.ext2str(ext, compact=False, default_extver=1)

	Return a string representation of an extension specification.

	Parameters

	
	ext: tuple, int, str
	Extension specification can be a tuple of the form (str,int), e.g.,
(‘sci’,1), an integer (extension number), or a string (extension
name).

	compact: bool, optional
	If compact is True [https://docs.python.org/3/library/constants.html#True] the returned string will have extension
name quoted and separated by a comma from the extension number,
e.g., "'sci',1".
If compact is False [https://docs.python.org/3/library/constants.html#False] the returned string will have extension
version immediately follow the extension name, e.g., 'sci1'.

	default_extver: int, optional
	Specifies the extension version to be used when the ext parameter
is a string (extension name).

	Returns

	
	strext: str
	String representation of extension specification ext.

	Raises

	
	TypeError
	Unexpected extension type.

Examples

>>> ext2str('sci',compact=False,default_extver=6)
"'sci',6"
>>> ext2str(('sci',2))
"'sci',2"
>>> ext2str(4)
'4'
>>> ext2str('dq')
"'dq',1"
>>> ext2str('dq',default_extver=2)
"'dq',2"
>>> ext2str('sci',compact=True,default_extver=2)
'sci2'

	
stsci.skypac.utils.file_name_components(fname, detect_HST_FITS_suffix=True)

	Splits base file name into a root, suffix, and extension.
Given a full path, this function extracts the base name,
and splits it into three components: root name, suffix,
and file extension.

	Parameters

	
	fname: str
	file name

	detect_HST_FITS_suffix: bool, optional
	If True, detects the suffix of most HST files by looking for the
rightmost occurence of the underscore (‘_’) in the file name.

	Returns

	
	root: str
	Root name of the file. When detect_HST_FITS_suffix is True [https://docs.python.org/3/library/constants.html#True],
this is the part of the file name preceding the rightmost suffix
separator (‘_’). Otherwise, it is the base file name without file
extension.

	suffix: str
	If detect_HST_FITS_suffix is True [https://docs.python.org/3/library/constants.html#True], this field will contain the
suffix of most HST files, i.e., the part of the file name contained
between the rightmost suffix separator (‘_’) and file
extension separator. This return value will be an empty string if
If detect_HST_FITS_suffix is False [https://docs.python.org/3/library/constants.html#False] or if the file name has no
extension separator.

	fext: str
	File extension

Examples

>>> file_name_components('/data/m87/ua0x5001m_c0f.fits')
('ua0x5001m', 'c0f', '.fits')
>>> file_name_components('/data/m87/ua0x5001m_c0f.fits',False)
('ua0x5001m_c0f', '', '.fits')

	
stsci.skypac.utils.get_ext_list(img, extname='SCI')

	Return a list of all extension versions of extname extensions.
img can be either a file name or a astropy.io.fits.HDUList [https://docs.astropy.org/en/stable/io/fits/api/hdulists.html#astropy.io.fits.HDUList] object.

This function is similar to get_extver_list(), the main
difference being that it returns a list of fully qualified extensions:
either tuples of the form (extname, extver) or integer extension
numbers (when extname is None [https://docs.python.org/3/library/constants.html#None]).

See also

	get_extver_list, count_extensions
	

Examples

>>> get_ext_list('j9irw1rqq_flt.fits',extname='SCI')
[('SCI', 1), ('SCI', 2)]
>>> get_ext_list('j9irw1rqq_flt.fits',extname=None)
[1, 2, 3, 4, 5, 6, 8, 9, 10, 11]

	
stsci.skypac.utils.get_extver_list(img, extname='SCI')

	Return a list of all extension versions with extname extension
names. If extname is None [https://docs.python.org/3/library/constants.html#None], return extension numbers of all
image-like extensions.

Note

If input image is a ImageRef, this function will
not modify its reference count.

	Parameters

	
	img: str, `astropy.io.fits.HDUList`, or `~skypac.utils.ImageRef`
	Input image object. If img is a string object (file name) then that
file will be opened. If the file pointed to by the file name is a
GEIS or WAIVER FITS file, it will be converted to a simple/MEF FITS
format if clobber is True [https://docs.python.org/3/library/constants.html#True].

	extname: str, optional
	Indicates extension name for which all existing extension versions
should be found. If extname is None [https://docs.python.org/3/library/constants.html#None], then
get_extver_list will return a list of extension
numbers of all image-like extensions.

	Returns

	
	extver: list
	List of extension versions corresponding to the input extname.
If extname is None [https://docs.python.org/3/library/constants.html#None], it will return a list of extension
numbers of all image-like extensions.

	Raises

	
	IOError
	Unable to open input image file.

	TypeError
	Argument img must be either a file name (str),
an ImageRef, or a astropy.io.fits.HDUList [https://docs.astropy.org/en/stable/io/fits/api/hdulists.html#astropy.io.fits.HDUList] object.

	TypeError
	Argument extname must be either a string or None [https://docs.python.org/3/library/constants.html#None].

See also

	get_ext_list, count_extensions
	

Examples

>>> get_extver_list('j9irw1rqq_flt.fits',extname='sci')
[1, 2]
>>> get_extver_list('j9irw1rqq_flt.fits',extname=None)
[1, 2, 3, 4, 5, 6, 8, 9, 10, 11

	
stsci.skypac.utils.is_countrate(hdulist, ext, units_kwd='BUNIT', guess_if_missing=True, telescope=None, instrument=None, verbose=True, flog=None)

	Infer the units of the data of the input image from the input image.
Specifically, it tries to infer whether the units are counts (or
count-like) or if the units are count-rate.

The units of data are determined from the BUNIT header keyword by
searching its value for the division sign '/'. If the division sign is
not found, then the units are assumed to be “counts”. If the division
sign is found in the BUNIT value and if the numerator is one of
the following: ‘ELECTRONS’,’COUNTS’, or ‘DN’, and denumerator is either
‘S’,’SEC’, or ‘SECOND’, then the units are assumed to be count-rate.

	Parameters

	
	hdulist: `astropy.io.fits.HDUList`
	astropy.io.fits.HDUList [https://docs.astropy.org/en/stable/io/fits/api/hdulists.html#astropy.io.fits.HDUList] of the image.

	ext: tuple, int, str
	Extension specification for whose data the units need to be inferred.
An int ext specifies extension number. A tuple in the form
(str, int) specifies extension name and number. A string ext
specifies extension name and the extension version is assumed to be
1. See documentation for astropy.io.fits.getData
for examples.

	units_kwd: str, optional
	FITS header keyword describing data units of the image. This keyword
is assumed to be in the header of the extension specified by the
ext parameter.

	guess_if_missing: bool, optional
	Instructs to try make best guess on image units when the keyword
specified by units_kwd is not found in the image header. The first
action will be to look for this keyword in the primary header, and
if not found, infer the units based on the telescope, instrument,
and detector information.

	telescope: str, None, optional
	Specifies the telescope from which the data came. If not specified,
the value specified in the 'TELESCOP' keyword in the primary
header will be used.

	instrument: str, None, optional
	Specifies the instrument used for acquiring data. If not specified,
the value specified in the 'INSTRUME' keyword in the primary
header will be used.

	verbose: bool, optional
	Specifies whether to print warning messages.

	flog: str, file, MultiFileLog, None, optional
	Specifies the log file to which the messages should be printed.
It can be a file name, a file object, a MultiFileLog object, or
None [https://docs.python.org/3/library/constants.html#None].

	Returns

	
	bool, None
	Returns True [https://docs.python.org/3/library/constants.html#True] if the units of the input image for a given extension
are count-rate-like and False [https://docs.python.org/3/library/constants.html#False] if the units are count-like. Returns
None [https://docs.python.org/3/library/constants.html#None] if the units cannot be inferred from the header.

	
stsci.skypac.utils.openImageEx(filename, mode='readonly', dqmode='readonly', memmap=True, saveAsMEF=True, output_base_fitsname=None, clobber=True, imageOnly=False, openImageHDU=True, openDQHDU=False, preferMEF=True, verbose=False)

	Open an image file and (if requested) the associated DQ file and return
corresponding ImageRef objects.

This function is an enhanced version of
stsci.tools.fileutil.openImage() function in that it can open
both the image file and the associated DQ image. It also provides
additional inormation about the opened files: file type, original file
name, DQ model (“intrinsic”, where DQ data are placed in the same file
as the science data, or “extrinsic” when DQ data are in a separate file
from the science data), etc. Because of the way it was implemented, it
requires half of the number of calls to astropy.io.fits.open [https://docs.astropy.org/en/stable/io/fits/api/files.html#astropy.io.fits.open] thus making
it almost twice as fast as the openImage()
function.

	Parameters

	
	filename: str
	File name of the file to be opened. The image file formats are
recognized: simple/MEF FITS, HST GEIS format, or WAIVER FITS format.

	mode: str, optional
	File mode used to open main image FITS file. See astropy.io.fits.open [https://docs.astropy.org/en/stable/io/fits/api/files.html#astropy.io.fits.open]
for more details.

	dqmode: str, optional
	File mode used to open DQ image FITS file. See parameter mode
above for more details.

	memmap: bool, optional
	Should memory mapping to be used whe opening simple/MEF FITS?

	saveAsMEF: bool, optional
	Should an input GEIS or WAIVER FITS be converted to simple/MEF FITS?

	output_base_fitsname: str, None, optional
	The base name of the output simple/MEF FITS when saveAsMEF is
True [https://docs.python.org/3/library/constants.html#True]. If it is None [https://docs.python.org/3/library/constants.html#None], the file name of the converted file
will be determined according to HST file naming conventions.

	clobber: bool, optional
	If saveAsMEF is True [https://docs.python.org/3/library/constants.html#True], should any existing output files be
overwritten?

	imageOnly: bool, optional
	Should this function open the image file only? If True [https://docs.python.org/3/library/constants.html#True], then
the DQ-related attributes will not be valid.

	openImageHDU: bool, optional
	Indicates whether the returned ImageRef object
corresponding to the science image file should be
in an open or closed state.

	openDQHDU: bool, optional
	Indicates whether the returned ImageRef object
corresponding to the DQ image file should be in an open or closed
state.

	preferMEF: bool, optional
	Should this function open an existing MEF file that complies with
HST naming convention when the input file is in GEIS or WAIVER FITS
format, even when saveAsMEF is False [https://docs.python.org/3/library/constants.html#False] or clobber is False [https://docs.python.org/3/library/constants.html#False]?

	verbose: bool, optional
	If True [https://docs.python.org/3/library/constants.html#True], some addition information will be printed out to
standard output.

	Returns

	
	(img, dqimg): (ImageRef, ImageRef)
	A tuple of ImageRef objects corresponding to the science
image and to the DQ image. Each object in the returned tuple open
or closed depending on the input arguments.

Note

If the returned object is open, then its reference count will
be at least 1. The caller is responsible for “releasing” the
object when it is no longer needed.

Note

If the DQ model of the opened file is “intrinsic”, then the
dqimg component of the returned tuple will hold a reference
counter to the same image. Thus, for “intrinsic” DQ data models,
the reference count of the returned objects may be 2 (if both
science openImageHDU and openDQHDU are True [https://docs.python.org/3/library/constants.html#True]).

	Raises

	
	ValueError
	If input file is neither a GEIS file nor a FITS file.

	ValueError
	Errors occured while accessing/reading the file possibly due to
corrupted file, non-compliant file format, etc.s

	
stsci.skypac.utils.skyval2txt(files='*_flt.fits', skyfile='skyfile.txt', skykwd='SKYUSER', default_ext=('SCI', '*'))

	A convenience function that allows retrieving computed sky background
values from image headers and storing them in a text file that can be
re-used by drizzlepac.astrodrizzle.AstroDrizzle(). This is
particularly useful when performing sky matching on a large number of
images which takes considerable time. Saving computed sky values to a text
file allows re-running AstroDrizzle() without re-computing sky values.

Warning

The file specified by skyfile is overwritten without warning.

Note

Images that do not have specified extensions will be ignored.

	Parameters

	
	files: str
	File name(s), including extension specification if necessary,
from which sky values should be retrieved:

	a comma-separated list of valid science image file names
(see note below) and (optionally) extension specifications,
e.g.: 'j1234567q_flt.fits[1], j1234568q_flt.fits[sci,2]';

	an @-file name, e.g., '@fits_files_with_skyvals.txt'.

Note

Valid science image file names are:

	file names of existing FITS, GEIS, or WAIVER FITS files;

	partial file names containing wildcard characters, e.g.,
'*_flt.fits';

	Association (ASN) tables (must have _asn, or _asc
suffix), e.g., 'j12345670_asn.fits'.

Warning

@-file names MAY NOT be followed by an extension
specification.

Warning

If an association table or a partial file name with wildcard
characters is followed by an extension specification, it will be
considered that this extension specification applies to each
file name in the association table or each file name
obtained after wildcard expansion of the partial file name.

	skyfile: str, optional
	Output “skyfile” to which sky values from the image headers should be
written out.

	skykwd: str, optional
	Header keyword holding the value of the computed sky background.

	default_ext: int, tuple, optional
	Default extension to be used with image files that to not have
an extension specified.

	
stsci.skypac.utils.temp_mask_file(rootname, suffix, ext, data, dir=os.path.curdir, fnameOnly=False)

	Saves 2D data array to temporary simple FITS file.
The name of the emporary file is generated based on the input parameters.

	Parameters

	
	data: numpy array
	Data to be written to the temporary FITS file. Data will be
written in the primary HDU.

	rootname: str
	Root name of the file.

	prefix: str, optional
	Prefix to be added in front of the root name. If randomize_prefix
is True [https://docs.python.org/3/library/constants.html#True], then a random string will be added to the right of the
string specified by prefix (with no separator between them).
Prefix (or the randomized prefix) will be separated from the
root name by the string specified in sep. If prefix is an empty
string ('') then no prefix will be prepended to the root file
name.

	suffix: str, optional
	Suffix to be added to the root name. Suffix will be separated from
the root name by the string specified in sep.

	ext: int, str, or tuple of the form (str, int), optional
	Extention to be added to the temporary file after the suffix.
Extension name string will be separated from
the suffix by the string specified in sep.

	sep: str, optional
	Separator string to be inserted between (randomized) prefix
and root name, root name and suffix, and suffix and extension.

	randomize_prefix: bool, optional
	Specifies whether to add (postpend) a random string to string
specified by prefix.

	dir: str, optional
	Directory to which the temporary file should be written. If directory
dir is None [https://docs.python.org/3/library/constants.html#None] then the file will be written to the default
(for more details, see the explanation for argument dir to the
tempfile.mstemp [http://docs.python.org/2/library/tempfile.html#tempfile.mkstemp] function).

	fnameOnly: bool, optional
	Specifies what should temp_mask_file return: file name of the
created file (if fnameOnly is True [https://docs.python.org/3/library/constants.html#True]), or a tuple with the file
name of the created file and an open
ImageRef object of that file.

	Returns

	
	fname: str
	File name of the temporary file.

	mask: ImageRef
	An open ImageRef object of the temporary
FITS file. This is returned as a tuple together with the file name
only when fnameOnly is False [https://docs.python.org/3/library/constants.html#False].

Note

Mask data will be in the Primary HDU.

	Raises

	
	TypeError
	Extension specifier must be either an integer, a string,
or a tuple of the form (str, int).

Examples

>>> import numpy as np
>>> from stsci import skypac
>>> mask=np.ones((800,800),dtype=np.uint8)
>>> skypac.utils.temp_mask_file(mask, 'ua0x5001m',
... suffix='skymatch_mask', ext=('sci',4), dir='/data/m87',
... fnameOnly=True)
'/data/m87/tmp39gCpw_ua0x5001m_skymatch_mask_sci4.fits'
>>> skypac.utils.temp_mask_file(mask, 'ua0x5001m',
... suffix='skymatch_mask', ext=('sci',4), dir='.', fnameOnly=True)
'tmpxl7LTO_ua0x5001m_skymatch_mask_sci4.fits'
>>> skypac.utils.temp_mask_file(mask, 'ua0x5001m',
... suffix='skymatch_mask', ext=('sci',4), dir='.',fnameOnly=False)
('tmpxMcL5g_ua0x5001m_skymatch_mask_sci4.fits', <skypac.utils.ImageRef object at 0x101f5a3d0>)

Pixel Area Map (PAM) utilities

A module that provides functions for computing Pixel Area Maps (PAM) based
on polynomial distortion model contained in a FITS WCS. Tabular distortions
NPOL and DET2IM used to describe HST/ACS distortions are ignored.

	Authors

	Mihai Cara

	License

	LICENSE

	
stsci.skypac.pamutils.pam_from_file(image, ext, output_pam, ignore_vacorr=False, normalize_at=None)

	Generate a Pixel Area Map (PAM) file from the FITS
WCS contained in an image extension of a calibrated HST image
file specified by image.

Note

PAM computation is performed using the distortion model defined in the
WCS and described through Simple Image Polynomials (SIP).
Non-polynomial distortions are ignored!

	Parameters

	
	image: str
	File name of a FITS image that will provide a FITS WCS
(stwcs.wcsutils.HSTWCS or astropy.wcs.WCS [https://docs.astropy.org/en/stable/api/astropy.wcs.WCS.html#astropy.wcs.WCS]).

	ext: int, str, tuple of (str, int)
	Extension specification. May be an integer extension number,
a string extension name, or a tuple of extension name and
extension version.

	output_pam: str
	Output file name to which PAM will be written.

Warning

If the output file already exists, it will be overwritten
without warnings.

	ignore_vacorr: bool, optional
	When set to True [https://docs.python.org/3/library/constants.html#True], PAM will be generated as if vellocity
aberration has not applied to the WCS.

Warning

This function does not know whether velocity aberration (VA)
correction has been applied to the WCS or not. It is user’s
responsibility to check the appropriateness of settung this
parameter to True [https://docs.python.org/3/library/constants.html#True]. Setting ignore_vacorr to True [https://docs.python.org/3/library/constants.html#True] when
WCS was not VA-corrected will result in larger errors in
computed PAM. Default value is highly recommended!

	normalize_at: tuple of int, optional
	Indicates whether to normalize computed PAM to 1 at the provided
zero-based pixel position. By default, PAM is computed relative to
(or, in units of) the idcscale (for HST instruments) value
when present or to the pixel scale at CRPIX when the wcs
object does not have an idcscale property. Default setting
should produce results analogous to the drizzle/blot method.

Note

HST/WFC3 PAM historically are normalized to 1 at specific pixel
positions. See http://www.stsci.edu/hst/wfc3/pam/pixel_area_maps for
further details.

	
stsci.skypac.pamutils.pam_from_wcs(wcs, shape=None, ignore_vacorr=False, normalize_at=None)

	Generate a Pixel Area Map (PAM) file from a FITS
WCS.

Note

PAM computation is performed using the distortion model defined in the
WCS and described through Simple Image Polynomials (SIP).
Non-polynomial distortions are ignored!

	Parameters

	
	wcs: stwcs.wcsutils.HSTWCS, astropy.wcs.WCS
	An WCS [https://docs.astropy.org/en/stable/api/astropy.wcs.WCS.html#astropy.wcs.WCS] object to be used for generating PAM file.

	shape: tuple of two int, None, optional
	Shape of the output image (ny, nx). If se to default None [https://docs.python.org/3/library/constants.html#None], this
function will try to deduce the shape of the output image from the
value of array_shape attribute of the input wcs object.

	ignore_vacorr: bool, optional
	When set to True [https://docs.python.org/3/library/constants.html#True], PAM will be generated as if vellocity
aberration has not applied to the WCS.

Warning

This function does not know whether velocity aberration (VA)
correction has been applied to the WCS or not. It is user’s
responsibility to check the appropriateness of settung this
parameter to True [https://docs.python.org/3/library/constants.html#True]. Setting ignore_vacorr to True [https://docs.python.org/3/library/constants.html#True] when
WCS was not VA-corrected will result in larger errors in
computed PAM. Default value is highly recommended!

	normalize_at: tuple of int, optional
	Indicates whether to normalize computed PAM to 1 at the provided
zero-based pixel position. By default, PAM is computed relative to
(or, in units of) the idcscale (for HST instruments) value
when present or to the pixel scale at CRPIX when the wcs
object does not have an idcscale property. Default setting
should produce results analogous to the drizzle/blot method.

Note

HST/WFC3 PAM historically are normalized to 1 at specific pixel
positions. See http://www.stsci.edu/hst/wfc3/pam/pixel_area_maps for
further details.

	Returns

	
	pam: numpy.ndarray
	A 2D numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray] containing PAM.

	Raises

	
	ValueError
	When both shape and wcs.array_shape attribute are None [https://docs.python.org/3/library/constants.html#None].

LICENSE

Copyright (C) 2019, Association of Universities for Research in Astronomy

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:

	Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.

	Redistributions in binary form must reproduce the above
copyright notice, this list of conditions and the following
disclaimer in the documentation and/or other materials provided
with the distribution.

	Neither the name of the copyright holder nor the names of its
contributors may be used to endorse or promote products derived from
this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS “AS IS” AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

 Python Module Index

 s

 		 	

 		
 s	

 	[image: -]
 	
 stsci	

 	
 	
 stsci.skypac.pamutils	

 	
 	
 stsci.skypac.parseat	

 	
 	
 stsci.skypac.region	

 	
 	
 stsci.skypac.skyline	

 	
 	
 stsci.skypac.skymatch	

 	
 	
 stsci.skypac.skystatistics	

 	
 	
 stsci.skypac.utils	

Index

 A
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | L
 | M
 | O
 | P
 | R
 | S
 | T
 | U
 | W

A

 	
 	add_image() (stsci.skypac.skyline.SkyLine method)

 	add_logfile() (stsci.skypac.utils.MultiFileLog method)

 	
 	almost_equal() (in module stsci.skypac.utils)

 	append_ext() (stsci.skypac.parseat.FileExtMaskInfo method)

 	append_mask() (stsci.skypac.parseat.FileExtMaskInfo method)

C

 	
 	calc_sky() (stsci.skypac.skystatistics.SkyStats method), [1]

 	clear_masks() (stsci.skypac.parseat.FileExtMaskInfo method)

 	close() (stsci.skypac.utils.MultiFileLog method)

 	closed (stsci.skypac.utils.ImageRef property)

 	(stsci.skypac.utils.ResourceRefCount property)

 	
 	compute_AET_entry() (stsci.skypac.region.Edge method)

 	compute_GET_entry() (stsci.skypac.region.Edge method)

 	convert2ImageRef() (stsci.skypac.parseat.FileExtMaskInfo method)

 	count (stsci.skypac.parseat.FileExtMaskInfo property)

 	(stsci.skypac.utils.MultiFileLog property)

 	count_extensions() (in module stsci.skypac.utils)

D

 	
 	dqext (stsci.skypac.parseat.FileExtMaskInfo property)

 	
 	DQimage (stsci.skypac.parseat.FileExtMaskInfo property)

E

 	
 	Edge (class in stsci.skypac.region)

 	enable_console() (stsci.skypac.utils.MultiFileLog method)

 	
 	error() (stsci.skypac.utils.MultiFileLog method)

 	ext2str() (in module stsci.skypac.utils)

 	extname (stsci.skypac.utils.ImageRef property)

F

 	
 	fext (stsci.skypac.parseat.FileExtMaskInfo property)

 	file_name_components() (in module stsci.skypac.utils)

 	FileExtMaskInfo (class in stsci.skypac.parseat)

 	finalize() (stsci.skypac.parseat.FileExtMaskInfo method)

 	
 	finalized (stsci.skypac.parseat.FileExtMaskInfo property)

 	find_intersection() (stsci.skypac.skyline.SkyLine method)

 	find_max_overlap() (stsci.skypac.skyline.SkyLine method)

 	flush() (stsci.skypac.utils.MultiFileLog method)

 	fnamesOnly (stsci.skypac.parseat.FileExtMaskInfo property)

G

 	
 	get_edges() (stsci.skypac.region.Polygon method)

 	
 	get_ext_list() (in module stsci.skypac.utils)

 	get_extver_list() (in module stsci.skypac.utils)

H

 	
 	hdu (stsci.skypac.utils.ImageRef property)

 	
 	hold() (stsci.skypac.utils.ImageRef method)

 	(stsci.skypac.utils.ResourceRefCount method)

I

 	
 	image (stsci.skypac.parseat.FileExtMaskInfo property)

 	ImageRef (class in stsci.skypac.utils)

 	important() (stsci.skypac.utils.MultiFileLog method)

 	info() (stsci.skypac.parseat.FileExtMaskInfo method)

 	(stsci.skypac.utils.ImageRef method)

 	
 	is_countrate() (in module stsci.skypac.utils)

 	is_mf_mosaic (stsci.skypac.skyline.SkyLine property)

 	is_subscribed_on_close() (stsci.skypac.utils.ResourceRefCount method)

L

 	
 	logentry() (stsci.skypac.utils.MultiFileLog method)

M

 	
 	mask_images (stsci.skypac.parseat.FileExtMaskInfo property)

 	maskext (stsci.skypac.parseat.FileExtMaskInfo property)

 	max_overlap_pair() (stsci.skypac.skyline.SkyLine static method)

 	members (stsci.skypac.skyline.SkyLine property)

 	
 module

 	stsci.skypac.pamutils

 	stsci.skypac.parseat

 	stsci.skypac.region

 	stsci.skypac.skyline

 	stsci.skypac.skymatch

 	stsci.skypac.skystatistics

 	stsci.skypac.utils

 	
 	MultiFileLog (class in stsci.skypac.utils)

O

 	
 	openImageEx() (in module stsci.skypac.utils)

P

 	
 	pam_from_file() (in module stsci.skypac.pamutils)

 	pam_from_wcs() (in module stsci.skypac.pamutils)

 	parse_at_file() (in module stsci.skypac.parseat)

 	parse_at_line() (in module stsci.skypac.parseat)

 	
 	parse_cs_line() (in module stsci.skypac.parseat)

 	Polygon (class in stsci.skypac.region)

 	polygon (stsci.skypac.skyline.SkyLine property)

 	print_endlog_msg() (stsci.skypac.utils.MultiFileLog method)

R

 	
 	refcount (stsci.skypac.utils.ImageRef property)

 	(stsci.skypac.utils.ResourceRefCount property)

 	Region (class in stsci.skypac.region)

 	release() (stsci.skypac.utils.ImageRef method)

 	(stsci.skypac.utils.ResourceRefCount method)

 	
 	release_all_images() (stsci.skypac.parseat.FileExtMaskInfo method)

 	replace_fext() (stsci.skypac.parseat.FileExtMaskInfo method)

 	resource (stsci.skypac.utils.ResourceRefCount property)

 	ResourceRefCount (class in stsci.skypac.utils)

S

 	
 	scan() (stsci.skypac.region.Polygon method)

 	(stsci.skypac.region.Region method)

 	set_close_flag() (stsci.skypac.utils.MultiFileLog method)

 	set_HDUList_RefCount() (stsci.skypac.utils.ImageRef method)

 	skip() (stsci.skypac.utils.MultiFileLog method)

 	SkyLine (class in stsci.skypac.skyline)

 	SkyLineMember (class in stsci.skypac.skyline)

 	skymatch() (in module stsci.skypac.skymatch)

 	SkyStats (class in stsci.skypac.skystatistics), [1]

 	skyval2txt() (in module stsci.skypac.utils)

 	
 stsci.skypac.pamutils

 	module

 	
 	
 stsci.skypac.parseat

 	module

 	
 stsci.skypac.region

 	module

 	
 stsci.skypac.skyline

 	module

 	
 stsci.skypac.skymatch

 	module

 	
 stsci.skypac.skystatistics

 	module

 	
 stsci.skypac.utils

 	module

 	subscribe_close_notify() (stsci.skypac.utils.ResourceRefCount method)

T

 	
 	TEAL_SkyMatch() (in module stsci.skypac.skymatch)

 	
 	temp_mask_file() (in module stsci.skypac.utils)

 	to_wcs() (stsci.skypac.skyline.SkyLine method)

U

 	
 	unclose_copy() (stsci.skypac.utils.MultiFileLog method)

 	
 	unsubscribe_close_notify() (stsci.skypac.utils.ResourceRefCount method)

 	update_AET() (stsci.skypac.region.Polygon method)

W

 	
 	warning() (stsci.skypac.utils.MultiFileLog method)

 nav.xhtml

 Table of Contents

 		
 Welcome to skypac’s documentation!

 		
 Sky matching for image mosaic

 		
 SkyLine (chip outline on the sky) management for image mosaic

 		
 Utility functions for parsing user catalog files for skypac

 		
 Polygon filling algorithm

 		
 Sky statistics functions for skypac

 		
 Utility functions for skypac

 		
 Pixel Area Map (PAM) utilities

 		
 LICENSE

_static/file.png

_static/stsci_pri_combo_mark_white.png

_static/minus.png

_static/plus.png

