

 Navigation

 	
 index

 	
 next |

 	GTAC Tracker 1 documentation

GTAC NextGen Sequencing Tracking System

NextGen Sequencing Tracking System (the “STS”) provides a
web-based, database-backed system for managing the NextGen
sequencing operations of the GTAC. Each step of the sequencing
process, from sample submission to publishing of the final analysis
results, are thoroughly documented in a database, and made
available for reporting, billing, and process analysis.

test

Contents:

	STS Hardware

	STS Development
	Quick Start

	Setting up your virtual environment

	Pyhton access to the STS
	Quick and Dirty Hard Coding

	More Portable using the ‘workon’ method

	Manuevering Around the Models

	Source Code

Indices and tables

	Index

	Module Index

	Search Page

 Copyright 2012, Brian Koebbe.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	GTAC Tracker 1 documentation

STS Hardware

The GTAC STS is currently hosted on a CGS Dell PowerEdge M600 with 16GB RAM.

The software itself is stored on 1 Unit (4.6TB, RAID 10) of CGS Storage and a full backup is performed daily.

The server is accessible to members of GTAC via the CGS Cluster using ssh:

ssh gtac.wustl.edu

 Copyright 2012, Brian Koebbe.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	GTAC Tracker 1 documentation

STS Development

The GTAC STS was created using multple open-source software tools, languages, and practices.
To extend, enhance and gereally make the most of the STS, a general knowledge of the following components is necessary.

	Python Programming Language (v2.7) [http://docs.python.org]

	Nearly all code used in the STS is python. The rather large official python tutorial [http://docs.python.org/tutorial/index.html]
is a good place to start. Knocking on my door works well too.

	Django Web Framework (v1.3) [https://docs.djangoproject.com/en/1.3/]

	Django is the foundation of the STS. Once you’ve set up your environment (see Setting up your virtual environment) I recommend closely following the
Django Tutorial [https://docs.djangoproject.com/en/1.3/intro/tutorial01/] so you have an understanding of the basic Django concepts.

	PostgreSQL (v8.4) [http://www.postgresql.org/docs/8.4/interactive/index.html] and/or SQLite (v3) [http://www.sqlite.org/]

	The production STS stores its data in PostgreSQL, but your development instance will most likely use SQLite.
A basic intro to SQL [http://www.w3schools.com/sql/sql_intro.asp] may be all that you need.

	Mercurial [http://mercurial.selenic.com/guide/]

	All development changes are captured using the Mercurial (hg) distributed source control management tool.
The quick start [http://mercurial.selenic.com/quickstart/] and
cheatsheets [http://mercurial.selenic.com/wiki/QuickReferenceCardsAndCheatSheets] are probably all you
need to get going.

Quick Start

	Make sure python-virtualenv is installed

	Build and activate your environment:

$ mkdir ~/prj
$ cd ~/prj
~/prj$ mkvirtualenv sts
~/prj$ workon sts
(sts)~/prj$

	Clone your own GTAC STS source code repository:

(sts)~/prj$ hg clone http://bitbucket.org/koebbe/sts sts-wc
(sts)~/prj$ cd sts-wc
(sts)~/prj/sts-wc$ hg clone http://bitbucket.org/koebbe/djmenu menus
(sts)~/prj/sts-wc$ hg clone http://bitbucket.org/koebbe/sts-simpla simpla *PRIVATE*

	Install your python and django packages:

(sts)~/prj/sts-wc$ pip install -r requirements.txt

Note

SQLite3 developement libraries will need to be installed to build pysqlite

	Build your development database:

(sts)~/prj/sts-wc$./manage.py syncdb
(sts)~/prj/sts-wc$./manage.py migrate

	Start up your GTAC STS website:

(sts)~/prj/sts-wc$./manage.py runserver

	Browse to http://localhost:8000/

	...

	Profit!

Setting up your virtual environment

When working on extending/enhancing the STS, having a consistent and dependable STS
development environment is critical. The following is a quick explanation of how to set one up.

virtualenv

The following is an explanation of virtualenv from its website [http://www.virtualenv.org/]...

virtualenv is a tool to create isolated Python environments.

The basic problem being addressed is one of dependencies and versions,
and indirectly permissions. Imagine you have an application that
needs version 1 of LibFoo, but another application requires version
2. How can you use both these applications? If you install
everything into /usr/lib/python2.7/site-packages (or whatever your
platform’s standard location is), it’s easy to end up in a situation
where you unintentionally upgrade an application that shouldn’t be
upgraded.

Or more generally, what if you want to install an application and
leave it be? If an application works, any change in its libraries or
the versions of those libraries can break the application.

Also, what if you can’t install packages into the global
site-packages directory? For instance, on a shared host.

In all these cases, virtualenv can help you. It creates an
environment that has its own installation directories, that doesn’t
share libraries with other virtualenv environments (and optionally
doesn’t access the globally installed libraries either).

The basic usage is:

$ virtualenv ENV

This creates ENV/lib/pythonX.X/site-packages, where any libraries you
install will go. It also creates ENV/bin/python, which is a Python
interpreter that uses this environment. Anytime you use that interpreter
(including when a script has #!/path/to/ENV/bin/python in it) the libraries
in that environment will be used.

It also installs `Setuptools <http://peak.telecommunity.com/DevCenter/setuptools>`_into the environment.

A new virtualenv also includes the pip [http://pypy.python.org/pypi/pip]
installer, so you can use ENV/bin/pip` to install additional packages into
the environment.

 Copyright 2012, Brian Koebbe.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	GTAC Tracker 1 documentation

Pyhton access to the STS

Python sccess to STS python models is now available from the CGS Cluster!

An STS python virtual environment has been prepared on the cluster which will facilitate access to the STS by scripts running on sandboxes or jobs running on the cluster. This virtualenv includes all the python modules necessary to use the Django API to get to the STS data.

The virtual environment is located in: /srv/gtac/sts/envs/sts-cluster

Quick and Dirty Hard Coding

The easiest way to use this environemnt is by using the following for the top of your python scripts... let’s call it ‘example.py’:

#!/srv/gtac/sts/envs/sts-cluster/bin/python

import os
import sys
os.environ['DJANGO_SETTINGS_MODULE']='settings'
sys.path.append('/srv/gtac/sts/sts')

More Portable using the ‘workon’ method

To make the script more portable and future-proof you could instead load up the environment before running the script:

$ export WORKON_HOME=/srv/gtac/sts/envs
$ workon sts-cluster

Then your python programs only need the usual line:

#!/usr/bin/env python

Using this method you can also get to the STS from the python CLI. For example, to grab the latest submission:

$ python
Python 2.7.2+ (default, Oct 4 2011, 20:06:09)
[GCC 4.6.1] on linux2
Type "help", "copyright", "credits" or "license" for more information.
>>> from sample import models
>>> s = models.Submission.objects.order_by('-submitted')[0]

Manuevering Around the Models

You can use http://gtac.wustl.edu/sts/admin/doc/models to help you manuever around the data.
For example, let’s try and make a report showing the number of samples each client has submitted.

	Grab the Clients

http://gtac.wustl.edu/sts/admin/doc/models shows that the ‘client’ model is in ‘base’. So:

from base import models as basemodels

clients = basemodels.Client.objects.all()

	Follow the trail from Client to Sample

Browsing around http://gtac.wustl.edu/sts/admin/doc/models/sample.submission we see that there are 1 or more ‘samples’ (‘sample_set.all()’) per ‘submission’ and that there is one client per submission.

From this page we can follow the trail to ‘client’ by clicking on ‘base.Client’. From here we see that ‘client’ has access to ‘submissions’ via ‘submission_set.all()’

Now we can grab a client’s submissions:

for client in clients:
 clients_submissions = client.submission_set.all()

 Copyright 2012, Brian Koebbe.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 previous |

 	GTAC Tracker 1 documentation

Source Code

Checkout a copy of the STS:

hg clone http://gtac.wustl.edu/hg/gtac-lims

 Copyright 2012, Brian Koebbe.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	GTAC Tracker 1 documentation

Index

 Copyright 2012, Brian Koebbe.
 Created using Sphinx 1.3.1.

 _static/down-pressed.png

search.html

 Navigation

 		
 index

 		GTAC Tracker 1 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2012, Brian Koebbe.
 Created using Sphinx 1.3.1.

_static/plus.png

_static/minus.png

_static/comment.png

_static/up.png

_static/down.png

_static/ajax-loader.gif

_static/comment-close.png

_static/up-pressed.png

_static/comment-bright.png

_static/file.png

