

Welcome to StructOpt’s documentation!

StructOpt is a reverse structure determination toolkit.

What is reverse structure determination?

Reverse structure determination is a type of structural refinement that iteratively modifies and optimizes a structural model. In atomistic simulations, the positions of the atoms are moved within the model at every step. After the atoms have moved, the structure is evaluated to see how “good” it is. If the structure is “better” than the previous step, the moved atoms are more likely to persist into the next generation. This process is repeated many times until acceptable structure(s) have been generated.

Many different metrics can be used to determine how “good” a structure is, and this is often material-dependent. The average energy per atom is one commonly used metric, and others include fits to experimental data (e.g. S(q) or g(r) data), medium-range order information available via FEM measurements, average coordination number, and bond angle constraints.

The specific algorithms that can be used in reverse structure determination are numerous and include Monte Carlo, Genetic Algorithm, and Particle Swarm.

Overview of StructOpt

User Documentation

StructOpt is a structure optimization framework that incorportates multiple forward simulation techniques into its optimization scheme with the goal of identifying stable and realistic atomic structures. It is designed with modularity in mind, and encourages simplicity in both its codebase and usage without sacrificing powerful functionality. Nearly any forward simulation technique that takes an atomic model as input and outputs a fitness value can be integrated into this framework.

This documentation serves as both a user and developer guide for StructOpt.

StructOpt serves the purpose of structure refinment for multiple different materials including nanoparticles, defects, and metallic glasses. As such, it is highly customizable and extendable. There are many different types of simulations that can be set up, which requires getting to know the relevent parameters. Multiple examples are included in this documentation and comments (via issues on our github page [https://github.com/uw-cmg/StructOpt_modular]) are welcome.

The Examples section provides multiple examples of basic StructOpt configurations. Details on the inputs and outputs can be found in the parameters and Outputs sections, respectively. Details on the many options currently available for StructOpt are provided in the parameters section of this document. An explanation of commonly generated errors and troubleshooting advice is provided in the section entitled Troubleshooting.

Developer Documentation

Architecture Details

	Core Concepts

	Parallelism

Contents

	Installation and Setup

	Input Parameters

	Outputs

	Examples

	JobManager

	Relaxation and Fitness Modules

	Why Python?

	Future Work

	Troubleshooting

	API Reference

Contributing

Bug fixes and error reports are always welcome. We accept PRs and will try to fix issues that have detailed descriptions and are reproducable in a timely fashion.

If you have a forward simulation module that you wish to contribute, please make an issue and the correct people will get email notifications so we can respond.

License Agreement

StructOpt is distributed under the MIT license [https://opensource.org/licenses/MIT], reproduced below:

Copyright (c) 2016 University of Wisconsin-Madison Computational Materials Group

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the “Software”), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

Index and Search

	Index

	Module Index

	Search Page

Core Concepts

Overview and General Workflow

StructOpt uses a Genetic Algorithm to optimize a set of atomic structures according to a customizable objective function (aka cost function).

Genetic Algorithm

A genetic algorithm utilizes a population of structures rather than a single individual. A genetic algorithm, or evolutionary algorithm, is conceptually similar to genetic Darwinism where animals are replaced by “individuals” (in the case of StructOpt a “individual” is an atomic model). A population of atomic models is first generated. Given a population, pairs of individuals are mated (aka crossed over) by selecting different aspects of each model and pasting them into each other. Crossovers always produce two children, one for each section of the models combined together. The offspring are added to the population. After the mating scheme has finished, single individuals can “mutate” (i.e. moving atoms in a unique way) to add new genes to the population’s gene pool. After the atoms have been moved via crossovers and mutations, the structures are relaxed. Finally, each structure is run though a series of “fitness” evaluations to determine how “fit to survive” it is, and the population is then reduced to its original size based on a number of optional selection criteria. This process is repeated many times.

In summary:

	Generate initial structures

	Locally relax structures

	Calculate fitness values (e.g. energies) of each structure

	Remove some individuals from the population based on their fitness value

	Perform crossovers and selected individuals to generate offspring for the next generation

	Perform mutations on the selected individuals in the current population and offspring for the next generation

	Repeat steps 2-6 until the convergence criteria are met

The relaxation and fitness evaluations are only performed on individuals that have been modified via crossovers and mutations. This avoids recomputing these expensive calculations for individuals that were unchanged during the generation’s crossover/mutation scheme.

During crossovers, the offspring are collected into a list. After all crossovers have been completed, these offspring are added to the entire population. Each individual in the entire population then has a chance to be mutated. There will therefore be a variable number of modified individuals that will need to be relaxed and fit during each generation. The number of modified individuals can only be predicted by using the probability of mutation and crossover.

Cost Function

Individual

Structure Types

Crystal

Implemented by default.

Has periodic boundary conditions along all dimensions. The entire model is relaxed.

Cluster

Not implemented.

Does not have periodic boundary conditions. The entire model is relaxed.

Defect

Not implemented.

There are three layers to this structure type. The outer layer contains the fixed atoms that are never moved but are used as constrains in the relaxations and fitnesses. The middle layer contains atoms that are part of the crystal structure but that will be mutated, crossed-over, and relaxed. The inner layer contains the defect and it will also be mutated cross-over, and relaxed.

[image: _images/defect_regions.png]

Surface

Not implemented.

Population

Crossovers

Crossover Selection Schemes

Mutations

Predators and Predator Selection Schemes

Roulette Wheel Selection [https://en.wikipedia.org/wiki/Fitness_proportionate_selection]

Fingerprinters

Relaxations

Fitnesses

Relevant References

	Crystals: Artem Oganov, Alex Zunger, Scott Woodley, Richard Catlow

	Clusters: Roy L. Johnston, Bernd Hartke, David Deaven

	Surfaces: Cristian V. Ciobanu, Kai-Ming Ho

Parallelism

In general, the only parallelized parts of StructOpt are the fitness and relaxation modules that can be plugged in.

StructOpt has two parallelization mechanisms. The first is the simplest case where each structure is assigned to a single core. The core does the significant processing for one structure by processing the module’s code. This is optimal when the module does not implement MPI, or the code is relatively fast.

The second parallelization method, called MPMD (via MPI_Comm_spawn_multiple), is a type of advanced dynamic process management but remains relatively easy to use within StructOpt. It allows MPI code to be used within modules and for those modules to be processes on an arbitrary number of cores.

For functions that are only run on the root core (e.g. crossovers and mutations), the root decorator [https://github.com/uw-cmg/StructOpt_modular/blob/master/structopt/tools/parallel.py] is used on the main fitness or relaxation function to broadcast the return value of the function to all cores.

StructOpt acts as a master process (“master program” may be a better word) that runs in Python and uses MPI (via mpi4py [https://mpi4py.readthedocs.io/en/stable/]) to communicate between cores. This master process/program makes MPI_Comm_spawn_multiple calls to C and Fortran programs (which also use MPI). While the C and Fortran processes run, the master python program waits until they are finished. As an example in this section, we will assume StructOpt is using 16 cores to do calculations on 4 structures.

In terms of MPMD parallelization, StructOpt does two primary things:

	Uses MPI to do preprocessing for the spawning in step (2). MPI_Barrier is called after this preprocessing to ensure that all ranks have finished their preprocessing before step (2) begins. Note that the preprocessing is distributed across all 16 cores (via the one-core-per structure parallelism using mpi4py), and at the end of the preprocessing the resulting information is passed back to the root rank (e.g. rank == 0).

	After the preprocessing, the root rank spawns 4 workers, each of which use 4 cores (i.e. all 16 cores are needed to run all 4 processes at the same time). These workers are spawned through either a relaxation or fitness evaluation module, which is done via MPI_Comm_spawn_multiple. These workers can use MPI to communicate within their 4 cores. In the master StructOpt program, only the root rank spawns the C or Fortran subprocesses, and the modules wait until the spawned processes finish before they continue execution.

	Step (1) and (2) are repeated until the convergence criteria are satisfied.

Cores per Structure Use Cases

	ncores == len(population): One core per structure

	ncores < len(population): One core per structure, but all the structure cannot be run at once

	ncores > len(population): Multiple cores per structures

Unfortunately, it is impossible to predict the number of structures that will be need to be relaxed and fitted after crossovers and mutations have been performed on the population. As a result, all of the above cases are possible (and probable) for any given simulation.

mpi4py: One structure per core

Main idea: One structure per core, or multiple structures per core that execute serially in a for-loop. The module must be written in python (or callable from python like LAMMPS through ASE) and implemented directly into StructOpt.

mpi4py [https://mpi4py.readthedocs.io/en/stable/] allows MPI commands to be run within python.

Installation

TODO: Change OpenMPI 1.10.2 to the correct version after the bugfixes have been made. In the meantime, use -mca btl tcp,sm,self to use TCP rather than infiniband.

Note: mpi4py needs to be installed from source against OpenMPI 1.10.2. Follow the instructions here [https://media.readthedocs.org/pdf/mpi4py/latest/mpi4py.pdf] under “3.3: Using distutils”. In short:

Setup modules so that `mpi/intel/openmpi` is loaded and `mpiexec` finds that executable
wget https://bitbucket.org/mpi4py/mpi4py/downloads/mpi4py-X.Y.tar.gz
tar -zxf mpi4py-X.Y.tar.gz
cd mpi4py-X.Y
python setup.py build
python setup.py install --user

MPMD: Multiple cores per structure

Multiple program, multiple data (MPMD) is a form of MPI parallelization where multiple MPI communicators are used synchonously to run multiple MPI processes at the same time. MPMD can be used within mpiexec by separating each command by colons. Each command is preceded by the -n option whcih specifies the number of cores to be used for that executable. MPMD can also be used from another MPI master process which calls MPI_Comm_spawn_multiple. This is how StructOpt implements its advanced parallelization techniques to integrate MPI relaxation and fitness programs into its framework. The executable needs to implement MPMD by disconnecting a parent process if it exists (see here [https://github.com/jjmaldonis/mpi-parallelization/blob/master/spawn_multiple_loop.py] and here [https://github.com/paul-voyles/femsim-hrmc/blob/master/src/hrmc.f90] for an example parent/child implementation).

Installation and Setup

StructOpt is written in Python 3 and as such requires a working Python 3 installation. We recommend setting up an Anaconda virtual environment exclusively for StructOpt.

Python Libraries

conda install numpy
conda install scipy
pip install ase
pip install natsorted
Install mpi4py from source (below)

mpi4py

On Madison’s ACI cluster:

module load compile/intel
module load mpi/intel/openmpi-1.10.2

Follow these [http://mpi4py.readthedocs.io/en/stable/install.html#using-distutils] instructions:

wget https://bitbucket.org/mpi4py/mpi4py/downloads/mpi4py-X.Y.tar.gz
tar -zxf mpi4py-X.Y.tar.gz
cd mpi4py-X.Y
python setup.py build
python setup.py install --user

You can test your installation by following these [http://mpi4py.readthedocs.io/en/stable/install.html#testing] instructions.

Installing StructOpt

To get the code, fork and clone the StructOpt repository or download the zip here [https://github.com/uw-cmg/StructOpt_modular]. Add the location of the StructOpt folder (e.g. $HOME/repos/StructOpt) to your PATH environment variable.

Create an environment variable called STRUCTOPT_HOME with the same folder location as you added to your path.

Additional Modules

Depending on the type of calculation you wish to run, you will need to install specific relaxation and fitness modules. VASP and LAMMPS are two examples that function as both a relaxation and fitness. They can both move atoms and relax the structure, and they output an energetic term that quantifies how “good” or fit the input structure is. These modules should be installed using their standard installation procedures unless specified otherwise in the `Modules <>`_ section.

Input Parameters

The input parameters is a JSON file, which holds a single dictionary. Due to the modular nature of StructOpt, the input file is a dictionary of embedded dictionary, where dictionary key and values often determine the function name and kwargs, respectively. An example Au nanoparticle input file is given below. Each part will be discussed in the following sections.

Example:

{
 "seed": 0,
 "structure_type": "cluster",
 "generators": {
 "fcc": {"number_of_individuals": 5,
 "kwargs": {"atomlist": [["Au", 55]],
 "orientation": "100",
 "cell": [20, 20, 20],
 "a": 4.08}}
 },
 "fitnesses": {
 "LAMMPS": {"weight": 1.0,
 "kwargs": {"use_mpi4py": false,
 "MPMD": 0,
 "keep_files": true,
 "min_style": "cg",
 "min_modify": "line quadratic",
 "minimize": "1e-8 1e-8 5000 10000",
 "pair_style": "eam",
 "potential_file": "$STRUCTOPT_HOME/potentials/Au_u3.eam",
 "thermo_steps": 0,
 "reference": {"Au": -3.930}}}
 },
 "relaxations": {
 "LAMMPS": {"order": 0,
 "kwargs": {"use_mpi4py": false,
 "MPMD": 0,
 "keep_files": true,
 "min_style": "cg",
 "min_modify": "line quadratic",
 "minimize": "1e-8 1e-8 5000 10000",
 "pair_style": "eam",
 "potential_file": "$STRUCTOPT_HOME/potentials/Au_u3.eam",
 "thermo_steps": 0}}
 },
 "convergence": {
 "max_generations": 10
 },
 "mutations": {
 "move_surface_atoms": {"probability": 0.0},
 "move_atoms": {"probability": 0.0},
 "move_atoms_group": {"probability": 0.0},
 "rotate_atoms": {"probability": 0.0},
 "rotate_cluster": {"probability": 0.0},
 "rotate_all": {"probability": 0.0},
 "move_surface_defects": {"probability": 1.0}
 },
 "crossovers": {
 "rotate": {"probability": 0.7,
 "kwargs": {"repair_composition": true}}
 },
 "predators": {
 "fuss": {"probability": 0.9},
 "diversify_module": {"probability": 0.1,
 "kwargs": {"module": "LAMMPS",
 "min_diff": 0.01}}
 },
 "selections": {
 "rank": {"probability": 1.0}
 }
}

Global Parameters

Global parameters are those that determine how the optimizer should run.

structure_type

structure_type (str) is a key parameter for determining operations will be run. Currently, only cluster is supported, but StructOpt is written in a way that how the operations are carried out is seperated from the operations themselves. Hence, one can easily write new crossover, mutation, selection, and predator operations that are unique to their structure, test them, and incorporate them inside StructOpt seamlessly.

seed

seed (int): seed for the psuedo-random number generator. Two runs with the exact same input and seed should run exactly the same way. Almost all operations use random number generators. See should be an int.

convergence

convergence (dict): Convergence is a dictionary that determines when to stop the calculation. Currently, the only convergence criteria is max_generations, which is set to an int. For example, the setting below runs the optimizer for 200 generations.

Example:

"convergence": {
 "max_generations": 200
}

In the future, more convergence options will be added.

post_processing

post_processing (dict): Determines what is output as the optimizer is run. Currently, the only option is XYZs, which determines how frequentely the xyz files of each generation should be printed. The rules for this are as follows.

	XYZs = 0: all generations are kept

	XYZs > 0: every XYZs generation is kept

	XYZs < 0: the last XYZs generations are kept

The below example is a run where only the last generation is kept. This behavior is by default and encouraged for saving space.

Example:

"post_processing": {
 "XYZs": -1
}

Generators

Generators are functions for initializing the population. These are pseudo-random generators that depend on the seed global parameter.

Generators are given as a dictionary entry defined by the generators key in the input file. The structure of the generators dictionary with N desired generators is given below.

Example:

"generators": {
 generator_1: {"number_of_individuals": n_1,
 "kwargs": kwargs_1}
 generator_2: {"number_of_individuals": n_2,
 "kwargs": kwargs_2}
 generator_3: {"number_of_individuals": n_3,
 "kwargs": kwargs_3}
 ...
 generator_N: {"number_of_individuals": n_N,
 "kwargs": kwargs_N}
}

The string for generator_i, is the name of the generator one wants to use. The number of individuals that generator should generate is determined by the integer n_i. The sum of all n_i values determines the total size of the population, which is fixed throughout the run. kwargs_i are dictionaries that input the kwargs to the generator function one is using. These will be specific to the function and can be found in their help function, show below.

	
structopt.cluster.individual.generators.ellipsoid(atomlist, fill_factor=0.74, radii=None, ratio=[1, 1, 1], cell=None)

	Generates a random ellipsoid by rejection sampling.

	Parameters

	
	atomlist (list) – A list of [sym, n] pairs where sym is the chemical symbol
and n is the number of of sym’s to include in the individual

	fill_factor (float) – Determines how “close” the atoms are packed.
See structopt.tools.get_particle_radius for description

	radii (list) – The size, in angstroms, of the ellipsoid in the x, y and z
direction. If None, with ratio parameters and the average
atomic radii, radii is automatically calculated.

	ratio (list) – The ratio of the dimensions of the ellipsoid in the x, y
and z direction.

	cell (list) – The size, in angstroms, of the dimensions that holds the
atoms object. Must be an orthogonal box.

	
structopt.cluster.individual.generators.sphere(atomlist, cell, fill_factor=0.74, radius=None)

	Generates a random sphere of particles given an
atomlist and radius.

	Parameters

	
	atomlist (list) – A list of [sym, n] pairs where sym is the chemical symbol
and n is the number of of sym’s to include in the individual

	cell (list) – The x, y, and z dimensions of the cell which holds the particle.

	fill_factor (float) – How densely packed the sphere should be. Ranges from 0 to 1.

	radius (float) – The radius of the sphere. If None, estimated from the
atomic radii

	
structopt.cluster.individual.generators.fcc(atomlist, cell, a, shape=[1, 1, 1], orientation=None, size=21, roundness=0.5, alpha=10, v=None, angle=None)

	Generates a fcc nanoparticle of varying shape and orientation.
For multi-component particles, elements are randomly distributed.

	Parameters

	
	atomlist (list) – A list of [sym, n] pairs where sym is the chemical symbol
and n is the number of of sym’s to include in the individual

	cell (list) – A 3 element list that defines the x, y, and z dimensions of the
simulation box

	a (float) – fcc lattice constant

	shape (list) – The ratio of the x, y, and z dimensions of the particle.

	orientation (str) – The facet that is parallel to the xy plane. This is useful for
LAMMPS+STEM calculations where one already knows the orientation.
If None, a random orientation is chosen.

	size (int) – Size of the fcc grid for building the nanoparticle. For example,
a size of 21 means 21 x 21 x 21 supercell of fcc primitive cells
will be used. Note, if the size is too small, the function will
automatically expand the cell to fit the particle.

	roundness (float) – Determines the “roundness” of the particle. A more round particle
will have a smaller surface area to volume ratio, but more
undercoordinated surface sites. A less round particle will take
more and more the form of an octahedron.

	alpha (float) – Parameter for determining how defective the particle will be.
Higher alpha means less defective particle.

	v (list) – Used for a custom orientation. V is the vector in which to rotate
the particle. Requires angle parameters to be entered. All rotations
are done with respect to the 100 plane.

	angle (float) – Angle, in radians, to rotate atoms around vector v. All rotations are
done with respect to the 100 plane.

Crossovers

Crossovers are operations for mating two individuals chosen by a selection algorithm. The purpose of the crossover is to intelligently combine (mate) different individuals (parents) in a way to create new individuals (children) that have the features of the current best individuals in the population.

Crossovers are given as a dictionary entry defined by the crossovers key in the input file. The structure of the crossovers dictionary with N desired selections is given below.

Example:

"crossovers": {
 crossover_1: {"probability": p_1,
 "kwargs": kwargs_1}
 crossover_2: {"probability": p_2,
 "kwargs": kwargs_2}
 crossover_3: {"probability": p_3,
 "kwargs": kwargs_3}
 ...
 crossover_N: {"probability": p_N,
 "kwargs": kwargs_N}
}

The string for crossover_i, is the name of the crossover one wants to use. The probability p_i is the probability of the crossover occuring if a mate is determined to happen in the population. p_i values should sum to 1. kwargs_i are dictionaries that input the kwargs to the crossover function one is using. These will be specific to the function and can be found in their help function.

Currently the only crossover in use in the algorithm is the cut-and-splice operator introduced by Deaven and Ho. The description is shown below.

	
structopt.cluster.population.crossovers.rotate(individual1, individual2, center_at_atom=True, repair_composition=True)

	Rotates the two individuals around their centers of mass,
splits them in half at the xy-plane, then splices them together.
Maintains number of atoms. Note, both individuals are rotated
in the same way.

	Parameters

	
	individual1 (Individual) – The first parent

	individual2 (Individual) – The second parent

	center_at_atom (bool) – This centers the cut at an atom. This is particularly useful
when one desires a crystalline solution. If both parents
are crystalline, the children will likely not have grain boundaries.

	repair_composition (bool) – If True, conserves composition. For crossovers that create children
with more (less) atoms, atoms are taken from (added to) the surface
of the particle. For incorrect atomic ratios, atomic symbols are
randomly interchanged throughout the particle

	Returns

	
	Individual (The first child)

	Individual (The second child)

Selections

Selections are operations for choosing which individuals to “mate” in producing new individuals. Individuals are chosen based on their fitness, and different selection functions determine how diverse the children should be.

Selections are given as a dictionary entry defined by the selections key in the input file. The structure of the selections dictionary with N desired selections is given below.

Example:

"selections": {
 selection_1: {"probability": p_1,
 "kwargs": kwargs_1}
 selection_2: {"probability": p_2,
 "kwargs": kwargs_2}
 selection_3: {"probability": p_3,
 "kwargs": kwargs_3}
 ...
 selection_N: {"probability": p_N,
 "kwargs": kwargs_N}
}

The string for selection_i, is the name of the selection one wants to use. The probability p_i is the probability of the selection occuring if a mate is determined to happen in the population. p_i values should sum to 1. kwargs_i are dictionaries that input the kwargs to the selection function one is using. These will be specific to the function and can be found in their help function.

	
structopt.common.population.selections.tournament(population, fits, tournament_size=5, unique_pairs=False, unique_parents=False, keep_best=False)

	Selects pairs in seperate “tournaments”, where a subset of the
population are randomly selected and the highest fitness allowed to pass.
In addition to a population, their fits, and end population size, takes in
a tournament size parameter.

	Parameters

	
	population (Population) – The population of individuals needed to be trimmed

	fits (list) – List of fitnesses that correspond to the population.

	tournament_size (int) – The number of individuals in each tournament. If 1,
tournament is the same as random selection. If
len(population), corresponds to the “best” selection process

	unique_pairs (bool) – If True, all combinations of parents are unique, though parents
can show up in different pairs. True increases the diversity of
the population.

	unique_parents (bool) – If True, all parents can only mate with on other individual.
True increases the diversity of the population.

	
structopt.common.population.selections.random_selection(population, fits)

	Randomly selects parents

	Parameters

	
	population (Population) – An population of individuals

	fits (list) – Fitnesses that corresponds to population

	
structopt.common.population.selections.best(population, fits)

	Deterministic selection function that chooses adjacently
ranked individuals as pairs.

	Parameters

	
	population (Population) – An population of individuals

	fits (list) – Fitnesses that corresponds to population

	
structopt.common.population.selections.rank(population, fits, p_min=None, unique_pairs=False, unique_parents=False)

	Selection function that chooses pairs of structures
based on linear ranking.

See “Grefenstette and Baker 1989 Whitley 1989”.

	Parameters

	
	population (Population) – An object inherited from list that contains
StructOpt individual objects.

	fits (list) – A list of fitnesses of the population

	p_min (float) – The probability of choosing the lowest ranked individual.
Given population of size N, this should be below 1/nindiv.
The probability of selecting rank N (worst) to rank 1 (best)
increases from p_min to (2/N - p_min) in even, (1/N - p_min)
increments. Defaults to (1/N)^2.

	unique_pairs (bool) – If True, all combinations of parents are unique.
True increases the diveristy of the population.

	unique_parents (bool) – If True, all parents can only mate with on other individual.
True increases the diversity of the population.

	
structopt.common.population.selections.roulette(population, fits, unique_pairs=False, unique_parents=False)

	Selection function that chooses pairs of structures
based on their fitness. Fitnesses are normalized from 0 to 1.

See “Grefenstette and Baker 1989 Whitley 1989”.

	Parameters

	
	population (StructOpt population object) – An object inherited from list that contains
StructOpt individual objects.

	fits (list) – A list of fitnesses of the population

	unique_pairs (bool) – If True, all combinations of parents are unique.
True increases the diveristy of the population.

	unique_parents (bool) – If True, all parents can only mate with on other individual.
True increases the diversity of the population.

Predators

Similar to selections, predators are selection processes that selects individuals based on their fitness. The distinction is that while selections select individuals with positive features to duplicate in children, predators select which individuals to keep in the next generation. Note, this must be done because crossovers and (sometimes) mutations increase the population every generation, and hence each generation requires a predator step.

Predators are given as a dictionary entry defined by the predators key in the input file. The structure of the predators dictionary with N desired predators is given below

Example:

"predators": {
 predator_1: {"probability": p_1,
 "kwargs": kwargs_1}
 predator_2: {"probability": p_2,
 "kwargs": kwargs_2}
 predator_3: {"probability": p_3,
 "kwargs": kwargs_3}
 ...
 predator_N: {"probability": p_N,
 "kwargs": kwargs_N}
}

The string for predator_i, is the name of the predator one wants to use. The probability p_i is the probability of the predator occuring on every individual in the population. p_i values should sum to 1. kwargs_i are dictionaries that input the kwargs to the predator function one is using. These will be specific to the function and can be found in their help function.

	
structopt.common.population.predators.best(fits, nkeep)

	Sorts individuals by fitness and keeps the top nkeep fitnesses.

	Parameters

	
	fits (dict<int, float>) – Dictionary of <individual.id, fitness> pairs.

	nkeep (int) – The number of individuals to keep. In a GA run, corresponds
to the sum of each generators number_of_individuals

	
structopt.common.population.predators.roulette(fits, nkeep, T=None)

	Select individuals with a probability proportional to their fitness.
Fitnesses are renormalized from 0 - 1, which means minimum fitness
individual is never included in in the new population.

	Parameters

	
	fits (dict<int, float>) – Dictionary of <individual.id, fitness> pairs.

	nkeep (int) – The number of individuals to keep. In a GA run, corresponds
to the sum of each generators number_of_individuals

	T (float) – If T is not None, a boltzman-like transformation is applied
to all fitness values with T.

	
structopt.common.population.predators.rank(fits, nkeep, p_min=None)

	Selection function that chooses pairs of structures
based on linear ranking.

See “Grefenstette and Baker 1989 Whitley 1989”.

	Parameters

	
	fits (dict<int, float>) – Dictionary of <individual.id, fitness> pairs.

	nkeep (int) – The number of individuals to keep. In a GA run, corresponds
to the sum of each generators number_of_individuals

	p_min (float) – The probability of choosing the lowest ranked individual.
Given population of size N, this should be below 1/nindiv.
The probability of selecting rank N (worst) to rank 1 (best)
increases from p_min to (2/N - p_min) in even, (1/N - p_min)
increments. Defaults to (1/N)^2.

	
structopt.common.population.predators.fuss(fits, nkeep, nbest=0, fusslimit=10)

	Fixed uniform selection scheme. Aimed at maintaining diversity
in the population. In the case where low fit is the highest
fitness, selects a fitness between min(fits) and min(fits) + fusslimit,
if the difference between the min(fit) and max(fit) is larger than fusslimit.

	Parameters

	
	fits (dict<int, float>) – Dictionary of <individual.id, fitness> pairs.

	nkeep (int) – The number of individuals to keep. In a GA run, corresponds
to the sum of each generators number_of_individuals

	nbest (int) – The top n individuals to always keep (default 0)

	fusslimit (float) – Individuals that have fitness fusslimit
worse than the max fitness will not be considered

	
structopt.common.population.predators.tournament(fits, nkeep, tournament_size=5)

	Selects individuals in seperate “tournaments”, where a subset of the
population are randomly selected and the highest fitness allowed to pass.
In addition to a population, their fits, and end population size, takes in
a tournament size parameter.

	Parameters

	
	fits (dict<int, float>) – Dictionary of <individual.id, fitness> pairs.

	nkeep (int) – The number of individuals to keep. In a GA run, corresponds
to the sum of each generators number_of_individuals

	tournament_size (int) – The number of individuals in each tournament. If 1,
tournament is the same as random selection. If
len(population), corresponds to the “best” selection process

Mutations

Mutations are operations applied to individuals that change its structure and composition. It is a local search operation, though the mutation itself can be written to perform small or larger changes.

Mutations are given as a dictionary entry defined by the mutations key in the input file. The structure of the mutations dictionary with N desired mutations is given below

Example:

"mutations": {
 "preserve_best": "true" or "false",
 "keep_original": "true" or "false",
 "keep_original_best": "true" or "false,
 mutation_1: {"probability": p_1,
 "kwargs": kwargs_1}
 mutation_2: {"probability": p_2,
 "kwargs": kwargs_2}
 mutation_3: {"probability": p_3,
 "kwargs": kwargs_3}
 ...
 mutation_N: {"probability": p_N,
 "kwargs": kwargs_N}
}

The string for mutation_i, is the name of the mutation one wants to use. The probability p_i is the probability of the mutation occuring on every individual in the population. p_i values should sum to any value between 0 and 1. kwargs_i are dictionaries that input the kwargs to the mutation function one is using. These will be specific to the function and can be found in their help function.

In addition to specifying the mutations you want to use, the mutations dictionary takes three special kwargs: preserve_best, keep_original, and keep_original_best. Setting preserve_best to true, means the highest fitness individual will never be mutated. Setting keep_original to true means mutations will be applied to copies of individuals, not the individual itself. This means, the original individual is not changed through a mutation. keep_original_best applies keep_original to only the best individual.

The currently implemented mutations are shown below. Note in all functions, the first argument is the atomic structure, which inserted by the optimizer. The user defines all of the other kwargs after the first input.

	
structopt.common.individual.mutations.swap_positions(individual, max_natoms=0.2)

	Randomly swaps the positions atoms within the individual (in place).

	Parameters

	
	individual (Individual) – an individual

	max_natoms (float or int) – if float, the maximum number of atoms whose positions will be swapped is max_natoms*len(individual)
if int, the maximum number of atoms whose positions will be swapped is max_natoms
if the number of atoms to be swapped is (or evaluates to) an odd integer, it is rounded down to an even integer
max_natoms corresponds to the maximum number of atoms whose positions will change
default: 0.20

	
structopt.common.individual.mutations.swap_species(individual, max_natoms=0.2)

	Randomly swaps the species of atoms within the individual (in place).

	Parameters

	
	individual (Individual) – an individual

	max_natoms (float or int) – if float, the maximum number of atoms that will be swapped is max_natoms*len(individual)
if int, the maximum number of atoms that will be swapped is max_natoms
if the number of atoms to be swapped is (or evaluates to) an odd integer, it is rounded down to an even integer
max_natoms corresponds to the maximum number of atoms whose species will change
default: 0.20

	
structopt.common.individual.mutations.rotate_atoms(individual, max_natoms=0.2)

	Randomly rotates a number of random atoms within the individual (in place).

	Parameters

	
	individual (Individual) – an individual

	max_natoms (float or int) – if float, the maximum number of atoms that will be rotated is max_natoms*len(individual)
if int, the maximum number of atoms that will be rotated is max_natoms
default: 0.20

	
structopt.common.individual.mutations.rotate_all(atoms, vector=None, angle=None, center=None)

	Rotate all atoms around a single point. Most suitable for
cluster calculations.

	Parameters

	
	individual (Individual) – An individual.

	vector (string or list) – The list of axes in which to rotate the atoms around. If
None, is a randomly chosen direction. If ‘random’ in list,
a random vector can be chosen.

	angle (string or list) – A list of angles that will be chosen to rotate. If None,
is randomly generated. Angle must be given in radians.
If ‘random’ in list, a random angle is included.

	center (string or xyz iterable) – The center in which to rotate the atoms around. If None,
defaults to center of mass. Acceptable strings are
COM = center of mass
COP = center of positions
COU = center of cell

	
structopt.common.individual.mutations.permutation(individual)

	Swaps the chemical symbol between two elements

	Parameters

	individual (Individual) – An individual or atoms object.

	
structopt.common.individual.mutations.rattle(individual, stdev=0.5, x_avg_bond=True)

	Randomly displace all atoms in a random direction with a magnitude
drawn from a gaussian distribution.

	Parameters

	
	individual (Individual) – An individual

	stdev (float) – The standard deviation of the gaussian distribution to rattle
all the atoms. If x_avg_bond is set to True, given as the fraction
of the average bond length of the material.

	x_avg_bond (bool) – If True, the gaussian distributions standard deviation is
stdev * avg_bond_length. Note, this only applies to fcc, hcp,
or bcc materials.

	
structopt.cluster.individual.mutations.move_atoms(individual, max_natoms=0.2)

	Randomly moves atoms within a cluster.

	Parameters

	
	individual (Individual) – An individual

	max_natoms (float or int) – if float, the maximum number of atoms that will be moved is
max_natoms*len(individual). if int, the maximum number of atoms
that will be moved is max_natoms default: 0.20

	
structopt.cluster.individual.mutations.move_surface_atoms(individual, max_natoms=0.2, move_CN=11, surf_CN=11)

	Randomly moves atoms at the surface to other surface sites

	Parameters

	
	individual (Individual) – The individual object to be modified in place

	max_natoms (float or int) – if float, the maximum number of atoms that will be moved is
max_natoms*len(individual)
if int, the maximum number of atoms that will be moved is max_natoms
default: 0.20

	move_CN (int) – The coordination number to determine which atoms can move moved. Any
atom with coordination number above move_CN will not be moved

	surf_CN (int) – The coordination number to determine which atoms are considered surface
atoms. Surface atoms are used to estimating new surface sites

	
structopt.cluster.individual.mutations.rotate_cluster(individual, max_natoms=0.2)

	Chooses a random number of atoms nearest to a random point in
the cluster. These atoms are then rotated randomly around this point

	Parameters

	
	individual (Individual) – An individual object

	max_natoms (float) – The fraction of the total atoms to rotate

	
structopt.cluster.individual.mutations.twist(individual, max_radius=0.9)

	Splits the particle randomly in half and rotates one half.

	Parameters

	
	individual (structopt.Individual object) – Individual to be mutated

	max_natoms (float) – That maximum relative distance from the center of the particle
the twist is initiated

	
structopt.cluster.individual.mutations.swap_core_shell(individual, surf_CN=11)

	Swaps atoms on the surface with an atom in the core. Only does it
for different element types.

	Parameters

	
	individual (Individual) – An individual

	surf_CN (int) – The maximum coordination number of an atom to be considered surface

	
structopt.cluster.individual.mutations.rich2poor(individual)

	Used for multi-component systems. Swaps atoms A and B
so that atom A moves from a region with a high number of A-A
bonds to a low number of A-A bonds.

	Parameters

	individual (Individual) – An individual

	
structopt.cluster.individual.mutations.poor2rich(individual)

	Used for multi-component systems. Swaps atoms A and B
so that atom A moves from a region with a low number of A-A
bonds to a high number of A-A bonds.

	Parameters

	individual (Individual) – An individual

	
structopt.cluster.individual.mutations.move_surface_defects(individual, surf_CN=11)

	Moves atoms around on the surface based on coordination number
Moves a surface atom with a low CN to an atom with a high CN

	Parameters

	
	individual (Individual) – The individual object to be modified in place

	surf_CN (int) – The maximum coordination number to considered a surface atom

	
structopt.cluster.individual.mutations.enrich_surface(individual, surf_CN=11, species=None)

	Mutation that selectively enriches the surface with a species.

	Parameters

	
	individual (Individual) – An individual

	surf_CN (int) – The maximum coordination number of an atom to be considered surface

	species (str) – The surface to enrich with. If None, takes the lowest concentration
species

	
structopt.cluster.individual.mutations.enrich_bulk(individual, surf_CN=11, species=None)

	Mutation that selectively enriches the bulk with a species

	Parameters

	
	individual (Individual) – An individual

	surf_CN (int) – The maximum coordination number of an atom to be considered surface

	species (str) – The surface to enrich with. If None, takes the lowest concentration
species

	
structopt.cluster.individual.mutations.enrich_surface_defects(individual, surf_CN=11, species=None)

	Mutation that selectively enriches defects with a species. Defects
are defined as atoms atoms with lower coordination numbers

	Parameters

	
	individual (Individual) – An individual

	surf_CN (int) – The maximum coordination number of an atom to be considered surface

	species (str) – The surface to enrich with. If None, takes the lowest concentration

	
structopt.cluster.individual.mutations.enrich_surface_facets(individual, surf_CN=11, species=None)

	Mutation that selectively enriches facets with a species. Facets
are defined as atoms atoms with higher coordination numbers.

	Parameters

	
	surf_CN (int) – The maximum coordination number of an atom to be considered surface

	species (str) – The surface to enrich with. If None, takes the lowest concentration

Relaxations

Relaxations performs a local relaxation to the atomic structure before evaluating their fitness. This is typically done after crossover and mutation operators are applied.

Relaxations differ than the previous operations in that they require varying amounts of resources. Hence, a subsequent section, Parallelization, will introduce ways to run your job with varying levels of parallel performance.

Relaxations are given as a dictionary entry defined by the relaxations key in the input file. The structure of these dictionaries is shown below.

Example:

"relaxations": {
 relaxation_1: {"order": o_1,
 "kwargs": kwargs_1}
 relaxation_2: {"order": o_2,
 "kwargs": kwargs_2}
 relaxation_3: {"order": o_3,
 "kwargs": kwargs_3}
 ...
 relaxation_N: {"order": o_N,
 "kwargs": kwargs_N}
}

The string for relaxation_i, is the name of the relaxation one wants to use. The order o_i is the order of the relaxation occuring on every individual in the population. kwargs_i are dictionaries that input the kwargs to the relaxation function one is using. These will be specific to the function. More details of each relaxation module will be given in the following subsections

LAMMPS

The LAMMPS relaxation module calls LAMMPS to relax according to some potential. Most of the kwargs can be found from the LAMMPS documentation.

	
class structopt.common.individual.relaxations.LAMMPS(parameters)

	LAMMPS class for running LAMMPS on a single individual. Takes
a dictionary, where the key: value are the parameters for running LAMMPs.

	Parameters

	
	min_style (str) – The minimization scheme for running LAMMPS. See LAMMPS doc.

	min_modify (str) – Parameters for min_style energy minimization algorithm.
See LAMMPS doc.

	minimize (str) – Convergence criteria for minimization algorithm. See LAMMPS doc.

	pair_style (str) – Type of potential used. See LAMMPS doc.

	potential_file (str) – The path to the potential_file. Should be absolute.

	thermo_steps (int) – How much output to print of thermodynamic information.
If set to 0, only the last step is printed.See LAMMPS doc.

	keep_file (bool) – Will keep all of the LAMMPS input and output files for each
individual. Use with caution.

	repair (bool) – Determines whether to run an algorithm to make sure no atoms
are in “space”. Atoms can be in space due to a mutation or
crossover that results in a large force that shoots the atom
outside of the particle.

The potential files available to use are listed below and are from the default potentials included from LAMMPS. Given a potential, enter in the potential_file kwarg as “$STRUCTOPT_HOME/potentials/<name>”. Note also that different potentials will have different lines of the pair_style kwarg. If the user would like to use an unavailable potential file, please submit an email to zxu39@wisc.edu, and the potential will be added.

AlCu.eam.alloy: Aluminum and copper alloy EAM (Cai and Ye, Phys Rev B, 54, 8398-8410 (1996))

Au_u3.eam: Gold EAM (SM Foiles et al, PRB, 33, 7983 (1986))

ZrCuAl2011.eam.alloy: Zirconium, copper, and aluminum glass (Howard Sheng at GMU. (hsheng@gmu.edu))

Fitnesses

Fitness evaluates how closely the individual satisfies the minimization criteria. One typical minimization criteria is the stability of a structure, and the formation energy is the fitness. Note, all fitness modules operate so that the lower the fitness value the more fit it is.

Fitnesses differ than the previous operations in that they require varying amounts of resources. Hence, a subsequent section, Parallelization, will introduce ways to run your job with varying levels of parallel performance.

Fitnesses are given as a dictionary entry defined by fitnesses key in the input file. The structure of these dictionaries is shown below.

Example:

"fitnesses": {
 fitness_1: {"weight": w_1,
 "kwargs": kwargs_1}
 fitness_2: {"weight": w_2,
 "kwargs": kwargs_2}
 fitness_3: {"weight": w_3,
 "kwargs": kwargs_3}
 ...
 fitness_N: {"weight": w_N,
 "kwargs": kwargs_N}
}

The string for fitness_i, is the name of the fitness one wants to use. The weight w_i is the constant to multiply the fitness value returned by the fitness_i module. Not that all selections and predators operate on the total fitness, which is a sum of each fitness and their weight. kwargs_i are dictionaries that input the kwargs to the fitness function one is using. These will be specific to the function. More details of each fitness module will be given in the following subsections

LAMMPS

The LAMMPS fitness module calls LAMMPS to calculate the potential energy of the structure. Most of the kwargs can be found from the LAMMPS documentation. In addition, most of the kwargs are the same as relaxations, except the fitness module of LAMMPS has a number of normalization options for returning the potential energy. These are described below.

	
class structopt.common.individual.fitnesses.LAMMPS(parameters)

	LAMMPS class for running LAMMPS on a single individual. Takes
a dictionary, where the key: value are the parameters for running LAMMPs.

	Parameters

	
	min_style (str) – The minimization scheme for running LAMMPS. See LAMMPS doc.

	min_modify (str) – Parameters for min_style energy minimization algorithm.
See LAMMPS doc.

	minimize (str) – Convergence criteria for minimization algorithm. Note for
fitness values, the last two values are set to 0, so no
relaxation is done. See LAMMPS doc.

	pair_style (str) – Type of potential used. See LAMMPS doc.

	potential_file (str) – The path to the potential_file. Should be absolute.

	thermo_steps (int) – How much output to print of thermodynamic information.
If set to 0, only the last step is printed.See LAMMPS doc.

	keep_file (bool) – Will keep all of the LAMMPS input and output files for each
individual. Use with caution.

	reference (dict) – Reference energies of the particle. These are values to subtract
from the values returned by LAMMPS. Given as a dictionary of
{sym : E} pairs, where sym is a str denoating the
the element, while E is the value to be subtracted per sym. This is
typically the pure component formation energy calculated with LAMMPS.
Note since this is merely a fixed subtraction, should not change the
performance in constant composition runs.

The potential files available to use are listed below and are from the default potentials included from LAMMPS. Given a potential, enter in the potential_file kwarg as “$STRUCTOPT_HOME/potentials/<name>”. Note also that different potentials will have different lines of the pair_style kwarg. If the user would like to use an unavailable potential file, please submit an email to zxu39@wisc.edu, and the potential will be added.

AlCu.eam.alloy: Aluminum and copper alloy EAM (Cai and Ye, Phys Rev B, 54, 8398-8410 (1996))

Au_u3.eam: Gold EAM (SM Foiles et al, PRB, 33, 7983 (1986))

ZrCuAl2011.eam.alloy: Zirconium, copper, and aluminum glass (Howard Sheng at GMU. (hsheng@gmu.edu))

Parallelization

In addition to the module-specific parameters, each module requires two parallelization entries: use_mpi4py and MPMD_cores_per_structure. These two entries are mutually exclusive, meaning that only one can be turned on at a time. use_mpi4py can take two values, true or false depending on whether the module should use the `one-structure-per-core <>`_ parallelization.

MPMD_cores_per_structure can be disabled (if use_mpi4py is true) by setting it to 0, but otherwise specifies the number of cores that each process/structure should be allocated within the MPI_Comm_spawn_multiple command. There are two types of valid values for this parameter: 1) an integer specifying the number of cores per structure, or 2) a string of two integers separated by a dash specifying the minimum and maximum number of cores allowed (e.g. "4-16"). MPMD_cores_per_structure can also take the value of "any", and StructOpt will use as many cores as it can to run each individual.

Example:

"relaxations": {
 "LAMMPS": {"order": 0,
 "kwargs": {"use_mpi4py": true,
 "MPMD_cores_per_structure": 0,
 "keep_files": true,
 "min_style": "cg\nmin_modify line quadratic",
 "minimize": "1e-8 1e-8 5000 10000",
 "pair_style": "eam/alloy",
 "potential_file": "$STRUCTOPT_HOME/potentials/ZrCuAl2011.eam.alloy",
 "thermo_steps": 1000}}
}

Outputs

Examples

The following below are examples of runs you can use to test StructOpt. They exclusively use LAMMPS to relax the structures and calculate its fitness. All of the input files can be found in the StructOpt_modular/examples folder

Running StructOpt

StructOpt can be run on a single processor or in parallel. In a single score environment, the command is given below

python $STRUCTOPT_HOME/structopt/genetic.py structopt.in.json

In a parallel environment with N processors, StructOpt can be run with the following command

mpirun -n N python $STRUCTOPT_HOME/structopt/genetic.py structopt.in.json

The output will exist in the folder the command was run from

Example 1: cluster/Au55

Example 2: cluster/Au55-parallel

JobManager

Introduction

The purpose of the JobManager module is to provide a python wrapper for submitting and tracking jobs in a queue environment.

Configuration

The JobManager is initially built for a PBS queue environment, so many of the commands will have to be modified for usage in a different queue environment. These customizations will likely take place in the following files.

	The submit and write_submit function in the structopt/utilities/job_manager.py file will likely need to be updated to reflect your specific queue environment.

	The dictionaries held in structopt.utilities/rc.py is the first attempt to store some dictionaries specific to the queue environment. Many queue specific variables are drawn from here.

Submitting jobs

Single job

The script below is an example script of submitting a single job to a queue using the JobManager. The optimization run is a short run of a Au55nanoparticle using only LAMMPS. A large part of the script is defining the input, which goes into the JobManager class. These inputs are given below.

	calcdir: This is a string that tells where the calculation is run. Note that the calculation itself is run within the calcdir/logs{time} directory, which is created when the job starts to run on the queue. Unless an absolute path, the calcdir directory is always given with respect to directory that the job script is run from

	optimizer: This is a string of the optimizer file used for the calculation. These files can be found in the structopt/optimizers folder. Upon run, a copy of this script is placed insde of the calcdir directory and accessed from there.

	StructOpt_parameters: This is a dictionary object that should mirror the input file you are trying to submit

	submit_parameters: This dictionary holds the submit parameters. These will be specific to the queue system in use. In this example, we specify the the submission system, queue, number of nodes, number of cores, and walltime.

from structopt.utilities.job_manager import JobManager
from structopt.utilities.exceptions import Running, Submitted, Queued

calcdir = 'job_manager_examples/Au55-example'

LAMMPS_parameters = {"use_mpi4py": True,
 "MPMD": 0,
 "keep_files": False,
 "min_style": "cg",
 "min_modify": "line quadratic",
 "minimize": "1e-8 1e-8 5000 10000",
 "pair_style": "eam",
 "potential_file": "$STRUCTOPT_HOME/potentials/Au_u3.eam",
 "thermo_steps": 0}

StructOpt_parameters = {
 "seed": 0,
 "structure_type": "cluster",
 "generators": {"sphere": {"number_of_individuals": 20,
 "kwargs": {"atomlist": [["Au", 55]],
 "cell": [20, 20, 20]}}},
 "fitnesses": {"LAMMPS": {"weight": 1.0,
 "kwargs": LAMMPS_parameters}},
 "relaxations": {"LAMMPS": {"order": 0,
 "kwargs": LAMMPS_parameters}},
 "convergence": {"max_generations": 10},
 "mutations": {"move_atoms": {"probability": 0.1},
 "rotate_cluster": {"probability": 0.1}},
 "crossovers": {"rotate": {"probability": 0.7}},
 "predators": {"best": {"probability": 1.0}},
 "selections": {"rank": {"probability": 1.0,
 "kwargs": {"unique_pairs": False,
 "unique_parents": False}}},
 "fingerprinters": {"keep_best": True,
 "diversify_module": {"probability": 1.0,
 "kwargs": {"module": "LAMMPS",
 "min_diff": 0.001}}},
 "post_processing": {"XYZs": -1},
}

submit_parameters = {'system': 'PBS',
 'queue': 'morgan2',
 'nodes': 1,
 'cores': 12,
 'walltime': 12}

optimizer = 'genetic.py'

job = JobManager(calcdir, optimizer, StructOpt_parameters, submit_parameters)
job.optimize()

Upon running this script, the user should get back an exception called structopt.utilities.exceptions.Submitted with the jobid. This is normal behavior and communicates that the job has successfully been submitted.

Multiple jobs

One advantage of the job manager is that it allows one to submit multiple jobs to the queue. This is often useful for tuning the optimizer against different inputs. The script below is an example of submitting the same job at different seeds.

In the previous script, submitting a single job successfully with JobManager.optimizer method resulted in an exception. We can catch this exception with a try and except statement. This is shown below in the script where upon a successful submission, the script prints out the jobid to the user.

from structopt.utilities.job_manager import JobManager
from structopt.utilities.exceptions import Running, Submitted, Queued

LAMMPS_parameters = {"use_mpi4py": True,
 "MPMD": 0,
 "keep_files": False,
 "min_style": "cg",
 "min_modify": "line quadratic",
 "minimize": "1e-8 1e-8 5000 10000",
 "pair_style": "eam",
 "potential_file": "$STRUCTOPT_HOME/potentials/Au_u3.eam",
 "thermo_steps": 0}

StructOpt_parameters = {
 "seed": 0,
 "structure_type": "cluster",
 "generators": {"sphere": {"number_of_individuals": 20,
 "kwargs": {"atomlist": [["Au", 55]],
 "cell": [20, 20, 20]}}},
 "fitnesses": {"LAMMPS": {"weight": 1.0,
 "kwargs": LAMMPS_parameters}},
 "relaxations": {"LAMMPS": {"order": 0,
 "kwargs": LAMMPS_parameters}},
 "convergence": {"max_generations": 10},
 "mutations": {"move_atoms": {"probability": 0.1},
 "rotate_cluster": {"probability": 0.1}},
 "crossovers": {"rotate": {"probability": 0.7}},
 "predators": {"best": {"probability": 1.0}},
 "selections": {"rank": {"probability": 1.0,
 "kwargs": {"unique_pairs": False,
 "unique_parents": False}}},
 "fingerprinters": {"keep_best": True,
 "diversify_module": {"probability": 1.0,
 "kwargs": {"module": "LAMMPS",
 "min_diff": 0.001}}},
 "post_processing": {"XYZs": -1},
}

submit_parameters = {'system': 'PBS',
 'queue': 'morgan2',
 'nodes': 1,
 'cores': 12,
 'walltime': 12}

optimizer = 'genetic.py'

seeds = [0, 1, 2, 3, 4]
for seed in seeds:
 StructOpt_parameters['seed'] = seed
 calcdir = 'job_manager_examples/Au55-seed-{}'.format(seed)

 job = JobManager(calcdir, optimizer, StructOpt_parameters, submit_parameters)

 try:
 job.optimize()
 except Submitted:
 print(calcdir, job.get_jobid(), 'submitted')

job_manager_examples/Au55-seed-0 936454.bardeen.msae.wisc.edu submitted
job_manager_examples/Au55-seed-1 936455.bardeen.msae.wisc.edu submitted
job_manager_examples/Au55-seed-2 936456.bardeen.msae.wisc.edu submitted
job_manager_examples/Au55-seed-3 936457.bardeen.msae.wisc.edu submitted
job_manager_examples/Au55-seed-4 936458.bardeen.msae.wisc.edu submitted

Tracking jobs

In the previous section, we covered how to submit a new job from an empty directory. This is done by first initializing an instance of the StructOpt.utilities.job_manager.JobManager class with a calculation directory along with some input files and then submitting the job with the JobManager.optimize method. The JobManager.optimize method knows what to do because upon initialization, it detected an empty directory. If the directory was not empty and contained a StructOpt job, the JobManager knows what to do with it if optimize was run again. This is all done with exceptions.

The four primary exceptions that are returned upon executing the optimize method are below along with their explanations.

	Submitted: This exception is returned if a job is submitted from the directory. This is done when JobManager.optimize is called in an empty directory or JobManager.optimize is called with the kwarg restart=True in a directory where a job is not queued or running.

	Queued: The job is queued and has not started running. There should be no output files to be analyzed.

	Running: The job is running and output files should be continously be updated. These output files can be used for analysis before the job has finished running.

	UnknownState: This is returned if the calcdir is not an empty directory doesn’t detect it as a StructOpt run. A StructOpt run is detected when a structopt.in.json file is found in the calcdir.

Note that if no exception is returned, it means the job is done and is ready to be analyzed. Job.optimize does nothing in this case.

One way of using these three exceptions is below. If the job is submitted or Queued, we want the script to stop and not submit the job. If it is running, additional commands can be used to track the progress of the job.

from structopt.utilities.job_manager import JobManager
from structopt.utilities.exceptions import Running, Submitted, Queued

calcdir = 'job_manager_examples/Au55-example'

LAMMPS_parameters = {"use_mpi4py": True,
 "MPMD": 0,
 "keep_files": False,
 "min_style": "cg",
 "min_modify": "line quadratic",
 "minimize": "1e-8 1e-8 5000 10000",
 "pair_style": "eam",
 "potential_file": "$STRUCTOPT_HOME/potentials/Au_u3.eam",
 "thermo_steps": 0}

StructOpt_parameters = {
 "seed": 0,
 "structure_type": "cluster",
 "generators": {"sphere": {"number_of_individuals": 20,
 "kwargs": {"atomlist": [["Au", 55]],
 "cell": [20, 20, 20]}}},
 "fitnesses": {"LAMMPS": {"weight": 1.0,
 "kwargs": LAMMPS_parameters}},
 "relaxations": {"LAMMPS": {"order": 0,
 "kwargs": LAMMPS_parameters}},
 "convergence": {"max_generations": 10},
 "mutations": {"move_atoms": {"probability": 0.1},
 "rotate_cluster": {"probability": 0.1}},
 "crossovers": {"rotate": {"probability": 0.7}},
 "predators": {"best": {"probability": 1.0}},
 "selections": {"rank": {"probability": 1.0,
 "kwargs": {"unique_pairs": False,
 "unique_parents": False}}},
 "fingerprinters": {"keep_best": True,
 "diversify_module": {"probability": 1.0,
 "kwargs": {"module": "LAMMPS",
 "min_diff": 0.001}}},
 "post_processing": {"XYZs": -1},
}

submit_parameters = {'system': 'PBS',
 'queue': 'morgan2',
 'nodes': 1,
 'cores': 12,
 'walltime': 12}

optimizer = 'genetic.py'

job = JobManager(calcdir, optimizer, StructOpt_parameters, submit_parameters)
try:
 job.optimize()
except (Submitted, Queued):
 print(calcdir, job.get_jobid(), 'submitted or queued')
except Running:
 pass

job_manager_examples/Au55-example 936453.bardeen.msae.wisc.edu submitted or queued

Restarting jobs

Sometimes jobs need to be restarted or continued from the last generation. The JobManager does this by submitting a new job from the same calcdir folder the previous job was run in. Because calculations take place in unique log{time} directories, the job will run in a new log{time} directory. Furthermore, the JobManager modifies the structopt.in.json file so the initial population of the new job are the XYZ files of the last generation of the previous run. The code below is an example of restarting the first run of this example. The only difference between this code and the one presented in the previous section is that a restart=True kwarg has been added to the JobManager.optimize command.

from structopt.utilities.job_manager import JobManager
from structopt.utilities.exceptions import Running, Submitted, Queued

calcdir = 'job_manager_examples/Au55-example'

LAMMPS_parameters = {"use_mpi4py": True,
 "MPMD": 0,
 "keep_files": False,
 "min_style": "cg",
 "min_modify": "line quadratic",
 "minimize": "1e-8 1e-8 5000 10000",
 "pair_style": "eam",
 "potential_file": "$STRUCTOPT_HOME/potentials/Au_u3.eam",
 "thermo_steps": 0}

StructOpt_parameters = {
 "seed": 0,
 "structure_type": "cluster",
 "generators": {"sphere": {"number_of_individuals": 20,
 "kwargs": {"atomlist": [["Au", 55]],
 "cell": [20, 20, 20]}}},
 "fitnesses": {"LAMMPS": {"weight": 1.0,
 "kwargs": LAMMPS_parameters}},
 "relaxations": {"LAMMPS": {"order": 0,
 "kwargs": LAMMPS_parameters}},
 "convergence": {"max_generations": 10},
 "mutations": {"move_atoms": {"probability": 0.1},
 "rotate_cluster": {"probability": 0.1}},
 "crossovers": {"rotate": {"probability": 0.7}},
 "predators": {"best": {"probability": 1.0}},
 "selections": {"rank": {"probability": 1.0,
 "kwargs": {"unique_pairs": False,
 "unique_parents": False}}},
 "fingerprinters": {"keep_best": True,
 "diversify_module": {"probability": 1.0,
 "kwargs": {"module": "LAMMPS",
 "min_diff": 0.001}}},
 "post_processing": {"XYZs": -1},
}

submit_parameters = {'system': 'PBS',
 'queue': 'morgan2',
 'nodes': 1,
 'cores': 12,
 'walltime': 12}

optimizer = 'genetic.py'

job = JobManager(calcdir, optimizer, StructOpt_parameters, submit_parameters)
job.optimize(restart=True)

Relaxation and Fitness Modules

LAMMPS

Installation

Follow the standard installation instructions [http://lammps.sandia.gov/doc/Section_start.html].

Create an environment variable called LAMMPS_COMMAND that points to the serial LAMMPS executable after installation.

Package Documentation [http://lammps.sandia.gov/]

VASP

Installation

Follow the standard installation instructions [http://cms.mpi.univie.ac.at/wiki/index.php/Installing_VASP].

Create an environment variable called VASP_COMMAND that points to the VASP executable after installation.

Package Documentation [https://www.vasp.at/index.php/documentation]

FEMSIM

Installation

Fork and clone the repository [https://github.com/paul-voyles/femsim-hrmc] from github.

Using OpenMPI 1.10.2 compilers, follow the instructions to compile femsim.

Create an environment variable called FEMSIM_COMMAND pointing to the newly created femsim executable.

Package Documentation [https://github.com/paul-voyles/femsim-hrmc]

STEM

References: http://pubs.acs.org/doi/abs/10.1021/acsnano.5b05722

Creating Your Own Module

Any forward simulation that takes an atomic model as input and outputs a “fitness” value that can be interpreted as a measure of “goodness” of the structure can be integrated into StructOpt. Contact the developers by making an issue on github to get in touch with us.

Why Python?

Python has been widely accepted by scientific community. From the invaluable scientific software packages such as numpy, scipy, mpi4py, dask, and pandas to the thousands of specialized software packages, the scientific support through Python is enormous.

StructOpt is meant to solve new problems rather than be a better tool for solving well understood problems. As a result, many of the users of StructOpt will be exploring new scientific territory and will be in the development process of creation and iteration on their tools. Python is a forerunner for development applications due to its ability to scale from off-hand scripts to large packages and applications.

Via Jupyter notebooks, Python code is on its way to becoming readable for the general community. This, combined with the drive toward more accessible and better documented scientific code, may provide a powerful combination to encourage scientific reproducability and archival. To this end, StructOpt’s data explorer is meant to ease the process of analyzing and displaying useful information.

Future Work

	Add additional optimzers (such as particle swarm)

	Implement uncertainty quantification

	Implement Baysian statistics to estimate and automate setting correct values of the weights between modules in the cost function

Troubleshooting

StructOpt Package

Submodules

	structopt.io

	structopt.tools

	structopt.postprocessing

The Optimizer

	structopt.Optimizer
	structopt.common.population.Population

	structopt.common.population.crossovers

	structopt.common.population.fitnesses

	structopt.common.population.relaxations

	structopt.common.population.mutations

	structopt.common.population.predators

	structopt.common.population.selections

	structopt.common.individual.Individual

	structopt.common.individual.mutations

	structopt.common.individual.fitnesses

	structopt.common.individual.relaxations

	structopt.common.individual.generators

	structopt.common.individual.fingerprinters

	structopt.common.individual.Individual

	structopt.common.population.Population

structopt.io

	
structopt.io.parameters()

	Contains functionality for reading, writing, and parsing StrcutOpt parameters.

	
structopt.io.logger_utils()

	Contains functionality for creating and using loggers.

	
structopt.io.read_xyz(filename, index=None, format=None, **kwargs)

	Reads an xyz file into an ASE Atoms object and returns it.

	
structopt.io.write_xyz(fileobj, atoms, comment='', append=False)

	Writes xyz files from an Individual object. Adapted from ase.io.xyz.

structopt.tools

	
structopt.tools.parallel.root(method=None, broadcast=True)

	A decorator to make the function only run on the root node. The returned
data from the root is then broadcast to all the other nodes and each node
returns the root’s data.

	
structopt.tools.parallel.single_core(method)

	A place holder decorator that does nothing except document that the function is designed to be run on a single core.

	
structopt.tools.parallel.parallel(method)

	A decorator that does nothing except document that the function is
designed to run in parallel.

	
structopt.tools.parallel.allgather(stuff, stuffs_per_core)

	Performs an MPI.allgather on a selection of data and uses stuffs_per_core
to parse out the correct information and return it.

	Parameters

	
	stuff (any) – any piece of data (e.g. fitnesses), some of which have been updated
on their respective cores and some of which haven’t. each piece of data should
be of the same length

	stuffs_per_core (dict<int, list<int>>) – a dictionary containing a mapping of the
cores that contain the correct information to the corresponding indices in the
pieces of data

	Returns

	the correct stuff is returned on each core

	Return type

	type(stuff)

Example

This is going to take the values:

values = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

and convert each of them to strings.

In this example there are 5 cores, so stuffs_per_core looks like:

stuffs_per_core = {0: [0, 5], 1: [1, 6], 2: [2, 7], 3: [3, 8], 4: [4, 9]}

Now for the code that precedes allgather() and then calls allgather():

This for-loop modifies different parts of `values` on each core by
converting some elements in `values` from an int to a str.
We then want to collect the values that each core independently updated
and allgather them so that every core has all of the updated values,
even though each core only did part of the work.
for i in stuffs_per_core[rank]:
 values[i] = str(inds[i])
x = allgather(values, stuffs_per_core)
print(x) # returns: ['0', '1', '2', '3', '4', '5', '6', '7', '8', '9']

structopt.postprocessing

structopt.Optimizer

	structopt.common.population.Population

	structopt.common.population.crossovers

	structopt.common.population.fitnesses

	structopt.common.population.relaxations

	structopt.common.population.mutations

	structopt.common.population.predators

	structopt.common.population.selections

	structopt.common.individual.Individual

	structopt.common.individual.mutations

	structopt.common.individual.fitnesses

	structopt.common.individual.relaxations

	structopt.common.individual.generators

	structopt.common.individual.fingerprinters

structopt.common.population.Population

	
class structopt.common.population.Population(parameters, individuals=None)

	Bases: structopt.tools.sorted_dict.SortedDict

A list-like class that contains the Individuals and the operations to be run on them.

	
add(individual)

	Adds an Individual to the population.

	
allgather(individuals_per_core)

	
	Performs an MPI.allgather on self (the population) and updates the

	correct individuals that have been modified based on the inputs from
individuals_per_core.

See stuctopt.tools.parallel.allgather for a similar function.

(@parallel) Designed to run code that runs differently on different cores.
The MPI functionality should be implemented inside these functions.

	
apply_fingerprinters()

	Apply fingerprinters on the entire population.

(@parallel) Designed to run code that runs differently on different cores.
The MPI functionality should be implemented inside these functions.

	
bcast()

	Performs and MPI.bcast on self.

(@parallel) Designed to run code that runs differently on different cores.
The MPI functionality should be implemented inside these functions.

	
calculate_fitnesses()

	Perform the fitness evaluations on the entire population.

(@parallel) Designed to run code that runs differently on different cores.
The MPI functionality should be implemented inside these functions.

	
clear() → None. Remove all items from od.

	

	
copy() → a shallow copy of od

	

	
crossover(pairs)

	Perform crossovers on the population.

(@parallel) Designed to run code that runs differently on different cores.
The MPI functionality should be implemented inside these functions.

	
extend(individuals)

	Overwrites and adds to the population using the id attribute of the individuals as a keyword.
Assigns an id to an individual if it doesn’t already have one.

	
fromkeys(S[, v]) → New ordered dictionary with keys from S.

	If not specified, the value defaults to None.

	
get(k[, d]) → D[k] if k in D, else d. d defaults to None.

	

	
get_by_position(position)

	Returns the individual at position position.

	
get_new_id()

	

	
items() → a set-like object providing a view on D's items

	

	
keys() → a set-like object providing a view on D's keys

	

	
kill()

	Remove individuals from the population based on a predator scheme.

(@parallel) Designed to run code that runs differently on different cores.
The MPI functionality should be implemented inside these functions.

	
load_modules()

	

	
mutate()

	Perform mutations on the population.

(@root) Designed to run on the root node only.

	
pop(k[, d]) → v, remove specified key and return the corresponding

	value. If key is not found, d is returned if given, otherwise KeyError
is raised.

	
popitem() → (k, v), return and remove a (key, value) pair.

	Pairs are returned in LIFO order if last is true or FIFO order if false.

	
position(individual)

	Returns the position of the individual in the population.

	
relax()

	Relax the entire population.

(@parallel) Designed to run code that runs differently on different cores.
The MPI functionality should be implemented inside these functions.

	
remove(individual)

	Removes individual form the population.

	
replace(a_list)

	Deletes the current list of individuals and replaces them with the ones in a_list.

	
run_pso_moves(best_swarm, best_particles)

	Perform PSO moves on the population.

(@root) Designed to run on the root node only.

	
select()

	Select the individuals in the population to perform crossovers on.

(@root) Designed to run on the root node only.

	
setdefault(k[, d]) → od.get(k,d), also set od[k]=d if k not in od

	

	
update(individuals)

	Overwrites and adds to the population using the id attribute of the individuals as a keyword.
Assigns an id to an individual if it doesn’t already have one.

	
values() → an object providing a view on D's values

	

structopt.common.population.crossovers

	
class structopt.common.population.crossovers.Crossovers(parameters)

	Bases: object

	
crossover(pairs)

	(@parallel) Designed to run code that runs differently on different cores.
The MPI functionality should be implemented inside these functions.

	
post_processing(parent_pair, child_pair)

	

	
static rotate(individual1, individual2, conserve_composition=True)

	Rotates the two individuals around their centers of mass,
splits them in half at the xy-plane, then splices them together.
Maintains number of atoms.

	Parameters

	
	individual1 (Individual) – The first parent

	individual2 (Individual) – The second parent

	conserve_composition (bool) – default True. If True, conserves composition.

	Returns

	The first child
Individual: The second child

	Return type

	Individual

The children are returned without indicies.

	
select_crossover()

	

structopt.common.population.fitnesses

	
class structopt.common.population.fitnesses.Fitnesses(parameters)

	Bases: object

Holds the parameters for each fitness module and defines a utility function to compute the fitnesses for each fitness module.

	
calculate_fitnesses(population)

	Perform the fitness calculations on an entire population.

	Args:

	population (Population): the population to evaluate

(@parallel) Designed to run code that runs differently on different cores.
The MPI functionality should be implemented inside these functions.

	
post_processing(fitnesses)

	

	
structopt.common.population.fitnesses.LAMMPS.fitness(population, parameters)

	Perform the LAMMPS fitness calculation on an entire population.

	Args:

	population (Population): the population to evaluate

(@parallel) Designed to run code that runs differently on different cores.
The MPI functionality should be implemented inside these functions.

	
structopt.common.population.fitnesses.FEMSIM.fitness(population, parameters)

	Perform the FEMSIM fitness calculation on an entire population.

	Args:

	population (Population): the population to evaluate

(@root) Designed to run on the root node only.

structopt.common.population.relaxations

	
class structopt.common.population.relaxations.Relaxations(parameters)

	Bases: object

Holds the parameters for each relaxation module and defines a utility function to run the relaxations for each relaxation module.

	
post_processing()

	

	
relax(population)

	Relax the entire population using all the input relaxation methods.

	Args:

	population (Population): the population to relax

(@parallel) Designed to run code that runs differently on different cores.
The MPI functionality should be implemented inside these functions.

	
structopt.common.population.relaxations.LAMMPS.relax(population, parameters)

	Relax the entire population using LAMMPS.

	Args:

	population (Population): the population to relax

(@parallel) Designed to run code that runs differently on different cores.
The MPI functionality should be implemented inside these functions.

	
structopt.common.population.relaxations.hard_sphere_cutoff.relax(population, parameters)

	Relax the entire population using a hard-sphere cutoff method.

	Args:

	population (Population): the population to relax

(@parallel) Designed to run code that runs differently on different cores.
The MPI functionality should be implemented inside these functions.

structopt.common.population.mutations

	
class structopt.common.population.mutations.Mutations(parameters)

	Bases: object

	
mutate(population)

	

	
post_processing()

	

structopt.common.population.predators

	
class structopt.common.population.predators.Predators(parameters)

	Bases: object

	
static best(fits, nkeep)

	Sorts individuals by fitness and keeps the top nkeep fitnesses.

	Parameters

	
	fits (dict<int, float>) – Dictionary of <individual.id, fitness> pairs.

	nkeep (int) – The number of individuals to keep. In a GA run, corresponds
to the sum of each generators number_of_individuals

	
static fuss(fits, nkeep, nbest=0, fusslimit=10)

	Fixed uniform selection scheme. Aimed at maintaining diversity
in the population. In the case where low fit is the highest
fitness, selects a fitness between min(fits) and min(fits) + fusslimit,
if the difference between the min(fit) and max(fit) is larger than fusslimit.

	Parameters

	
	fits (dict<int, float>) – Dictionary of <individual.id, fitness> pairs.

	nkeep (int) – The number of individuals to keep. In a GA run, corresponds
to the sum of each generators number_of_individuals

	nbest (int) – The top n individuals to always keep (default 0)

	fusslimit (float) – Individuals that have fitness fusslimit
worse than the max fitness will not be considered

	
kill(population, nkeep, keep_best=True)

	Removes some individuals from the population.

	Parameters

	
	nkeep (int) – The number of individuals to keep.

	keep_best (bool) – If set to True, the best individual is always included in the
following generation.

	Returns

	

	Return type

	The individuals that were removed from the population.

	
post_processing(killed)

	

	
static rank(fits, nkeep, p_min=None)

	Selection function that chooses pairs of structures
based on linear ranking.

See “Grefenstette and Baker 1989 Whitley 1989”.

	Parameters

	
	fits (dict<int, float>) – Dictionary of <individual.id, fitness> pairs.

	nkeep (int) – The number of individuals to keep. In a GA run, corresponds
to the sum of each generators number_of_individuals

	p_min (float) – The probability of choosing the lowest ranked individual.
Given population of size N, this should be below 1/nindiv.
The probability of selecting rank N (worst) to rank 1 (best)
increases from p_min to (2/N - p_min) in even, (1/N - p_min)
increments. Defaults to (1/N)^2.

	
static roulette(fits, nkeep, T=None)

	Select individuals with a probability proportional to their fitness.
Fitnesses are renormalized from 0 - 1, which means minimum fitness
individual is never included in in the new population.

	Parameters

	
	fits (dict<int, float>) – Dictionary of <individual.id, fitness> pairs.

	nkeep (int) – The number of individuals to keep. In a GA run, corresponds
to the sum of each generators number_of_individuals

	T (float) – If T is not None, a boltzman-like transformation is applied
to all fitness values with T.

	
select_predator()

	

	
static tournament(fits, nkeep, tournament_size=5)

	Selects individuals in seperate “tournaments”, where a subset of the
population are randomly selected and the highest fitness allowed to pass.
In addition to a population, their fits, and end population size, takes in
a tournament size parameter.

	Parameters

	
	fits (dict<int, float>) – Dictionary of <individual.id, fitness> pairs.

	nkeep (int) – The number of individuals to keep. In a GA run, corresponds
to the sum of each generators number_of_individuals

	tournament_size (int) – The number of individuals in each tournament. If 1,
tournament is the same as random selection. If
len(population), corresponds to the “best” selection process

structopt.common.population.selections

	
class structopt.common.population.selections.Selections(parameters)

	Bases: object

	
static best(population, fits)

	Deterministic selection function that chooses adjacently
ranked individuals as pairs.

	Parameters

	
	population (Population) – An population of individuals

	fits (list) – Fitnesses that corresponds to population

	
post_processing(pairs)

	

	
static random_selection(population, fits)

	Randomly selects parents

	Parameters

	
	population (Population) – An population of individuals

	fits (list) – Fitnesses that corresponds to population

	
static rank(population, fits, p_min=None, unique_pairs=False, unique_parents=False)

	Selection function that chooses pairs of structures
based on linear ranking.

See “Grefenstette and Baker 1989 Whitley 1989”.

	Parameters

	
	population (Population) – An object inherited from list that contains
StructOpt individual objects.

	fits (list) – A list of fitnesses of the population

	p_min (float) – The probability of choosing the lowest ranked individual.
Given population of size N, this should be below 1/nindiv.
The probability of selecting rank N (worst) to rank 1 (best)
increases from p_min to (2/N - p_min) in even, (1/N - p_min)
increments. Defaults to (1/N)^2.

	unique_pairs (bool) – If True, all combinations of parents are unique.
True increases the diveristy of the population.

	unique_parents (bool) – If True, all parents can only mate with on other individual.
True increases the diversity of the population.

	
static roulette(population, fits, unique_pairs=False, unique_parents=False)

	Selection function that chooses pairs of structures
based on their fitness. Fitnesses are normalized from 0 to 1.

See “Grefenstette and Baker 1989 Whitley 1989”.

	Parameters

	
	population (StructOpt population object) – An object inherited from list that contains
StructOpt individual objects.

	fits (list) – A list of fitnesses of the population

	unique_pairs (bool) – If True, all combinations of parents are unique.
True increases the diveristy of the population.

	unique_parents (bool) – If True, all parents can only mate with on other individual.
True increases the diversity of the population.

	
select(population)

	

	
select_selection()

	

	
static tournament(population, fits, tournament_size=5, unique_pairs=False, unique_parents=False, keep_best=False)

	Selects pairs in seperate “tournaments”, where a subset of the
population are randomly selected and the highest fitness allowed to pass.
In addition to a population, their fits, and end population size, takes in
a tournament size parameter.

	Parameters

	
	population (Population) – The population of individuals needed to be trimmed

	fits (list) – List of fitnesses that correspond to the population.

	tournament_size (int) – The number of individuals in each tournament. If 1,
tournament is the same as random selection. If
len(population), corresponds to the “best” selection process

	unique_pairs (bool) – If True, all combinations of parents are unique, though parents
can show up in different pairs. True increases the diversity of
the population.

	unique_parents (bool) – If True, all parents can only mate with on other individual.
True increases the diversity of the population.

structopt.common.individual.Individual

	
class structopt.common.individual.Individual(id=None, load_modules=True, relaxation_parameters=None, fitness_parameters=None, mutation_parameters=None, pso_moves_parameters=None, generator_parameters=None, **kwargs)

	Bases: ase.atoms.Atoms

An abstract base class for a structure.

	
adsorbate_info

	Return the adsorbate information set by one of the surface
builder functions. This function is only supplied in order to give
a warning if this attribute (atoms.adsorbate_info) is asked for.
The dictionary with adsorbate information has been moved to the
info dictionary, i.e. atoms.info[‘adsorbate_info’].

	
append(atom)

	Append atom to end.

	
calc

	Calculator object.

	
calculate_fitness()

	Perform the fitness calculations on an individual.

	Args:

	individual (Individual): the individual to evaluate

(@parallel) Designed to run code that runs differently on different cores.
The MPI functionality should be implemented inside these functions.

	
cell

	Attribute for direct manipulation of the unit cell.

	
center(vacuum=None, axis=(0, 1, 2), about=None)

	Center atoms in unit cell.

Centers the atoms in the unit cell, so there is the same
amount of vacuum on all sides.

	vacuum: float (default: None)

	If specified adjust the amount of vacuum when centering.
If vacuum=10.0 there will thus be 10 Angstrom of vacuum
on each side.

	axis: int or sequence of ints

	Axis or axes to act on. Default: Act on all axes.

	about: float or array (default: None)

	If specified, center the atoms about <about>.
I.e., about=(0., 0., 0.) (or just “about=0.”, interpreted
identically), to center about the origin.

	
clear()

	

	
constraints

	Constraints of the atoms.

	
copy(include_atoms=True)

	Return a copy.

	
edit()

	Modify atoms interactively through ASE’s GUI viewer.

Conflicts leading to undesirable behaviour might arise
when matplotlib has been pre-imported with certain
incompatible backends and while trying to use the
plot feature inside the interactive GUI. To circumvent,
please set matplotlib.use(‘gtk’) before calling this
method.

	
euler_rotate(phi=0.0, theta=0.0, psi=0.0, center=(0, 0, 0))

	Rotate atoms via Euler angles (in degrees).

See e.g http://mathworld.wolfram.com/EulerAngles.html for explanation.

Parameters:

	center :

	The point to rotate about. A sequence of length 3 with the
coordinates, or ‘COM’ to select the center of mass, ‘COP’ to
select center of positions or ‘COU’ to select center of cell.

	phi :

	The 1st rotation angle around the z axis.

	theta :

	Rotation around the x axis.

	psi :

	2nd rotation around the z axis.

	
extend(other)

	Extend atoms object by appending atoms from other.

	
fitness

	The total fitness of the individual.

	
fits

	

	
generate()

	Generate an individual using generator_kwargs parameter. By defualt
it extends the current atoms object

	
get_all_distances(mic=False)

	Return distances of all of the atoms with all of the atoms.

Use mic=True to use the Minimum Image Convention.

	
get_angle(a1, a2=None, a3=None, mic=False)

	Get angle formed by three atoms.

calculate angle in degrees between the vectors a2->a1 and
a2->a3.

Use mic=True to use the Minimum Image Convention and calculate the
angle across periodic boundaries.

	
get_angular_momentum()

	Get total angular momentum with respect to the center of mass.

	
get_array(name, copy=True)

	Get an array.

Returns a copy unless the optional argument copy is false.

	
get_atom_indices_within_distance_of_atom(atom_index, distance)

	

	
get_atomic_numbers()

	Get integer array of atomic numbers.

	
get_calculator()

	Get currently attached calculator object.

	
get_cell(complete=False)

	Get the three unit cell vectors as a 3x3 ndarray.

	
get_cell_lengths_and_angles()

	Get unit cell parameters. Sequence of 6 numbers.

First three are unit cell vector lengths and second three
are angles between them:

[len(a), len(b), len(c), angle(a,b), angle(a,c), angle(b,c)]

in degrees.

	
get_celldisp()

	Get the unit cell displacement vectors.

	
get_center_of_mass(scaled=False)

	Get the center of mass.

If scaled=True the center of mass in scaled coordinates
is returned.

	
get_charges()

	Get calculated charges.

	
get_chemical_formula(mode='hill')

	Get the chemial formula as a string based on the chemical symbols.

Parameters:

	mode: str

	There are three different modes available:

‘all’: The list of chemical symbols are contracted to at string,
e.g. [‘C’, ‘H’, ‘H’, ‘H’, ‘O’, ‘H’] becomes ‘CHHHOH’.

‘reduce’: The same as ‘all’ where repeated elements are contracted
to a single symbol and a number, e.g. ‘CHHHOCHHH’ is reduced to
‘CH3OCH3’.

‘hill’: The list of chemical symbols are contracted to a string
following the Hill notation (alphabetical order with C and H
first), e.g. ‘CHHHOCHHH’ is reduced to ‘C2H6O’ and ‘SOOHOHO’ to
‘H2O4S’. This is default.

‘metal’: The list of checmical symbols (alphabetical metals,
and alphabetical non-metals)

	
get_chemical_symbols()

	Get list of chemical symbol strings.

	
get_dihedral(a1, a2=None, a3=None, a4=None, mic=False)

	Calculate dihedral angle.

Calculate dihedral angle (in degrees) between the vectors a1->a2
and a3->a4.

Use mic=True to use the Minimum Image Convention and calculate the
angle across periodic boundaries.

	
get_dipole_moment()

	Calculate the electric dipole moment for the atoms object.

Only available for calculators which has a get_dipole_moment()
method.

	
get_distance(a0, a1, mic=False, vector=False)

	Return distance between two atoms.

Use mic=True to use the Minimum Image Convention.
vector=True gives the distance vector (from a0 to a1).

	
get_distances(a, indices, mic=False, vector=False)

	Return distances of atom No.i with a list of atoms.

Use mic=True to use the Minimum Image Convention.
vector=True gives the distance vector (from a to self[indices]).

	
get_forces(apply_constraint=True, md=False)

	Calculate atomic forces.

Ask the attached calculator to calculate the forces and apply
constraints. Use apply_constraint=False to get the raw
forces.

For molecular dynamics (md=True) we don’t apply the constraint
to the forces but to the momenta.

	
get_initial_charges()

	Get array of initial charges.

	
get_initial_magnetic_moments()

	Get array of initial magnetic moments.

	
get_kinetic_energy()

	Get the kinetic energy.

	
get_magnetic_moment()

	Get calculated total magnetic moment.

	
get_magnetic_moments()

	Get calculated local magnetic moments.

	
get_masses()

	Get array of masses.

	
get_momenta()

	Get array of momenta.

	
get_moments_of_inertia(vectors=False)

	Get the moments of inertia along the principal axes.

The three principal moments of inertia are computed from the
eigenvalues of the symmetric inertial tensor. Periodic boundary
conditions are ignored. Units of the moments of inertia are
amu*angstrom**2.

	
get_nearest_atom_indices(atom_index, count)

	

	
get_number_of_atoms()

	Returns the global number of atoms in a distributed-atoms parallel
simulation.

DO NOT USE UNLESS YOU KNOW WHAT YOU ARE DOING!

Equivalent to len(atoms) in the standard ASE Atoms class. You should
normally use len(atoms) instead. This function’s only purpose is to
make compatibility between ASE and Asap easier to maintain by having a
few places in ASE use this function instead. It is typically only
when counting the global number of degrees of freedom or in similar
situations.

	
get_pbc()

	Get periodic boundary condition flags.

	
get_positions(wrap=False)

	Get array of positions. If wrap==True, wraps atoms back
into unit cell.

	
get_potential_energies()

	Calculate the potential energies of all the atoms.

Only available with calculators supporting per-atom energies
(e.g. classical potentials).

	
get_potential_energy(force_consistent=False, apply_constraint=True)

	Calculate potential energy.

Ask the attached calculator to calculate the potential energy and
apply constraints. Use apply_constraint=False to get the raw
forces.

When supported by the calculator, either the energy extrapolated
to zero Kelvin or the energy consistent with the forces (the free
energy) can be returned.

	
get_reciprocal_cell()

	Get the three reciprocal lattice vectors as a 3x3 ndarray.

Note that the commonly used factor of 2 pi for Fourier
transforms is not included here.

	
get_scaled_positions(wrap=True)

	Get positions relative to unit cell.

If wrap is True, atoms outside the unit cell will be wrapped into
the cell in those directions with periodic boundary conditions
so that the scaled coordinates are between zero and one.

	
get_stress(voigt=True)

	Calculate stress tensor.

Returns an array of the six independent components of the
symmetric stress tensor, in the traditional Voigt order
(xx, yy, zz, yz, xz, xy) or as a 3x3 matrix. Default is Voigt
order.

	
get_stresses()

	Calculate the stress-tensor of all the atoms.

Only available with calculators supporting per-atom energies and
stresses (e.g. classical potentials). Even for such calculators
there is a certain arbitrariness in defining per-atom stresses.

	
get_tags()

	Get integer array of tags.

	
get_temperature()

	Get the temperature in Kelvin.

	
get_total_energy()

	Get the total energy - potential plus kinetic energy.

	
get_velocities()

	Get array of velocities.

	
get_volume()

	Get volume of unit cell.

	
has(name)

	Check for existence of array.

name must be one of: ‘tags’, ‘momenta’, ‘masses’, ‘magmoms’,
‘charges’.

	
load_modules()

	Loads the relevant modules.

(@parallel) Designed to run code that runs differently on different cores.
The MPI functionality should be implemented inside these functions.

	
mutate(select_new=True)

	Mutate an individual.

	Args:

	individual (Individual): the individual to mutate

(@parallel) Designed to run code that runs differently on different cores.
The MPI functionality should be implemented inside these functions.

	
new_array(name, a, dtype=None, shape=None)

	Add new array.

If shape is not None, the shape of a will be checked.

	
number_of_lattice_vectors

	Number of (non-zero) lattice vectors.

	
numbers

	Attribute for direct manipulation of the atomic numbers.

	
pbc

	Attribute for direct manipulation of the periodic boundary condition flags.

	
pop(i=-1)

	Remove and return atom at index i (default last).

	
positions

	

	
rattle(stdev=0.001, seed=42)

	Randomly displace atoms.

This method adds random displacements to the atomic positions,
taking a possible constraint into account. The random numbers are
drawn from a normal distribution of standard deviation stdev.

For a parallel calculation, it is important to use the same
seed on all processors!

	
relax()

	Relax an individual.

	Args:

	individual (Individual): the individual to relax

(@parallel) Designed to run code that runs differently on different cores.
The MPI functionality should be implemented inside these functions.

	
repeat(rep)

	Create new repeated atoms object.

The rep argument should be a sequence of three positive
integers like (2,3,1) or a single integer (r) equivalent
to (r,r,r).

	
rotate(a, v=None, center=(0, 0, 0), rotate_cell=False)

	Rotate atoms based on a vector and an angle, or two vectors.

Parameters:

	a = None:

	Angle that the atoms is rotated around the vecor ‘v’. ‘a’
can also be a vector and then ‘a’ is rotated
into ‘v’.

	v:

	Vector to rotate the atoms around. Vectors can be given as
strings: ‘x’, ‘-x’, ‘y’, … .

	center = (0, 0, 0):

	The center is kept fixed under the rotation. Use ‘COM’ to fix
the center of mass, ‘COP’ to fix the center of positions or
‘COU’ to fix the center of cell.

	rotate_cell = False:

	If true the cell is also rotated.

Examples:

Rotate 90 degrees around the z-axis, so that the x-axis is
rotated into the y-axis:

>>> from math import pi
>>> atoms = Atoms()
>>> atoms.rotate(90, 'z')
>>> atoms.rotate(90, (0, 0, 1))
>>> atoms.rotate(-90, '-z')
>>> atoms.rotate('x', 'y')

	
rotate_dihedral(a1, a2=None, a3=None, a4=None, angle=None, mask=None)

	Rotate dihedral angle.

Complementing the two routines above: rotate a group by a
predefined dihedral angle, starting from its current
configuration

	
rotate_euler(center=(0, 0, 0), phi=0.0, theta=0.0, psi=0.0)

	

	
set_angle(a1, a2=None, a3=None, angle=None, mask=None)

	Set angle (in degrees) formed by three atoms.

Sets the angle between vectors a2->a1 and a2->a3.

Same usage as in set_dihedral().

	
set_array(name, a, dtype=None, shape=None)

	Update array.

If shape is not None, the shape of a will be checked.
If a is None, then the array is deleted.

	
set_atomic_numbers(numbers)

	Set atomic numbers.

	
set_calculator(calc=None)

	Attach calculator object.

	
set_cell(cell, scale_atoms=False)

	Set unit cell vectors.

Parameters:

	cell: 3x3 matrix or length 3 or 6 vector

	Unit cell. A 3x3 matrix (the three unit cell vectors) or
just three numbers for an orthorhombic cell. Another option is
6 numbers, which describes unit cell with lengths of unit cell
vectors and with angles between them (in degrees), in following
order: [len(a), len(b), len(c), angle(b,c), angle(a,c),
angle(a,b)]. First vector will lie in x-direction, second in
xy-plane, and the third one in z-positive subspace.

	scale_atoms: bool

	Fix atomic positions or move atoms with the unit cell?
Default behavior is to not move the atoms (scale_atoms=False).

Examples:

Two equivalent ways to define an orthorhombic cell:

>>> atoms = Atoms('He')
>>> a, b, c = 7, 7.5, 8
>>> atoms.set_cell([a, b, c])
>>> atoms.set_cell([(a, 0, 0), (0, b, 0), (0, 0, c)])

FCC unit cell:

>>> atoms.set_cell([(0, b, b), (b, 0, b), (b, b, 0)])

Hexagonal unit cell:

>>> atoms.set_cell([a, a, c, 90, 90, 120])

Rhombohedral unit cell:

>>> alpha = 77
>>> atoms.set_cell([a, a, a, alpha, alpha, alpha])

	
set_celldisp(celldisp)

	Set the unit cell displacement vectors.

	
set_chemical_symbols(symbols)

	Set chemical symbols.

	
set_constraint(constraint=None)

	Apply one or more constrains.

The constraint argument must be one constraint object or a
list of constraint objects.

	
set_dihedral(a1, a2=None, a3=None, a4=None, angle=None, mask=None, indices=None)

	Set the dihedral angle (degrees) between vectors a1->a2 and
a3->a4 by changing the atom indexed by a4
if mask is not None, all the atoms described in mask
(read: the entire subgroup) are moved. Alternatively to the mask,
the indices of the atoms to be rotated can be supplied.

example: the following defines a very crude
ethane-like molecule and twists one half of it by 30 degrees.

>>> from math import pi
>>> atoms = Atoms('HHCCHH', [[-1, 1, 0], [-1, -1, 0], [0, 0, 0],
... [1, 0, 0], [2, 1, 0], [2, -1, 0]])
>>> atoms.set_dihedral(1, 2, 3, 4, 210, mask=[0, 0, 0, 1, 1, 1])

	
set_distance(a0, a1, distance, fix=0.5, mic=False)

	Set the distance between two atoms.

Set the distance between atoms a0 and a1 to distance.
By default, the center of the two atoms will be fixed. Use
fix=0 to fix the first atom, fix=1 to fix the second
atom and fix=0.5 (default) to fix the center of the bond.

	
set_initial_charges(charges=None)

	Set the initial charges.

	
set_initial_magnetic_moments(magmoms=None)

	Set the initial magnetic moments.

Use either one or three numbers for every atom (collinear
or non-collinear spins).

	
set_masses(masses='defaults')

	Set atomic masses.

The array masses should contain a list of masses. In case
the masses argument is not given or for those elements of the
masses list that are None, standard values are set.

	
set_momenta(momenta, apply_constraint=True)

	Set momenta.

	
set_pbc(pbc)

	Set periodic boundary condition flags.

	
set_positions(newpositions, apply_constraint=True)

	Set positions, honoring any constraints. To ignore constraints,
use apply_constraint=False.

	
set_scaled_positions(scaled)

	Set positions relative to unit cell.

	
set_tags(tags)

	Set tags for all atoms. If only one tag is supplied, it is
applied to all atoms.

	
set_velocities(velocities)

	Set the momenta by specifying the velocities.

	
translate(displacement)

	Translate atomic positions.

The displacement argument can be a float an xyz vector or an
nx3 array (where n is the number of atoms).

	
velocities

	

	
wrap(center=(0.5, 0.5, 0.5), pbc=None, eps=1e-07)

	

	
write(filename, format=None, **kwargs)

	Write atoms object to a file.

see ase.io.write for formats.
kwargs are passed to ase.io.write.

structopt.common.individual.mutations

	
class structopt.common.individual.mutations.Mutations(parameters)

	Bases: object

	
static move_atoms(individual, max_natoms=0.2)

	Randomly moves atoms within the individual (in place).

	Parameters

	
	individual (Individual) – an individual

	max_natoms (float or int) – if float, the maximum number of atoms that will be moved is max_natoms*len(individual)
if int, the maximum number of atoms that will be moved is max_natoms
default: 0.20

	
mutate(individual)

	

	
static permutation(individual)

	Swaps the chemical symbol between two elements

	Parameters

	individual (Individual) – An individual or atoms object.

	
post_processing(individual)

	

	
static rattle(individual, stdev=0.5, x_avg_bond=True)

	Randomly displace all atoms in a random direction with a magnitude
drawn from a gaussian distribution.

	Parameters

	
	individual (Individual) – An individual

	stdev (float) – The standard deviation of the gaussian distribution to rattle
all the atoms. If x_avg_bond is set to True, given as the fraction
of the average bond length of the material.

	x_avg_bond (bool) – If True, the gaussian distributions standard deviation is
stdev * avg_bond_length. Note, this only applies to fcc, hcp,
or bcc materials.

	
static rotate_all(atoms, vector=None, angle=None, center=None)

	Rotate all atoms around a single point. Most suitable for
cluster calculations.

	Parameters

	
	individual (Individual) – An individual.

	vector (string or list) – The list of axes in which to rotate the atoms around. If
None, is a randomly chosen direction. If ‘random’ in list,
a random vector can be chosen.

	angle (string or list) – A list of angles that will be chosen to rotate. If None,
is randomly generated. Angle must be given in radians.
If ‘random’ in list, a random angle is included.

	center (string or xyz iterable) – The center in which to rotate the atoms around. If None,
defaults to center of mass. Acceptable strings are
COM = center of mass
COP = center of positions
COU = center of cell

	
static rotate_atoms(individual, max_natoms=0.2)

	Randomly rotates a number of random atoms within the individual (in place).

	Parameters

	
	individual (Individual) – an individual

	max_natoms (float or int) – if float, the maximum number of atoms that will be rotated is max_natoms*len(individual)
if int, the maximum number of atoms that will be rotated is max_natoms
default: 0.20

	
static rotate_cluster(individual, max_natoms=0.2)

	Randomly rotates a random cluster of atoms within the individual (in place).

	Parameters

	
	individual (Individual) – an individual

	max_natoms (float or int) – if float, the maximum number of atoms that will be rotated is max_natoms*len(individual)
if int, the maximum number of atoms that will be rotated is max_natoms
default: 0.20

	
select_mutation()

	

	
static swap_positions(individual, max_natoms=0.2)

	Randomly swaps the positions atoms within the individual (in place).

	Parameters

	
	individual (Individual) – an individual

	max_natoms (float or int) – if float, the maximum number of atoms whose positions will be swapped is max_natoms*len(individual)
if int, the maximum number of atoms whose positions will be swapped is max_natoms
if the number of atoms to be swapped is (or evaluates to) an odd integer, it is rounded down to an even integer
max_natoms corresponds to the maximum number of atoms whose positions will change
default: 0.20

	
static swap_species(individual, max_natoms=0.2)

	Randomly swaps the species of atoms within the individual (in place).

	Parameters

	
	individual (Individual) – an individual

	max_natoms (float or int) – if float, the maximum number of atoms that will be swapped is max_natoms*len(individual)
if int, the maximum number of atoms that will be swapped is max_natoms
if the number of atoms to be swapped is (or evaluates to) an odd integer, it is rounded down to an even integer
max_natoms corresponds to the maximum number of atoms whose species will change
default: 0.20

structopt.common.individual.fitnesses

	
class structopt.common.individual.fitnesses.Fitnesses(parameters)

	Bases: object

	
calculate_fitness(individual)

	Perform the fitness calculations on an individual.

	Args:

	individual (Individual): the individual to evaluate

(@parallel) Designed to run code that runs differently on different cores.
The MPI functionality should be implemented inside these functions.

	
post_processing()

	

	
class structopt.common.individual.fitnesses.LAMMPS(parameters)

	Bases: object

LAMMPS class for running LAMMPS on a single individual. Takes
a dictionary, where the key: value are the parameters for running LAMMPs.

	Parameters

	
	min_style (str) – The minimization scheme for running LAMMPS. See LAMMPS doc.

	min_modify (str) – Parameters for min_style energy minimization algorithm.
See LAMMPS doc.

	minimize (str) – Convergence criteria for minimization algorithm. Note for
fitness values, the last two values are set to 0, so no
relaxation is done. See LAMMPS doc.

	pair_style (str) – Type of potential used. See LAMMPS doc.

	potential_file (str) – The path to the potential_file. Should be absolute.

	thermo_steps (int) – How much output to print of thermodynamic information.
If set to 0, only the last step is printed.See LAMMPS doc.

	keep_file (bool) – Will keep all of the LAMMPS input and output files for each
individual. Use with caution.

	reference (dict) – Reference energies of the particle. These are values to subtract
from the values returned by LAMMPS. Given as a dictionary of
{sym : E} pairs, where sym is a str denoating the
the element, while E is the value to be subtracted per sym. This is
typically the pure component formation energy calculated with LAMMPS.
Note since this is merely a fixed subtraction, should not change the
performance in constant composition runs.

	
calculate_fitness(individual)

	

	
get_command(individual)

	

	
normalize(E, individual)

	

	
reference(E, individual)

	References the energy of the cluster to a reference energy

	
class structopt.common.individual.fitnesses.FEMSIM(parameters)

	Bases: object

Contains parameters and functions for running FEMSIM through Python.

	
chi2(vk)

	

	
get_spawn_args(individual)

	Returns a dictionary of arguments to be passed to MPI.COMM_SELF.Spawn which will be collected for all
structures and concatenated into MPI.COMM_SELF.Spawn_multiple:
https://github.com/mpi4py/mpi4py/blob/2acfc552c42846628304e54a3b87e2bf3a59af07/src/mpi4py/MPI/Comm.pyx#L1555

	
get_vk_data()

	

	
read_inputs(parameters)

	

	
setup_individual_evaluation(individual)

	

	
update_parameters(**kwargs)

	

	
write_paramfile(individual)

	

structopt.common.individual.relaxations

	
class structopt.common.individual.relaxations.Relaxations(parameters)

	Bases: object

	
post_processing()

	

	
relax(individual, generation=None)

	Relax an individual.

	Args:

	individual (Individual): the individual to relax

(@parallel) Designed to run code that runs differently on different cores.
The MPI functionality should be implemented inside these functions.

	
class structopt.common.individual.relaxations.LAMMPS(parameters)

	Bases: object

LAMMPS class for running LAMMPS on a single individual. Takes
a dictionary, where the key: value are the parameters for running LAMMPs.

	Parameters

	
	min_style (str) – The minimization scheme for running LAMMPS. See LAMMPS doc.

	min_modify (str) – Parameters for min_style energy minimization algorithm.
See LAMMPS doc.

	minimize (str) – Convergence criteria for minimization algorithm. See LAMMPS doc.

	pair_style (str) – Type of potential used. See LAMMPS doc.

	potential_file (str) – The path to the potential_file. Should be absolute.

	thermo_steps (int) – How much output to print of thermodynamic information.
If set to 0, only the last step is printed.See LAMMPS doc.

	keep_file (bool) – Will keep all of the LAMMPS input and output files for each
individual. Use with caution.

	repair (bool) – Determines whether to run an algorithm to make sure no atoms
are in “space”. Atoms can be in space due to a mutation or
crossover that results in a large force that shoots the atom
outside of the particle.

	
get_command(individual)

	

	
relax(individual)

	Relax an individual.

	Args:

	individual (Individual): the individual to relax

(@parallel) Designed to run code that runs differently on different cores.
The MPI functionality should be implemented inside these functions.

	
repair(individual, generation)

	
	Repairs an individual. Currently takes isolated atoms moves them next to

	a non-isolated atom

(@parallel) Designed to run code that runs differently on different cores.
The MPI functionality should be implemented inside these functions.

	
class structopt.common.individual.relaxations.hard_sphere_cutoff(parameters, cutoff=0.7)

	Bases: object

A relaxation module to ensure atoms in an individual are not too close together.
This is often a preliminary relaxation before LAMMPS for VASP to ensure the models do not explode.

	
relax(individual)

	Relaxes the individual using a hard-sphere cutoff method.
:param individual: the individual to relax
:type individual: Individual

structopt.common.individual.generators

	
structopt.common.individual.generators.read_xyz(filename)

	

structopt.common.individual.fingerprinters

structopt.common.individual.Individual

	
class structopt.common.individual.Individual(id=None, load_modules=True, relaxation_parameters=None, fitness_parameters=None, mutation_parameters=None, pso_moves_parameters=None, generator_parameters=None, **kwargs)

	Bases: ase.atoms.Atoms

An abstract base class for a structure.

	
adsorbate_info

	Return the adsorbate information set by one of the surface
builder functions. This function is only supplied in order to give
a warning if this attribute (atoms.adsorbate_info) is asked for.
The dictionary with adsorbate information has been moved to the
info dictionary, i.e. atoms.info[‘adsorbate_info’].

	
append(atom)

	Append atom to end.

	
calc

	Calculator object.

	
calculate_fitness()

	Perform the fitness calculations on an individual.

	Args:

	individual (Individual): the individual to evaluate

(@parallel) Designed to run code that runs differently on different cores.
The MPI functionality should be implemented inside these functions.

	
cell

	Attribute for direct manipulation of the unit cell.

	
center(vacuum=None, axis=(0, 1, 2), about=None)

	Center atoms in unit cell.

Centers the atoms in the unit cell, so there is the same
amount of vacuum on all sides.

	vacuum: float (default: None)

	If specified adjust the amount of vacuum when centering.
If vacuum=10.0 there will thus be 10 Angstrom of vacuum
on each side.

	axis: int or sequence of ints

	Axis or axes to act on. Default: Act on all axes.

	about: float or array (default: None)

	If specified, center the atoms about <about>.
I.e., about=(0., 0., 0.) (or just “about=0.”, interpreted
identically), to center about the origin.

	
clear()

	

	
constraints

	Constraints of the atoms.

	
copy(include_atoms=True)

	Return a copy.

	
edit()

	Modify atoms interactively through ASE’s GUI viewer.

Conflicts leading to undesirable behaviour might arise
when matplotlib has been pre-imported with certain
incompatible backends and while trying to use the
plot feature inside the interactive GUI. To circumvent,
please set matplotlib.use(‘gtk’) before calling this
method.

	
euler_rotate(phi=0.0, theta=0.0, psi=0.0, center=(0, 0, 0))

	Rotate atoms via Euler angles (in degrees).

See e.g http://mathworld.wolfram.com/EulerAngles.html for explanation.

Parameters:

	center :

	The point to rotate about. A sequence of length 3 with the
coordinates, or ‘COM’ to select the center of mass, ‘COP’ to
select center of positions or ‘COU’ to select center of cell.

	phi :

	The 1st rotation angle around the z axis.

	theta :

	Rotation around the x axis.

	psi :

	2nd rotation around the z axis.

	
extend(other)

	Extend atoms object by appending atoms from other.

	
fitness

	The total fitness of the individual.

	
fits

	

	
generate()

	Generate an individual using generator_kwargs parameter. By defualt
it extends the current atoms object

	
get_all_distances(mic=False)

	Return distances of all of the atoms with all of the atoms.

Use mic=True to use the Minimum Image Convention.

	
get_angle(a1, a2=None, a3=None, mic=False)

	Get angle formed by three atoms.

calculate angle in degrees between the vectors a2->a1 and
a2->a3.

Use mic=True to use the Minimum Image Convention and calculate the
angle across periodic boundaries.

	
get_angular_momentum()

	Get total angular momentum with respect to the center of mass.

	
get_array(name, copy=True)

	Get an array.

Returns a copy unless the optional argument copy is false.

	
get_atom_indices_within_distance_of_atom(atom_index, distance)

	

	
get_atomic_numbers()

	Get integer array of atomic numbers.

	
get_calculator()

	Get currently attached calculator object.

	
get_cell(complete=False)

	Get the three unit cell vectors as a 3x3 ndarray.

	
get_cell_lengths_and_angles()

	Get unit cell parameters. Sequence of 6 numbers.

First three are unit cell vector lengths and second three
are angles between them:

[len(a), len(b), len(c), angle(a,b), angle(a,c), angle(b,c)]

in degrees.

	
get_celldisp()

	Get the unit cell displacement vectors.

	
get_center_of_mass(scaled=False)

	Get the center of mass.

If scaled=True the center of mass in scaled coordinates
is returned.

	
get_charges()

	Get calculated charges.

	
get_chemical_formula(mode='hill')

	Get the chemial formula as a string based on the chemical symbols.

Parameters:

	mode: str

	There are three different modes available:

‘all’: The list of chemical symbols are contracted to at string,
e.g. [‘C’, ‘H’, ‘H’, ‘H’, ‘O’, ‘H’] becomes ‘CHHHOH’.

‘reduce’: The same as ‘all’ where repeated elements are contracted
to a single symbol and a number, e.g. ‘CHHHOCHHH’ is reduced to
‘CH3OCH3’.

‘hill’: The list of chemical symbols are contracted to a string
following the Hill notation (alphabetical order with C and H
first), e.g. ‘CHHHOCHHH’ is reduced to ‘C2H6O’ and ‘SOOHOHO’ to
‘H2O4S’. This is default.

‘metal’: The list of checmical symbols (alphabetical metals,
and alphabetical non-metals)

	
get_chemical_symbols()

	Get list of chemical symbol strings.

	
get_dihedral(a1, a2=None, a3=None, a4=None, mic=False)

	Calculate dihedral angle.

Calculate dihedral angle (in degrees) between the vectors a1->a2
and a3->a4.

Use mic=True to use the Minimum Image Convention and calculate the
angle across periodic boundaries.

	
get_dipole_moment()

	Calculate the electric dipole moment for the atoms object.

Only available for calculators which has a get_dipole_moment()
method.

	
get_distance(a0, a1, mic=False, vector=False)

	Return distance between two atoms.

Use mic=True to use the Minimum Image Convention.
vector=True gives the distance vector (from a0 to a1).

	
get_distances(a, indices, mic=False, vector=False)

	Return distances of atom No.i with a list of atoms.

Use mic=True to use the Minimum Image Convention.
vector=True gives the distance vector (from a to self[indices]).

	
get_forces(apply_constraint=True, md=False)

	Calculate atomic forces.

Ask the attached calculator to calculate the forces and apply
constraints. Use apply_constraint=False to get the raw
forces.

For molecular dynamics (md=True) we don’t apply the constraint
to the forces but to the momenta.

	
get_initial_charges()

	Get array of initial charges.

	
get_initial_magnetic_moments()

	Get array of initial magnetic moments.

	
get_kinetic_energy()

	Get the kinetic energy.

	
get_magnetic_moment()

	Get calculated total magnetic moment.

	
get_magnetic_moments()

	Get calculated local magnetic moments.

	
get_masses()

	Get array of masses.

	
get_momenta()

	Get array of momenta.

	
get_moments_of_inertia(vectors=False)

	Get the moments of inertia along the principal axes.

The three principal moments of inertia are computed from the
eigenvalues of the symmetric inertial tensor. Periodic boundary
conditions are ignored. Units of the moments of inertia are
amu*angstrom**2.

	
get_nearest_atom_indices(atom_index, count)

	

	
get_number_of_atoms()

	Returns the global number of atoms in a distributed-atoms parallel
simulation.

DO NOT USE UNLESS YOU KNOW WHAT YOU ARE DOING!

Equivalent to len(atoms) in the standard ASE Atoms class. You should
normally use len(atoms) instead. This function’s only purpose is to
make compatibility between ASE and Asap easier to maintain by having a
few places in ASE use this function instead. It is typically only
when counting the global number of degrees of freedom or in similar
situations.

	
get_pbc()

	Get periodic boundary condition flags.

	
get_positions(wrap=False)

	Get array of positions. If wrap==True, wraps atoms back
into unit cell.

	
get_potential_energies()

	Calculate the potential energies of all the atoms.

Only available with calculators supporting per-atom energies
(e.g. classical potentials).

	
get_potential_energy(force_consistent=False, apply_constraint=True)

	Calculate potential energy.

Ask the attached calculator to calculate the potential energy and
apply constraints. Use apply_constraint=False to get the raw
forces.

When supported by the calculator, either the energy extrapolated
to zero Kelvin or the energy consistent with the forces (the free
energy) can be returned.

	
get_reciprocal_cell()

	Get the three reciprocal lattice vectors as a 3x3 ndarray.

Note that the commonly used factor of 2 pi for Fourier
transforms is not included here.

	
get_scaled_positions(wrap=True)

	Get positions relative to unit cell.

If wrap is True, atoms outside the unit cell will be wrapped into
the cell in those directions with periodic boundary conditions
so that the scaled coordinates are between zero and one.

	
get_stress(voigt=True)

	Calculate stress tensor.

Returns an array of the six independent components of the
symmetric stress tensor, in the traditional Voigt order
(xx, yy, zz, yz, xz, xy) or as a 3x3 matrix. Default is Voigt
order.

	
get_stresses()

	Calculate the stress-tensor of all the atoms.

Only available with calculators supporting per-atom energies and
stresses (e.g. classical potentials). Even for such calculators
there is a certain arbitrariness in defining per-atom stresses.

	
get_tags()

	Get integer array of tags.

	
get_temperature()

	Get the temperature in Kelvin.

	
get_total_energy()

	Get the total energy - potential plus kinetic energy.

	
get_velocities()

	Get array of velocities.

	
get_volume()

	Get volume of unit cell.

	
has(name)

	Check for existence of array.

name must be one of: ‘tags’, ‘momenta’, ‘masses’, ‘magmoms’,
‘charges’.

	
load_modules()

	Loads the relevant modules.

(@parallel) Designed to run code that runs differently on different cores.
The MPI functionality should be implemented inside these functions.

	
mutate(select_new=True)

	Mutate an individual.

	Args:

	individual (Individual): the individual to mutate

(@parallel) Designed to run code that runs differently on different cores.
The MPI functionality should be implemented inside these functions.

	
new_array(name, a, dtype=None, shape=None)

	Add new array.

If shape is not None, the shape of a will be checked.

	
number_of_lattice_vectors

	Number of (non-zero) lattice vectors.

	
numbers

	Attribute for direct manipulation of the atomic numbers.

	
pbc

	Attribute for direct manipulation of the periodic boundary condition flags.

	
pop(i=-1)

	Remove and return atom at index i (default last).

	
positions

	

	
rattle(stdev=0.001, seed=42)

	Randomly displace atoms.

This method adds random displacements to the atomic positions,
taking a possible constraint into account. The random numbers are
drawn from a normal distribution of standard deviation stdev.

For a parallel calculation, it is important to use the same
seed on all processors!

	
relax()

	Relax an individual.

	Args:

	individual (Individual): the individual to relax

(@parallel) Designed to run code that runs differently on different cores.
The MPI functionality should be implemented inside these functions.

	
repeat(rep)

	Create new repeated atoms object.

The rep argument should be a sequence of three positive
integers like (2,3,1) or a single integer (r) equivalent
to (r,r,r).

	
rotate(a, v=None, center=(0, 0, 0), rotate_cell=False)

	Rotate atoms based on a vector and an angle, or two vectors.

Parameters:

	a = None:

	Angle that the atoms is rotated around the vecor ‘v’. ‘a’
can also be a vector and then ‘a’ is rotated
into ‘v’.

	v:

	Vector to rotate the atoms around. Vectors can be given as
strings: ‘x’, ‘-x’, ‘y’, … .

	center = (0, 0, 0):

	The center is kept fixed under the rotation. Use ‘COM’ to fix
the center of mass, ‘COP’ to fix the center of positions or
‘COU’ to fix the center of cell.

	rotate_cell = False:

	If true the cell is also rotated.

Examples:

Rotate 90 degrees around the z-axis, so that the x-axis is
rotated into the y-axis:

>>> from math import pi
>>> atoms = Atoms()
>>> atoms.rotate(90, 'z')
>>> atoms.rotate(90, (0, 0, 1))
>>> atoms.rotate(-90, '-z')
>>> atoms.rotate('x', 'y')

	
rotate_dihedral(a1, a2=None, a3=None, a4=None, angle=None, mask=None)

	Rotate dihedral angle.

Complementing the two routines above: rotate a group by a
predefined dihedral angle, starting from its current
configuration

	
rotate_euler(center=(0, 0, 0), phi=0.0, theta=0.0, psi=0.0)

	

	
set_angle(a1, a2=None, a3=None, angle=None, mask=None)

	Set angle (in degrees) formed by three atoms.

Sets the angle between vectors a2->a1 and a2->a3.

Same usage as in set_dihedral().

	
set_array(name, a, dtype=None, shape=None)

	Update array.

If shape is not None, the shape of a will be checked.
If a is None, then the array is deleted.

	
set_atomic_numbers(numbers)

	Set atomic numbers.

	
set_calculator(calc=None)

	Attach calculator object.

	
set_cell(cell, scale_atoms=False)

	Set unit cell vectors.

Parameters:

	cell: 3x3 matrix or length 3 or 6 vector

	Unit cell. A 3x3 matrix (the three unit cell vectors) or
just three numbers for an orthorhombic cell. Another option is
6 numbers, which describes unit cell with lengths of unit cell
vectors and with angles between them (in degrees), in following
order: [len(a), len(b), len(c), angle(b,c), angle(a,c),
angle(a,b)]. First vector will lie in x-direction, second in
xy-plane, and the third one in z-positive subspace.

	scale_atoms: bool

	Fix atomic positions or move atoms with the unit cell?
Default behavior is to not move the atoms (scale_atoms=False).

Examples:

Two equivalent ways to define an orthorhombic cell:

>>> atoms = Atoms('He')
>>> a, b, c = 7, 7.5, 8
>>> atoms.set_cell([a, b, c])
>>> atoms.set_cell([(a, 0, 0), (0, b, 0), (0, 0, c)])

FCC unit cell:

>>> atoms.set_cell([(0, b, b), (b, 0, b), (b, b, 0)])

Hexagonal unit cell:

>>> atoms.set_cell([a, a, c, 90, 90, 120])

Rhombohedral unit cell:

>>> alpha = 77
>>> atoms.set_cell([a, a, a, alpha, alpha, alpha])

	
set_celldisp(celldisp)

	Set the unit cell displacement vectors.

	
set_chemical_symbols(symbols)

	Set chemical symbols.

	
set_constraint(constraint=None)

	Apply one or more constrains.

The constraint argument must be one constraint object or a
list of constraint objects.

	
set_dihedral(a1, a2=None, a3=None, a4=None, angle=None, mask=None, indices=None)

	Set the dihedral angle (degrees) between vectors a1->a2 and
a3->a4 by changing the atom indexed by a4
if mask is not None, all the atoms described in mask
(read: the entire subgroup) are moved. Alternatively to the mask,
the indices of the atoms to be rotated can be supplied.

example: the following defines a very crude
ethane-like molecule and twists one half of it by 30 degrees.

>>> from math import pi
>>> atoms = Atoms('HHCCHH', [[-1, 1, 0], [-1, -1, 0], [0, 0, 0],
... [1, 0, 0], [2, 1, 0], [2, -1, 0]])
>>> atoms.set_dihedral(1, 2, 3, 4, 210, mask=[0, 0, 0, 1, 1, 1])

	
set_distance(a0, a1, distance, fix=0.5, mic=False)

	Set the distance between two atoms.

Set the distance between atoms a0 and a1 to distance.
By default, the center of the two atoms will be fixed. Use
fix=0 to fix the first atom, fix=1 to fix the second
atom and fix=0.5 (default) to fix the center of the bond.

	
set_initial_charges(charges=None)

	Set the initial charges.

	
set_initial_magnetic_moments(magmoms=None)

	Set the initial magnetic moments.

Use either one or three numbers for every atom (collinear
or non-collinear spins).

	
set_masses(masses='defaults')

	Set atomic masses.

The array masses should contain a list of masses. In case
the masses argument is not given or for those elements of the
masses list that are None, standard values are set.

	
set_momenta(momenta, apply_constraint=True)

	Set momenta.

	
set_pbc(pbc)

	Set periodic boundary condition flags.

	
set_positions(newpositions, apply_constraint=True)

	Set positions, honoring any constraints. To ignore constraints,
use apply_constraint=False.

	
set_scaled_positions(scaled)

	Set positions relative to unit cell.

	
set_tags(tags)

	Set tags for all atoms. If only one tag is supplied, it is
applied to all atoms.

	
set_velocities(velocities)

	Set the momenta by specifying the velocities.

	
translate(displacement)

	Translate atomic positions.

The displacement argument can be a float an xyz vector or an
nx3 array (where n is the number of atoms).

	
velocities

	

	
wrap(center=(0.5, 0.5, 0.5), pbc=None, eps=1e-07)

	

	
write(filename, format=None, **kwargs)

	Write atoms object to a file.

see ase.io.write for formats.
kwargs are passed to ase.io.write.

structopt.common.population.Population

	
class structopt.common.population.Population(parameters, individuals=None)

	Bases: structopt.tools.sorted_dict.SortedDict

A list-like class that contains the Individuals and the operations to be run on them.

	
add(individual)

	Adds an Individual to the population.

	
allgather(individuals_per_core)

	
	Performs an MPI.allgather on self (the population) and updates the

	correct individuals that have been modified based on the inputs from
individuals_per_core.

See stuctopt.tools.parallel.allgather for a similar function.

(@parallel) Designed to run code that runs differently on different cores.
The MPI functionality should be implemented inside these functions.

	
apply_fingerprinters()

	Apply fingerprinters on the entire population.

(@parallel) Designed to run code that runs differently on different cores.
The MPI functionality should be implemented inside these functions.

	
bcast()

	Performs and MPI.bcast on self.

(@parallel) Designed to run code that runs differently on different cores.
The MPI functionality should be implemented inside these functions.

	
calculate_fitnesses()

	Perform the fitness evaluations on the entire population.

(@parallel) Designed to run code that runs differently on different cores.
The MPI functionality should be implemented inside these functions.

	
clear() → None. Remove all items from od.

	

	
copy() → a shallow copy of od

	

	
crossover(pairs)

	Perform crossovers on the population.

(@parallel) Designed to run code that runs differently on different cores.
The MPI functionality should be implemented inside these functions.

	
extend(individuals)

	Overwrites and adds to the population using the id attribute of the individuals as a keyword.
Assigns an id to an individual if it doesn’t already have one.

	
fromkeys(S[, v]) → New ordered dictionary with keys from S.

	If not specified, the value defaults to None.

	
get(k[, d]) → D[k] if k in D, else d. d defaults to None.

	

	
get_by_position(position)

	Returns the individual at position position.

	
get_new_id()

	

	
items() → a set-like object providing a view on D's items

	

	
keys() → a set-like object providing a view on D's keys

	

	
kill()

	Remove individuals from the population based on a predator scheme.

(@parallel) Designed to run code that runs differently on different cores.
The MPI functionality should be implemented inside these functions.

	
load_modules()

	

	
mutate()

	Perform mutations on the population.

(@root) Designed to run on the root node only.

	
pop(k[, d]) → v, remove specified key and return the corresponding

	value. If key is not found, d is returned if given, otherwise KeyError
is raised.

	
popitem() → (k, v), return and remove a (key, value) pair.

	Pairs are returned in LIFO order if last is true or FIFO order if false.

	
position(individual)

	Returns the position of the individual in the population.

	
relax()

	Relax the entire population.

(@parallel) Designed to run code that runs differently on different cores.
The MPI functionality should be implemented inside these functions.

	
remove(individual)

	Removes individual form the population.

	
replace(a_list)

	Deletes the current list of individuals and replaces them with the ones in a_list.

	
run_pso_moves(best_swarm, best_particles)

	Perform PSO moves on the population.

(@root) Designed to run on the root node only.

	
select()

	Select the individuals in the population to perform crossovers on.

(@root) Designed to run on the root node only.

	
setdefault(k[, d]) → od.get(k,d), also set od[k]=d if k not in od

	

	
update(individuals)

	Overwrites and adds to the population using the id attribute of the individuals as a keyword.
Assigns an id to an individual if it doesn’t already have one.

	
values() → an object providing a view on D's values

	

Index

 A
 | B
 | C
 | E
 | F
 | G
 | H
 | I
 | K
 | L
 | M
 | N
 | P
 | R
 | S
 | T
 | U
 | V
 | W

A

 	
 	add() (structopt.common.population.Population method)

 	adsorbate_info (structopt.common.individual.Individual attribute)

 	allgather() (in module structopt.tools.parallel)

 	(structopt.common.population.Population method)

 	
 	append() (structopt.common.individual.Individual method)

 	apply_fingerprinters() (structopt.common.population.Population method)

B

 	
 	bcast() (structopt.common.population.Population method)

 	best() (in module structopt.common.population.predators)

 	(in module structopt.common.population.selections)

 	(structopt.common.population.predators.Predators static method)

 	(structopt.common.population.selections.Selections static method)

C

 	
 	calc (structopt.common.individual.Individual attribute)

 	calculate_fitness() (structopt.common.individual.fitnesses.Fitnesses method)

 	(structopt.common.individual.Individual method)

 	(structopt.common.individual.fitnesses.LAMMPS method)

 	calculate_fitnesses() (structopt.common.population.fitnesses.Fitnesses method)

 	(structopt.common.population.Population method)

 	cell (structopt.common.individual.Individual attribute)

 	center() (structopt.common.individual.Individual method)

 	
 	chi2() (structopt.common.individual.fitnesses.FEMSIM method)

 	clear() (structopt.common.individual.Individual method)

 	(structopt.common.population.Population method)

 	constraints (structopt.common.individual.Individual attribute)

 	copy() (structopt.common.individual.Individual method)

 	(structopt.common.population.Population method)

 	crossover() (structopt.common.population.crossovers.Crossovers method)

 	(structopt.common.population.Population method)

 	Crossovers (class in structopt.common.population.crossovers)

E

 	
 	edit() (structopt.common.individual.Individual method)

 	ellipsoid() (in module structopt.cluster.individual.generators)

 	enrich_bulk() (in module structopt.cluster.individual.mutations)

 	enrich_surface() (in module structopt.cluster.individual.mutations)

 	
 	enrich_surface_defects() (in module structopt.cluster.individual.mutations)

 	enrich_surface_facets() (in module structopt.cluster.individual.mutations)

 	euler_rotate() (structopt.common.individual.Individual method)

 	extend() (structopt.common.individual.Individual method)

 	(structopt.common.population.Population method)

F

 	
 	fcc() (in module structopt.cluster.individual.generators)

 	FEMSIM (class in structopt.common.individual.fitnesses)

 	fitness (structopt.common.individual.Individual attribute)

 	fitness() (in module structopt.common.population.fitnesses.FEMSIM)

 	(in module structopt.common.population.fitnesses.LAMMPS)

 	
 	Fitnesses (class in structopt.common.individual.fitnesses)

 	(class in structopt.common.population.fitnesses)

 	fits (structopt.common.individual.Individual attribute)

 	fromkeys() (structopt.common.population.Population method)

 	fuss() (in module structopt.common.population.predators)

 	(structopt.common.population.predators.Predators static method)

G

 	
 	generate() (structopt.common.individual.Individual method)

 	get() (structopt.common.population.Population method)

 	get_all_distances() (structopt.common.individual.Individual method)

 	get_angle() (structopt.common.individual.Individual method)

 	get_angular_momentum() (structopt.common.individual.Individual method)

 	get_array() (structopt.common.individual.Individual method)

 	get_atom_indices_within_distance_of_atom() (structopt.common.individual.Individual method)

 	get_atomic_numbers() (structopt.common.individual.Individual method)

 	get_by_position() (structopt.common.population.Population method)

 	get_calculator() (structopt.common.individual.Individual method)

 	get_cell() (structopt.common.individual.Individual method)

 	get_cell_lengths_and_angles() (structopt.common.individual.Individual method)

 	get_celldisp() (structopt.common.individual.Individual method)

 	get_center_of_mass() (structopt.common.individual.Individual method)

 	get_charges() (structopt.common.individual.Individual method)

 	get_chemical_formula() (structopt.common.individual.Individual method)

 	get_chemical_symbols() (structopt.common.individual.Individual method)

 	get_command() (structopt.common.individual.fitnesses.LAMMPS method)

 	(structopt.common.individual.relaxations.LAMMPS method)

 	get_dihedral() (structopt.common.individual.Individual method)

 	get_dipole_moment() (structopt.common.individual.Individual method)

 	get_distance() (structopt.common.individual.Individual method)

 	get_distances() (structopt.common.individual.Individual method)

 	get_forces() (structopt.common.individual.Individual method)

 	get_initial_charges() (structopt.common.individual.Individual method)

 	
 	get_initial_magnetic_moments() (structopt.common.individual.Individual method)

 	get_kinetic_energy() (structopt.common.individual.Individual method)

 	get_magnetic_moment() (structopt.common.individual.Individual method)

 	get_magnetic_moments() (structopt.common.individual.Individual method)

 	get_masses() (structopt.common.individual.Individual method)

 	get_momenta() (structopt.common.individual.Individual method)

 	get_moments_of_inertia() (structopt.common.individual.Individual method)

 	get_nearest_atom_indices() (structopt.common.individual.Individual method)

 	get_new_id() (structopt.common.population.Population method)

 	get_number_of_atoms() (structopt.common.individual.Individual method)

 	get_pbc() (structopt.common.individual.Individual method)

 	get_positions() (structopt.common.individual.Individual method)

 	get_potential_energies() (structopt.common.individual.Individual method)

 	get_potential_energy() (structopt.common.individual.Individual method)

 	get_reciprocal_cell() (structopt.common.individual.Individual method)

 	get_scaled_positions() (structopt.common.individual.Individual method)

 	get_spawn_args() (structopt.common.individual.fitnesses.FEMSIM method)

 	get_stress() (structopt.common.individual.Individual method)

 	get_stresses() (structopt.common.individual.Individual method)

 	get_tags() (structopt.common.individual.Individual method)

 	get_temperature() (structopt.common.individual.Individual method)

 	get_total_energy() (structopt.common.individual.Individual method)

 	get_velocities() (structopt.common.individual.Individual method)

 	get_vk_data() (structopt.common.individual.fitnesses.FEMSIM method)

 	get_volume() (structopt.common.individual.Individual method)

H

 	
 	hard_sphere_cutoff (class in structopt.common.individual.relaxations)

 	
 	has() (structopt.common.individual.Individual method)

I

 	
 	Individual (class in structopt.common.individual)

 	
 	items() (structopt.common.population.Population method)

K

 	
 	keys() (structopt.common.population.Population method)

 	
 	kill() (structopt.common.population.Population method)

 	(structopt.common.population.predators.Predators method)

L

 	
 	LAMMPS (class in structopt.common.individual.fitnesses), [1]

 	(class in structopt.common.individual.relaxations), [1]

 	
 	load_modules() (structopt.common.individual.Individual method)

 	(structopt.common.population.Population method)

 	logger_utils() (in module structopt.io)

M

 	
 	move_atoms() (in module structopt.cluster.individual.mutations)

 	(structopt.common.individual.mutations.Mutations static method)

 	move_surface_atoms() (in module structopt.cluster.individual.mutations)

 	move_surface_defects() (in module structopt.cluster.individual.mutations)

 	mutate() (structopt.common.individual.Individual method)

 	(structopt.common.individual.mutations.Mutations method)

 	(structopt.common.population.Population method)

 	(structopt.common.population.mutations.Mutations method)

 	
 	Mutations (class in structopt.common.individual.mutations)

 	(class in structopt.common.population.mutations)

N

 	
 	new_array() (structopt.common.individual.Individual method)

 	normalize() (structopt.common.individual.fitnesses.LAMMPS method)

 	
 	number_of_lattice_vectors (structopt.common.individual.Individual attribute)

 	numbers (structopt.common.individual.Individual attribute)

P

 	
 	parallel() (in module structopt.tools.parallel)

 	parameters() (in module structopt.io)

 	pbc (structopt.common.individual.Individual attribute)

 	permutation() (in module structopt.common.individual.mutations)

 	(structopt.common.individual.mutations.Mutations static method)

 	poor2rich() (in module structopt.cluster.individual.mutations)

 	pop() (structopt.common.individual.Individual method)

 	(structopt.common.population.Population method)

 	popitem() (structopt.common.population.Population method)

 	Population (class in structopt.common.population)

 	position() (structopt.common.population.Population method)

 	
 	positions (structopt.common.individual.Individual attribute)

 	post_processing() (structopt.common.individual.fitnesses.Fitnesses method)

 	(structopt.common.individual.mutations.Mutations method)

 	(structopt.common.individual.relaxations.Relaxations method)

 	(structopt.common.population.crossovers.Crossovers method)

 	(structopt.common.population.fitnesses.Fitnesses method)

 	(structopt.common.population.mutations.Mutations method)

 	(structopt.common.population.predators.Predators method)

 	(structopt.common.population.relaxations.Relaxations method)

 	(structopt.common.population.selections.Selections method)

 	Predators (class in structopt.common.population.predators)

R

 	
 	random_selection() (in module structopt.common.population.selections)

 	(structopt.common.population.selections.Selections static method)

 	rank() (in module structopt.common.population.predators)

 	(in module structopt.common.population.selections)

 	(structopt.common.population.predators.Predators static method)

 	(structopt.common.population.selections.Selections static method)

 	rattle() (in module structopt.common.individual.mutations)

 	(structopt.common.individual.Individual method)

 	(structopt.common.individual.mutations.Mutations static method)

 	read_inputs() (structopt.common.individual.fitnesses.FEMSIM method)

 	read_xyz() (in module structopt.common.individual.generators)

 	(in module structopt.io)

 	reference() (structopt.common.individual.fitnesses.LAMMPS method)

 	relax() (in module structopt.common.population.relaxations.hard_sphere_cutoff)

 	(in module structopt.common.population.relaxations.LAMMPS)

 	(structopt.common.individual.Individual method)

 	(structopt.common.individual.relaxations.LAMMPS method)

 	(structopt.common.individual.relaxations.Relaxations method)

 	(structopt.common.individual.relaxations.hard_sphere_cutoff method)

 	(structopt.common.population.Population method)

 	(structopt.common.population.relaxations.Relaxations method)

 	Relaxations (class in structopt.common.individual.relaxations)

 	(class in structopt.common.population.relaxations)

 	
 	remove() (structopt.common.population.Population method)

 	repair() (structopt.common.individual.relaxations.LAMMPS method)

 	repeat() (structopt.common.individual.Individual method)

 	replace() (structopt.common.population.Population method)

 	rich2poor() (in module structopt.cluster.individual.mutations)

 	root() (in module structopt.tools.parallel)

 	rotate() (in module structopt.cluster.population.crossovers)

 	(structopt.common.individual.Individual method)

 	(structopt.common.population.crossovers.Crossovers static method)

 	rotate_all() (in module structopt.common.individual.mutations)

 	(structopt.common.individual.mutations.Mutations static method)

 	rotate_atoms() (in module structopt.common.individual.mutations)

 	(structopt.common.individual.mutations.Mutations static method)

 	rotate_cluster() (in module structopt.cluster.individual.mutations)

 	(structopt.common.individual.mutations.Mutations static method)

 	rotate_dihedral() (structopt.common.individual.Individual method)

 	rotate_euler() (structopt.common.individual.Individual method)

 	roulette() (in module structopt.common.population.predators)

 	(in module structopt.common.population.selections)

 	(structopt.common.population.predators.Predators static method)

 	(structopt.common.population.selections.Selections static method)

 	run_pso_moves() (structopt.common.population.Population method)

S

 	
 	select() (structopt.common.population.Population method)

 	(structopt.common.population.selections.Selections method)

 	select_crossover() (structopt.common.population.crossovers.Crossovers method)

 	select_mutation() (structopt.common.individual.mutations.Mutations method)

 	select_predator() (structopt.common.population.predators.Predators method)

 	select_selection() (structopt.common.population.selections.Selections method)

 	Selections (class in structopt.common.population.selections)

 	set_angle() (structopt.common.individual.Individual method)

 	set_array() (structopt.common.individual.Individual method)

 	set_atomic_numbers() (structopt.common.individual.Individual method)

 	set_calculator() (structopt.common.individual.Individual method)

 	set_cell() (structopt.common.individual.Individual method)

 	set_celldisp() (structopt.common.individual.Individual method)

 	set_chemical_symbols() (structopt.common.individual.Individual method)

 	set_constraint() (structopt.common.individual.Individual method)

 	set_dihedral() (structopt.common.individual.Individual method)

 	set_distance() (structopt.common.individual.Individual method)

 	
 	set_initial_charges() (structopt.common.individual.Individual method)

 	set_initial_magnetic_moments() (structopt.common.individual.Individual method)

 	set_masses() (structopt.common.individual.Individual method)

 	set_momenta() (structopt.common.individual.Individual method)

 	set_pbc() (structopt.common.individual.Individual method)

 	set_positions() (structopt.common.individual.Individual method)

 	set_scaled_positions() (structopt.common.individual.Individual method)

 	set_tags() (structopt.common.individual.Individual method)

 	set_velocities() (structopt.common.individual.Individual method)

 	setdefault() (structopt.common.population.Population method)

 	setup_individual_evaluation() (structopt.common.individual.fitnesses.FEMSIM method)

 	single_core() (in module structopt.tools.parallel)

 	sphere() (in module structopt.cluster.individual.generators)

 	swap_core_shell() (in module structopt.cluster.individual.mutations)

 	swap_positions() (in module structopt.common.individual.mutations)

 	(structopt.common.individual.mutations.Mutations static method)

 	swap_species() (in module structopt.common.individual.mutations)

 	(structopt.common.individual.mutations.Mutations static method)

T

 	
 	tournament() (in module structopt.common.population.predators)

 	(in module structopt.common.population.selections)

 	(structopt.common.population.predators.Predators static method)

 	(structopt.common.population.selections.Selections static method)

 	
 	translate() (structopt.common.individual.Individual method)

 	twist() (in module structopt.cluster.individual.mutations)

U

 	
 	update() (structopt.common.population.Population method)

 	
 	update_parameters() (structopt.common.individual.fitnesses.FEMSIM method)

V

 	
 	values() (structopt.common.population.Population method)

 	
 	velocities (structopt.common.individual.Individual attribute)

W

 	
 	wrap() (structopt.common.individual.Individual method)

 	write() (structopt.common.individual.Individual method)

 	
 	write_paramfile() (structopt.common.individual.fitnesses.FEMSIM method)

 	write_xyz() (in module structopt.io)

 _images/defect_regions.png

_static/comment-bright.png

_static/comment-close.png

_static/ajax-loader.gif

_static/comment.png

_static/down-pressed.png

_static/down.png

nav.xhtml

 Table of Contents

 		
 Welcome to StructOpt’s documentation!

 		
 Core Concepts

 		
 Overview and General Workflow

 		
 Genetic Algorithm

 		
 Cost Function

 		
 Individual

 		
 Structure Types

 		
 Population

 		
 Crossovers

 		
 Crossover Selection Schemes

 		
 Mutations

 		
 Predators and Predator Selection Schemes

 		
 Fingerprinters

 		
 Relaxations

 		
 Fitnesses

 		
 Relevant References

 		
 Parallelism

 		
 Cores per Structure Use Cases

 		
 mpi4py: One structure per core

 		
 MPMD: Multiple cores per structure

 		
 Installation and Setup

 		
 Python Libraries

 		
 mpi4py

 		
 Installing StructOpt

 		
 Additional Modules

 		
 Input Parameters

 		
 Global Parameters

 		
 structure_type

 		
 seed

 		
 convergence

 		
 post_processing

 		
 Generators

 		
 Crossovers

 		
 Selections

 		
 Predators

 		
 Mutations

 		
 Relaxations

 		
 LAMMPS

 		
 Fitnesses

 		
 LAMMPS

 		
 Parallelization

 		
 Outputs

 		
 Examples

 		
 Running StructOpt

 		
 Example 1: cluster/Au55

 		
 Example 2: cluster/Au55-parallel

 		
 JobManager

 		
 Introduction

 		
 Configuration

 		
 Submitting jobs

 		
 Single job

 		
 Multiple jobs

 		
 Tracking jobs

 		
 Restarting jobs

 		
 Relaxation and Fitness Modules

 		
 LAMMPS

 		
 Installation

 		
 VASP

 		
 Installation

 		
 FEMSIM

 		
 Installation

 		
 STEM

 		
 Creating Your Own Module

 		
 Why Python?

 		
 Future Work

 		
 Troubleshooting

 		
 API Reference

 		
 Submodules

 		
 structopt.io

 		
 structopt.tools

 		
 structopt.postprocessing

 		
 The Optimizer

 		
 structopt.Optimizer

 		
 structopt.common.individual.Individual

 		
 structopt.common.population.Population

_static/minus.png

_static/plus.png

_static/file.png

_static/up.png

_static/images/defect_regions.png

_static/up-pressed.png

