
stripe-django Documentation
Release 0.1

Tony Narlock

October 13, 2016

Contents

1 Models Reference 3
1.1 Account . 3
1.2 Application Fee . 4
1.3 Balance . 5
1.4 Balance Transaction . 6
1.5 Bitcon Receiver . 6
1.6 Card . 7
1.7 Charge . 8
1.8 Coupon . 10
1.9 Customer . 11
1.10 Discount . 11
1.11 Dispute . 12
1.12 Dispute Evidence . 12
1.13 Event . 14
1.14 File Upload . 15
1.15 Invoice . 15
1.16 Invoice Item . 17
1.17 Plan . 18
1.18 Recipient . 18
1.19 Refund . 19
1.20 Subscription . 20
1.21 Token . 21
1.22 Transfer . 21
1.23 Transfer Reversal . 22

2 History 25

3 Developing and Testing 27
3.1 Install the latest code from git . 27
3.2 Test Runner . 27
3.3 Run tests on save . 28
3.4 developer workflow . 28

Python Module Index 31

i

ii

stripe-django Documentation, Release 0.1

Explore:

Contents 1

stripe-django Documentation, Release 0.1

2 Contents

CHAPTER 1

Models Reference

1.1 Account

class stripe_django.models.account.Account(*args, **kwargs)
Stripe Account object.

This is an object representing your Stripe account. You can retrieve it to see properties on the account like its
current e-mail address or if the account is enabled yet to make live charges.

Some properties, marked as “managed accounts only”, are only available to platforms who want to create and
manage Stripe accounts.

Parameters

• id (AutoField) – Id

• charges_enabled (BooleanField) – Whether or not the account can create live
charges

• country (CharField) – The country of the account

• currencies_supports (JSONField) – The currencies this account can submit when
creating charges

• default_currency (CharField) – The currency this account has chosen to use as
the default

• details_submitted (BooleanField) – Whether or not account details have been
submitted yet. Standalone accounts cannot receive transfers before this is true.

• transfers_enabled (BooleanField) – Whether or not Stripe will send automatic
transfers for this account. This is only false when Stripe is waiting for additional information
from the account holder.

• display_name (CharField) – The display name for this account. This is used on the
Stripe dashboard to help you differentiate between accounts.

• email (EmailField) – The primary user’s email address

• statement_descriptor (TextField) – The text that will appear on credit card
statements

• timezone (CharField) – The timezone used in the Stripe dashboard for this account.
A list of possible timezone values is maintained at the IANA Timezone Database.

• business_name (CharField) – The publicly visible name of the business

3

stripe-django Documentation, Release 0.1

• business_url (URLField) – The publicly visible website of the business

• metadata (JSONField) – A set of key/value pairs that you can attach to a charge object.
it can be useful for storing additional information about the charge in a structured format.

• support_phone (CharField) – The publicly visible support phone number for the
business

• managed (BooleanField) – Whether or not the account is managed by your platform.
Returns null if the account was not created by a platform.

• bank_accounts (JSONField) – (Managed Accounts Only) Bank accounts currently
attached to this account.

• debit_negative_balances (BooleanField) – (Managed Accounts Only)
Whether or not Stripe will attempt to reclaim negative account balances from this account’s
bank account.

• decline_charge_on (JSONField) – (Managed Accounts Only) Account-level set-
tings to automatically decline certain types of charges regardless of the bank’s decision.

• legal_entity (JSONField) – (Managed Accounts Only) Information regarding the
owner of this account, including verification status.

• product_description (TextField) – (Managed Accounts Only) An internal-only
description of the product or service provided. This is used by Stripe in the event the account
gets flagged for potential fraud.

• tos_acceptance (JSONField) – (Managed Accounts Only) Who accepted the Stripe
terms of service, and when they accepted it.

• transfer_schedule (JSONField) – (Managed Accounts Only) When payments col-
lected will be automatically paid out to the account holder’s bank account

• verfication (JSONField) – (Managed Accounts Only) That state of the account’s in-
formation requests, including what information is needed and by when it must be provided.

1.2 Application Fee

class stripe_django.models.application_fee.ApplicationFee(*args, **kwargs)
Stripe Application Fee object.

When you collect a transaction fee on top of a charge made for your user (using Stripe Connect), an application
fee object is created in your account. You can list, retrieve, and refund application fees.

For more information on collecting transaction fees, see our documentation.

Parameters

• id (AutoField) – Id

• livemode (BooleanField) – Livemode

• account_id (ForeignKey to Account) – ID of the Stripe account this fee was taken
from.

• amount (IntegerField) – Amount earned, in cents.

• application (CharField) – ID of the Connect Application that earned the fee.

4 Chapter 1. Models Reference

stripe-django Documentation, Release 0.1

• balance_transaction_id (ForeignKey to BalanceTransaction) – Balance
transaction that describes the impact of this collected application fee on your account bal-
ance (not including refunds).

• charge_id (ForeignKey to Charge) – ID of the charge that the application fee was taken
from.

• created (DateTimeField) – Created

• currency (CharField) – Three-letter ISO currency code representing the currency of
thecharge.

• refunded (BooleanField) – Whether or not the fee has been fully refunded. If the fee
is only partially refunded, this attribute will still be false.

• amount_refunded (PositiveIntegerField) – Amount refunded

class stripe_django.models.application_fee.ApplicationFeeRefund(*args, **kwargs)
Stripe Application Fee Refund object.

Application Fee Refund objects allow you to refund an application fee that has previously been created but not
yet refunded. Funds will be refunded to the Stripe account that the fee was originally collected from.

Parameters

• id (AutoField) – Id

• amount (IntegerField) – Amount reversed, in cents.

• created (DateTimeField) – Created

• currency (CharField) – Three-letter ISO currency code representing the currency of
the reverse.

• balance_transaction_id (ForeignKey to BalanceTransaction) – Balance
transaction that describes the impact of this reversal on your account balance.

• fee_id (ForeignKey to ApplicationFee) – ID of the application fee that was re-
funded.

• metadata (JSONField) – A set of key/value pairs that you can attach to a charge object.
it can be useful for storing additional information about the charge in a structured format.

1.3 Balance

class stripe_django.models.balance.Balance(*args, **kwargs)
Stripe Balance object.

This is an object representing your Stripe balance. You can retrieve it to see the balance currently on your Stripe
account.

You can also retrieve a list of the balance history, which contains a full list of transactions that have ever
contributed to the balance (charges, refunds, transfers, and so on).

Parameters

• id (AutoField) – Id

• livemode (BooleanField) – Livemode

• available (JSONField) – Funds that are available to be paid out automatically by
Stripe or explicitly via the transfers API.

1.3. Balance 5

stripe-django Documentation, Release 0.1

• pending (JSONField) – Funds that are not available in the balance yet, due to the 7-day
rolling pay cycle.

1.4 Balance Transaction

class stripe_django.models.balance_transaction.BalanceTransaction(id, amount,
available_on,
created, cur-
rency, fee,
fee_details,
net, status,
type, descrip-
tion, source,
sourced_transfers)

Parameters

• id (AutoField) – Id

• amount (IntegerField) – Gross amount of the transaction, in cents

• available_on (DateTimeField) – The date the transaction’s net funds will become
available in the Stripe balance.

• created (DateTimeField) – Created

• currency (CharField) – Currency

• fee (IntegerField) – Fees (in cents) paid for this transaction

• fee_details (JSONField) – Detailed breakdown of fees (in cents) paid for this trans-
action

• net (IntegerField) – Net amount of the transaction, in cents.

• status (CharField) – If the transaction’s net funds are available in the Stripe balance
yet. Either available or pending.

• type (CharField) – Type of the transaction, one of: charge, refund,
adjustment, application_fee, application_fee_refund, transfer,
transfer_cancel or transfer_failure.

• description (CharField) – Description

• source (JSONField) – The Stripe object this transaction is related to.

• sourced_transfers (JSONField) – The transfers (if any) for which source is a
source_transaction.

1.5 Bitcon Receiver

class stripe_django.models.bitcoin_receiver.BitCoinReceiver(*args, **kwargs)
Stripe Bitcoin Receiver object.

A Bitcoin receiver wraps a Bitcoin address so that a customer can push a payment to you. This guide describes
how to use receivers to create Bitcoin payments.

Parameters

6 Chapter 1. Models Reference

https://stripe.com/docs/guides/bitcoin

stripe-django Documentation, Release 0.1

• id (AutoField) – Id

• livemode (BooleanField) – Livemode

• active (BooleanField) – True when this bitcoin receiver has received a non-zero
amount of bitcoin.

• amount (PositiveIntegerField) – The amount of currency that you are collecting
as payment.

• amount_received (PositiveIntegerField) – The amount of currency to which
bitcoin_amount_received has been converted.

• bitcoin_amount (PositiveIntegerField) – The amount of bitcoin that the cus-
tomer should send to fill the receiver. The bitcoin_amount is denominated in Satoshi: there
are 10^8 Satoshi in one bitcoin.

• bitcoin_amount_received (PositiveIntegerField) – The amount of bitcoin
that has been sent by the customer to this receiver.

• bitcoin_uri (URLField) – This URI can be displayed to the customer as a clickable
link (to activate their bitcoin client) or as a QR code (for mobile wallets).

• created (DateTimeField) – Created

• currency (CharField) – Three-letter ISO currency code representing the currency to
which the bitcoin will be converted.

• filled (BooleanField) – This flag is initially false and updates to true when the cus-
tomer sends the bitcoin_amount to this receiver.

• inbound_address (CharField) – A bitcoin address that is specific to this receiver.
The customer can send bitcoin to this address to fill the receiver.

• transactions (JSONField) – A list with one entry for each time that the customer
sent bitcoin to the receiver. Hidden when viewing the receiver with a publishable key.

• uncaptured_funds (BooleanField) – This receiver contains uncaptured funds that
can be used for a payment or refunded.

• description (CharField) – Description

• email (EmailField) – The customer’s email address, set by the API call that creates
the receiver.

• metadata (JSONField) – A set of key/value pairs that you can attach to a charge object.
it can be useful for storing additional information about the charge in a structured format.

• payment (CharField) – The ID of the payment created from the receiver, if any. Hidden
when viewing the receiver with a publishable key.

• refund_address (CharField) – The refund address for these bitcoin, if communi-
cated by the customer.

• customer_id (ForeignKey to Customer) – Customer

1.6 Card

class stripe_django.models.card.Card(*args, **kwargs)
Stripe Card object.

1.6. Card 7

stripe-django Documentation, Release 0.1

You can store multiple cards on a customer in order to charge the customer later. You can also store multiple
debit cards on a recipient in order to transfer to those cards later.

Parameters

• id (AutoField) – ID of card (used in conjunction with a customer or recipient ID)

• brand (CharField) – Card brand. Can be Visa, American Express,
MasterCard, Discover, JCB, Diners Club, or Unknown.

• exp_month (IntegerField) – Exp month

• exp_year (IntegerField) – Exp year

• funding (CharField) – Funding

• last4 (PositiveIntegerField) – Last4

• address_city (CharField) – Address city

• address_country (CharField) – Billing address country, if provided when creating
card

• address_line1 (CharField) – Address line1

• address_line1_check (CharField) – If address_line1 was provided, results
of the check: pass, fail, unavailable, or unchecked.

• address_line2 (CharField) – Address line2

• address_state (CharField) – Address state

• address_zip (CharField) – Address zip

• address_zip_check (CharField) – If address_zip was provided, results of the
check: pass, fail, unavailable, or unchecked.

• country (CharField) – Two-letter ISO code representing the country of the card. You
could use this attribute to get a sense of the international breakdown of cards you’ve col-
lected.

• customer_id (ForeignKey to Customer) – The customer that this card belongs to. This
attribute will not be in the card object if the card belongs to a recipient instead.

• cvc_check (CharField) – Cvc check

• dynamic_last4 (CharField) – (For Apple Pay integrations only.) The last four digits
of the device account number.

• metadata (JSONField) – A set of key/value pairs that you can attach to a card object.
it can be useful for storing additional information about the card in a structured format.

• name (CharField) – Cardholder name

• fingerprint (CharField) – Uniquely identifies this particular card number. You can
use this attribute to check whether two customers who’ve signed up with you are using the
same card number, for example.

1.7 Charge

class stripe_django.models.charge.Charge(*args, **kwargs)
Stripe Charge Object.

8 Chapter 1. Models Reference

stripe-django Documentation, Release 0.1

To charge a credit or a debit card, you create a charge object. You can retrieve and refund individual charges as
well as list all charges. Charges are identified by a unique random ID.

Parameters

• id (AutoField) – Id

• livemode (BooleanField) – Livemode

• amount (IntegerField) – Amount charged in cents

• captured (BooleanField) – If the charge was created without capturing, this boolean
represents whether or not it is still uncaptured or has since been captured.

• created (DateTimeField) – Created

• currency (CharField) – Three-letter ISO currency code representing the currency in
which the charge was made.

• paid (BooleanField) – true if the charge succeeded, or was successfully authorized for
later capture.

• refunded (BooleanField) – Whether or not the charge has been fully refunded. If the
charge is only partially refunded, this attribute will still be false.

• source (JSONField) – For most Stripe users, the source of every charge is a credit or
debit card. This hash is then the card object describing that card.

• status (CharField) – The status of the payment is either succeeded or failed.

• amount_refunded (PositiveIntegerField) – Amount in cents refunded (can be
less than the amount attribute on the charge if a partial refund was issued).

• balance_transaction (CharField) – ID of the balance transaction that describes
the impact of this charge on your account balance (not including refunds or disputes).

• customer_id (ForeignKey to Customer) – ID of the customer this charge is for if one
exists.

• description (CharField) – Description

• dispute_id (ForeignKey to Dispute) – Details about the dispute if the charge has been
disputed.

• failure_code (CharField) – Error code explaining reason for charge failure if avail-
able (see the errors section for a list of codes).

• failure_message (CharField) – Message to user further explaining reason for
charge failure if available.

• invoice_id (ForeignKey to Invoice) – ID of the invoice this charge is for if one exists.

• metadata (JSONField) – A set of key/value pairs that you can attach to a charge object.
it can be useful for storing additional information about the charge in a structured format.

• receipt_email (EmailField) – This is the email address that the receipt for this
charge was sent to.

• receipt_number (CharField) – This is the transaction number that appears on email
receipts sent for this charge.

• application_fee (CharField) – The application fee (if any) for the charge. See the
Connect documentation for details.

• destination (CharField) – The account (if any) the charge was made on behalf of.
See the Connect documentation for details.

1.7. Charge 9

stripe-django Documentation, Release 0.1

• fraud_details (JSONField) – Hash with information on fraud assessments for the
charge. Assessments reported by you have the key user_report and, if set, possible val-
ues of safe and fraudulent. Assessments from Stripe have the key stripe_report
and, if set, the value fraudulent.

• shipping (JSONField) – Shipping information for the charge.

• transfer (CharField) – ID of the transfer to the destination account (only appli-
cable if the charge was created using the destination parameter).

1.8 Coupon

class stripe_django.models.coupon.Coupon(*args, **kwargs)
Stipe Coupon object.

A coupon contains information about a percent-off or amount-off discount you might want to apply to a cus-
tomer. Coupons only apply to invoices; they do not apply to one-off charges.

Parameters

• id (AutoField) – Id

• livemode (BooleanField) – Livemode

• created (DateTimeField) – Created

• duration (CharField) – One of forever, once, and repeating. Describes how
long a customer who applies this coupon will get the discount.

• amount_off (PositiveIntegerField) – Amount (in the currency specified)
that will be taken off the subtotal of any invoices for this customer.

• currency (CharField) – If amount_off has been set, the currency of the amount to
take off.

• duration_in_months (PositiveIntegerField) – If duration is
repeating, the number of months the coupon applies. Null if coupon duration
is forever‘‘or ‘‘once.

• max_redemptions (PositiveIntegerField) – Maximum number of times this
coupon can be redeemed, in total, before it is no longer valid.

• metadata (JSONField) – A set of key/value pairs that you can attach to a charge object.
it can be useful for storing additional information about the coupon in a structured format.

• percent_off (PositiveIntegerField) – Percent that will be taken off the subtotal
of any invoices for this customer for the duration of the coupon. For example, a coupon with
percent_off of 50 will make a $100 invoice $50 instead.

• redeem_by (DateTimeField) – Date after which the coupon can no longer be re-
deemed

• times_redeemed (PositiveIntegerField) – Number of times this coupon has
been applied to a customer.

• valid (BooleanField) – Taking account of the above properties, whether this coupon
can still be applied to a customer

10 Chapter 1. Models Reference

stripe-django Documentation, Release 0.1

1.9 Customer

class stripe_django.models.customer.Customer(*args, **kwargs)
Stripe Customer object.

Customer objects allow you to perform recurring charges and track multiple charges that are associated with the
same customer. The API allows you to create, delete, and update your customers. You can retrieve individual
customers as well as a list of all your customers.

Parameters

• id (AutoField) – Id

• livemode (BooleanField) – Livemode

• created (DateTimeField) – Created

• account_balance (DateTimeField) – Current balance, if any, being stored on the
customer’s account. If negative, the customer has credit to apply to the next invoice. If
positive, the customer has an amount owed that will be added to the next invoice. The
balance does not refer to any unpaid invoices; it solely takes into account amounts that have
yet to be successfully applied to any invoice. This balance is only taken into account for
recurring charges.

• currency (CharField) – The currency the customer can be charged in for recurring
billing purposes (subscriptions, invoices, invoice items).

• default_source (CharField) – ID of the default source attached to this customer.

• delinquent (CharField) – Whether or not the latest charge for the customer’s latest
invoice has failed

• description (CharField) – Description

• email (EmailField) – Email

• metadata (JSONField) – A set of key/value pairs that you can attach to a charge object.
It can be useful for storing additional information about the customer in a structured format.

• sources (JSONField) – The customer’s payment sources, if any

1.10 Discount

class stripe_django.models.discount.Discount(*args, **kwargs)
Stripe Discount object.

A discount represents the actual application of a coupon to a particular customer. It contains information about
when the discount began and when it will end.

Parameters

• id (AutoField) – Id

• coupon_id (ForeignKey to Coupon) – Hash describing the coupon applied to create this
discount

• customer_id (ForeignKey to Customer) – Customer

• start (DateTimeField) – Date that the coupon was applied

1.9. Customer 11

stripe-django Documentation, Release 0.1

• end (DateTimeField) – If the coupon has a duration of once or repeating, the date
that this discount will end. If the coupon used has a forever duration, this attribute will be
null.

1.11 Dispute

class stripe_django.models.dispute.Dispute(*args, **kwargs)
Stripe Dispute object.

A dispute occurs when a customer questions your charge with their bank or credit card company. When a
customer disputes your charge, you’re given the opportunity to respond to the dispute with evidence that shows
the charge is legitimate. You can find more information about the dispute process in our disputes FAQ.

Parameters

• id (AutoField) – Id

• livemode (BooleanField) – Livemode

• amount (IntegerField) – Disputed amount. Usually the amount of the charge, but can
differ (usually because of currency fluctuation or because only part of the order is disputed).

• created (DateTimeField) – Date dispute was opened

• currency (CharField) – Three-letter ISO currency code representing the currency of
the amount that was disputed.

• reason (CharField) – Reason given by cardholder for dispute. Possi-
ble values are duplicate, fraudulent, subscription_canceled,
product_unacceptable, product_not_received, unrecognized,
credit_not_processed, general. Read more about dispute reasons.

• status (CharField) – Current status of dispute. Possible values are
warning_needs_response, warning_under_review, warning_closed,
needs_response, response_disabled, under_review, charge_refunded,
won, lost.

• evidence_id (ForeignKey to DisputeEvidence) – Evidence provided to respond to
a dispute. Updating any field in the hash will submit all fields in the hash for review.

• evidence_details (JSONField) – Information about the evidence submission.

• is_charge_refundable (BooleanField) – If true, it is still possible to refund the
disputed payment. once the payment has been fully refunded, no further funds will be
withdrawn from your stripe account as a result of this dispute.

• metadata (JSONField) – A set of key/value pairs that you can attach to a charge object.
it can be useful for storing additional information about the dispute in a structured format.

• balance_transaction (ManyToManyField) – List of zero, one, or two balance
transactions that show funds withdrawn and reinstated to your Stripe account as a result of
this dispute.

1.12 Dispute Evidence

class stripe_django.models.dispute_evidence.DisputeEvidence(*args, **kwargs)
Stripe Dispute Evidence object.

12 Chapter 1. Models Reference

stripe-django Documentation, Release 0.1

DisputeEvidence revserse relations will be prefixed with dispute_.

Parameters

• id (AutoField) – Id

• access_activity_log (TextField) – Any server or activity logs showing proof
that the customer accessed or downloaded the purchased digital product. This information
should include IP addresses, corresponding timestamps, and any detailed recorded activity.

• billing_address (TextField) – The billing addess provided by the customer.

• cancelling_policy_id (ForeignKey to FileUpload) – (ID of a file upload) Your
subscription cancellation policy, as shown to the customer.

• cancellation_policy_disclosure (TextField) – An explanation of how and
when the customer was shown your refund policy prior to purchase.

• cancellation_rebuttal (TextField) – A justification for why the customer’s
subscription was not canceled.

• customer_communication_id (ForeignKey to FileUpload) – (ID of a file upload)
Any communication with the customer that you feel is relevant to your case (for example
emails proving that they received the product or service, or demonstrating their use of or
satisfaction with the product or service)

• customer_email_address (EmailField) – Customer email address

• customer_name (CharField) – Customer name

• customer_purchase_ip (CharField) – Customer purchase ip

• customer_signature_id (ForeignKey to FileUpload) – (ID of a file upload) A
relevant document or contract showing the customer’s signature.

• duplicate_charge_documentation_id (ForeignKey to FileUpload) – ID of a
file upload) Documentation for the prior charge that can uniquely identify the charge, such
as a receipt, shipping label, work order, etc. This document should be paired with a similar
document from the disputed payment that proves the two payments are separate.

• duplicate_charge_explanation (TextField) – An explanation of the differ-
ence between the disputed charge and the prior charge that appears to be a duplicate.

• duplicate_charge_id_id (ForeignKey to Charge) – The Stripe ID for the prior
charge which appears to be a duplicate of the disputed charge.

• product_description (TextField) – A description of the product or service which
was sold.

• receipt_id (ForeignKey to FileUpload) – (ID of a file upload) Any receipt or mes-
sage sent to the customer notifying them of the charge.

• refund_policy_id (ForeignKey to FileUpload) – (ID of a file upload) Your refund
policy, as shown to the customer.

• refund_policy_disclosure (TextField) – Documentation demonstrating that
the customer was shown your refund policy prior to purchase.

• refund_refusal_explanation (TextField) – A justification for why the cus-
tomer is not entitled to a refund.

• service_date (DateTimeField) – The date on which the customer received or began
receiving the purchased service, in a clear human-readable format.

1.12. Dispute Evidence 13

stripe-django Documentation, Release 0.1

• service_documentation_id (ForeignKey to FileUpload) – (ID of a file upload)
Documentation showing proof that a service was provided to the customer. This could
include a copy of a signed contract, work order, or other form of written agreement.

• shipping_address (TextField) – The address to which a physical product was
shipped. You should try to include as much complete address information as possible.

• shipping_carrier (TextField) – The delivery service that shipped a physical prod-
uct, such as Fedex, UPS, USPS, etc. If multiple carriers were used for this purchase, please
separate them with commas.

• shipping_date (DateTimeField) – The date on which a physical product began its
route to the shipping address, in a clear human-readable format.

• shipping_documentation_id (ForeignKey to FileUpload) – (ID of a file upload)
Documentation showing proof that a product was shipped to the customer at the same ad-
dress the customer provided to you. This could include a copy of the shipment receipt,
shipping label, etc, and should show the full shipping address of the customer, if possible.

• shipping_tracking_number (TextField) – The tracking number for a physical
product, obtained from the delivery service. If multiple tracking numbers were generated
for this purchase, please separate them with commas.

• uncategorized_file_id (ForeignKey to FileUpload) – (ID of a file upload) Any
additional evidence or statements.

• uncategorized_text (TextField) – Any additional evidence or statements.

1.13 Event

class stripe_django.models.event.Event(*args, **kwargs)
Stripe Event object.

Events are our way of letting you know about something interesting that has just happened in your account.
When an interesting event occurs, we create a new event object. For example, when a charge succeeds we create
a charge.succeeded event; or, when an invoice can’t be paid we create an invoice.payment_failed
event. Note that many API requests may cause multiple events to be created. For example, if you create a new
subscription for a customer, you will receive both a customer.subscription.created event and a
charge.succeeded event.

Like our other API resources, you can retrieve an individual event or a list of events from the API. We also
have a system for sending the events directly to your server, called webhooks. Webhooks are managed in your
account settings, and our webhook guide will help you get them set up.

NOTE: Right now, we only guarantee access to events through the Retrieve Event API for 30 days.

Parameters

• id (AutoField) – Id

• livemode (BooleanField) – Livemode

• created (DateTimeField) – Created

• data (JSONField) – Hash containing data associated with the event.

• pending_webhooks (PositiveIntegerField) – Number of webhooks yet to be
delivered successfully (return a 20x response) to the URLs you’ve specified.

• type (CharField) – Description of the event: e.g. invoice.created, charge.refunded, etc.

14 Chapter 1. Models Reference

stripe-django Documentation, Release 0.1

• api_version (CharField) – The Stripe API version used to render data. Note: this
property is populated for events on or after October 31, 2014.

• request (CharField) – ID of the API request that caused the event. If null, the event
was automatic (e.g. Stripe’s automatic subscription handling). Request logs are available in
the dashboard but currently not in the API. Note: this property is populated for events on or
after April 23, 2013.

1.14 File Upload

class stripe_django.models.file_upload.FileUpload(id, created, purpose, size, type, url)

Parameters

• id (AutoField) – Id

• created (DateTimeField) – Created

• purpose (CharField) – The purpose of the uploaded file. Possible values are
identity_document, dispute_evidence.

• size (IntegerField) – The size in bytes of the file upload object.

• type (CharField) – The type of the file returned. Returns one of the following: pdf,
jpg, png.

• url (URLField) – A read-only URL where the uploaded file can be accessed. Will be nil
unless the uploaded file has one of the following purposes: dispute_evidence. Also
nil if retrieved with the publishable API key.

1.15 Invoice

class stripe_django.models.invoice.Invoice(*args, **kwargs)
Stripe Invoice object.

Invoices are statements of what a customer owes for a particular billing period, including subscriptions, invoice
items, and any automatic proration adjustments if necessary.

Once an invoice is created, payment is automatically attempted. Note that the payment, while automatic, does
not happen exactly at the time of invoice creation. If you have configured webhooks, the invoice will wait until
one hour after the last webhook is successfully sent (or the last webhook times out after failing).

Any customer credit on the account is applied before determining how much is due for that invoice (the amount
that will be actually charged). If the amount due for the invoice is less than 50 cents (the minimum for a charge),
We add the amount to the customer’s running account balance to be added to the next invoice. If this amount is
negative, it will act as a credit to offset the next invoice. Note that the customer account balance does not include
unpaid invoices; it only includes balances that need to be taken into account when calculating the amount due
for the next invoice.

Parameters

• id (AutoField) – Id

• livemode (BooleanField) – Livemode

• amount_due (IntegerField) – Final amount due at this time for this invoice. If the in-
voice’s total is smaller than the minimum charge amount, for example, or if there is account
credit that can be applied to the invoice, the amount_due may be 0. If there is a positive

1.14. File Upload 15

stripe-django Documentation, Release 0.1

starting_balance for the invoice (the customer owes money), the amount_due will
also take that into account. The charge that gets generated for the invoice will be for the
amount specified in amount_due.

• attempt_count (PositiveIntegerField) – Number of payment attempts made
for this invoice, from the perspective of the payment retry schedule. Any payment attempt
counts as the first attempt, and subsequently only automatic retries increment the attempt
count. In other words, manual payment attempts after the first attempt do not affect the retry
schedule.

• attempted (BooleanField) – Whether or not an attempt has been made to pay the
invoice. An invoice is not attempted until 1 hour after the invoice.created webhook,
for example, so you might not want to display that invoice as unpaid to your users.

• closed (BooleanField) – Whether or not the invoice is still trying to collect payment.
An invoice is closed if it’s either paid or it has been marked closed. A closed invoice will no
longer attempt to collect payment.

• currency (CharField) – Currency

• customer_id (ForeignKey to Customer) – Customer

• date (DateTimeField) – Date

• forgiven (BooleanField) – Whether or not the invoice has been forgiven. Forgiving
an invoice instructs us to update the subscription status as if the invoice were succcessfully
paid. Once an invoice has been forgiven, it cannot be unforgiven or reopened

• lines (JSONField) – The individual line items that make up the invoice. lines is
sorted as follows: invoice items in reverse chronological order, followed by the subscription,
if any.

• paid (BooleanField) – Whether or not payment was successfully collected for this
invoice. An invoice can be paid (most commonly) with a charge or with credit from the
customer’s account balance.

• period_end (DateTimeField) – End of the usage period during which invoice items
were added to this invoice

• period_start (DateTimeField) – Start of the usage period during which invoice
items were added to this invoice

• starting_balance (IntegerField) – Starting customer balance before attempting
to pay invoice. If the invoice has not been attempted yet, this will be the current customer
balance.

• subtotal (IntegerField) – Total of all subscriptions, invoice items, and prorations
on the invoice before any discount is applied

• total (IntegerField) – Total after discount

• application_fee (IntegerField) – The fee in cents that will be applied to the
invoice and transferred to the application owner’s Stripe account when the invoice is paid.

• description (CharField) – Description

• discount_id (ForeignKey to Discount) – Discount

• ending_balance (IntegerField) – Ending customer balance after attempting to pay
invoice. If the invoice has not been attempted yet, this will be null.

• next_payment_attempt (DateTimeField) – The time at which payment will next
be attempted.

16 Chapter 1. Models Reference

stripe-django Documentation, Release 0.1

• receipt_number (CharField) – This is the transaction number that appears on email
receipts sent for this invoice.

• statement_descriptor (CharField) – Extra information about an invoice for the
customer’s credit card statement.

• subscription_id (ForeignKey to Subscription) – The subscription that this in-
voice was prepared for, if any.

• webhooks_delivered_at (DateTimeField) – The time at which webhooks for
this invoice were successfully delivered (if the invoice had no webhooks to deliver, this
will match date). Invoice payment is delayed until webhooks are delivered, or until all
webhook delivery attempts have been exhausted.

• metadata (JSONField) – A set of key/value pairs that you can attach to a charge object.
it can be useful for storing additional information about the invoice in a structured format.

• subscription_proration_date (IntegerField) – Only set for upcoming in-
voices that preview prorations. The time used to calculate prorations.

• tax (IntegerField) – The amount of tax included in the total, calculated from
tax_percent and the subtotal. If no tax_percent is defined, this value will be null.

• tax_percent (DecimalField) – This percentage of the subtotal has been added to the
total amount of the invoice, including invoice line items and discounts. This field is inherited
from the subscription’s tax_percent field, but can be changed before the invoice is paid.
This field defaults to null.

1.16 Invoice Item

class stripe_django.models.invoice_item.InvoiceItem(*args, **kwargs)
Stripe Invoice Item object.

Sometimes you want to add a charge or credit to a customer but only actually charge the customer’s card at the
end of a regular billing cycle. This is useful for combining several charges to minimize per-transaction fees or
having Stripe tabulate your usage-based billing totals.

Parameters

• id (AutoField) – Id

• livemode (BooleanField) – Livemode

• amount (IntegerField) – Amount

• currency (CharField) – Currency

• customer_id (ForeignKey to Customer) – Customer

• date (DateTimeField) – Date

• discountable (BooleanField) – If true, discounts will apply to this invoice item.
Always false for prorations.

• proration (BooleanField) – Whether or not the invoice item was created automati-
cally as a proration adjustment when the customer switched plans

• description (CharField) – Description

• invoice (CharField) – Invoice

1.16. Invoice Item 17

stripe-django Documentation, Release 0.1

• metadata (JSONField) – A set of key/value pairs that you can attach to a charge object.
it can be useful for storing additional information about the invoice item in a structured
format.

• period (JSONField) – Period

• plan_id (ForeignKey to Plan) – If the invoice item is a proration, the plan of the sub-
scription that the proration was computed for.

• quantity (IntegerField) – If the invoice item is a proration, the quantity of the
subscription that the proration was computed for.

• subscription_id (ForeignKey to Subscription) – The subscription that this in-
voice item has been created for, if any.

1.17 Plan

class stripe_django.models.plan.Plan(*args, **kwargs)
Stripe Plan object.

A subscription plan contains the pricing information for different products and feature levels on your site. For
example, you might have a $10/month plan for basic features and a different $20/month plan for premium
features.

Parameters

• id (AutoField) – Id

• livemode (BooleanField) – Livemode

• amount (PositiveIntegerField) – The amount in cents to be charged on the inter-
val specified

• created (DateTimeField) – Created

• currency (CharField) – Currency in which the subscription will be charged

• interval (CharField) – One of day, week, month or year. The frequency with
which a subscription should be billed.

• interval_count (PositiveIntegerField) – The number of intervals (spec-
ified in the interval property) between each subscription billing. For example,
interval=month and interval_count=3 bills every 3 months.

• name (CharField) – Display name of the plan

• metadata (JSONField) – A set of key/value pairs that you can attach to a charge object.
it can be useful for storing additional information about the plan in a structured format.

• trial_period_days (PositiveIntegerField) – Number of trial period days
granted when subscribing a customer to this plan. Null if the plan has no trial period.

• statement_descriptor (CharField) – Extra information about a charge for the
customer’s credit card statement.

1.18 Recipient

class stripe_django.models.recipient.Recipient(*args, **kwargs)
Stripe Recipient object.

18 Chapter 1. Models Reference

stripe-django Documentation, Release 0.1

With recipient objects, you can transfer money from your Stripe account to a third party bank account or debit
card. The API allows you to create, delete, and update your recipients. You can retrieve individual recipients as
well as a list of all your recipients.

Recipient objects have been deprecated in favor of Connect, specifically the much more powerful account ob-
jects. Please use them instead. If you are already using recipients, please see our migration guide for more
information.

Parameters

• id (AutoField) – Id

• livemode (BooleanField) – Livemode

• created (DateTimeField) – Created

• type (CharField) – Type of the recipient, one of individual or corporation.

• active_account (JSONField) – Hash describing the current account on the recipient,
if there is one.

• description (TextField) – Description

• email (EmailField) – Email

• metadata (JSONField) – A set of key/value pairs that you can attach to a charge object.
it can be useful for storing additional information about the recipient in a structured format.

• name (CharField) – Full, legal name of the recipient.

• default_card_id (ForeignKey to Card) – The default card to use for creating transfers
to this recipient.

• migrated_to (CharField) – Migrated to

• cards (ManyToManyField) – Cards

1.19 Refund

class stripe_django.models.refund.Refund(*args, **kwargs)
Stripe Refund objects.

Refund objects allow you to refund a charge that has previously been created but not yet refunded. Funds will
be refunded to the credit or debit card that was originally charged. The fees you were originally charged are also
refunded.

Parameters

• id (AutoField) – Id

• amount (IntegerField) – Amount reversed, in cents.

• created (DateTimeField) – Created

• currency (IntegerField) – Three-letter ISO code representing the currency of the
reversal.

• balance_transaction (CharField) – Balance transaction that describes the impact
of this reversal on your account balance.

• charge (CharField) – ID of the charge that was

• metadata (JSONField) – A set of key/value pairs that you can attach to a charge object.
It can be useful for storing additional information about the refund in a structured format.

1.19. Refund 19

stripe-django Documentation, Release 0.1

• reason (CharField) – Reason for the refund. If set, possible values are duplicate,
fraudulent, and requested_by_customer.

• receipt_number (CharField) – This is the transaction number that appears on email
receipts sent for this refund.

• description (CharField) – Description

1.20 Subscription

class stripe_django.models.subscription.Subscription(*args, **kwargs)
Stripe subscription object.

Subscriptions allow you to charge a customer’s card on a recurring basis. A subscription ties a customer to a
particular plan you’ve created.

Parameters

• id (AutoField) – Id

• cancel_at_period_end (BooleanField) – If the subscription has been canceled
with the at_period_end‘‘flag set to ‘‘true, cancel_at_period_end
on the subscription will be true. You can use this attribute to determine whether a sub-
scription that has a status of active is scheduled to be canceled at the end of the current
period.

• customer_id (ForeignKey to Customer) – Customer

• plan_id (ForeignKey to Plan) – Hash describing the plan the customer is subscribed to

• quantity (PositiveIntegerField) – Quantity

• start (DateTimeField) – Date the subscription started

• status (CharField) – Possible values are trialing, active, past_due,
canceled, or unpaid. A subscription still in its trial period is trialing and moves to
active when the trial period is over. When payment to renew the subscription fails, the
subscription becomes past_due. After Stripe has exhausted all payment retry attempts,
the subscription ends up with a status of either canceled or unpaid depending on your
retry settings. Note that when a subscription has a status of unpaid, no subsequent invoices
will be attempted (invoices will be created, but then immediately automatically closed. Ad-
ditionally, updating customer card details will not lead to Stripe retrying the latest invoice.).
After receiving updated card details from a customer, you may choose to reopen and pay
their closed invoices.

• application_fee_percent (CharField) – A positive decimal that represents the
fee percentage of the subscription invoice amount that will be transferred to the application
owner’s Stripe account each billing period.

• canceled_at (DateTimeField) – If the subscription has been canceled, the date of
that cancellation. If the subscription was canceled with cancel_at_period_end, can-
celed_at will still reflect the date of the initial cancellation request, not the end of the sub-
scription period when the subscription is automatically moved to a canceled state.

• current_period_start (DateTimeField) – End of the current period that the sub-
scription has been invoiced for. At the end of this period, a new invoice will be created.

• discount_id (ForeignKey to Discount) – Describes the current discount applied to
this subscription, if there is one. When billing, a discount applied to a subscription overrides
a discount applied on a customer-wide basis.

20 Chapter 1. Models Reference

https://stripe.com/docs/api#create_plan

stripe-django Documentation, Release 0.1

• ended_at (DateTimeField) – If the subscription has ended (either because it was
canceled or because the customer was switched to a subscription to a new plan), the date the
subscription ended

• metadata (JSONField) – A set of key/value pairs that you can attach to a charge object.
it can be useful for storing additional information about the subscription in a structured
format.

• trial_end (DateTimeField) – If the subscription has a trial, the end of that trial.

• trial_start (DateTimeField) – If the subscription has a trial, the beginning of that
trial.

• tax_percent (DecimalField) – If provided, each invoice created by this subscription
will apply the tax rate, increasing the amount billed to the customer.

1.21 Token

class stripe_django.models.token.Token(*args, **kwargs)
Stripe Token object.

Often you want to be able to charge credit cards or send payments to bank accounts without having to hold
sensitive card information on your own servers. Stripe.js makes this easy in the browser, but you can use the
same technique in other environments with our token API.

Tokens can be created with your publishable API key, which can safely be embedded in downloadable applica-
tions like iPhone and Android apps. You can then use a token anywhere in our API that a card or bank account
is accepted. Note that tokens are not meant to be stored or used more than once—to store these details for use
later, you should create Customer or Recipient objects.

Parameters

• id (AutoField) – Id

• livemode (BooleanField) – Livemode

• created (DateTimeField) – Created

• type (CharField) – Type of the token: card or bank_account

• used (BooleanField) – Whether or not this token has already been used (tokens can be
used only once)

• bank_account (JSONField) – Hash describing the bank account

• card (JSONField) – Hash describing the bank account

• client_ip (CharField) – IP address of the client that generated the token

1.22 Transfer

class stripe_django.models.transfer.Transfer(*args, **kwargs)
Stripe Transfer object.

When Stripe sends you money or you initiate a transfer to a bank account, debit card, or connected Stripe
account, a transfer object will be created. You can retrieve individual transfers as well as list all transfers.

View the documentation on creating transfers via the API.

Parameters

1.21. Token 21

stripe-django Documentation, Release 0.1

• id (AutoField) – Id

• livemode (BooleanField) – Livemode

• amount (IntegerField) – Amount (in cents) to be transferred to your bank account

• created (DateTimeField) – Time that this record of the transfer was first created.

• currency (CharField) – Three-letter ISO code representing the currency of the trans-
fer.

• date (DateTimeField) – Date the transfer is scheduled to arrive in the bank. This
doesn’t factor in delays like weekends or bank holidays.

• reversals (JSONField) – A list of reversals that have been applied to the transfer.

• reversed (BooleanField) – Whether or not the transfer has been fully reversed. If
the transfer is only partially reversed, this attribute will still be false.

• status (CharField) – Current status of the transfer (paid, pending, canceled
or failed). A transfer will be pending until it is submitted, at which point it be-
comes paid. If it does not go through successfully, its status will change to failed
or canceled.

• type (CharField) – The type of this type of this transfer. Can be card,
bank_account, or stripe_account.

• amount_reversed (IntegerField) – Amount in cents reversed (can be less than the
amount attribute on the transfer if a partial reversal was issued).

• balance_transaction_id (ForeignKey to BalanceTransaction) – Balance
transaction that describes the impact of this transfer on your account balance.

• description (TextField) – Internal-only description of the transfer

• failure_code (CharField) – Error code explaining reason for transfer failure if avail-
able. See Types of transfer failures for a list of failure codes.

• failure_message (TextField) – Message to user further explaining reason for trans-
fer failure if available.

• metadata (JSONField) – A set of key/value pairs that you can attach to a charge object.
it can be useful for storing additional information about the transfer in a structured format.

• application_fee (CharField) – Application fee

• destination (CharField) – ID of the bank account, card, or Stripe account the trans-
fer was sent to.

• destination_payment (CharField) – If the destination is a Stripe account, this will
be the ID of the payment that the destination account received for the transfer.

• source_transaction (CharField) – ID of the charge (or other transaction) that was
used to fund the transfer. If null, the transfer was funded from the available balance.

• statement_descriptor (CharField) – Extra information about a transfer to be
displayed on the user’s bank statement.

1.23 Transfer Reversal

class stripe_django.models.transfer_reversal.TransferReversal(*args, **kwargs)
Stripe Transfer Reversal object.

22 Chapter 1. Models Reference

stripe-django Documentation, Release 0.1

A previously created transfer can be reversed if it has not yet been paid out. Funds will be refunded to your
available balance, and the fees you were originally charged on the transfer will be refunded. You may not reverse
automatic Stripe transfers.

Parameters

• id (AutoField) – Id

• amount (IntegerField) – Amount reversed, in cents.

• created (DateTimeField) – Created

• currency (CharField) – Three-letter ISO code representing the currency of the rever-
sal.

• balance_transaction_id (ForeignKey to BalanceTransaction) – Balance
transaction that describes the impact of this reversal on your account balance.

• metadata (JSONField) – A set of key/value pairs that you can attach to a charge object.
it can be useful for storing additional information about the transfer reversal in a structured
format.

• transfer_id (ForeignKey to Transfer) – ID of the transfer that was reversed.

1.23. Transfer Reversal 23

stripe-django Documentation, Release 0.1

24 Chapter 1. Models Reference

CHAPTER 2

History

25

stripe-django Documentation, Release 0.1

26 Chapter 2. History

CHAPTER 3

Developing and Testing

Our tests are inside tests/. Tests are implemented using pytest.

make test will create a tmux server on a separate socket_name using $ tmux -L test_case.

3.1 Install the latest code from git

To begin developing, check out the code from github:

$ git clone git@github.com:tony/stripe_django.git
$ cd stripe_django

Now create a virtualenv, if you don’t know how to, you can create a virtualenv with:

$ virtualenv .venv

Then activate it to your current tty / terminal session with:

$ source .venv/bin/activate

Good! Now let’s run this:

$ pip install -e .

This has pip, a python package manager install the python package in the current directory. -emeans --editable,
which means you can adjust the code and the installed software will reflect the changes.

$ stripe_django

3.2 Test Runner

As you seen above, the stripe_django command will now be available to you, since you are in the virtual en-
vironment, your PATH environment was updated to include a special version of python inside your .venv folder
with its own packages.

$ make test

You probably didn’t see anything but tests scroll by.

If you found a problem or are trying to write a test, you can file an issue on github.

27

http://pytest.org/
https://github.com/develtech/stripe_django/issues

stripe-django Documentation, Release 0.1

3.2.1 Test runner options

$ py.test tests/test_common.py

will test the tests/test_common.py tests.

$ py.test tests/test_common.py::test_ignores_letter_versions

tests test_ignore_letter_versions() tests/test_common.py.

Multiple can be separated by spaces:

$ py.test tests/test_{window,pane}.py \
tests/test_common.py::test_ignores_letter_versions

3.2.2 Visual testing

You can watch tmux testsuite build sessions visually by keeping a client open in a separate terminal.

Create two terminals:

• Terminal 1: $ tmux -L test_case

• Terminal 2: $ cd into the stripe_django project and into the virtualenv if you are using one, see details on
installing the dev version of stripe_django above. Then:

$ py.test tests/test_workspacebuilder.py

Terminal 1 should have flickered and built the session before your eyes. stripe_django hides this building from normal
users.

3.3 Run tests on save

You can re-run tests automatically on file edit.

Note: This requires entr(1).

Install entr. Packages are available available on most Linux and BSD variants, including Debian, Ubuntu, FreeBSD,
OS X.

To run all tests upon editing any .py file:

$ make watch_test

Rebuild the documentation when an .rst file is edited:

$ cd doc
$ make watch

3.4 developer workflow

After you Install the latest code from git, when inside the stripe_django checkout:

28 Chapter 3. Developing and Testing

http://entrproject.org/

stripe-django Documentation, Release 0.1

$ stripe_django load .

this will load the .tmuxp.yaml in the root of the project.

session_name: stripe-django
start_directory: ./ # load session relative to config location (project root).
before_script: ./bootstrap_env.py # ./ to load relative to project root.
windows:
- window_name: stripe-django

focus: True
layout: main-horizontal
options:
main-pane-height: 35

shell_command_before:
- '[-d .venv -a -f .venv/bin/activate] && source .venv/bin/activate'

panes:
- focus: true
- pane
- make watch_flake8
- make watch_test

- window_name: docs
layout: main-horizontal
options:
main-pane-height: 35

start_directory: docs/
shell_command_before:
- '[-d ../.venv -a -f ../.venv/bin/activate] && source ../.venv/bin/activate'

panes:
- focus: true
- pane
- make serve
- make watch

3.4.1 Travis CI

stripe_django uses travis-ci for continuous integration / automatic unit testing.

stripe_django is tested against tmux 1.8 and the latest git source. Interpretters tested are 2.6, 2.7 and 3.3. The travis
build site uses this .travis.yml configuration:

language: python

sudo: false
python:

- 2.7
- 3.4
- 3.5

before_install:
- export PIP_USE_MIRRORS=true
- pip install --upgrade pytest # https://github.com/travis-ci/travis-ci/issues/4873
- pip install --upgrade pip wheel virtualenv setuptools
- pip install coveralls

install:
- pip install -e .

script: coverage run --source=stripe_django setup.py test
after_success:

- bash <(curl -s https://codecov.io/bash)

3.4. developer workflow 29

http://www.travis-ci.org
http://www.travis-ci.org/develtech/stripe_django
http://www.travis-ci.org/develtech/stripe_django
https://github.com/develtech/stripe_django/blob/master/.travis.yml

stripe-django Documentation, Release 0.1

30 Chapter 3. Developing and Testing

Python Module Index

l
libtmux, 25

s
stripe_django, 25
stripe_django.models.account, 3
stripe_django.models.application_fee, 4
stripe_django.models.balance, 5
stripe_django.models.balance_transaction,

6
stripe_django.models.bitcoin_receiver,

6
stripe_django.models.card, 7
stripe_django.models.charge, 8
stripe_django.models.coupon, 10
stripe_django.models.customer, 10
stripe_django.models.discount, 11
stripe_django.models.dispute, 12
stripe_django.models.dispute_evidence,

12
stripe_django.models.event, 14
stripe_django.models.file_upload, 15
stripe_django.models.invoice, 15
stripe_django.models.invoice_item, 17
stripe_django.models.plan, 18
stripe_django.models.recipient, 18
stripe_django.models.refund, 19
stripe_django.models.subscription, 20
stripe_django.models.token, 21
stripe_django.models.transfer, 21
stripe_django.models.transfer_reversal,

22

31

stripe-django Documentation, Release 0.1

32 Python Module Index

Index

A
Account (class in stripe_django.models.account), 3
ApplicationFee (class in

stripe_django.models.application_fee), 4
ApplicationFeeRefund (class in

stripe_django.models.application_fee), 5

B
Balance (class in stripe_django.models.balance), 5
BalanceTransaction (class in

stripe_django.models.balance_transaction),
6

BitCoinReceiver (class in
stripe_django.models.bitcoin_receiver), 6

C
Card (class in stripe_django.models.card), 7
Charge (class in stripe_django.models.charge), 8
Coupon (class in stripe_django.models.coupon), 10
Customer (class in stripe_django.models.customer), 11

D
Discount (class in stripe_django.models.discount), 11
Dispute (class in stripe_django.models.dispute), 12
DisputeEvidence (class in

stripe_django.models.dispute_evidence),
12

E
Event (class in stripe_django.models.event), 14

F
FileUpload (class in stripe_django.models.file_upload),

15

I
Invoice (class in stripe_django.models.invoice), 15
InvoiceItem (class in stripe_django.models.invoice_item),

17

L
libtmux (module), 25

P
Plan (class in stripe_django.models.plan), 18

R
Recipient (class in stripe_django.models.recipient), 18
Refund (class in stripe_django.models.refund), 19

S
stripe_django (module), 25
stripe_django.models.account (module), 3
stripe_django.models.application_fee (module), 4
stripe_django.models.balance (module), 5
stripe_django.models.balance_transaction (module), 6
stripe_django.models.bitcoin_receiver (module), 6
stripe_django.models.card (module), 7
stripe_django.models.charge (module), 8
stripe_django.models.coupon (module), 10
stripe_django.models.customer (module), 10
stripe_django.models.discount (module), 11
stripe_django.models.dispute (module), 12
stripe_django.models.dispute_evidence (module), 12
stripe_django.models.event (module), 14
stripe_django.models.file_upload (module), 15
stripe_django.models.invoice (module), 15
stripe_django.models.invoice_item (module), 17
stripe_django.models.plan (module), 18
stripe_django.models.recipient (module), 18
stripe_django.models.refund (module), 19
stripe_django.models.subscription (module), 20
stripe_django.models.token (module), 21
stripe_django.models.transfer (module), 21
stripe_django.models.transfer_reversal (module), 22
Subscription (class in stripe_django.models.subscription),

20

T
Token (class in stripe_django.models.token), 21

33

stripe-django Documentation, Release 0.1

Transfer (class in stripe_django.models.transfer), 21
TransferReversal (class in

stripe_django.models.transfer_reversal),
22

34 Index

	Models Reference
	Account
	Application Fee
	Balance
	Balance Transaction
	Bitcon Receiver
	Card
	Charge
	Coupon
	Customer
	Discount
	Dispute
	Dispute Evidence
	Event
	File Upload
	Invoice
	Invoice Item
	Plan
	Recipient
	Refund
	Subscription
	Token
	Transfer
	Transfer Reversal

	History
	Developing and Testing
	Install the latest code from git
	Test Runner
	Run tests on save
	developer workflow

	Python Module Index

