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Streamz helps you build pipelines to manage continuous streams of data. It is simple to use in simple cases, but also
supports complex pipelines that involve branching, joining, flow control, feedback, back pressure, and so on.

Optionally, Streamz can also work with both Pandas and cuDF dataframes, to provide sensible streaming operations
on continuous tabular data.

To learn more about how to use streams, visit Core documentation.
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CHAPTER

ONE

MOTIVATION

Continuous data streams arise in many applications like the following:

1. Log processing from web servers

2. Scientific instrument data like telemetry or image processing pipelines

3. Financial time series

4. Machine learning pipelines for real-time and on-line learning

5. . . .

Sometimes these pipelines are very simple, with a linear sequence of processing steps:

And sometimes these pipelines are more complex, involving branching, look-back periods, feedback into earlier stages,
and more.

Streamz endeavors to be simple in simple cases, while also being powerful enough to let you define custom and powerful
pipelines for your application.

1.1 Why not Python generator expressions?

Python users often manage continuous sequences of data with iterators or generator expressions.

def fib():
a, b = 0, 1
while True:

yield a
a, b = b, a + b

sequence = (f(n) for n in fib())

However iterators become challenging when you want to fork them or control the flow of data. Typically people rely
on tools like itertools.tee, and zip.

x1, x2 = itertools.tee(x, 2)
y1 = map(f, x1)
y2 = map(g, x2)

However this quickly become cumbersome, especially when building complex pipelines.

3
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CHAPTER

TWO

INSTALLATION

To install either use:

• conda-forge: conda install streamz -c conda-forge

• pip: pip install streamz

• dev: git clone https://github.com/python-streamz/streamz followed by pip install -e
streamz/

5
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CHAPTER

THREE

QUICKSTART

The streamz project offers a Docker image for the convenience of quickly trying out streamz and its features. The
purpose of the Dockerfile at this time is not to be used in a production environment but rather for experimentation,
learning, or new feature development.

Its most common use would be to interact with the streamz example jupyter notebooks. Lets walk through the steps
needed for this.

• Build the Docker container

$ docker/build.sh

• Run the Docker container

$ docker/run.sh

• Interact with Jupyter Lab on the container in your browser at http://localhost:8888/.

7
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CHAPTER

FOUR

RELATED WORK

Streamz is similar to reactive programming systems like RxPY or big data streaming systems like Apache Flink, Apache
Beam or Apache Spark Streaming.

4.1 Core Streams

This document takes you through how to build basic streams and push data through them. We start with map and
accumulate, talk about emitting data, then discuss flow control and finally back pressure. Examples are used throughout.

4.1.1 Map, emit, and sink

Stream.emit(x[, asynchronous, metadata]) Push data into the stream at this point
map(upstream, func, *args, **kwargs) Apply a function to every element in the stream
sink(upstream, func, *args, **kwargs) Apply a function on every element

You can create a basic pipeline by instantiating the Streamz object and then using methods like map, accumulate,
and sink.

from streamz import Stream

def increment(x):
return x + 1

source = Stream()
source.map(increment).sink(print)

The map and sink methods both take a function and apply that function to every element in the stream. The map
method returns a new stream with the modified elements while sink is typically used at the end of a stream for final
actions.

To push data through our pipeline we call emit

>>> source.emit(1)
2
>>> source.emit(2)
3
>>> source.emit(10)
11
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As we can see, whenever we push data in at the source, our pipeline calls increment on that data, and then calls print
on that data, resulting in incremented results being printed to the screen.

Often we call emit from some other continuous process, like reading lines from a file

import json

data = []

source = Stream()
source.map(json.loads).sink(data.append)

for line in open('myfile.json'):
source.emit(line)

4.1.2 Accumulating State

accumulate(upstream, func[, start, ...]) Accumulate results with previous state

Map and sink both pass data directly through a stream. One piece of data comes in, either one or zero pieces go out.
Accumulate allows you to track some state within the pipeline. It takes an accumulation function that takes the previous
state, the new element, and then returns a new state and a new element to emit. In the following example we make an
accumulator that keeps a running total of the elements seen so far.

def add(x, y):
return x + y

source = Stream()
source.accumulate(add).sink(print)

>>> source.emit(1)
1
>>> source.emit(2)
3
>>> source.emit(3)
6
>>> source.emit(4)
10

The accumulation function above is particularly simple, the state that we store and the value that we emit are the same.
In more complex situations we might want to keep around different state than we emit. For example lets count the
number of distinct elements that we have seen so far.

def num_distinct(state, new):
state.add(new)
return state, len(state)

source = Stream()
source.accumulate(num_distinct, returns_state=True, start=set()).sink(print)

>>> source.emit('cat')
1

(continues on next page)
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(continued from previous page)

>>> source.emit('dog')
2
>>> source.emit('cat')
2
>>> source.emit('mouse')
3

Accumulators allow us to build many interesting operations.

4.1.3 Flow Control

buffer(upstream, n, **kwargs) Allow results to pile up at this point in the stream
flatten([upstream, upstreams, stream_name, ...]) Flatten streams of lists or iterables into a stream of ele-

ments
partition(upstream, n[, timeout, key]) Partition stream into tuples of equal size
sliding_window(upstream, n[, return_partial]) Produce overlapping tuples of size n
union(*upstreams, **kwargs) Combine multiple streams into one
unique(upstream[, maxsize, key, hashable]) Avoid sending through repeated elements

You can batch and slice streams into streams of batches in various ways with operations like partition, buffer, and
sliding_window

source = Stream()
source.sliding_window(3, return_partial=False).sink(print)

>>> source.emit(1)
>>> source.emit(2)
>>> source.emit(3)
(1, 2, 3)
>>> source.emit(4)
(2, 3, 4)
>>> source.emit(5)
(3, 4, 5)

4.1.4 Branching and Joining

combine_latest(*upstreams, **kwargs) Combine multiple streams together to a stream of tuples
zip(*upstreams, **kwargs) Combine streams together into a stream of tuples
zip_latest(lossless, *upstreams, **kwargs) Combine multiple streams together to a stream of tuples

You can branch multiple streams off of a single stream. Elements that go into the input will pass through to both output
streams. Note: graphviz and networkx need to be installed to visualize the stream graph.

def increment(x):
return x + 1

def decrement(x):
return x - 1

(continues on next page)

4.1. Core Streams 11
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(continued from previous page)

source = Stream()
a = source.map(increment).sink(print)
b = source.map(decrement).sink(print)
b.visualize(rankdir='LR')

>>> source.emit(1)
0
2
>>> source.emit(10)
9
11

Similarly you can also combine multiple streams together with operations like zip, which emits once both streams
have provided a new element, or combine_latest which emits when either stream has provided a new element.

source = Stream()
a = source.map(increment)
b = source.map(decrement)
c = a.zip(b).map(sum).sink(print)

>>> source.emit(10)
20 # 9 + 11

This branching and combining is where Python iterators break down, and projects like streamz start becoming valu-
able.

4.1.5 Processing Time and Back Pressure

delay(upstream, interval, **kwargs) Add a time delay to results
rate_limit(upstream, interval, **kwargs) Limit the flow of data
timed_window(upstream, interval, **kwargs) Emit a tuple of collected results every interval

Time-based flow control depends on having an active Tornado event loop. Tornado is active by default within a Jupyter
notebook, but otherwise you will need to learn at least a little about asynchronous programming in Python to use these
features. Learning async programming is not mandatory, the rest of the project will work fine without Tornado.

You can control the flow of data through your stream over time. For example you may want to batch all elements that
have arrived in the last minute, or slow down the flow of data through sensitive parts of the pipeline, particularly when
they may be writing to slow resources like databases.

Streamz helps you do these operations both with operations like delay, rate_limit, and timed_window, and also
by passing Tornado futures back through the pipeline. As data moves forward through the pipeline, futures that signal
work completed move backwards. In this way you can reliably avoid buildup of data in slower parts of your pipeline.

Lets consider the following example that reads JSON data from a file and inserts it into a database using an async-aware
insertion function.

12 Chapter 4. Related Work
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async def write_to_database(...):
...

# build pipeline
source = Source()
source.map(json.loads).sink(write_to_database)

async def process_file(fn):
with open(fn) as f:

for line in f:
await source.emit(line) # wait for pipeline to clear

As we call the write_to_database function on our parsed JSON data it produces a future for us to signal that the
writing process has finished. Streamz will ensure that this future is passed all the way back to the source.emit call,
so that user code at the start of our pipeline can await on it. This allows us to avoid buildup even in very large and
complex streams. We always pass futures back to ensure responsiveness.

But wait, maybe we don’t mind having a few messages in memory at once, this will help steady the flow of data so that
we can continue to work even if our sources or sinks become less productive for brief periods. We might add a buffer
just before writing to the database.

source.map(json.loads).buffer(100).sink(write_to_database)

And if we are pulling from an API with known limits then we might want to introduce artificial rate limits at 10ms.

source.rate_limit(0.010).map(json.loads).buffer(100).sink(write_to_database)

Operations like these (and more) allow us to shape the flow of data through our pipelines.

4.1.6 Modifying and Cleaning up Streams

When you call Stream you create a stream. When you call any method on a Stream, like Stream.map, you also create
a stream. All operations can be chained together. Additionally, as discussed in the section on Branching, you can split
multiple streams off of any point. Streams will pass their outputs on to all downstream streams so that anyone can hook
in at any point, and get a full view of what that stream is producing.

If you delete a part of a stream then it will stop getting data. Streamz follows normal Python garbage collection semantics
so once all references to a stream have been lost those operations will no longer occur. The one counter example to this
is sink, which is intended to be used with side effects and will stick around even without a reference.

Note: Sink streams store themselves in streamz.sinks._global_sinks. You can remove them permanently by
clearing that collection.

>>> source.map(print) # this doesn't do anything
>>> source.sink(print) # this stays active even without a reference
>>> s = source.map(print) # this works too because we have a handle to s

4.1. Core Streams 13
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4.1.7 Recursion and Feedback

By connecting sources to sinks you can create feedback loops. As an example, here is a tiny web crawler:

from streamz import Stream
source = Stream()

pages = source.unique()
pages.sink(print)

content = pages.map(requests.get).map(lambda x: x.content)
links = content.map(get_list_of_links).flatten()
links.connect(source) # pipe new links back into pages

>>> source.emit('http://github.com')
http://github.com
http://github.com/features
http://github.com/business
http://github.com/explore
http://github.com/pricing
...

Note: Execution order is important here, as if the print was ordered after the map; get node then the print would
never run.

4.1.8 Performance

Streamz adds microsecond overhead to normal Python operations.

from streamz import Stream

source = Stream()

def inc(x):
return x + 1

source.sink(inc)

In [5]: %timeit source.emit(1)
100000 loops, best of 3: 3.19 µs per loop

In [6]: %timeit inc(1)
10000000 loops, best of 3: 91.5 ns per loop

You may want to avoid pushing millions of individual elements per second through a stream. However, you can avoid
performance issues by collecting lots of data into single elements, for example by pushing through Pandas dataframes
instead of individual integers and strings. This will be faster regardless, just because projects like NumPy and Pandas
can be much faster than Python generally.

14 Chapter 4. Related Work
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In the following example we pass filenames through a stream, convert them to Pandas dataframes, and then map pandas-
level functions on those dataframes. For operations like this Streamz adds virtually no overhead.

source = Stream()
s = source.map(pd.read_csv).map(lambda df: df.value.sum()).accumulate(add)

for fn in glob('data/2017-*-*.csv'):
source.emit(fn)

Streams provides higher level APIs for situations just like this one. You may want to read further about collections

4.1.9 Metadata

Metadata can be emitted into the pipeline to accompany the data as a list of dictionaries. Most functions will pass
the metadata to the downstream function without making any changes. However, functions that make the pipeline
asynchronous require logic that dictates how and when the metadata will be passed downstream. Synchronous functions
and asynchronous functions that have a 1:1 ratio of the number of values on the input to the number of values on the
output will emit the metadata collection without any modification. However, functions that have multiple input streams
or emit collections of data will emit the metadata associated with the emitted data as a collection.

4.1.10 Reference Counting and Checkpointing

Checkpointing is achieved in Streamz through the use of reference counting. With this method, a checkpoint can be
saved when and only when data has progressed through all of the the pipeline without any issues. This prevents data
loss and guarantees at-least-once semantics.

Any node that caches or holds data after it returns increments the reference counter associated with the given data by
one. When a node is no longer holding the data, it will release it by decrementing the counter by one. When the counter
changes to zero, a callback associated with the data is triggered.

References are passed in the metadata as a value of the ref keyword. Each metadata object contains only one reference
counter object.

4.2 DataFrames

When handling large volumes of streaming tabular data it is often more efficient to pass around larger Pandas dataframes
with many rows each rather than pass around individual Python tuples or dicts. Handling and computing on data with
Pandas can be much faster than operating on individual Python objects.

So one could imagine building streaming dataframe pipelines using the .map and .accumulate streaming operators
with functions that consume and produce Pandas dataframes as in the following example:

from streamz import Stream

def query(df):
return df[df.name == 'Alice']

def aggregate(acc, df):
return acc + df.amount.sum()

stream = Stream()
stream.map(query).accumulate(aggregate, start=0)

4.2. DataFrames 15



Streamz Documentation, Release 0.6.4

This is fine, and straightforward to do if you understand streamz.core , Pandas, and have some skill with developing
algorithms.

4.2.1 Streaming Dataframes

The streamz.dataframe module provides a streaming dataframe object that implements many of these algorithms
for you. It provides a Pandas-like interface on streaming data. Our example above is rewritten below using streaming
dataframes:

import pandas as pd
from streamz.dataframe import DataFrame

example = pd.DataFrame({'name': [], 'amount': []})
sdf = DataFrame(stream, example=example)

sdf[sdf.name == 'Alice'].amount.sum()

The two examples are identical in terms of performance and execution. The resulting streaming dataframe contains
a .stream attribute which is equivalent to the stream produced in the first example. Streaming dataframes are only
syntactic sugar on core streams.

4.2.2 Supported Operations

Streaming dataframes support the following classes of operations

• Elementwise operations like df.x + 1

• Filtering like df[df.name == 'Alice']

• Column addition like df['z'] = df.x + df.y

• Reductions like df.amount.mean()

• Groupby-aggregations like df.groupby(df.name).amount.mean()

• Windowed aggregations (fixed length) like df.window(n=100).amount.sum()

• Windowed aggregations (index valued) like df.window(value='2h').amount.sum()

• Windowed groupby aggregations like df.window(value='2h').groupby('name').amount.sum()

4.2.3 DataFrame Aggregations

Dataframe aggregations are composed of an aggregation (like sum, mean, . . . ) and a windowing scheme (fixed sized
windows, index-valued, all time, . . . )

16 Chapter 4. Related Work
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Aggregations

Streaming Dataframe aggregations are built from three methods

• initial: Creates initial state given an empty example dataframe

• on_new: Updates state and produces new result to emit given new data

• on_old: Updates state and produces new result to emit given decayed data

So a simple implementation of sum as an aggregation might look like the following:

from streamz.dataframe import Aggregation

class Mean(Aggregation):
def initial(self, new):

state = new.iloc[:0].sum(), new.iloc[:0].count()
return state

def on_new(self, state, new):
total, count = state
total = total + new.sum()
count = count + new.count()
new_state = (total, count)
new_value = total / count
return new_state, new_value

def on_old(self, state, old):
total, count = state
total = total - old.sum() # switch + for - here
count = count - old.count() # switch + for - here
new_state = (total, count)
new_value = total / count
return new_state, new_value

These aggregations can then used in a variety of different windowing schemes with the aggregatemethod as follows:

df.aggregate(Mean())

df.window(n=100).aggregate(Mean())

df.window(value='60s').aggregate(Mean())

whose job it is to deliver new and old data to your aggregation for processing.

Windowing Schemes

Different windowing schemes like fixed sized windows (last 100 elements) or value-indexed windows (last two hours
of data) will track newly arrived and decaying data and call these methods accordingly. The mechanism to track data
arriving and leaving is kept orthogonal from the aggregations themselves. These windowing schemes include the
following:

1. All previous data. Only initial and on_new are called, on_old is never called.

>>> df.sum()

4.2. DataFrames 17
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2. The previous n elements

>>> df.window(n=100).sum()

3. An index range, like a time range for a datetime index

>>> df.window(value='2h').sum()

Although this can be done for any range on any type of index, time is just a common case.

Windowing schemes generally maintain a deque of historical values within accumulated state. As new data comes in
they inspect that state and eject data that no longer falls within the window.

Grouping

Groupby aggregations also maintain historical data on the grouper and perform a parallel aggregation on the number
of times any key has been seen, removing that key once it is no longer present.

4.2.4 Dask

In all cases, dataframe operations are only implemented with the .map and .accumulate operators, and so are equally
compatible with core Stream and DaskStream objects.

4.2.5 Not Yet Supported

Streaming dataframe algorithms do not currently pay special attention to data arriving out-of-order.

4.2.6 PeriodicDataFrame

As you have seen above, Streamz can handle arbitrarily complex pipelines, events, and topologies, but what if you
simply want to run some Python function periodically and collect or plot the results?

streamz provides a high-level convenience class for this purpose, called a PeriodicDataFrame. A PeriodicDataFrame
uses Python’s asyncio event loop (used as part of Tornado in Jupyter and other interactive frameworks) to call a user-
provided function at a regular interval, collecting the results and making them available for later processing.

In the simplest case, you can use a PeriodicDataFrame by first writing a callback function like:

import numpy as np

def random_datapoint(**kwargs):
return pd.DataFrame({'a': np.random.random(1)}, index=[pd.Timestamp.now()])

You can then make a streaming dataframe to poll this function e.g. every 300 milliseconds:

df = PeriodicDataFrame(random_datapoint, interval='300ms')

df will now be a steady stream of whatever values are returned by the datafn, which can of course be any Python code
as long as it returns a DataFrame.

Here we returned only a single point, appropriate for streaming the results of system calls or other isolated actions,
but any number of entries can be returned by the dataframe in a single batch. To facilitate collecting such batches,
the callback is invoked with keyword arguments last (the time of the previous invocation) and now (the time of the

18 Chapter 4. Related Work
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current invocation) as Pandas Timestamp objects. The callback can then generate or query for just the values in that
time range.

Arbitrary keyword arguments can be provided to the PeriodicDataFrame constructor, which will be passed into the
callback so that its behavior can be parameterized.

For instance, you can write a callback to return a suitable number of datapoints to keep a regularly updating stream,
generated randomly as a batch since the last call:

def datablock(last, now, **kwargs):
freq = kwargs.get("freq", pd.Timedelta("50ms"))
index = pd.date_range(start=last + freq, end=now, freq=freq)
return pd.DataFrame({'x': np.random.random(len(index))}, index=index)

df = PeriodicDataFrame(datablock, interval='300ms')

The callback will now be invoked every 300ms, each time generating datapoints at a rate of 1 every 50ms, returned as
a batch. If you wished, you could override the 50ms value by passing freq=pd.Timedelta(“100ms”) to the Periodic-
DataFrame constructor.

Similar code could e.g. query an external database for the time range since the last update, returning all datapoints
since then.

Once you have a PeriodicDataFrame defined using such callbacks, you can then use all the rest of the functionality
supported by streamz, including aggregations, rolling windows, etc., and streaming visualization.

4.3 Streaming GPU DataFrames (cudf)

The streamz.dataframe module provides a DataFrame-like interface on streaming data as described in the
dataframes documentation. It provides support for dataframe-like libraries such as pandas and cudf. This docu-
mentation is specific to streaming GPU dataframes using cudf.

The example in the dataframes documentation is rewritten below using cudf dataframes just by replacing the pandas
module with cudf:

import cudf
from streamz.dataframe import DataFrame

example = cudf.DataFrame({'name': [], 'amount': []})
sdf = DataFrame(stream, example=example)

sdf[sdf.name == 'Alice'].amount.sum()

4.4 Supported Operations

Streaming cudf dataframes support the following classes of operations:

• Elementwise operations like df.x + 1

• Filtering like df[df.name == 'Alice']

• Column addition like df['z'] = df.x + df.y

• Reductions like df.amount.mean()

• Windowed aggregations (fixed length) like df.window(n=100).amount.sum()

4.3. Streaming GPU DataFrames (cudf) 19



Streamz Documentation, Release 0.6.4

The following operations are not yet supported with cudf (as of version 0.8):

• Groupby-aggregations like df.groupby(df.name).amount.mean()

• Windowed aggregations (index valued) like df.window(value='2h').amount.sum()

• Windowed groupby aggregations like df.window(value='2h').groupby('name').amount.sum()

Window-based Aggregations with cudf are supported just as explained in the dataframes documentation. Support
for groupby operations is expected to be added in the future.

4.5 Dask Integration

The streamz.dask module contains a Dask-powered implementation of the core Stream object. This is a drop-in
implementation, but uses Dask for execution and so can scale to a multicore machine or a distributed cluster.

4.5.1 Quickstart

Installation

First install dask and dask.distributed:

conda install dask
or
pip install dask[complete] --upgrade

You may also want to install Bokeh for web diagnostics:

conda install -c bokeh bokeh
or
pip install bokeh --upgrade

Start Local Dask Client

Then start a local Dask cluster

from dask.distributed import Client
client = Client()

This operates on local processes or threads. If you have Bokeh installed then this will also start a diagnostics web server
at http://localhost:8787/status which you may want to open to get a real-time view of execution.

Sequential Execution

Stream.emit(x[, asynchronous, metadata]) Push data into the stream at this point
map(upstream, func, *args, **kwargs) Apply a function to every element in the stream
sink(upstream, func, *args, **kwargs) Apply a function on every element

Before we build a parallel stream, let’s build a sequential stream that maps a simple function across data, and then prints
those results. We use the core Stream object.

20 Chapter 4. Related Work
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from time import sleep

def inc(x):
sleep(1) # simulate actual work
return x + 1

from streamz import Stream

source = Stream()
source.map(inc).sink(print)

for i in range(10):
source.emit(i)

This should take ten seconds because we call the inc function ten times sequentially.

Parallel Execution

scatter(*args, **kwargs) Convert local stream to Dask Stream
buffer(upstream, n, **kwargs) Allow results to pile up at this point in the stream

gather([upstream, upstreams, stream_name, ...]) Wait on and gather results from DaskStream to local
Stream

That example ran sequentially under normal execution, now we use .scatter() to convert our stream into a
DaskStream and .gather() to convert back.

source = Stream()
source.scatter().map(inc).buffer(8).gather().sink(print)

for i in range(10):
source.emit(i)

You may want to look at http://localhost:8787/status during execution to get a sense of the parallel execution.

This should have run much more quickly depending on how many cores you have on your machine. We added a few
extra nodes to our stream; let’s look at what they did.

• scatter: Converted our Stream into a DaskStream. The elements that we emitted into our source were sent to
the Dask client, and the subsequent map call used that client’s cores to perform the computations.

• gather: Converted our DaskStream back into a Stream, pulling data on our Dask client back to our local stream

• buffer(5): Normally gather would exert back pressure so that the source would not accept new data until results
finished and were pulled back to the local stream. This back-pressure would limit parallelism. To counter-act
this we add a buffer of size eight to allow eight unfinished futures to build up in the pipeline before we start to
apply back-pressure to source.emit.
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Gotchas

An important gotcha with DaskStream is that it is a subclass of Stream, and so can be used as an input to any function
expecting a Stream. If there is no intervening .gather(), then the downstream node will receive Dask futures instead
of the data they represent:

source = Stream()
source2 = Stream()
a = source.scatter().map(inc)
b = source2.combine_latest(a)

In this case, the combine operation will get real values from source2, and Dask futures. Downstream nodes would be
free to operate on the futures, but more likely, the line should be:

b = source2.combine_latest(a.gather())

4.6 Collections

Streamz high-level collection APIs are built on top of streamz.core, and bring special consideration to certain types
of data:

1. streamz.batch: supports streams of lists of Python objects like tuples or dictionaries

2. streamz.dataframe: supports streams of Pandas/cudf dataframes or Pandas/cudf series. cudf support is in
beta phase and has limited functionality as of cudf version 0.8

These high-level APIs help us handle common situations in data processing. They help us implement complex algo-
rithms and also improve efficiency.

These APIs are built on the streamz core operations (map, accumulate, buffer, timed_window, . . . ) which provide the
building blocks to build complex pipelines but offer no help with what those functions should be. The higher-level
APIs help to fill in this gap for common situations.

4.6.1 Conversion

Stream.to_batch(**kwargs) Convert a stream of lists to a Batch
Stream.to_dataframe(example) Convert a stream of Pandas dataframes to a DataFrame

You can convert from core Stream objects to Batch, and DataFrame objects using the .to_batch and .to_dataframe
methods. In each case we assume that the stream is a stream of batches (lists or tuples) or a list of Pandas dataframes.

>>> batch = stream.to_batch()
>>> sdf = stream.to_dataframe()

To convert back from a Batch or a DataFrame to a core.Stream you can access the .stream property.

>>> stream = sdf.stream
>>> stream = batch.stream
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4.6.2 Example

We create a stream and connect it to a file object

file = ... # filename or file-like object
from streamz import Stream

source = Stream.from_textfile(file)

Our file produces line-delimited JSON serialized data on which we want to call json.loads to parse into dictionaries.

To reduce overhead we first batch our records up into 100-line batches and turn this into a Batch object. We provide
our Batch object an example element that it will use to help it determine metadata.

example = [{'name': 'Alice', 'x': 1, 'y': 2}]
lines = source.partition(100).to_batch(example=example) # batches of 100 elements
records = lines.map(json.loads) # convert lines to text.

We could have done the .map(json.loads) command on the original stream, but this way reduce overhead by apply-
ing this function to lists of items, rather than one item at a time.

Now we convert these batches of records into pandas dataframes and do some basic filtering and groupby-aggregations.

sdf = records.to_dataframe()
sdf = sdf[sdf.name == "Alice"]
sdf = sdf.groupby(sdf.x).y.mean()

The DataFrames satisfy a subset of the Pandas API, but now rather than operate on the data directly, they set up a
pipeline to compute the data in an online fashion.

Finally we convert this back to a stream and push the results into a fixed-size deque.

from collections import deque
d = deque(maxlen=10)

sdf.stream.sink(d.append)

See Collections API for more information.

4.7 API

4.7.1 Stream

Stream([upstream, upstreams, stream_name, ...]) A Stream is an infinite sequence of data.
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Stream.connect(downstream) Connect this stream to a downstream element.
Stream.destroy([streams]) Disconnect this stream from any upstream sources
Stream.disconnect(downstream) Disconnect this stream to a downstream element.
Stream.visualize([filename]) Render the computation of this object's task graph using

graphviz.
accumulate(upstream, func[, start, ...]) Accumulate results with previous state
buffer(upstream, n, **kwargs) Allow results to pile up at this point in the stream
collect(upstream[, cache, metadata_cache]) Hold elements in a cache and emit them as a collection

when flushed.
combine_latest(*upstreams, **kwargs) Combine multiple streams together to a stream of tuples
delay(upstream, interval, **kwargs) Add a time delay to results
filter(upstream, predicate, *args, **kwargs) Only pass through elements that satisfy the predicate
flatten([upstream, upstreams, stream_name, ...]) Flatten streams of lists or iterables into a stream of ele-

ments
map(upstream, func, *args, **kwargs) Apply a function to every element in the stream
partition(upstream, n[, timeout, key]) Partition stream into tuples of equal size
rate_limit(upstream, interval, **kwargs) Limit the flow of data
scatter(*args, **kwargs) Convert local stream to Dask Stream
sink(upstream, func, *args, **kwargs) Apply a function on every element
sink_to_textfile(upstream, file[, end, mode]) Write elements to a plain text file, one element per line.
slice(upstream[, start, end, step]) Get only some events in a stream by position.
sliding_window(upstream, n[, return_partial]) Produce overlapping tuples of size n
starmap(upstream, func, *args, **kwargs) Apply a function to every element in the stream, splayed

out
timed_window(upstream, interval, **kwargs) Emit a tuple of collected results every interval
union(*upstreams, **kwargs) Combine multiple streams into one
unique(upstream[, maxsize, key, hashable]) Avoid sending through repeated elements
pluck(upstream, pick, **kwargs) Select elements from elements in the stream.
zip(*upstreams, **kwargs) Combine streams together into a stream of tuples
zip_latest(lossless, *upstreams, **kwargs) Combine multiple streams together to a stream of tuples

Stream.connect(downstream)
Connect this stream to a downstream element.

Parameters
downstream: Stream

The downstream stream to connect to

Stream.disconnect(downstream)
Disconnect this stream to a downstream element.

Parameters
downstream: Stream

The downstream stream to disconnect from

Stream.destroy(streams=None)
Disconnect this stream from any upstream sources

Stream.emit(x, asynchronous=False, metadata=None)
Push data into the stream at this point

This is typically done only at source Streams but can theoretically be done at any point

Parameters
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x: any
an element of data

asynchronous:
emit asynchronously

metadata: list[dict], optional
Various types of metadata associated with the data element in x.

ref: RefCounter A reference counter used to check when data is done

Stream.frequencies(**kwargs)
Count occurrences of elements

classmethod Stream.register_api(modifier=<function identity>, attribute_name=None)
Add callable to Stream API

This allows you to register a new method onto this class. You can use it as a decorator.:

>>> @Stream.register_api()
... class foo(Stream):
... ...

>>> Stream().foo(...) # this works now

It attaches the callable as a normal attribute to the class object. In doing so it respects inheritance (all subclasses
of Stream will also get the foo attribute).

By default callables are assumed to be instance methods. If you like you can include modifiers to apply before
attaching to the class as in the following case where we construct a staticmethod.

>>> @Stream.register_api(staticmethod)
... class foo(Stream):
... ...

>>> Stream.foo(...) # Foo operates as a static method

You can also provide an optional attribute_name argument to control the name of the attribute your callable
will be attached as.

>>> @Stream.register_api(attribute_name="bar")
... class foo(Stream):
... ...

>> Stream().bar(. . . ) # foo was actually attached as bar

Stream.sink(func, *args, **kwargs)
Apply a function on every element

Parameters
func: callable

A function that will be applied on every element.

args:
Positional arguments that will be passed to func after the incoming element.

kwargs:
Stream-specific arguments will be passed to Stream.__init__, the rest of them will be
passed to func.
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See also:

map
Stream.sink_to_list

Examples

>>> source = Stream()
>>> L = list()
>>> source.sink(L.append)
>>> source.sink(print)
>>> source.sink(print)
>>> source.emit(123)
123
123
>>> L
[123]

Stream.sink_to_list()

Append all elements of a stream to a list as they come in

Examples

>>> source = Stream()
>>> L = source.map(lambda x: 10 * x).sink_to_list()
>>> for i in range(5):
... source.emit(i)
>>> L
[0, 10, 20, 30, 40]

Stream.sink_to_textfile(file, end='\n', mode='a', **kwargs)
Write elements to a plain text file, one element per line.

Type of elements must be str.

Parameters
file: str or file-like

File to write the elements to. str is treated as a file name to open. If file-like, descriptor must
be open in text mode. Note that the file descriptor will be closed when this sink is destroyed.

end: str, optional
This value will be written to the file after each element. Defaults to newline character.

mode: str, optional
If file is str, file will be opened in this mode. Defaults to "a" (append mode).
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Examples

>>> source = Stream()
>>> source.map(str).sink_to_textfile("test.txt")
>>> source.emit(0)
>>> source.emit(1)
>>> print(open("test.txt", "r").read())
0
1

Stream.to_websocket(uri, ws_kwargs=None, **kwargs)
Write bytes data to websocket

The websocket will be opened on first call, and kept open. Should it close at some point, future writes will fail.

Requires the websockets package.

Parameters
• uri – str Something like “ws://host:port”. Use “wss:” to allow TLS.

• ws_kwargs – dict Further kwargs to pass to websockets.connect, please read its docu-
mentation.

• kwargs – Passed to superclass

Stream.to_mqtt(host, port, topic, keepalive=60, client_kwargs=None, **kwargs)
Send data to MQTT broker

See also sources.from_mqtt.

Requires paho.mqtt

Parameters
• host – str

• port – int

• topic – str

• keepalive – int See mqtt docs - to keep the channel alive

• client_kwargs – Passed to the client’s connect() method

Stream.update(x, who=None, metadata=None)

Stream.visualize(filename='mystream.png', **kwargs)
Render the computation of this object’s task graph using graphviz.

Requires graphviz and networkx to be installed.

Parameters
filename

[str, optional] The name of the file to write to disk.

kwargs:
Graph attributes to pass to graphviz like rankdir="LR"
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4.7.2 Sources

from_iterable(iterable, **kwargs) Emits items from an iterable.
filenames(path[, poll_interval]) Stream over filenames in a directory
from_kafka(topics, consumer_params[, ...]) Accepts messages from Kafka
from_kafka_batched(topic, consumer_params[, ...]) Get messages and keys (optional) from Kafka in batches
from_mqtt(host, port, topic[, keepalive, ...]) Read from MQTT source
from_process(cmd[, open_kwargs, ...]) Messages from a running external process
from_websocket(host, port[, serve_kwargs]) Read binary data from a websocket
from_textfile(f[, poll_interval, delimiter, ...]) Stream data from a text file
from_tcp(port[, delimiter, server_kwargs]) Creates events by reading from a socket using tornado

TCPServer
from_http_server(port[, path, server_kwargs]) Listen for HTTP POSTs on given port

4.7.3 DaskStream

DaskStream(*args, **kwargs) A Parallel stream using Dask
gather([upstream, upstreams, stream_name, ...]) Wait on and gather results from DaskStream to local

Stream

4.7.4 Definitions

streamz.accumulate(upstream, func, start='--no-default--', returns_state=False, **kwargs)
Accumulate results with previous state

This performs running or cumulative reductions, applying the function to the previous total and the new element.
The function should take two arguments, the previous accumulated state and the next element and it should return
a new accumulated state, - state = func(previous_state, new_value) (returns_state=False) - state,
result = func(previous_state, new_value) (returns_state=True)

where the new_state is passed to the next invocation. The state or result is emitted downstream for the two cases.

Parameters
func: callable
start: object

Initial value, passed as the value of previous_state on the first invocation. Defaults to the
first submitted element

returns_state: boolean
If true then func should return both the state and the value to emit If false then both values
are the same, and func returns one value

**kwargs:
Keyword arguments to pass to func
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Examples

A running total, producing triangular numbers

>>> source = Stream()
>>> source.accumulate(lambda acc, x: acc + x).sink(print)
>>> for i in range(5):
... source.emit(i)
0
1
3
6
10

A count of number of events (including the current one)

>>> source = Stream()
>>> source.accumulate(lambda acc, x: acc + 1, start=0).sink(print)
>>> for _ in range(5):
... source.emit(0)
1
2
3
4
5

Like the builtin “enumerate”.

>>> source = Stream()
>>> source.accumulate(lambda acc, x: ((acc[0] + 1, x), (acc[0], x)),
... start=(0, 0), returns_state=True
... ).sink(print)
>>> for i in range(3):
... source.emit(0)
(0, 0)
(1, 0)
(2, 0)

streamz.buffer(upstream, n, **kwargs)
Allow results to pile up at this point in the stream

This allows results to buffer in place at various points in the stream. This can help to smooth flow through the
system when backpressure is applied.

streamz.collect(upstream, cache=None, metadata_cache=None, **kwargs)
Hold elements in a cache and emit them as a collection when flushed.
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Examples

>>> source1 = Stream()
>>> source2 = Stream()
>>> collector = collect(source1)
>>> collector.sink(print)
>>> source2.sink(collector.flush)
>>> source1.emit(1)
>>> source1.emit(2)
>>> source2.emit('anything') # flushes collector
...
[1, 2]

streamz.combine_latest(*upstreams, **kwargs)
Combine multiple streams together to a stream of tuples

This will emit a new tuple of all of the most recent elements seen from any stream.

Parameters
emit_on

[stream or list of streams or None] only emit upon update of the streams listed. If None, emit
on update from any stream

See also:

zip

streamz.delay(upstream, interval, **kwargs)
Add a time delay to results

streamz.filter(upstream, predicate, *args, **kwargs)
Only pass through elements that satisfy the predicate

Parameters
predicate

[function] The predicate. Should return True or False, where True means that the predicate
is satisfied.

*args
The arguments to pass to the predicate.

**kwargs:
Keyword arguments to pass to predicate

Examples

>>> source = Stream()
>>> source.filter(lambda x: x % 2 == 0).sink(print)
>>> for i in range(5):
... source.emit(i)
0
2
4
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streamz.flatten(upstream=None, upstreams=None, stream_name=None, loop=None, asynchronous=None,
ensure_io_loop=False)

Flatten streams of lists or iterables into a stream of elements

See also:

partition

Examples

>>> source = Stream()
>>> source.flatten().sink(print)
>>> for x in [[1, 2, 3], [4, 5], [6, 7, 7]]:
... source.emit(x)
1
2
3
4
5
6
7

streamz.map(upstream, func, *args, **kwargs)
Apply a function to every element in the stream

Parameters
func: callable
*args

The arguments to pass to the function.

**kwargs:
Keyword arguments to pass to func

Examples

>>> source = Stream()
>>> source.map(lambda x: 2*x).sink(print)
>>> for i in range(5):
... source.emit(i)
0
2
4
6
8

streamz.partition(upstream, n, timeout=None, key=None, **kwargs)
Partition stream into tuples of equal size

Parameters
n: int

Maximum partition size
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timeout: int or float, optional
Number of seconds after which a partition will be emitted, even if its size is less than n. If
None (default), a partition will be emitted only when its size reaches n.

key: hashable or callable, optional
Emit items with the same key together as a separate partition. If key is callable, partition
will be identified by key(x), otherwise by x[key]. Defaults to None.

Examples

>>> source = Stream()
>>> source.partition(3).sink(print)
>>> for i in range(10):
... source.emit(i)
(0, 1, 2)
(3, 4, 5)
(6, 7, 8)

>>> source = Stream()
>>> source.partition(2, key=lambda x: x % 2).sink(print)
>>> for i in range(4):
... source.emit(i)
(0, 2)
(1, 3)

>>> from time import sleep
>>> source = Stream()
>>> source.partition(5, timeout=1).sink(print)
>>> for i in range(3):
... source.emit(i)
>>> sleep(1)
(0, 1, 2)

streamz.rate_limit(upstream, interval, **kwargs)
Limit the flow of data

This stops two elements of streaming through in an interval shorter than the provided value.

Parameters
interval: float

Time in seconds

streamz.sink(upstream, func, *args, **kwargs)
Apply a function on every element

Parameters
func: callable

A function that will be applied on every element.

args:
Positional arguments that will be passed to func after the incoming element.

kwargs:
Stream-specific arguments will be passed to Stream.__init__, the rest of them will be
passed to func.
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See also:

map
Stream.sink_to_list

Examples

>>> source = Stream()
>>> L = list()
>>> source.sink(L.append)
>>> source.sink(print)
>>> source.sink(print)
>>> source.emit(123)
123
123
>>> L
[123]

streamz.sink_to_textfile(upstream, file, end='\n', mode='a', **kwargs)
Write elements to a plain text file, one element per line.

Type of elements must be str.

Parameters
file: str or file-like

File to write the elements to. str is treated as a file name to open. If file-like, descriptor must
be open in text mode. Note that the file descriptor will be closed when this sink is destroyed.

end: str, optional
This value will be written to the file after each element. Defaults to newline character.

mode: str, optional
If file is str, file will be opened in this mode. Defaults to "a" (append mode).

Examples

>>> source = Stream()
>>> source.map(str).sink_to_textfile("test.txt")
>>> source.emit(0)
>>> source.emit(1)
>>> print(open("test.txt", "r").read())
0
1

streamz.sliding_window(upstream, n, return_partial=True, **kwargs)
Produce overlapping tuples of size n

Parameters
return_partial

[bool] If True, yield tuples as soon as any events come in, each tuple being smaller or equal
to the window size. If False, only start yielding tuples once a full window has accrued.
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Examples

>>> source = Stream()
>>> source.sliding_window(3, return_partial=False).sink(print)
>>> for i in range(8):
... source.emit(i)
(0, 1, 2)
(1, 2, 3)
(2, 3, 4)
(3, 4, 5)
(4, 5, 6)
(5, 6, 7)

streamz.Stream(upstream=None, upstreams=None, stream_name=None, loop=None, asynchronous=None,
ensure_io_loop=False)

A Stream is an infinite sequence of data.

Streams subscribe to each other passing and transforming data between them. A Stream object listens for updates
from upstream, reacts to these updates, and then emits more data to flow downstream to all Stream objects that
subscribe to it. Downstream Stream objects may connect at any point of a Stream graph to get a full view of the
data coming off of that point to do with as they will.

Parameters
stream_name: str or None

This is the name of the stream.

asynchronous: boolean or None
Whether or not this stream will be used in asynchronous functions or normal Python func-
tions. Leave as None if you don’t know. True will cause operations like emit to return
awaitable Futures False will use an Event loop in another thread (starts it if necessary)

ensure_io_loop: boolean
Ensure that some IOLoop will be created. If asynchronous is None or False then this will be
in a separate thread, otherwise it will be IOLoop.current

Examples

>>> def inc(x):
... return x + 1

>>> source = Stream() # Create a stream object
>>> s = source.map(inc).map(str) # Subscribe to make new streams
>>> s.sink(print) # take an action whenever an element reaches the end

>>> L = list()
>>> s.sink(L.append) # or take multiple actions (streams can branch)

>>> for i in range(5):
... source.emit(i) # push data in at the source
'1'
'2'
'3'

(continues on next page)
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(continued from previous page)

'4'
'5'
>>> L # and the actions happen at the sinks
['1', '2', '3', '4', '5']

streamz.timed_window(upstream, interval, **kwargs)
Emit a tuple of collected results every interval

Every interval seconds this emits a tuple of all of the results seen so far. This can help to batch data coming
off of a high-volume stream.

streamz.union(*upstreams, **kwargs)
Combine multiple streams into one

Every element from any of the upstreams streams will immediately flow into the output stream. They will not be
combined with elements from other streams.

See also:

Stream.zip
Stream.combine_latest

streamz.unique(upstream, maxsize=None, key=<function identity>, hashable=True, **kwargs)
Avoid sending through repeated elements

This deduplicates a stream so that only new elements pass through. You can control how much of a history is
stored with the maxsize= parameter. For example setting maxsize=1 avoids sending through elements when
one is repeated right after the other.

Parameters
maxsize: int or None, optional

number of stored unique values to check against

key
[function, optional] Function which returns a representation of the incoming data. For ex-
ample key=lambda x: x['a'] could be used to allow only pieces of data with unique
'a' values to pass through.

hashable
[bool, optional] If True then data is assumed to be hashable, else it is not. This is used for
determining how to cache the history, if hashable then either dicts or LRU caches are used,
otherwise a deque is used. Defaults to True.

Examples

>>> source = Stream()
>>> source.unique(maxsize=1).sink(print)
>>> for x in [1, 1, 2, 2, 2, 1, 3]:
... source.emit(x)
1
2
1
3
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streamz.pluck(upstream, pick, **kwargs)
Select elements from elements in the stream.

Parameters
pluck

[object, list] The element(s) to pick from the incoming element in the stream If an instance
of list, will pick multiple elements.

Examples

>>> source = Stream()
>>> source.pluck([0, 3]).sink(print)
>>> for x in [[1, 2, 3, 4], [4, 5, 6, 7], [8, 9, 10, 11]]:
... source.emit(x)
(1, 4)
(4, 7)
(8, 11)

>>> source = Stream()
>>> source.pluck('name').sink(print)
>>> for x in [{'name': 'Alice', 'x': 123}, {'name': 'Bob', 'x': 456}]:
... source.emit(x)
'Alice'
'Bob'

streamz.zip(*upstreams, **kwargs)
Combine streams together into a stream of tuples

We emit a new tuple once all streams have produce a new tuple.

See also:

combine_latest
zip_latest

streamz.zip_latest(lossless, *upstreams, **kwargs)
Combine multiple streams together to a stream of tuples

The stream which this is called from is lossless. All elements from the lossless stream are emitted reguardless
of when they came in. This will emit a new tuple consisting of an element from the lossless stream paired with
the latest elements from the other streams. Elements are only emitted when an element on the lossless stream
are received, similar to combine_latest with the emit_on flag.

See also:

Stream.combine_latest
Stream.zip

streamz.from_iterable(iterable, **kwargs)
Emits items from an iterable.

Parameters
iterable: iterable

An iterable to emit messages from.
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Examples

>>> source = Stream.from_iterable(range(3))
>>> L = source.sink_to_list()
>>> source.start()
>>> L
[0, 1, 2]

streamz.filenames(path, poll_interval=0.1, **kwargs)
Stream over filenames in a directory

Parameters
path: string

Directory path or globstring over which to search for files

poll_interval: Number
Seconds between checking path

start: bool (False)
Whether to start running immediately; otherwise call stream.start() explicitly.

Examples

>>> source = Stream.filenames('path/to/dir')
>>> source = Stream.filenames('path/to/*.csv', poll_interval=0.500)

streamz.from_kafka(topics, consumer_params, poll_interval=0.1, **kwargs)
Accepts messages from Kafka

Uses the confluent-kafka library, https://docs.confluent.io/current/clients/confluent-kafka-python/

Parameters
topics: list of str

Labels of Kafka topics to consume from

consumer_params: dict
Settings to set up the stream, see https://docs.confluent.io/current/clients/
confluent-kafka-python/#configuration https://github.com/edenhill/librdkafka/blob/master/
CONFIGURATION.md Examples: bootstrap.servers, Connection string(s) (host:port) by
which to reach Kafka; group.id, Identity of the consumer. If multiple sources share the
same group, each message will be passed to only one of them.

poll_interval: number
Seconds that elapse between polling Kafka for new messages

start: bool (False)
Whether to start polling upon instantiation
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Examples

>>> source = Stream.from_kafka(['mytopic'],
... {'bootstrap.servers': 'localhost:9092',
... 'group.id': 'streamz'})

streamz.from_kafka_batched(topic, consumer_params, poll_interval='1s', npartitions=None,
refresh_partitions=False, start=False, dask=False, max_batch_size=10000,
keys=False, engine=None, **kwargs)

Get messages and keys (optional) from Kafka in batches

Uses the confluent-kafka library, https://docs.confluent.io/current/clients/confluent-kafka-python/

This source will emit lists of messages for each partition of a single given topic per time interval, if there is new
data. If using dask, one future will be produced per partition per time-step, if there is data.

Checkpointing is achieved through the use of reference counting. A reference counter is emitted downstream for
each batch of data. A callback is triggered when the reference count reaches zero and the offsets are committed
back to Kafka. Upon the start of this function, the previously committed offsets will be fetched from Kafka and
begin reading form there. This will guarantee at-least-once semantics.

Parameters
topic: str

Kafka topic to consume from

consumer_params: dict

Settings to set up the stream, see
https://docs.confluent.io/current/clients/confluent-kafka-python/#configuration
https://github.com/edenhill/librdkafka/blob/master/CONFIGURATION.md
Examples:
bootstrap.servers: Connection string(s) (host:port) by which to reach Kafka
group.id: Identity of the consumer. If multiple sources share the same
group, each message will be passed to only one of them.

poll_interval: number
Seconds that elapse between polling Kafka for new messages

npartitions: int (None)
Number of partitions in the topic.
If None, streamz will poll Kafka to get the number of partitions.

refresh_partitions: bool (False)

Useful if the user expects to increase the number of topic partitions on the
fly, maybe to handle spikes in load. Streamz polls Kafka in every batch to
determine the current number of partitions. If partitions have been added,
streamz will automatically start reading data from the new partitions as well.
If set to False, streamz will not accommodate adding partitions on the fly.
It is recommended to restart the stream after decreasing the number of partitions.

start: bool (False)
Whether to start polling upon instantiation
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max_batch_size: int
The maximum number of messages per partition to be consumed per batch

keys: bool (False)

Whether to extract keys along with the messages.
If True, this will yield each message as a dict:
{‘key’:msg.key(), ‘value’:msg.value()}

engine: str (None)

If engine is set to “cudf”, streamz reads data (messages must be JSON)
from Kafka in an accelerated manner directly into cuDF (GPU) dataframes.
This is done using the RAPIDS custreamz library.

Please refer to RAPIDS cudf API here:
https://docs.rapids.ai/api/cudf/stable/

Folks interested in trying out custreamz would benefit from this
accelerated Kafka reader. If one does not want to use GPUs, they
can use streamz as is, with the default engine=None.

To use this option, one must install custreamz (use the
appropriate CUDA version recipe & Python version)
using a command like the one below, which will install all
GPU dependencies and streamz itself:

conda install -c rapidsai-nightly -c nvidia -c conda-forge | -c defaults custreamz=0.15
python=3.7 cudatoolkit=10.2

More information at: https://rapids.ai/start.html

Important Kafka Configurations
By default, a stream will start reading from the latest offsets
available. Please set ‘auto.offset.reset’: ‘earliest’ in the
consumer configs, if the stream needs to start processing from
the earliest offsets.
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Examples

>>> source = Stream.from_kafka_batched('mytopic',
... {'bootstrap.servers': 'localhost:9092',
... 'group.id': 'streamz'})

streamz.from_textfile(f, poll_interval=0.1, delimiter='\n', from_end=False, **kwargs)
Stream data from a text file

Parameters
f: file or string

Source of the data. If string, will be opened.

poll_interval: Number
Interval to poll file for new data in seconds

delimiter: str
Character(s) to use to split the data into parts

start: bool
Whether to start running immediately; otherwise call stream.start() explicitly.

from_end: bool
Whether to begin streaming from the end of the file (i.e., only emit lines appended after the
stream starts).

Returns
Stream

Examples

>>> source = Stream.from_textfile('myfile.json')
>>> source.map(json.loads).pluck('value').sum().sink(print)
>>> source.start()

streamz.dask.DaskStream(*args, **kwargs)
A Parallel stream using Dask

This object is fully compliant with the streamz.core.Stream object but uses a Dask client for execution.
Operations like map and accumulate submit functions to run on the Dask instance using dask.distributed.
Client.submit and pass around Dask futures. Time-based operations like timed_window, buffer, and so on
operate as normal.

Typically one transfers between normal Stream and DaskStream objects using the Stream.scatter() and
DaskStream.gather() methods.

See also:

dask.distributed.Client
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Examples

>>> from dask.distributed import Client
>>> client = Client()

>>> from streamz import Stream
>>> source = Stream()
>>> source.scatter().map(func).accumulate(binop).gather().sink(...)

streamz.dask.gather(upstream=None, upstreams=None, stream_name=None, loop=None, asynchronous=None,
ensure_io_loop=False)

Wait on and gather results from DaskStream to local Stream

This waits on every result in the stream and then gathers that result back to the local stream. Warning, this can
restrict parallelism. It is common to combine a gather() node with a buffer() to allow unfinished futures to
pile up.

See also:

buffer
scatter

Examples

>>> local_stream = dask_stream.buffer(20).gather()

4.8 Collections API

4.8.1 Collections

Streaming([stream, example, stream_type]) Superclass for streaming collections
Streaming.map_partitions(func, *args, **kwargs) Map a function across all batch elements of this stream
Streaming.accumulate_partitions(func, *args,
...)

Accumulate a function with state across batch elements

Streaming.verify(x) Verify elements that pass through this stream

4.8.2 Batch

Batch ([stream, example]) A Stream of tuples or lists
Batch.filter(predicate) Filter elements by a predicate
Batch.map(func, **kwargs) Map a function across all elements
Batch.pluck(ind) Pick a field out of all elements
Batch.to_dataframe() Convert to a streaming dataframe
Batch.to_stream() Concatenate batches and return base Stream
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4.8.3 Dataframes

DataFrame(*args, **kwargs) A Streaming Dataframe
DataFrame.groupby(other) Groupby aggregations
DataFrame.rolling(window[, min_periods, ...]) Compute rolling aggregations
DataFrame.assign(**kwargs) Assign new columns to this dataframe
DataFrame.sum([start]) Sum frame.
DataFrame.mean([start]) Average frame
DataFrame.cumsum() Cumulative sum
DataFrame.cumprod() Cumulative product
DataFrame.cummin() Cumulative minimum
DataFrame.cummax() Cumulative maximum

GroupBy(root, grouper[, index]) Groupby aggregations on streaming dataframes
GroupBy.count([start]) Groupby-count
GroupBy.mean([with_state, start]) Groupby-mean
GroupBy.size() Groupby-size
GroupBy.std([ddof]) Groupby-std
GroupBy.sum([start]) Groupby-sum
GroupBy.var([ddof]) Groupby-variance

Rolling(sdf, window, min_periods, ...) Rolling aggregations
Rolling.aggregate(*args, **kwargs) Rolling aggregation
Rolling.count(*args, **kwargs) Rolling count
Rolling.max() Rolling maximum
Rolling.mean() Rolling mean
Rolling.median() Rolling median
Rolling.min() Rolling minimum
Rolling.quantile(*args, **kwargs) Rolling quantile
Rolling.std(*args, **kwargs) Rolling standard deviation
Rolling.sum() Rolling sum
Rolling.var(*args, **kwargs) Rolling variance

DataFrame.window([n, value, with_state, start]) Sliding window operations
Window.apply(func) Apply an arbitrary function over each window of data
Window.count() Count elements within window
Window.groupby(other) Groupby-aggregations within window
Window.sum() Sum elements within window
Window.size Number of elements within window
Window.std([ddof]) Compute standard deviation of elements within window
Window.var([ddof]) Compute variance of elements within window
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Rolling.aggregate(*args, **kwargs) Rolling aggregation
Rolling.count(*args, **kwargs) Rolling count
Rolling.max() Rolling maximum
Rolling.mean() Rolling mean
Rolling.median() Rolling median
Rolling.min() Rolling minimum
Rolling.quantile(*args, **kwargs) Rolling quantile
Rolling.std(*args, **kwargs) Rolling standard deviation
Rolling.sum() Rolling sum
Rolling.var(*args, **kwargs) Rolling variance

PeriodicDataFrame([datafn, interval, dask, ...]) A streaming dataframe using the asyncio ioloop to poll
a callback fn

Random([freq, interval, dask, start, datafn]) PeriodicDataFrame providing random values by default

4.8.4 Details

class streamz.collection.Streaming(stream=None, example=None, stream_type=None)
Superclass for streaming collections

Do not create this class directly, use one of the subclasses instead.

Parameters
stream: streamz.Stream
example: object

An object to represent an example element of this stream

See also:

streamz.dataframe.StreamingDataFrame
streamz.dataframe.StreamingBatch

Attributes
current_value

Methods

accumulate_partitions(func, *args, **kwargs) Accumulate a function with state across batch ele-
ments

map_partitions(func, *args, **kwargs) Map a function across all batch elements of this
stream

register_api([modifier, attribute_name]) Add callable to Stream API
verify(x) Verify elements that pass through this stream
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emit
register_plugin_entry_point
start
stop

accumulate_partitions(func, *args, **kwargs)
Accumulate a function with state across batch elements

See also:

Streaming.map_partitions

static map_partitions(func, *args, **kwargs)
Map a function across all batch elements of this stream

The output stream type will be determined by the action of that function on the example

See also:

Streaming.accumulate_partitions

verify(x)
Verify elements that pass through this stream

class streamz.batch.Batch(stream=None, example=None)
A Stream of tuples or lists

This streaming collection manages batches of Python objects such as lists of text or dictionaries. By batching
many elements together we reduce overhead from Python.

This library is typically used at the early stages of data ingestion before handing off to streaming dataframes

Examples

>>> text = Streaming.from_file(myfile)
>>> b = text.partition(100).map(json.loads)

Attributes
current_value
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Methods

accumulate_partitions(func, *args, **kwargs) Accumulate a function with state across batch ele-
ments

filter(predicate) Filter elements by a predicate
map(func, **kwargs) Map a function across all elements
map_partitions(func, *args, **kwargs) Map a function across all batch elements of this

stream
pluck(ind) Pick a field out of all elements
register_api([modifier, attribute_name]) Add callable to Stream API
sum() Sum elements
to_dataframe() Convert to a streaming dataframe
to_stream() Concatenate batches and return base Stream
verify(x) Verify elements that pass through this stream

emit
register_plugin_entry_point
start
stop

accumulate_partitions(func, *args, **kwargs)
Accumulate a function with state across batch elements

See also:

Streaming.map_partitions

filter(predicate)
Filter elements by a predicate

map(func, **kwargs)
Map a function across all elements

static map_partitions(func, *args, **kwargs)
Map a function across all batch elements of this stream

The output stream type will be determined by the action of that function on the example

See also:

Streaming.accumulate_partitions

pluck(ind)
Pick a field out of all elements

classmethod register_api(modifier=<function identity>, attribute_name=None)
Add callable to Stream API

This allows you to register a new method onto this class. You can use it as a decorator.:

>>> @Stream.register_api()
... class foo(Stream):
... ...

(continues on next page)
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(continued from previous page)

>>> Stream().foo(...) # this works now

It attaches the callable as a normal attribute to the class object. In doing so it respects inheritance (all
subclasses of Stream will also get the foo attribute).

By default callables are assumed to be instance methods. If you like you can include modifiers to apply
before attaching to the class as in the following case where we construct a staticmethod.

>>> @Stream.register_api(staticmethod)
... class foo(Stream):
... ...

>>> Stream.foo(...) # Foo operates as a static method

You can also provide an optional attribute_name argument to control the name of the attribute your
callable will be attached as.

>>> @Stream.register_api(attribute_name="bar")
... class foo(Stream):
... ...

>> Stream().bar(. . . ) # foo was actually attached as bar

sum()

Sum elements

to_dataframe()

Convert to a streaming dataframe

This calls pd.DataFrame on all list-elements of this stream

to_stream()

Concatenate batches and return base Stream

Returned stream will be composed of single elements

verify(x)
Verify elements that pass through this stream

class streamz.dataframe.DataFrame(*args, **kwargs)
A Streaming Dataframe

This is a logical collection over a stream of Pandas dataframes. Operations on this object will translate to the
appropriate operations on the underlying Pandas dataframes.

See also:

Series

Attributes
columns
current_value
dtypes
index
plot
size
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size of frame

Methods

accumulate_partitions(func, *args, **kwargs) Accumulate a function with state across batch ele-
ments

assign(**kwargs) Assign new columns to this dataframe
count([start]) Count of frame
cummax() Cumulative maximum
cummin() Cumulative minimum
cumprod() Cumulative product
cumsum() Cumulative sum
from_periodic

groupby(other) Groupby aggregations
map_partitions(func, *args, **kwargs) Map a function across all batch elements of this

stream
mean([start]) Average frame
random

register_api([modifier, attribute_name]) Add callable to Stream API
reset_index() Reset Index
rolling(window[, min_periods, with_state, start]) Compute rolling aggregations
round([decimals]) Round elements in frame
set_index(index, **kwargs) Set Index
sum([start]) Sum frame.
tail([n]) Round elements in frame
to_frame() Convert to a streaming dataframe
verify(x) Verify consistency of elements that pass through this

stream
window([n, value, with_state, start]) Sliding window operations

aggregate
astype
emit
ewm
expanding
map
query
register_plugin_entry_point
start
stop

accumulate_partitions(func, *args, **kwargs)
Accumulate a function with state across batch elements

See also:

Streaming.map_partitions
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assign(**kwargs)
Assign new columns to this dataframe

Alternatively use setitem syntax

Examples

>>> sdf = sdf.assign(z=sdf.x + sdf.y)
>>> sdf['z'] = sdf.x + sdf.y

count(start=None)
Count of frame

Parameters
start: None or resulting Python object type from the operation

Accepts a valid start state.

cummax()

Cumulative maximum

cummin()

Cumulative minimum

cumprod()

Cumulative product

cumsum()

Cumulative sum

from_periodic = <function PeriodicDataFrame>

groupby(other)
Groupby aggregations

static map_partitions(func, *args, **kwargs)
Map a function across all batch elements of this stream

The output stream type will be determined by the action of that function on the example

See also:

Streaming.accumulate_partitions

mean(start=None)
Average frame

Parameters
start: None or resulting Python object type from the operation

Accepts a valid start state.

random = <function Random>

classmethod register_api(modifier=<function identity>, attribute_name=None)
Add callable to Stream API

This allows you to register a new method onto this class. You can use it as a decorator.:
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>>> @Stream.register_api()
... class foo(Stream):
... ...

>>> Stream().foo(...) # this works now

It attaches the callable as a normal attribute to the class object. In doing so it respects inheritance (all
subclasses of Stream will also get the foo attribute).

By default callables are assumed to be instance methods. If you like you can include modifiers to apply
before attaching to the class as in the following case where we construct a staticmethod.

>>> @Stream.register_api(staticmethod)
... class foo(Stream):
... ...

>>> Stream.foo(...) # Foo operates as a static method

You can also provide an optional attribute_name argument to control the name of the attribute your
callable will be attached as.

>>> @Stream.register_api(attribute_name="bar")
... class foo(Stream):
... ...

>> Stream().bar(. . . ) # foo was actually attached as bar

reset_index()

Reset Index

rolling(window, min_periods=1, with_state=False, start=())
Compute rolling aggregations

When followed by an aggregation method like sum, mean, or std this produces a new Streaming dataframe
whose values are aggregated over that window.

The window parameter can be either a number of rows or a timedelta like ``”2 minutes”` in which case the
index should be a datetime index.

This operates by keeping enough of a backlog of records to maintain an accurate stream. It performs a copy
at every added dataframe. Because of this it may be slow if the rolling window is much larger than the
average stream element.

Parameters
window: int or timedelta

Window over which to roll

with_state: bool (False)
Whether to return the state along with the result as a tuple (state, result). State may be
needed downstream for a number of reasons like checkpointing.

start: () or resulting Python object type from the operation
Accepts a valid start state.

Returns
Rolling object

See also:
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DataFrame.window
more generic window operations

round(decimals=0)
Round elements in frame

set_index(index, **kwargs)
Set Index

property size

size of frame

sum(start=None)
Sum frame.

Parameters
start: None or resulting Python object type from the operation

Accepts a valid start state.

tail(n=5)
Round elements in frame

to_frame()

Convert to a streaming dataframe

verify(x)
Verify consistency of elements that pass through this stream

window(n=None, value=None, with_state=False, start=None)
Sliding window operations

Windowed operations are defined over a sliding window of data, either with a fixed number of elements:

>>> df.window(n=10).sum() # sum of the last ten elements

or over an index value range (index must be monotonic):

>>> df.window(value='2h').mean() # average over the last two hours

Windowed dataframes support all normal arithmetic, aggregations, and groupby-aggregations.

Parameters
n: int

Window of number of elements over which to roll

value: str
Window of time over which to roll

with_state: bool (False)
Whether to return the state along with the result as a tuple (state, result). State may be
needed downstream for a number of reasons like checkpointing.

start: None or resulting Python object type from the operation
Accepts a valid start state.

See also:

DataFrame.rolling
mimic’s Pandas rolling aggregations
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Examples

>>> df.window(n=10).std()
>>> df.window(value='2h').count()

>>> w = df.window(n=100)
>>> w.groupby(w.name).amount.sum()
>>> w.groupby(w.x % 10).y.var()

class streamz.dataframe.Rolling(sdf, window, min_periods, with_state, start)
Rolling aggregations

This intermediate class enables rolling aggregations across either a fixed number of rows or a time window.

Examples

>>> sdf.rolling(10).x.mean()
>>> sdf.rolling('100ms').x.mean()

Methods

aggregate(*args, **kwargs) Rolling aggregation
count(*args, **kwargs) Rolling count
max() Rolling maximum
mean() Rolling mean
median() Rolling median
min() Rolling minimum
quantile(*args, **kwargs) Rolling quantile
std(*args, **kwargs) Rolling standard deviation
sum() Rolling sum
var(*args, **kwargs) Rolling variance

aggregate(*args, **kwargs)
Rolling aggregation

count(*args, **kwargs)
Rolling count

max()

Rolling maximum

mean()

Rolling mean

median()

Rolling median

min()

Rolling minimum
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quantile(*args, **kwargs)
Rolling quantile

std(*args, **kwargs)
Rolling standard deviation

sum()

Rolling sum

var(*args, **kwargs)
Rolling variance

class streamz.dataframe.Window(sdf, n=None, value=None, with_state=False, start=None)
Windowed aggregations

This provides a set of aggregations that can be applied over a sliding window of data.

See also:

DataFrame.window
contains full docstring

Attributes
columns
dtypes
example
index
size

Number of elements within window

Methods

apply(func) Apply an arbitrary function over each window of data
count() Count elements within window
groupby(other) Groupby-aggregations within window
mean() Average elements within window
std([ddof]) Compute standard deviation of elements within win-

dow
sum() Sum elements within window
value_counts() Count groups of elements within window
var([ddof]) Compute variance of elements within window

aggregate
full
map_partitions
reset_index

apply(func)
Apply an arbitrary function over each window of data

count()

Count elements within window
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groupby(other)
Groupby-aggregations within window

mean()

Average elements within window

property size

Number of elements within window

std(ddof=1)
Compute standard deviation of elements within window

sum()

Sum elements within window

value_counts()

Count groups of elements within window

var(ddof=1)
Compute variance of elements within window

class streamz.dataframe.GroupBy(root, grouper, index=None)
Groupby aggregations on streaming dataframes

Methods

count([start]) Groupby-count
mean([with_state, start]) Groupby-mean
size() Groupby-size
std([ddof]) Groupby-std
sum([start]) Groupby-sum
var([ddof]) Groupby-variance

count(start=None)
Groupby-count

Parameters
start: None or resulting Python object type from the operation

Accepts a valid start state.

mean(with_state=False, start=None)
Groupby-mean

Parameters
start: None or resulting Python object type from the operation

Accepts a valid start state.

size()

Groupby-size

std(ddof=1)
Groupby-std
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sum(start=None)
Groupby-sum

Parameters
start: None or resulting Python object type from the operation

Accepts a valid start state.

var(ddof=1)
Groupby-variance

class streamz.dataframe.Random(freq='100ms', interval='500ms', dask=False, start=True, datafn=<function
random_datablock>)

PeriodicDataFrame providing random values by default

Accepts same parameters as PeriodicDataFrame, plus freq, a string that will be converted to a pd.Timedelta and
passed to the ‘datafn’.

Useful mainly for examples and docs.

Attributes
columns
current_value
dtypes
index
plot
size

size of frame
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Methods

accumulate_partitions(func, *args, **kwargs) Accumulate a function with state across batch ele-
ments

assign(**kwargs) Assign new columns to this dataframe
count([start]) Count of frame
cummax() Cumulative maximum
cummin() Cumulative minimum
cumprod() Cumulative product
cumsum() Cumulative sum
from_periodic

groupby(other) Groupby aggregations
map_partitions(func, *args, **kwargs) Map a function across all batch elements of this

stream
mean([start]) Average frame
random

register_api([modifier, attribute_name]) Add callable to Stream API
reset_index() Reset Index
rolling(window[, min_periods, with_state, start]) Compute rolling aggregations
round([decimals]) Round elements in frame
set_index(index, **kwargs) Set Index
sum([start]) Sum frame.
tail([n]) Round elements in frame
to_frame() Convert to a streaming dataframe
verify(x) Verify consistency of elements that pass through this

stream
window([n, value, with_state, start]) Sliding window operations

aggregate
astype
emit
ewm
expanding
map
query
register_plugin_entry_point
start
stop
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4.9 Asynchronous Computation

This section is only relevant if you want to use time-based functionality. If you are only using operations like map and
accumulate then you can safely skip this section.

When using time-based flow control like rate_limit, delay, or timed_window Streamz relies on the Tornado frame-
work for concurrency. This allows us to handle many concurrent operations cheaply and consistently within a single
thread. However, this also adds complexity and requires some understanding of asynchronous programming. There
are a few different ways to use Streamz with a Tornado event loop.

We give a few examples below that all do the same thing, but with different styles. In each case we use the following
toy functions:

from tornado import gen
import time

def increment(x):
""" A blocking increment function

Simulates a computational function that was not designed to work
asynchronously
"""
time.sleep(0.1)
return x + 1

@gen.coroutine
def write(x):

""" A non-blocking write function

Simulates writing to a database asynchronously
"""
yield gen.sleep(0.2)
print(x)

4.9.1 Within the Event Loop

You may have an application that runs strictly within an event loop.

from streamz import Stream
from tornado.ioloop import IOLoop

@gen.coroutine
def f():

source = Stream(asynchronous=True) # tell the stream we're working asynchronously
source.map(increment).rate_limit(0.500).sink(write)

for x in range(10):
yield source.emit(x)

IOLoop().run_sync(f)

We call Stream with the asynchronous=True keyword, informing it that it should expect to operate within an event
loop. This ensures that calls to emit return Tornado futures rather than block. We wait on results using yield.
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yield source.emit(x) # waits until the pipeline is ready

This would also work with async-await syntax in Python 3

from streamz import Stream
from tornado.ioloop import IOLoop

async def f():
source = Stream(asynchronous=True) # tell the stream we're working asynchronously
source.map(increment).rate_limit(0.500).sink(write)

for x in range(10):
await source.emit(x)

IOLoop().run_sync(f)

4.9.2 Event Loop on a Separate Thread

Sometimes the event loop runs on a separate thread. This is common when you want to support interactive workloads
(the user needs their own thread for interaction) or when using Dask (next section).

from streamz import Stream

source = Stream(asynchronous=False) # starts IOLoop in separate thread
source.map(increment).rate_limit('500ms').sink(write)

for x in range(10):
source.emit(x)

In this case we pass asynchronous=False to inform the stream that it is expected to perform time-based computation
(our write function is a coroutine) but that it should not expect to run in an event loop, and so needs to start its own
in a separate thread. Now when we call source.emit normally without using yield or await the emit call blocks,
waiting on a coroutine to finish within the IOLoop.

All functions here happen on the IOLoop. This is good for consistency, but can cause other concurrent applications
to become unresponsive if your functions (like increment) block for long periods of time. You might address this by
using Dask (see below) which will offload these computations onto separate threads or processes.

4.9.3 Using Dask

Dask is a parallel computing library that uses Tornado for concurrency and threads for computation. The DaskStream
object is a drop-in replacement for Stream (mostly). Typically we create a Dask client, and then scatter a local
Stream to become a DaskStream.

from dask.distributed import Client
client = Client(processes=False) # starts thread pool, IOLoop in separate thread

from streamz import Stream
source = Stream()
(source.scatter() # scatter local elements to cluster, creating a DaskStream

.map(increment) # map a function remotely
(continues on next page)
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.buffer(5) # allow five futures to stay on the cluster at any time

.gather() # bring results back to local process

.sink(write)) # call write locally

for x in range(10):
source.emit(x)

This operates very much like the synchronous case in terms of coding style (no @gen.coroutine or yield) but
does computations on separate threads. This also provides parallelism and access to a dashboard at http://localhost:
8787/status .

4.9.4 Asynchronous Dask

Dask can also operate within an event loop if preferred. Here you can get the non-blocking operation within an event
loop while also offloading computations to separate threads.

from dask.distributed import Client
from tornado.ioloop import IOLoop

async def f():
client = await Client(processes=False, asynchronous=True)
source = Stream(asynchronous=True)
source.scatter().map(increment).rate_limit('500ms').gather().sink(write)

for x in range(10):
await source.emit(x)

IOLoop().run_sync(f)

4.10 Visualizing streamz

A variety of tools are available to help you understand, debug, visualize your streaming objects:

• Most Streamz objects automatically display themselves in Jupyter notebooks, periodically updating their visual
representation as text or tables by registering events with the Tornado IOLoop used by Jupyter

• The network graph underlying a stream can be visualized using dot to render a PNG using
Stream.visualize(filename)

• Streaming data can be visualized using the optional separate packages hvPlot, HoloViews, and Panel (see below)
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4.10.1 hvplot.streamz

hvPlot is a separate plotting library providing Bokeh-based plots for Pandas dataframes and a variety of other object
types, including streamz DataFrame and Series objects.

See hvplot.holoviz.org for instructions on how to install hvplot. Once it is installed, you can use the Pandas .plot() API
to get a dynamically updating plot in Jupyter or in Bokeh/Panel Server:

import hvplot.streamz
from streamz.dataframe import Random

df = Random()
df.hvplot(backlog=100)

See the streaming section of the hvPlot user guide for more details, and the dataframes.ipynb example that comes with
streamz for a simple runnable example.

4.10.2 HoloViews

hvPlot is built on HoloViews, and you can also use HoloViews directly if you want more control over events and how
they are processed. See the HoloViews user guide for more details.

4.10.3 Panel

Panel is a general purpose dashboard and app framework, supporting a wide variety of displayable objects as “Panes”.
Panel provides a streamz Pane for rendering arbitrary streamz objects, and streamz DataFrames are handled by the
Panel DataFrame Pane.

4.11 Plugins

In addition to using @Stream.register_api() decorator, custom stream nodes can be added to Streamz by installing
3rd-party Python packages.

4.11.1 Known plugins

Extras

These plugins are supported by the Streamz community and can be installed as extras, e.g. pip install
streamz[kafka].

There are no plugins here yet, but hopefully soon there will be.
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4.11.2 Entry points

Plugins register themselves with Streamz by using entry_points argument in setup.py:

# setup.py

from setuptools import setup

setup(
name="streamz_example_plugin",
version="0.0.1",
entry_points={

"streamz.nodes": [
"repeat = streamz_example_plugin:RepeatNode"

]
}

)

In this example, RepeatNode class will be imported from streamz_example_plugin package and will be available
as Stream.repeat. In practice, class name and entry point name (the part before = in entry point definition) are
usually the same, but they can be different.

Different kinds of add-ons go into different entry point groups:

Node type Required parent class Entry point group
Source streamz.Source streamz.sources
Node streamz.Stream streamz.nodes
Sink streamz.Sink streamz.sinks

Lazy loading

Streamz will attach methods from existing plugins to the Stream class when it’s imported, but actual classes will be
loaded only when the corresponding Stream method is first called. Streamz will also validate the loaded class before
attaching it and will raise an appropriate exception if validation fails.

4.11.3 Reference implementation

Let’s look at how stream nodes can be implemented.

# __init__.py

from tornado import gen
from streamz import Stream

class RepeatNode(Stream):

def __init__(self, upstream, n, **kwargs):
super().__init__(upstream, ensure_io_loop=True, **kwargs)
self._n = n

@gen.coroutine
(continues on next page)
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def update(self, x, who=None, metadata=None):
for _ in range(self._n):

yield self._emit(x, metadata=metadata)

As you can see, implementation is the same as usual, but there’s no @Stream.register_api()— Streamz will take
care of that when loading the plugin. It will still work if you add the decorator, but you don’t have to.
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