

Streamz

Streamz helps you build pipelines to manage continuous streams of data. It is
simple to use in simple cases, but also supports complex pipelines that involve
branching, joining, flow control, feedback, back pressure, and so on.

Optionally, Streamz can also work with both Pandas [https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html] and cuDF [https://docs.rapids.ai/api/cudf/stable/] dataframes, to provide sensible streaming operations on continuous tabular data.

To learn more about how to use streams, visit Core documentation.

Motivation

Continuous data streams arise in many applications like the following:

	Log processing from web servers

	Scientific instrument data like telemetry or image processing pipelines

	Financial time series

	Machine learning pipelines for real-time and on-line learning

	…

Sometimes these pipelines are very simple, with a linear sequence of processing
steps:

[image: a simple streamz pipeline]And sometimes these pipelines are more complex, involving branching, look-back
periods, feedback into earlier stages, and more.

[image: a more complex streamz pipeline]Streamz endeavors to be simple in simple cases, while also being powerful
enough to let you define custom and powerful pipelines for your application.

Why not Python generator expressions?

Python users often manage continuous sequences of data with iterators or
generator expressions.

def fib():
 a, b = 0, 1
 while True:
 yield a
 a, b = b, a + b

sequence = (f(n) for n in fib())

However iterators become challenging when you want to fork them or control the
flow of data. Typically people rely on tools like itertools.tee, and
zip.

x1, x2 = itertools.tee(x, 2)
y1 = map(f, x1)
y2 = map(g, x2)

However this quickly become cumbersome, especially when building complex
pipelines.

Installation

To install either use:

	conda-forge: conda install streamz -c conda-forge

	pip: pip install streamz

	dev: git clone https://github.com/python-streamz/streamz followed by pip install -e streamz/

Quickstart

The streamz project offers a Docker image for the convenience of quickly trying out streamz and its features.
The purpose of the Dockerfile at this time is not to be used in a production
environment but rather for experimentation, learning, or new feature development.

Its most common use would be to interact with the streamz example jupyter notebooks. Lets walk through the steps needed for this.

	Build the Docker container

$ docker/build.sh

	Run the Docker container

$ docker/run.sh

	Interact with Jupyter Lab on the container in your browser at http://localhost:8888/.

Related Work

Streamz is similar to reactive
programming systems like RxPY [https://github.com/ReactiveX/RxPY] or big
data streaming systems like Apache Flink [https://flink.apache.org/],
Apache Beam [https://beam.apache.org/get-started/quickstart-py/] or
Apache Spark Streaming [https://spark.apache.org/streaming/].

Core Streams

This document takes you through how to build basic streams and push data
through them. We start with map and accumulate, talk about emitting data, then
discuss flow control and finally back pressure. Examples are used throughout.

Map, emit, and sink

	Stream.emit(x[, asynchronous, metadata])

	Push data into the stream at this point

	map(upstream, func, *args, **kwargs)

	Apply a function to every element in the stream

	sink(upstream, func, *args, **kwargs)

	Apply a function on every element

You can create a basic pipeline by instantiating the Streamz
object and then using methods like map, accumulate, and
sink.

from streamz import Stream

def increment(x):
 return x + 1

source = Stream()
source.map(increment).sink(print)

The map and sink methods both take a function and apply that
function to every element in the stream. The map method returns a
new stream with the modified elements while sink is typically used
at the end of a stream for final actions.

To push data through our pipeline we call emit

>>> source.emit(1)
2
>>> source.emit(2)
3
>>> source.emit(10)
11

As we can see, whenever we push data in at the source, our pipeline calls
increment on that data, and then calls print on that data, resulting in
incremented results being printed to the screen.

Often we call emit from some other continuous process, like reading lines
from a file

import json

data = []

source = Stream()
source.map(json.loads).sink(data.append)

for line in open('myfile.json'):
 source.emit(line)

Accumulating State

	accumulate(upstream, func[, start, ...])

	Accumulate results with previous state

Map and sink both pass data directly through a stream. One piece of data comes
in, either one or zero pieces go out. Accumulate allows you to track some
state within the pipeline. It takes an accumulation function that takes the
previous state, the new element, and then returns a new state and a new element
to emit. In the following example we make an accumulator that keeps a running
total of the elements seen so far.

def add(x, y):
 return x + y

source = Stream()
source.accumulate(add).sink(print)

>>> source.emit(1)
1
>>> source.emit(2)
3
>>> source.emit(3)
6
>>> source.emit(4)
10

The accumulation function above is particularly simple, the state that we store
and the value that we emit are the same. In more complex situations we might
want to keep around different state than we emit. For example lets count the
number of distinct elements that we have seen so far.

def num_distinct(state, new):
 state.add(new)
 return state, len(state)

 source = Stream()
 source.accumulate(num_distinct, returns_state=True, start=set()).sink(print)

 >>> source.emit('cat')
 1
 >>> source.emit('dog')
 2
 >>> source.emit('cat')
 2
 >>> source.emit('mouse')
 3

Accumulators allow us to build many interesting operations.

Flow Control

	buffer(upstream, n, **kwargs)

	Allow results to pile up at this point in the stream

	flatten([upstream, upstreams, stream_name, ...])

	Flatten streams of lists or iterables into a stream of elements

	partition(upstream, n[, timeout, key])

	Partition stream into tuples of equal size

	sliding_window(upstream, n[, return_partial])

	Produce overlapping tuples of size n

	union(*upstreams, **kwargs)

	Combine multiple streams into one

	unique(upstream[, maxsize, key, hashable])

	Avoid sending through repeated elements

You can batch and slice streams into streams of batches in various ways with
operations like partition, buffer, and sliding_window

source = Stream()
source.sliding_window(3, return_partial=False).sink(print)

>>> source.emit(1)
>>> source.emit(2)
>>> source.emit(3)
(1, 2, 3)
>>> source.emit(4)
(2, 3, 4)
>>> source.emit(5)
(3, 4, 5)

Branching and Joining

	combine_latest(*upstreams, **kwargs)

	Combine multiple streams together to a stream of tuples

	zip(*upstreams, **kwargs)

	Combine streams together into a stream of tuples

	zip_latest(lossless, *upstreams, **kwargs)

	Combine multiple streams together to a stream of tuples

You can branch multiple streams off of a single stream. Elements that go into
the input will pass through to both output streams. Note: graphviz and
networkx need to be installed to visualize the stream graph.

def increment(x):
 return x + 1

def decrement(x):
 return x - 1

source = Stream()
a = source.map(increment).sink(print)
b = source.map(decrement).sink(print)
b.visualize(rankdir='LR')

[image: a branching stream]>>> source.emit(1)
0
2
>>> source.emit(10)
9
11

Similarly you can also combine multiple streams together with operations like
zip, which emits once both streams have provided a new element, or
combine_latest which emits when either stream has provided a new element.

source = Stream()
a = source.map(increment)
b = source.map(decrement)
c = a.zip(b).map(sum).sink(print)

>>> source.emit(10)
20 # 9 + 11

[image: a branching and zipped stream]This branching and combining is where Python iterators break down, and projects
like streamz start becoming valuable.

Processing Time and Back Pressure

	delay(upstream, interval, **kwargs)

	Add a time delay to results

	rate_limit(upstream, interval, **kwargs)

	Limit the flow of data

	timed_window(upstream, interval, **kwargs)

	Emit a tuple of collected results every interval

Time-based flow control depends on having an active Tornado [http://www.tornadoweb.org/en/stable/] event loop. Tornado is active by
default within a Jupyter notebook, but otherwise you will need to learn at
least a little about asynchronous programming in Python to use these features.
Learning async programming is not mandatory, the rest of the project will work
fine without Tornado.

You can control the flow of data through your stream over time. For example
you may want to batch all elements that have arrived in the last minute, or
slow down the flow of data through sensitive parts of the pipeline,
particularly when they may be writing to slow resources like databases.

Streamz helps you do these operations both with operations like delay,
rate_limit, and timed_window, and also by passing Tornado [http://www.tornadoweb.org/en/stable/] futures back through the
pipeline. As data moves forward through the pipeline, futures that signal work
completed move backwards. In this way you can reliably avoid buildup of data
in slower parts of your pipeline.

Lets consider the following example that reads JSON data from a file and
inserts it into a database using an async-aware insertion function.

async def write_to_database(...):
 ...

build pipeline
source = Source()
source.map(json.loads).sink(write_to_database)

async def process_file(fn):
 with open(fn) as f:
 for line in f:
 await source.emit(line) # wait for pipeline to clear

As we call the write_to_database function on our parsed JSON data it
produces a future for us to signal that the writing process has finished.
Streamz will ensure that this future is passed all the way back to the
source.emit call, so that user code at the start of our pipeline can await
on it. This allows us to avoid buildup even in very large and complex streams.
We always pass futures back to ensure responsiveness.

But wait, maybe we don’t mind having a few messages in memory at once, this
will help steady the flow of data so that we can continue to work even if our
sources or sinks become less productive for brief periods. We might add a
buffer just before writing to the database.

source.map(json.loads).buffer(100).sink(write_to_database)

And if we are pulling from an API with known limits then we might want to
introduce artificial rate limits at 10ms.

source.rate_limit(0.010).map(json.loads).buffer(100).sink(write_to_database)

Operations like these (and more) allow us to shape the flow of data through our
pipelines.

Modifying and Cleaning up Streams

When you call Stream you create a stream. When you call any method on a
Stream, like Stream.map, you also create a stream. All operations can
be chained together. Additionally, as discussed in the section on Branching,
you can split multiple streams off of any point. Streams will pass their
outputs on to all downstream streams so that anyone can hook in at any point,
and get a full view of what that stream is producing.

If you delete a part of a stream then it will stop getting data. Streamz
follows normal Python garbage collection semantics so once all references to a
stream have been lost those operations will no longer occur. The one counter
example to this is sink, which is intended to be used with side effects and
will stick around even without a reference.

Note

Sink streams store themselves in streamz.sinks._global_sinks. You
can remove them permanently by clearing that collection.

>>> source.map(print) # this doesn't do anything
>>> source.sink(print) # this stays active even without a reference
>>> s = source.map(print) # this works too because we have a handle to s

Recursion and Feedback

By connecting sources to sinks you can create feedback loops.
As an example, here is a tiny web crawler:

from streamz import Stream
source = Stream()

pages = source.unique()
pages.sink(print)

content = pages.map(requests.get).map(lambda x: x.content)
links = content.map(get_list_of_links).flatten()
links.connect(source) # pipe new links back into pages

>>> source.emit('http://github.com')
http://github.com
http://github.com/features
http://github.com/business
http://github.com/explore
http://github.com/pricing
...

[image: the graph of the cyclic web crawler]
Note

Execution order is important here, as if the print was ordered after
the map; get node then the print would never run.

Performance

Streamz adds microsecond overhead to normal Python operations.

from streamz import Stream

source = Stream()

def inc(x):
 return x + 1

source.sink(inc)

In [5]: %timeit source.emit(1)
100000 loops, best of 3: 3.19 µs per loop

In [6]: %timeit inc(1)
10000000 loops, best of 3: 91.5 ns per loop

You may want to avoid pushing millions of individual elements per second
through a stream. However, you can avoid performance issues by collecting lots
of data into single elements, for example by pushing through Pandas dataframes
instead of individual integers and strings. This will be faster regardless,
just because projects like NumPy and Pandas can be much faster than Python
generally.

In the following example we pass filenames through a stream, convert them to
Pandas dataframes, and then map pandas-level functions on those dataframes.
For operations like this Streamz adds virtually no overhead.

source = Stream()
s = source.map(pd.read_csv).map(lambda df: df.value.sum()).accumulate(add)

for fn in glob('data/2017-*-*.csv'):
 source.emit(fn)

Streams provides higher level APIs for situations just like this one. You may
want to read further about collections

Metadata

Metadata can be emitted into the pipeline to accompany the data as a
list of dictionaries. Most functions will pass the metadata to the
downstream function without making any changes. However, functions
that make the pipeline asynchronous require logic that dictates how
and when the metadata will be passed downstream. Synchronous functions
and asynchronous functions that have a 1:1 ratio of the number of
values on the input to the number of values on the output will emit
the metadata collection without any modification. However, functions
that have multiple input streams or emit collections of data will emit
the metadata associated with the emitted data as a collection.

Reference Counting and Checkpointing

Checkpointing is achieved in Streamz through the use of reference
counting. With this method, a checkpoint can be saved when and only
when data has progressed through all of the the pipeline without any
issues. This prevents data loss and guarantees at-least-once
semantics.

Any node that caches or holds data after it returns increments the
reference counter associated with the given data by one. When a node
is no longer holding the data, it will release it by decrementing the
counter by one. When the counter changes to zero, a callback
associated with the data is triggered.

References are passed in the metadata as a value of the ref
keyword. Each metadata object contains only one reference counter
object.

DataFrames

When handling large volumes of streaming tabular data it is often more
efficient to pass around larger Pandas dataframes with many rows each rather
than pass around individual Python tuples or dicts. Handling and computing on
data with Pandas can be much faster than operating on individual Python objects.

So one could imagine building streaming dataframe pipelines using the .map
and .accumulate streaming operators with functions that consume and produce
Pandas dataframes as in the following example:

from streamz import Stream

def query(df):
 return df[df.name == 'Alice']

def aggregate(acc, df):
 return acc + df.amount.sum()

stream = Stream()
stream.map(query).accumulate(aggregate, start=0)

This is fine, and straightforward to do if you understand streamz.core ,
Pandas, and have some skill with developing algorithms.

Streaming Dataframes

The streamz.dataframe module provides a streaming dataframe object that
implements many of these algorithms for you. It provides a Pandas-like
interface on streaming data. Our example above is rewritten below using
streaming dataframes:

import pandas as pd
from streamz.dataframe import DataFrame

example = pd.DataFrame({'name': [], 'amount': []})
sdf = DataFrame(stream, example=example)

sdf[sdf.name == 'Alice'].amount.sum()

The two examples are identical in terms of performance and execution. The
resulting streaming dataframe contains a .stream attribute which is
equivalent to the stream produced in the first example. Streaming
dataframes are only syntactic sugar on core streams.

Supported Operations

Streaming dataframes support the following classes of operations

	Elementwise operations like df.x + 1

	Filtering like df[df.name == 'Alice']

	Column addition like df['z'] = df.x + df.y

	Reductions like df.amount.mean()

	Groupby-aggregations like df.groupby(df.name).amount.mean()

	Windowed aggregations (fixed length) like df.window(n=100).amount.sum()

	Windowed aggregations (index valued) like df.window(value='2h').amount.sum()

	Windowed groupby aggregations like df.window(value='2h').groupby('name').amount.sum()

DataFrame Aggregations

Dataframe aggregations are composed of an aggregation (like sum, mean, …) and
a windowing scheme (fixed sized windows, index-valued, all time, …)

Aggregations

Streaming Dataframe aggregations are built from three methods

	initial: Creates initial state given an empty example dataframe

	on_new: Updates state and produces new result to emit given new data

	on_old: Updates state and produces new result to emit given decayed data

So a simple implementation of sum as an aggregation might look like the
following:

from streamz.dataframe import Aggregation

class Mean(Aggregation):
 def initial(self, new):
 state = new.iloc[:0].sum(), new.iloc[:0].count()
 return state

 def on_new(self, state, new):
 total, count = state
 total = total + new.sum()
 count = count + new.count()
 new_state = (total, count)
 new_value = total / count
 return new_state, new_value

 def on_old(self, state, old):
 total, count = state
 total = total - old.sum() # switch + for - here
 count = count - old.count() # switch + for - here
 new_state = (total, count)
 new_value = total / count
 return new_state, new_value

These aggregations can then used in a variety of different windowing schemes
with the aggregate method as follows:

df.aggregate(Mean())

df.window(n=100).aggregate(Mean())

df.window(value='60s').aggregate(Mean())

whose job it is to deliver new and old data to your aggregation for processing.

Windowing Schemes

Different windowing schemes like fixed sized windows (last 100 elements) or
value-indexed windows (last two hours of data) will track newly arrived and
decaying data and call these methods accordingly. The mechanism to track data
arriving and leaving is kept orthogonal from the aggregations themselves.
These windowing schemes include the following:

	All previous data. Only initial and on_new are called, on_old
is never called.

>>> df.sum()

	The previous n elements

>>> df.window(n=100).sum()

	An index range, like a time range for a datetime index

>>> df.window(value='2h').sum()

Although this can be done for any range on any type of index, time is just
a common case.

Windowing schemes generally maintain a deque of historical values within
accumulated state. As new data comes in they inspect that state and eject data
that no longer falls within the window.

Grouping

Groupby aggregations also maintain historical data on the grouper and perform a
parallel aggregation on the number of times any key has been seen, removing
that key once it is no longer present.

Dask

In all cases, dataframe operations are only implemented with the .map and
.accumulate operators, and so are equally compatible with core Stream
and DaskStream objects.

Not Yet Supported

Streaming dataframe algorithms do not currently pay special attention to data
arriving out-of-order.

PeriodicDataFrame

As you have seen above, Streamz can handle arbitrarily complex pipelines,
events, and topologies, but what if you simply want to run some Python
function periodically and collect or plot the results?

streamz provides a high-level convenience class for this purpose, called
a PeriodicDataFrame. A PeriodicDataFrame uses Python’s asyncio event loop
(used as part of Tornado in Jupyter and other interactive frameworks) to
call a user-provided function at a regular interval, collecting the results
and making them available for later processing.

In the simplest case, you can use a PeriodicDataFrame by first writing
a callback function like:

import numpy as np

def random_datapoint(**kwargs):
 return pd.DataFrame({'a': np.random.random(1)}, index=[pd.Timestamp.now()])

You can then make a streaming dataframe to poll this function
e.g. every 300 milliseconds:

df = PeriodicDataFrame(random_datapoint, interval='300ms')

df will now be a steady stream of whatever values are returned by
the datafn, which can of course be any Python code as long as it
returns a DataFrame.

Here we returned only a single point, appropriate for streaming the
results of system calls or other isolated actions, but any number of
entries can be returned by the dataframe in a single batch. To
facilitate collecting such batches, the callback is invoked with
keyword arguments last (the time of the previous invocation) and
now (the time of the current invocation) as Pandas Timestamp
objects. The callback can then generate or query for just the values
in that time range.

Arbitrary keyword arguments can be provided to the PeriodicDataFrame
constructor, which will be passed into the callback so that its behavior
can be parameterized.

For instance, you can write a callback to return a suitable number of
datapoints to keep a regularly updating stream, generated randomly
as a batch since the last call:

def datablock(last, now, **kwargs):
 freq = kwargs.get("freq", pd.Timedelta("50ms"))
 index = pd.date_range(start=last + freq, end=now, freq=freq)
 return pd.DataFrame({'x': np.random.random(len(index))}, index=index)

df = PeriodicDataFrame(datablock, interval='300ms')

The callback will now be invoked every 300ms, each time generating
datapoints at a rate of 1 every 50ms, returned as a batch. If you
wished, you could override the 50ms value by passing
freq=pd.Timedelta(“100ms”) to the PeriodicDataFrame constructor.

Similar code could e.g. query an external database for the time range
since the last update, returning all datapoints since then.

Once you have a PeriodicDataFrame defined using such callbacks, you
can then use all the rest of the functionality supported by streamz,
including aggregations, rolling windows, etc., and streaming
visualization.

Streaming GPU DataFrames (cudf)

The streamz.dataframe module provides a DataFrame-like interface
on streaming data as described in the dataframes documentation. It
provides support for dataframe-like libraries such as pandas and
cudf. This documentation is specific to streaming GPU dataframes using
cudf.

The example in the dataframes documentation is rewritten below
using cudf dataframes just by replacing the pandas module with
cudf:

import cudf
from streamz.dataframe import DataFrame

example = cudf.DataFrame({'name': [], 'amount': []})
sdf = DataFrame(stream, example=example)

sdf[sdf.name == 'Alice'].amount.sum()

Supported Operations

Streaming cudf dataframes support the following classes of operations:

	Elementwise operations like df.x + 1

	Filtering like df[df.name == 'Alice']

	Column addition like df['z'] = df.x + df.y

	Reductions like df.amount.mean()

	Windowed aggregations (fixed length) like df.window(n=100).amount.sum()

The following operations are not yet supported with cudf (as of version 0.8):

	Groupby-aggregations like df.groupby(df.name).amount.mean()

	Windowed aggregations (index valued) like df.window(value='2h').amount.sum()

	Windowed groupby aggregations like df.window(value='2h').groupby('name').amount.sum()

Window-based Aggregations with cudf are supported just as explained in
the dataframes documentation. Support for groupby operations is
expected to be added in the future.

Dask Integration

The streamz.dask module contains a Dask [https://dask.pydata.org/en/latest/]-powered implementation of the
core Stream object. This is a drop-in implementation, but uses Dask for
execution and so can scale to a multicore machine or a distributed cluster.

Quickstart

Installation

First install dask and dask.distributed:

conda install dask
or
pip install dask[complete] --upgrade

You may also want to install Bokeh for web diagnostics:

conda install -c bokeh bokeh
or
pip install bokeh --upgrade

Start Local Dask Client

Then start a local Dask cluster

from dask.distributed import Client
client = Client()

This operates on local processes or threads. If you have Bokeh installed
then this will also start a diagnostics web server at
http://localhost:8787/status which you may want to open to get a real-time view
of execution.

Sequential Execution

	Stream.emit(x[, asynchronous, metadata])

	Push data into the stream at this point

	map(upstream, func, *args, **kwargs)

	Apply a function to every element in the stream

	sink(upstream, func, *args, **kwargs)

	Apply a function on every element

Before we build a parallel stream, let’s build a sequential stream that maps a
simple function across data, and then prints those results. We use the core
Stream object.

from time import sleep

def inc(x):
 sleep(1) # simulate actual work
 return x + 1

from streamz import Stream

source = Stream()
source.map(inc).sink(print)

for i in range(10):
 source.emit(i)

This should take ten seconds because we call the inc function ten times
sequentially.

Parallel Execution

	scatter(*args, **kwargs)

	Convert local stream to Dask Stream

	buffer(upstream, n, **kwargs)

	Allow results to pile up at this point in the stream

	gather([upstream, upstreams, stream_name, ...])

	Wait on and gather results from DaskStream to local Stream

That example ran sequentially under normal execution, now we use .scatter()
to convert our stream into a DaskStream and .gather() to convert back.

source = Stream()
source.scatter().map(inc).buffer(8).gather().sink(print)

for i in range(10):
 source.emit(i)

You may want to look at http://localhost:8787/status during execution to get a
sense of the parallel execution.

This should have run much more quickly depending on how many cores you have on
your machine. We added a few extra nodes to our stream; let’s look at what they
did.

	scatter: Converted our Stream into a DaskStream. The elements that we
emitted into our source were sent to the Dask client, and the subsequent
map call used that client’s cores to perform the computations.

	gather: Converted our DaskStream back into a Stream, pulling data on our
Dask client back to our local stream

	buffer(5): Normally gather would exert back pressure so that the source
would not accept new data until results finished and were pulled back to the
local stream. This back-pressure would limit parallelism. To counter-act
this we add a buffer of size eight to allow eight unfinished futures to
build up in the pipeline before we start to apply back-pressure to
source.emit.

Gotchas

An important gotcha with DaskStream is that it is a subclass of
Stream, and so can be used as an input to any function expecting a
Stream. If there is no intervening .gather(), then the
downstream node will receive Dask futures instead of the data they
represent:

source = Stream()
source2 = Stream()
a = source.scatter().map(inc)
b = source2.combine_latest(a)

In this case, the combine operation will get real values from
source2, and Dask futures. Downstream nodes would be free to
operate on the futures, but more likely, the line should be:

b = source2.combine_latest(a.gather())

Collections

Streamz high-level collection APIs are built on top of streamz.core, and
bring special consideration to certain types of data:

	streamz.batch: supports streams of lists of Python objects like tuples
or dictionaries

	streamz.dataframe: supports streams of Pandas/cudf dataframes or Pandas/cudf series.
cudf support is in beta phase and has limited functionality as of cudf version 0.8

These high-level APIs help us handle common situations in data processing.
They help us implement complex algorithms and also improve efficiency.

These APIs are built on the streamz core operations (map, accumulate, buffer,
timed_window, …) which provide the building blocks to build complex pipelines
but offer no help with what those functions should be. The higher-level APIs
help to fill in this gap for common situations.

Conversion

	Stream.to_batch(**kwargs)

	Convert a stream of lists to a Batch

	Stream.to_dataframe(example)

	Convert a stream of Pandas dataframes to a DataFrame

You can convert from core Stream objects to Batch, and
DataFrame objects using the .to_batch and .to_dataframe
methods. In each case we assume that the stream is a stream of batches (lists
or tuples) or a list of Pandas dataframes.

>>> batch = stream.to_batch()
>>> sdf = stream.to_dataframe()

To convert back from a Batch or a DataFrame to a
core.Stream you can access the .stream property.

>>> stream = sdf.stream
>>> stream = batch.stream

Example

We create a stream and connect it to a file object

file = ... # filename or file-like object
from streamz import Stream

source = Stream.from_textfile(file)

Our file produces line-delimited JSON serialized data on which we want to call
json.loads to parse into dictionaries.

To reduce overhead we first batch our records up into 100-line batches and turn
this into a Batch object. We provide our Batch object an
example element that it will use to help it determine metadata.

example = [{'name': 'Alice', 'x': 1, 'y': 2}]
lines = source.partition(100).to_batch(example=example) # batches of 100 elements
records = lines.map(json.loads) # convert lines to text.

We could have done the .map(json.loads) command on the original stream, but
this way reduce overhead by applying this function to lists of items, rather
than one item at a time.

Now we convert these batches of records into pandas dataframes and do some
basic filtering and groupby-aggregations.

sdf = records.to_dataframe()
sdf = sdf[sdf.name == "Alice"]
sdf = sdf.groupby(sdf.x).y.mean()

The DataFrames satisfy a subset of the Pandas API, but now rather than
operate on the data directly, they set up a pipeline to compute the data in an
online fashion.

Finally we convert this back to a stream and push the results into a fixed-size
deque.

from collections import deque
d = deque(maxlen=10)

sdf.stream.sink(d.append)

See Collections API for more information.

API

Stream

	Stream([upstream, upstreams, stream_name, ...])

	A Stream is an infinite sequence of data.

	Stream.connect(downstream)

	Connect this stream to a downstream element.

	Stream.destroy([streams])

	Disconnect this stream from any upstream sources

	Stream.disconnect(downstream)

	Disconnect this stream to a downstream element.

	Stream.visualize([filename])

	Render the computation of this object's task graph using graphviz.

	accumulate(upstream, func[, start, ...])

	Accumulate results with previous state

	buffer(upstream, n, **kwargs)

	Allow results to pile up at this point in the stream

	collect(upstream[, cache, metadata_cache])

	Hold elements in a cache and emit them as a collection when flushed.

	combine_latest(*upstreams, **kwargs)

	Combine multiple streams together to a stream of tuples

	delay(upstream, interval, **kwargs)

	Add a time delay to results

	filter(upstream, predicate, *args, **kwargs)

	Only pass through elements that satisfy the predicate

	flatten([upstream, upstreams, stream_name, ...])

	Flatten streams of lists or iterables into a stream of elements

	map(upstream, func, *args, **kwargs)

	Apply a function to every element in the stream

	partition(upstream, n[, timeout, key])

	Partition stream into tuples of equal size

	rate_limit(upstream, interval, **kwargs)

	Limit the flow of data

	scatter(*args, **kwargs)

	Convert local stream to Dask Stream

	sink(upstream, func, *args, **kwargs)

	Apply a function on every element

	sink_to_textfile(upstream, file[, end, mode])

	Write elements to a plain text file, one element per line.

	slice(upstream[, start, end, step])

	Get only some events in a stream by position.

	sliding_window(upstream, n[, return_partial])

	Produce overlapping tuples of size n

	starmap(upstream, func, *args, **kwargs)

	Apply a function to every element in the stream, splayed out

	timed_window(upstream, interval, **kwargs)

	Emit a tuple of collected results every interval

	union(*upstreams, **kwargs)

	Combine multiple streams into one

	unique(upstream[, maxsize, key, hashable])

	Avoid sending through repeated elements

	pluck(upstream, pick, **kwargs)

	Select elements from elements in the stream.

	zip(*upstreams, **kwargs)

	Combine streams together into a stream of tuples

	zip_latest(lossless, *upstreams, **kwargs)

	Combine multiple streams together to a stream of tuples

	
Stream.connect(downstream)

	Connect this stream to a downstream element.

	Parameters

	
	downstream: Stream
	The downstream stream to connect to

	
Stream.disconnect(downstream)

	Disconnect this stream to a downstream element.

	Parameters

	
	downstream: Stream
	The downstream stream to disconnect from

	
Stream.destroy(streams=None)

	Disconnect this stream from any upstream sources

	
Stream.emit(x, asynchronous=False, metadata=None)

	Push data into the stream at this point

This is typically done only at source Streams but can theoretically be
done at any point

	Parameters

	
	x: any
	an element of data

	asynchronous:
	emit asynchronously

	metadata: list[dict], optional
	Various types of metadata associated with the data element in x.

ref: RefCounter
A reference counter used to check when data is done

	
Stream.frequencies(**kwargs)

	Count occurrences of elements

	
classmethod Stream.register_api(modifier=<function identity>, attribute_name=None)

	Add callable to Stream API

This allows you to register a new method onto this class. You can use
it as a decorator.:

>>> @Stream.register_api()
... class foo(Stream):
... ...

>>> Stream().foo(...) # this works now

It attaches the callable as a normal attribute to the class object. In
doing so it respects inheritance (all subclasses of Stream will also
get the foo attribute).

By default callables are assumed to be instance methods. If you like
you can include modifiers to apply before attaching to the class as in
the following case where we construct a staticmethod.

>>> @Stream.register_api(staticmethod)
... class foo(Stream):
... ...

>>> Stream.foo(...) # Foo operates as a static method

You can also provide an optional attribute_name argument to control
the name of the attribute your callable will be attached as.

>>> @Stream.register_api(attribute_name="bar")
... class foo(Stream):
... ...

>> Stream().bar(…) # foo was actually attached as bar

	
Stream.sink(func, *args, **kwargs)

	Apply a function on every element

	Parameters

	
	func: callable
	A function that will be applied on every element.

	args:
	Positional arguments that will be passed to func after the incoming element.

	kwargs:
	Stream-specific arguments will be passed to Stream.__init__, the rest of
them will be passed to func.

See also

	map
	

	Stream.sink_to_list
	

Examples

>>> source = Stream()
>>> L = list()
>>> source.sink(L.append)
>>> source.sink(print)
>>> source.sink(print)
>>> source.emit(123)
123
123
>>> L
[123]

	
Stream.sink_to_list()

	Append all elements of a stream to a list as they come in

Examples

>>> source = Stream()
>>> L = source.map(lambda x: 10 * x).sink_to_list()
>>> for i in range(5):
... source.emit(i)
>>> L
[0, 10, 20, 30, 40]

	
Stream.sink_to_textfile(file, end='\n', mode='a', **kwargs)

	Write elements to a plain text file, one element per line.

Type of elements must be str.

	Parameters

	
	file: str or file-like
	File to write the elements to. str is treated as a file name to open.
If file-like, descriptor must be open in text mode. Note that the file
descriptor will be closed when this sink is destroyed.

	end: str, optional
	This value will be written to the file after each element.
Defaults to newline character.

	mode: str, optional
	If file is str, file will be opened in this mode. Defaults to "a"
(append mode).

Examples

>>> source = Stream()
>>> source.map(str).sink_to_textfile("test.txt")
>>> source.emit(0)
>>> source.emit(1)
>>> print(open("test.txt", "r").read())
0
1

	
Stream.to_websocket(uri, ws_kwargs=None, **kwargs)

	Write bytes data to websocket

The websocket will be opened on first call, and kept open. Should
it close at some point, future writes will fail.

Requires the websockets package.

	Parameters

	
	uri – str
Something like “ws://host:port”. Use “wss:” to allow TLS.

	ws_kwargs – dict
Further kwargs to pass to websockets.connect, please
read its documentation.

	kwargs – Passed to superclass

	
Stream.to_mqtt(host, port, topic, keepalive=60, client_kwargs=None, **kwargs)

	Send data to MQTT broker

See also sources.from_mqtt.

Requires paho.mqtt

	Parameters

	
	host – str

	port – int

	topic – str

	keepalive – int
See mqtt docs - to keep the channel alive

	client_kwargs – Passed to the client’s connect() method

	
Stream.update(x, who=None, metadata=None)

	

	
Stream.visualize(filename='mystream.png', **kwargs)

	Render the computation of this object’s task graph using graphviz.

Requires graphviz and networkx to be installed.

	Parameters

	
	filenamestr, optional
	The name of the file to write to disk.

	kwargs:
	Graph attributes to pass to graphviz like rankdir="LR"

Sources

	from_iterable(iterable, **kwargs)

	Emits items from an iterable.

	filenames(path[, poll_interval])

	Stream over filenames in a directory

	from_kafka(topics, consumer_params[, ...])

	Accepts messages from Kafka

	from_kafka_batched(topic, consumer_params[, ...])

	Get messages and keys (optional) from Kafka in batches

	from_mqtt(host, port, topic[, keepalive, ...])

	Read from MQTT source

	from_process(cmd[, open_kwargs, ...])

	Messages from a running external process

	from_websocket(host, port[, serve_kwargs])

	Read binary data from a websocket

	from_textfile(f[, poll_interval, delimiter, ...])

	Stream data from a text file

	from_tcp(port[, delimiter, server_kwargs])

	Creates events by reading from a socket using tornado TCPServer

	from_http_server(port[, path, server_kwargs])

	Listen for HTTP POSTs on given port

DaskStream

	DaskStream(*args, **kwargs)

	A Parallel stream using Dask

	gather([upstream, upstreams, stream_name, ...])

	Wait on and gather results from DaskStream to local Stream

Definitions

	
streamz.accumulate(upstream, func, start='--no-default--', returns_state=False, **kwargs)

	Accumulate results with previous state

This performs running or cumulative reductions, applying the function
to the previous total and the new element. The function should take
two arguments, the previous accumulated state and the next element and
it should return a new accumulated state,
- state = func(previous_state, new_value) (returns_state=False)
- state, result = func(previous_state, new_value) (returns_state=True)

where the new_state is passed to the next invocation. The state or result
is emitted downstream for the two cases.

	Parameters

	
	func: callable
	

	start: object
	Initial value, passed as the value of previous_state on the first
invocation. Defaults to the first submitted element

	returns_state: boolean
	If true then func should return both the state and the value to emit
If false then both values are the same, and func returns one value

	**kwargs:
	Keyword arguments to pass to func

Examples

A running total, producing triangular numbers

>>> source = Stream()
>>> source.accumulate(lambda acc, x: acc + x).sink(print)
>>> for i in range(5):
... source.emit(i)
0
1
3
6
10

A count of number of events (including the current one)

>>> source = Stream()
>>> source.accumulate(lambda acc, x: acc + 1, start=0).sink(print)
>>> for _ in range(5):
... source.emit(0)
1
2
3
4
5

Like the builtin “enumerate”.

>>> source = Stream()
>>> source.accumulate(lambda acc, x: ((acc[0] + 1, x), (acc[0], x)),
... start=(0, 0), returns_state=True
...).sink(print)
>>> for i in range(3):
... source.emit(0)
(0, 0)
(1, 0)
(2, 0)

	
streamz.buffer(upstream, n, **kwargs)

	Allow results to pile up at this point in the stream

This allows results to buffer in place at various points in the stream.
This can help to smooth flow through the system when backpressure is
applied.

	
streamz.collect(upstream, cache=None, metadata_cache=None, **kwargs)

	Hold elements in a cache and emit them as a collection when flushed.

Examples

>>> source1 = Stream()
>>> source2 = Stream()
>>> collector = collect(source1)
>>> collector.sink(print)
>>> source2.sink(collector.flush)
>>> source1.emit(1)
>>> source1.emit(2)
>>> source2.emit('anything') # flushes collector
...
[1, 2]

	
streamz.combine_latest(*upstreams, **kwargs)

	Combine multiple streams together to a stream of tuples

This will emit a new tuple of all of the most recent elements seen from
any stream.

	Parameters

	
	emit_onstream or list of streams or None
	only emit upon update of the streams listed.
If None, emit on update from any stream

See also

	zip
	

	
streamz.delay(upstream, interval, **kwargs)

	Add a time delay to results

	
streamz.filter(upstream, predicate, *args, **kwargs)

	Only pass through elements that satisfy the predicate

	Parameters

	
	predicatefunction
	The predicate. Should return True or False, where
True means that the predicate is satisfied.

	*args
	The arguments to pass to the predicate.

	**kwargs:
	Keyword arguments to pass to predicate

Examples

>>> source = Stream()
>>> source.filter(lambda x: x % 2 == 0).sink(print)
>>> for i in range(5):
... source.emit(i)
0
2
4

	
streamz.flatten(upstream=None, upstreams=None, stream_name=None, loop=None, asynchronous=None, ensure_io_loop=False)

	Flatten streams of lists or iterables into a stream of elements

See also

	partition
	

Examples

>>> source = Stream()
>>> source.flatten().sink(print)
>>> for x in [[1, 2, 3], [4, 5], [6, 7, 7]]:
... source.emit(x)
1
2
3
4
5
6
7

	
streamz.map(upstream, func, *args, **kwargs)

	Apply a function to every element in the stream

	Parameters

	
	func: callable
	

	*args
	The arguments to pass to the function.

	**kwargs:
	Keyword arguments to pass to func

Examples

>>> source = Stream()
>>> source.map(lambda x: 2*x).sink(print)
>>> for i in range(5):
... source.emit(i)
0
2
4
6
8

	
streamz.partition(upstream, n, timeout=None, key=None, **kwargs)

	Partition stream into tuples of equal size

	Parameters

	
	n: int
	Maximum partition size

	timeout: int or float, optional
	Number of seconds after which a partition will be emitted,
even if its size is less than n. If None (default),
a partition will be emitted only when its size reaches n.

	key: hashable or callable, optional
	Emit items with the same key together as a separate partition.
If key is callable, partition will be identified by key(x),
otherwise by x[key]. Defaults to None.

Examples

>>> source = Stream()
>>> source.partition(3).sink(print)
>>> for i in range(10):
... source.emit(i)
(0, 1, 2)
(3, 4, 5)
(6, 7, 8)

>>> source = Stream()
>>> source.partition(2, key=lambda x: x % 2).sink(print)
>>> for i in range(4):
... source.emit(i)
(0, 2)
(1, 3)

>>> from time import sleep
>>> source = Stream()
>>> source.partition(5, timeout=1).sink(print)
>>> for i in range(3):
... source.emit(i)
>>> sleep(1)
(0, 1, 2)

	
streamz.rate_limit(upstream, interval, **kwargs)

	Limit the flow of data

This stops two elements of streaming through in an interval shorter
than the provided value.

	Parameters

	
	interval: float
	Time in seconds

	
streamz.sink(upstream, func, *args, **kwargs)

	Apply a function on every element

	Parameters

	
	func: callable
	A function that will be applied on every element.

	args:
	Positional arguments that will be passed to func after the incoming element.

	kwargs:
	Stream-specific arguments will be passed to Stream.__init__, the rest of
them will be passed to func.

See also

	map
	

	Stream.sink_to_list
	

Examples

>>> source = Stream()
>>> L = list()
>>> source.sink(L.append)
>>> source.sink(print)
>>> source.sink(print)
>>> source.emit(123)
123
123
>>> L
[123]

	
streamz.sink_to_textfile(upstream, file, end='\n', mode='a', **kwargs)

	Write elements to a plain text file, one element per line.

Type of elements must be str.

	Parameters

	
	file: str or file-like
	File to write the elements to. str is treated as a file name to open.
If file-like, descriptor must be open in text mode. Note that the file
descriptor will be closed when this sink is destroyed.

	end: str, optional
	This value will be written to the file after each element.
Defaults to newline character.

	mode: str, optional
	If file is str, file will be opened in this mode. Defaults to "a"
(append mode).

Examples

>>> source = Stream()
>>> source.map(str).sink_to_textfile("test.txt")
>>> source.emit(0)
>>> source.emit(1)
>>> print(open("test.txt", "r").read())
0
1

	
streamz.sliding_window(upstream, n, return_partial=True, **kwargs)

	Produce overlapping tuples of size n

	Parameters

	
	return_partialbool
	If True, yield tuples as soon as any events come in, each tuple being
smaller or equal to the window size. If False, only start yielding
tuples once a full window has accrued.

Examples

>>> source = Stream()
>>> source.sliding_window(3, return_partial=False).sink(print)
>>> for i in range(8):
... source.emit(i)
(0, 1, 2)
(1, 2, 3)
(2, 3, 4)
(3, 4, 5)
(4, 5, 6)
(5, 6, 7)

	
streamz.Stream(upstream=None, upstreams=None, stream_name=None, loop=None, asynchronous=None, ensure_io_loop=False)

	A Stream is an infinite sequence of data.

Streams subscribe to each other passing and transforming data between them.
A Stream object listens for updates from upstream, reacts to these updates,
and then emits more data to flow downstream to all Stream objects that
subscribe to it. Downstream Stream objects may connect at any point of a
Stream graph to get a full view of the data coming off of that point to do
with as they will.

	Parameters

	
	stream_name: str or None
	This is the name of the stream.

	asynchronous: boolean or None
	Whether or not this stream will be used in asynchronous functions or
normal Python functions. Leave as None if you don’t know.
True will cause operations like emit to return awaitable Futures
False will use an Event loop in another thread (starts it if necessary)

	ensure_io_loop: boolean
	Ensure that some IOLoop will be created. If asynchronous is None or
False then this will be in a separate thread, otherwise it will be
IOLoop.current

Examples

>>> def inc(x):
... return x + 1

>>> source = Stream() # Create a stream object
>>> s = source.map(inc).map(str) # Subscribe to make new streams
>>> s.sink(print) # take an action whenever an element reaches the end

>>> L = list()
>>> s.sink(L.append) # or take multiple actions (streams can branch)

>>> for i in range(5):
... source.emit(i) # push data in at the source
'1'
'2'
'3'
'4'
'5'
>>> L # and the actions happen at the sinks
['1', '2', '3', '4', '5']

	
streamz.timed_window(upstream, interval, **kwargs)

	Emit a tuple of collected results every interval

Every interval seconds this emits a tuple of all of the results
seen so far. This can help to batch data coming off of a high-volume
stream.

	
streamz.union(*upstreams, **kwargs)

	Combine multiple streams into one

Every element from any of the upstreams streams will immediately flow
into the output stream. They will not be combined with elements from
other streams.

See also

	Stream.zip
	

	Stream.combine_latest
	

	
streamz.unique(upstream, maxsize=None, key=<function identity>, hashable=True, **kwargs)

	Avoid sending through repeated elements

This deduplicates a stream so that only new elements pass through.
You can control how much of a history is stored with the maxsize=
parameter. For example setting maxsize=1 avoids sending through
elements when one is repeated right after the other.

	Parameters

	
	maxsize: int or None, optional
	number of stored unique values to check against

	keyfunction, optional
	Function which returns a representation of the incoming data.
For example key=lambda x: x['a'] could be used to allow only
pieces of data with unique 'a' values to pass through.

	hashablebool, optional
	If True then data is assumed to be hashable, else it is not. This is
used for determining how to cache the history, if hashable then
either dicts or LRU caches are used, otherwise a deque is used.
Defaults to True.

Examples

>>> source = Stream()
>>> source.unique(maxsize=1).sink(print)
>>> for x in [1, 1, 2, 2, 2, 1, 3]:
... source.emit(x)
1
2
1
3

	
streamz.pluck(upstream, pick, **kwargs)

	Select elements from elements in the stream.

	Parameters

	
	pluckobject, list
	The element(s) to pick from the incoming element in the stream
If an instance of list, will pick multiple elements.

Examples

>>> source = Stream()
>>> source.pluck([0, 3]).sink(print)
>>> for x in [[1, 2, 3, 4], [4, 5, 6, 7], [8, 9, 10, 11]]:
... source.emit(x)
(1, 4)
(4, 7)
(8, 11)

>>> source = Stream()
>>> source.pluck('name').sink(print)
>>> for x in [{'name': 'Alice', 'x': 123}, {'name': 'Bob', 'x': 456}]:
... source.emit(x)
'Alice'
'Bob'

	
streamz.zip(*upstreams, **kwargs)

	Combine streams together into a stream of tuples

We emit a new tuple once all streams have produce a new tuple.

See also

	combine_latest
	

	zip_latest
	

	
streamz.zip_latest(lossless, *upstreams, **kwargs)

	Combine multiple streams together to a stream of tuples

The stream which this is called from is lossless. All elements from
the lossless stream are emitted reguardless of when they came in.
This will emit a new tuple consisting of an element from the lossless
stream paired with the latest elements from the other streams.
Elements are only emitted when an element on the lossless stream are
received, similar to combine_latest with the emit_on flag.

See also

	Stream.combine_latest
	

	Stream.zip
	

	
streamz.from_iterable(iterable, **kwargs)

	Emits items from an iterable.

	Parameters

	
	iterable: iterable
	An iterable to emit messages from.

Examples

>>> source = Stream.from_iterable(range(3))
>>> L = source.sink_to_list()
>>> source.start()
>>> L
[0, 1, 2]

	
streamz.filenames(path, poll_interval=0.1, **kwargs)

	Stream over filenames in a directory

	Parameters

	
	path: string
	Directory path or globstring over which to search for files

	poll_interval: Number
	Seconds between checking path

	start: bool (False)
	Whether to start running immediately; otherwise call stream.start()
explicitly.

Examples

>>> source = Stream.filenames('path/to/dir')
>>> source = Stream.filenames('path/to/*.csv', poll_interval=0.500)

	
streamz.from_kafka(topics, consumer_params, poll_interval=0.1, **kwargs)

	Accepts messages from Kafka

Uses the confluent-kafka library,
https://docs.confluent.io/current/clients/confluent-kafka-python/

	Parameters

	
	topics: list of str
	Labels of Kafka topics to consume from

	consumer_params: dict
	Settings to set up the stream, see
https://docs.confluent.io/current/clients/confluent-kafka-python/#configuration
https://github.com/edenhill/librdkafka/blob/master/CONFIGURATION.md
Examples:
bootstrap.servers, Connection string(s) (host:port) by which to reach
Kafka;
group.id, Identity of the consumer. If multiple sources share the same
group, each message will be passed to only one of them.

	poll_interval: number
	Seconds that elapse between polling Kafka for new messages

	start: bool (False)
	Whether to start polling upon instantiation

Examples

>>> source = Stream.from_kafka(['mytopic'],
... {'bootstrap.servers': 'localhost:9092',
... 'group.id': 'streamz'})

	
streamz.from_kafka_batched(topic, consumer_params, poll_interval='1s', npartitions=None, refresh_partitions=False, start=False, dask=False, max_batch_size=10000, keys=False, engine=None, **kwargs)

	Get messages and keys (optional) from Kafka in batches

Uses the confluent-kafka library,
https://docs.confluent.io/current/clients/confluent-kafka-python/

This source will emit lists of messages for each partition of a single given
topic per time interval, if there is new data. If using dask, one future
will be produced per partition per time-step, if there is data.

Checkpointing is achieved through the use of reference counting. A reference
counter is emitted downstream for each batch of data. A callback is
triggered when the reference count reaches zero and the offsets are
committed back to Kafka. Upon the start of this function, the previously
committed offsets will be fetched from Kafka and begin reading form there.
This will guarantee at-least-once semantics.

	Parameters

	
	topic: str
	Kafka topic to consume from

	consumer_params: dict
	
Settings to set up the stream, see

https://docs.confluent.io/current/clients/confluent-kafka-python/#configuration

https://github.com/edenhill/librdkafka/blob/master/CONFIGURATION.md

Examples:

bootstrap.servers: Connection string(s) (host:port) by which to reach Kafka

group.id: Identity of the consumer. If multiple sources share the same

group, each message will be passed to only one of them.

	poll_interval: number
	Seconds that elapse between polling Kafka for new messages

	npartitions: int (None)
	

Number of partitions in the topic.

If None, streamz will poll Kafka to get the number of partitions.

	refresh_partitions: bool (False)
	
Useful if the user expects to increase the number of topic partitions on the

fly, maybe to handle spikes in load. Streamz polls Kafka in every batch to

determine the current number of partitions. If partitions have been added,

streamz will automatically start reading data from the new partitions as well.

If set to False, streamz will not accommodate adding partitions on the fly.

It is recommended to restart the stream after decreasing the number of partitions.

	start: bool (False)
	Whether to start polling upon instantiation

	max_batch_size: int
	The maximum number of messages per partition to be consumed per batch

	keys: bool (False)
	
Whether to extract keys along with the messages.

If True, this will yield each message as a dict:

{‘key’:msg.key(), ‘value’:msg.value()}

	engine: str (None)
	
If engine is set to “cudf”, streamz reads data (messages must be JSON)

from Kafka in an accelerated manner directly into cuDF (GPU) dataframes.

This is done using the RAPIDS custreamz library.

Please refer to RAPIDS cudf API here:

https://docs.rapids.ai/api/cudf/stable/

Folks interested in trying out custreamz would benefit from this

accelerated Kafka reader. If one does not want to use GPUs, they

can use streamz as is, with the default engine=None.

To use this option, one must install custreamz (use the

appropriate CUDA version recipe & Python version)

using a command like the one below, which will install all

GPU dependencies and streamz itself:

conda install -c rapidsai-nightly -c nvidia -c conda-forge | -c defaults custreamz=0.15 python=3.7 cudatoolkit=10.2

More information at: https://rapids.ai/start.html

	Important Kafka Configurations
	

	By default, a stream will start reading from the latest offsets
	

	available. Please set ‘auto.offset.reset’: ‘earliest’ in the
	

	consumer configs, if the stream needs to start processing from
	

	the earliest offsets.
	

Examples

>>> source = Stream.from_kafka_batched('mytopic',
... {'bootstrap.servers': 'localhost:9092',
... 'group.id': 'streamz'})

	
streamz.from_textfile(f, poll_interval=0.1, delimiter='\n', from_end=False, **kwargs)

	Stream data from a text file

	Parameters

	
	f: file or string
	Source of the data. If string, will be opened.

	poll_interval: Number
	Interval to poll file for new data in seconds

	delimiter: str
	Character(s) to use to split the data into parts

	start: bool
	Whether to start running immediately; otherwise call stream.start()
explicitly.

	from_end: bool
	Whether to begin streaming from the end of the file (i.e., only emit
lines appended after the stream starts).

	Returns

	
	Stream
	

Examples

>>> source = Stream.from_textfile('myfile.json')
>>> source.map(json.loads).pluck('value').sum().sink(print)
>>> source.start()

	
streamz.dask.DaskStream(*args, **kwargs)

	A Parallel stream using Dask

This object is fully compliant with the streamz.core.Stream object but
uses a Dask client for execution. Operations like map and
accumulate submit functions to run on the Dask instance using
dask.distributed.Client.submit and pass around Dask futures.
Time-based operations like timed_window, buffer, and so on operate as
normal.

Typically one transfers between normal Stream and DaskStream objects using
the Stream.scatter() and DaskStream.gather() methods.

See also

	dask.distributed.Client
	

Examples

>>> from dask.distributed import Client
>>> client = Client()

>>> from streamz import Stream
>>> source = Stream()
>>> source.scatter().map(func).accumulate(binop).gather().sink(...)

	
streamz.dask.gather(upstream=None, upstreams=None, stream_name=None, loop=None, asynchronous=None, ensure_io_loop=False)

	Wait on and gather results from DaskStream to local Stream

This waits on every result in the stream and then gathers that result back
to the local stream. Warning, this can restrict parallelism. It is common
to combine a gather() node with a buffer() to allow unfinished
futures to pile up.

See also

	buffer
	

	scatter
	

Examples

>>> local_stream = dask_stream.buffer(20).gather()

Collections API

Collections

	Streaming([stream, example, stream_type])

	Superclass for streaming collections

	Streaming.map_partitions(func, *args, **kwargs)

	Map a function across all batch elements of this stream

	Streaming.accumulate_partitions(func, *args, ...)

	Accumulate a function with state across batch elements

	Streaming.verify(x)

	Verify elements that pass through this stream

Batch

	Batch([stream, example])

	A Stream of tuples or lists

	Batch.filter(predicate)

	Filter elements by a predicate

	Batch.map(func, **kwargs)

	Map a function across all elements

	Batch.pluck(ind)

	Pick a field out of all elements

	Batch.to_dataframe()

	Convert to a streaming dataframe

	Batch.to_stream()

	Concatenate batches and return base Stream

Dataframes

	DataFrame(*args, **kwargs)

	A Streaming Dataframe

	DataFrame.groupby(other)

	Groupby aggregations

	DataFrame.rolling(window[, min_periods, ...])

	Compute rolling aggregations

	DataFrame.assign(**kwargs)

	Assign new columns to this dataframe

	DataFrame.sum([start])

	Sum frame.

	DataFrame.mean([start])

	Average frame

	DataFrame.cumsum()

	Cumulative sum

	DataFrame.cumprod()

	Cumulative product

	DataFrame.cummin()

	Cumulative minimum

	DataFrame.cummax()

	Cumulative maximum

	GroupBy(root, grouper[, index])

	Groupby aggregations on streaming dataframes

	GroupBy.count([start])

	Groupby-count

	GroupBy.mean([with_state, start])

	Groupby-mean

	GroupBy.size()

	Groupby-size

	GroupBy.std([ddof])

	Groupby-std

	GroupBy.sum([start])

	Groupby-sum

	GroupBy.var([ddof])

	Groupby-variance

	Rolling(sdf, window, min_periods, ...)

	Rolling aggregations

	Rolling.aggregate(*args, **kwargs)

	Rolling aggregation

	Rolling.count(*args, **kwargs)

	Rolling count

	Rolling.max()

	Rolling maximum

	Rolling.mean()

	Rolling mean

	Rolling.median()

	Rolling median

	Rolling.min()

	Rolling minimum

	Rolling.quantile(*args, **kwargs)

	Rolling quantile

	Rolling.std(*args, **kwargs)

	Rolling standard deviation

	Rolling.sum()

	Rolling sum

	Rolling.var(*args, **kwargs)

	Rolling variance

	DataFrame.window([n, value, with_state, start])

	Sliding window operations

	Window.apply(func)

	Apply an arbitrary function over each window of data

	Window.count()

	Count elements within window

	Window.groupby(other)

	Groupby-aggregations within window

	Window.sum()

	Sum elements within window

	Window.size

	Number of elements within window

	Window.std([ddof])

	Compute standard deviation of elements within window

	Window.var([ddof])

	Compute variance of elements within window

	Rolling.aggregate(*args, **kwargs)

	Rolling aggregation

	Rolling.count(*args, **kwargs)

	Rolling count

	Rolling.max()

	Rolling maximum

	Rolling.mean()

	Rolling mean

	Rolling.median()

	Rolling median

	Rolling.min()

	Rolling minimum

	Rolling.quantile(*args, **kwargs)

	Rolling quantile

	Rolling.std(*args, **kwargs)

	Rolling standard deviation

	Rolling.sum()

	Rolling sum

	Rolling.var(*args, **kwargs)

	Rolling variance

	PeriodicDataFrame([datafn, interval, dask, ...])

	A streaming dataframe using the asyncio ioloop to poll a callback fn

	Random([freq, interval, dask, start, datafn])

	PeriodicDataFrame providing random values by default

Details

	
class streamz.collection.Streaming(stream=None, example=None, stream_type=None)

	Superclass for streaming collections

Do not create this class directly, use one of the subclasses instead.

	Parameters

	
	stream: streamz.Stream
	

	example: object
	An object to represent an example element of this stream

See also

	streamz.dataframe.StreamingDataFrame
	

	streamz.dataframe.StreamingBatch
	

	Attributes

	
	current_value
	

Methods

	accumulate_partitions(func, *args, **kwargs)

	Accumulate a function with state across batch elements

	map_partitions(func, *args, **kwargs)

	Map a function across all batch elements of this stream

	register_api([modifier, attribute_name])

	Add callable to Stream API

	verify(x)

	Verify elements that pass through this stream

	emit

	

	register_plugin_entry_point

	

	start

	

	stop

	

	
accumulate_partitions(func, *args, **kwargs)

	Accumulate a function with state across batch elements

See also

	Streaming.map_partitions
	

	
static map_partitions(func, *args, **kwargs)

	Map a function across all batch elements of this stream

The output stream type will be determined by the action of that
function on the example

See also

	Streaming.accumulate_partitions
	

	
verify(x)

	Verify elements that pass through this stream

	
class streamz.batch.Batch(stream=None, example=None)

	A Stream of tuples or lists

This streaming collection manages batches of Python objects such as lists
of text or dictionaries. By batching many elements together we reduce
overhead from Python.

This library is typically used at the early stages of data ingestion before
handing off to streaming dataframes

Examples

>>> text = Streaming.from_file(myfile)
>>> b = text.partition(100).map(json.loads)

	Attributes

	
	current_value
	

Methods

	accumulate_partitions(func, *args, **kwargs)

	Accumulate a function with state across batch elements

	filter(predicate)

	Filter elements by a predicate

	map(func, **kwargs)

	Map a function across all elements

	map_partitions(func, *args, **kwargs)

	Map a function across all batch elements of this stream

	pluck(ind)

	Pick a field out of all elements

	register_api([modifier, attribute_name])

	Add callable to Stream API

	sum()

	Sum elements

	to_dataframe()

	Convert to a streaming dataframe

	to_stream()

	Concatenate batches and return base Stream

	verify(x)

	Verify elements that pass through this stream

	emit

	

	register_plugin_entry_point

	

	start

	

	stop

	

	
accumulate_partitions(func, *args, **kwargs)

	Accumulate a function with state across batch elements

See also

	Streaming.map_partitions
	

	
filter(predicate)

	Filter elements by a predicate

	
map(func, **kwargs)

	Map a function across all elements

	
static map_partitions(func, *args, **kwargs)

	Map a function across all batch elements of this stream

The output stream type will be determined by the action of that
function on the example

See also

	Streaming.accumulate_partitions
	

	
pluck(ind)

	Pick a field out of all elements

	
classmethod register_api(modifier=<function identity>, attribute_name=None)

	Add callable to Stream API

This allows you to register a new method onto this class. You can use
it as a decorator.:

>>> @Stream.register_api()
... class foo(Stream):
... ...

>>> Stream().foo(...) # this works now

It attaches the callable as a normal attribute to the class object. In
doing so it respects inheritance (all subclasses of Stream will also
get the foo attribute).

By default callables are assumed to be instance methods. If you like
you can include modifiers to apply before attaching to the class as in
the following case where we construct a staticmethod.

>>> @Stream.register_api(staticmethod)
... class foo(Stream):
... ...

>>> Stream.foo(...) # Foo operates as a static method

You can also provide an optional attribute_name argument to control
the name of the attribute your callable will be attached as.

>>> @Stream.register_api(attribute_name="bar")
... class foo(Stream):
... ...

>> Stream().bar(…) # foo was actually attached as bar

	
sum()

	Sum elements

	
to_dataframe()

	Convert to a streaming dataframe

This calls pd.DataFrame on all list-elements of this stream

	
to_stream()

	Concatenate batches and return base Stream

Returned stream will be composed of single elements

	
verify(x)

	Verify elements that pass through this stream

	
class streamz.dataframe.DataFrame(*args, **kwargs)

	A Streaming Dataframe

This is a logical collection over a stream of Pandas dataframes.
Operations on this object will translate to the appropriate operations on
the underlying Pandas dataframes.

See also

	Series
	

	Attributes

	
	columns
	

	current_value
	

	dtypes
	

	index
	

	plot
	

	size
	size of frame

Methods

	accumulate_partitions(func, *args, **kwargs)

	Accumulate a function with state across batch elements

	assign(**kwargs)

	Assign new columns to this dataframe

	count([start])

	Count of frame

	cummax()

	Cumulative maximum

	cummin()

	Cumulative minimum

	cumprod()

	Cumulative product

	cumsum()

	Cumulative sum

	from_periodic

	

	groupby(other)

	Groupby aggregations

	map_partitions(func, *args, **kwargs)

	Map a function across all batch elements of this stream

	mean([start])

	Average frame

	random

	

	register_api([modifier, attribute_name])

	Add callable to Stream API

	reset_index()

	Reset Index

	rolling(window[, min_periods, with_state, start])

	Compute rolling aggregations

	round([decimals])

	Round elements in frame

	set_index(index, **kwargs)

	Set Index

	sum([start])

	Sum frame.

	tail([n])

	Round elements in frame

	to_frame()

	Convert to a streaming dataframe

	verify(x)

	Verify consistency of elements that pass through this stream

	window([n, value, with_state, start])

	Sliding window operations

	aggregate

	

	astype

	

	emit

	

	ewm

	

	expanding

	

	map

	

	query

	

	register_plugin_entry_point

	

	start

	

	stop

	

	
accumulate_partitions(func, *args, **kwargs)

	Accumulate a function with state across batch elements

See also

	Streaming.map_partitions
	

	
assign(**kwargs)

	Assign new columns to this dataframe

Alternatively use setitem syntax

Examples

>>> sdf = sdf.assign(z=sdf.x + sdf.y)
>>> sdf['z'] = sdf.x + sdf.y

	
count(start=None)

	Count of frame

	Parameters

	
	start: None or resulting Python object type from the operation
	Accepts a valid start state.

	
cummax()

	Cumulative maximum

	
cummin()

	Cumulative minimum

	
cumprod()

	Cumulative product

	
cumsum()

	Cumulative sum

	
from_periodic = <function PeriodicDataFrame>

	

	
groupby(other)

	Groupby aggregations

	
static map_partitions(func, *args, **kwargs)

	Map a function across all batch elements of this stream

The output stream type will be determined by the action of that
function on the example

See also

	Streaming.accumulate_partitions
	

	
mean(start=None)

	Average frame

	Parameters

	
	start: None or resulting Python object type from the operation
	Accepts a valid start state.

	
random = <function Random>

	

	
classmethod register_api(modifier=<function identity>, attribute_name=None)

	Add callable to Stream API

This allows you to register a new method onto this class. You can use
it as a decorator.:

>>> @Stream.register_api()
... class foo(Stream):
... ...

>>> Stream().foo(...) # this works now

It attaches the callable as a normal attribute to the class object. In
doing so it respects inheritance (all subclasses of Stream will also
get the foo attribute).

By default callables are assumed to be instance methods. If you like
you can include modifiers to apply before attaching to the class as in
the following case where we construct a staticmethod.

>>> @Stream.register_api(staticmethod)
... class foo(Stream):
... ...

>>> Stream.foo(...) # Foo operates as a static method

You can also provide an optional attribute_name argument to control
the name of the attribute your callable will be attached as.

>>> @Stream.register_api(attribute_name="bar")
... class foo(Stream):
... ...

>> Stream().bar(…) # foo was actually attached as bar

	
reset_index()

	Reset Index

	
rolling(window, min_periods=1, with_state=False, start=())

	Compute rolling aggregations

When followed by an aggregation method like sum, mean, or
std this produces a new Streaming dataframe whose values are
aggregated over that window.

The window parameter can be either a number of rows or a timedelta like
``”2 minutes”` in which case the index should be a datetime index.

This operates by keeping enough of a backlog of records to maintain an
accurate stream. It performs a copy at every added dataframe. Because
of this it may be slow if the rolling window is much larger than the
average stream element.

	Parameters

	
	window: int or timedelta
	Window over which to roll

	with_state: bool (False)
	Whether to return the state along with the result as a tuple (state, result).
State may be needed downstream for a number of reasons like checkpointing.

	start: () or resulting Python object type from the operation
	Accepts a valid start state.

	Returns

	
	Rolling object
	

See also

	DataFrame.window
	more generic window operations

	
round(decimals=0)

	Round elements in frame

	
set_index(index, **kwargs)

	Set Index

	
property size

	size of frame

	
sum(start=None)

	Sum frame.

	Parameters

	
	start: None or resulting Python object type from the operation
	Accepts a valid start state.

	
tail(n=5)

	Round elements in frame

	
to_frame()

	Convert to a streaming dataframe

	
verify(x)

	Verify consistency of elements that pass through this stream

	
window(n=None, value=None, with_state=False, start=None)

	Sliding window operations

Windowed operations are defined over a sliding window of data, either
with a fixed number of elements:

>>> df.window(n=10).sum() # sum of the last ten elements

or over an index value range (index must be monotonic):

>>> df.window(value='2h').mean() # average over the last two hours

Windowed dataframes support all normal arithmetic, aggregations, and
groupby-aggregations.

	Parameters

	
	n: int
	Window of number of elements over which to roll

	value: str
	Window of time over which to roll

	with_state: bool (False)
	Whether to return the state along with the result as a tuple (state, result).
State may be needed downstream for a number of reasons like checkpointing.

	start: None or resulting Python object type from the operation
	Accepts a valid start state.

See also

	DataFrame.rolling
	mimic’s Pandas rolling aggregations

Examples

>>> df.window(n=10).std()
>>> df.window(value='2h').count()

>>> w = df.window(n=100)
>>> w.groupby(w.name).amount.sum()
>>> w.groupby(w.x % 10).y.var()

	
class streamz.dataframe.Rolling(sdf, window, min_periods, with_state, start)

	Rolling aggregations

This intermediate class enables rolling aggregations across either a fixed
number of rows or a time window.

Examples

>>> sdf.rolling(10).x.mean()
>>> sdf.rolling('100ms').x.mean()

Methods

	aggregate(*args, **kwargs)

	Rolling aggregation

	count(*args, **kwargs)

	Rolling count

	max()

	Rolling maximum

	mean()

	Rolling mean

	median()

	Rolling median

	min()

	Rolling minimum

	quantile(*args, **kwargs)

	Rolling quantile

	std(*args, **kwargs)

	Rolling standard deviation

	sum()

	Rolling sum

	var(*args, **kwargs)

	Rolling variance

	
aggregate(*args, **kwargs)

	Rolling aggregation

	
count(*args, **kwargs)

	Rolling count

	
max()

	Rolling maximum

	
mean()

	Rolling mean

	
median()

	Rolling median

	
min()

	Rolling minimum

	
quantile(*args, **kwargs)

	Rolling quantile

	
std(*args, **kwargs)

	Rolling standard deviation

	
sum()

	Rolling sum

	
var(*args, **kwargs)

	Rolling variance

	
class streamz.dataframe.Window(sdf, n=None, value=None, with_state=False, start=None)

	Windowed aggregations

This provides a set of aggregations that can be applied over a sliding
window of data.

See also

	DataFrame.window
	contains full docstring

	Attributes

	
	columns
	

	dtypes
	

	example
	

	index
	

	size
	Number of elements within window

Methods

	apply(func)

	Apply an arbitrary function over each window of data

	count()

	Count elements within window

	groupby(other)

	Groupby-aggregations within window

	mean()

	Average elements within window

	std([ddof])

	Compute standard deviation of elements within window

	sum()

	Sum elements within window

	value_counts()

	Count groups of elements within window

	var([ddof])

	Compute variance of elements within window

	aggregate

	

	full

	

	map_partitions

	

	reset_index

	

	
apply(func)

	Apply an arbitrary function over each window of data

	
count()

	Count elements within window

	
groupby(other)

	Groupby-aggregations within window

	
mean()

	Average elements within window

	
property size

	Number of elements within window

	
std(ddof=1)

	Compute standard deviation of elements within window

	
sum()

	Sum elements within window

	
value_counts()

	Count groups of elements within window

	
var(ddof=1)

	Compute variance of elements within window

	
class streamz.dataframe.GroupBy(root, grouper, index=None)

	Groupby aggregations on streaming dataframes

Methods

	count([start])

	Groupby-count

	mean([with_state, start])

	Groupby-mean

	size()

	Groupby-size

	std([ddof])

	Groupby-std

	sum([start])

	Groupby-sum

	var([ddof])

	Groupby-variance

	
count(start=None)

	Groupby-count

	Parameters

	
	start: None or resulting Python object type from the operation
	Accepts a valid start state.

	
mean(with_state=False, start=None)

	Groupby-mean

	Parameters

	
	start: None or resulting Python object type from the operation
	Accepts a valid start state.

	
size()

	Groupby-size

	
std(ddof=1)

	Groupby-std

	
sum(start=None)

	Groupby-sum

	Parameters

	
	start: None or resulting Python object type from the operation
	Accepts a valid start state.

	
var(ddof=1)

	Groupby-variance

	
class streamz.dataframe.Random(freq='100ms', interval='500ms', dask=False, start=True, datafn=<function random_datablock>)

	PeriodicDataFrame providing random values by default

Accepts same parameters as PeriodicDataFrame, plus
freq, a string that will be converted to a pd.Timedelta
and passed to the ‘datafn’.

Useful mainly for examples and docs.

	Attributes

	
	columns
	

	current_value
	

	dtypes
	

	index
	

	plot
	

	size
	size of frame

Methods

	accumulate_partitions(func, *args, **kwargs)

	Accumulate a function with state across batch elements

	assign(**kwargs)

	Assign new columns to this dataframe

	count([start])

	Count of frame

	cummax()

	Cumulative maximum

	cummin()

	Cumulative minimum

	cumprod()

	Cumulative product

	cumsum()

	Cumulative sum

	from_periodic

	

	groupby(other)

	Groupby aggregations

	map_partitions(func, *args, **kwargs)

	Map a function across all batch elements of this stream

	mean([start])

	Average frame

	random

	

	register_api([modifier, attribute_name])

	Add callable to Stream API

	reset_index()

	Reset Index

	rolling(window[, min_periods, with_state, start])

	Compute rolling aggregations

	round([decimals])

	Round elements in frame

	set_index(index, **kwargs)

	Set Index

	sum([start])

	Sum frame.

	tail([n])

	Round elements in frame

	to_frame()

	Convert to a streaming dataframe

	verify(x)

	Verify consistency of elements that pass through this stream

	window([n, value, with_state, start])

	Sliding window operations

	aggregate

	

	astype

	

	emit

	

	ewm

	

	expanding

	

	map

	

	query

	

	register_plugin_entry_point

	

	start

	

	stop

	

Asynchronous Computation

This section is only relevant if you want to use time-based functionality. If
you are only using operations like map and accumulate then you can safely skip
this section.

When using time-based flow control like rate_limit, delay, or
timed_window Streamz relies on the Tornado [http://www.tornadoweb.org/en/stable/] framework for concurrency.
This allows us to handle many concurrent operations cheaply and consistently
within a single thread. However, this also adds complexity and requires some
understanding of asynchronous programming. There are a few different ways to
use Streamz with a Tornado event loop.

We give a few examples below that all do the same thing, but with different
styles. In each case we use the following toy functions:

from tornado import gen
import time

def increment(x):
 """ A blocking increment function

 Simulates a computational function that was not designed to work
 asynchronously
 """
 time.sleep(0.1)
 return x + 1

@gen.coroutine
def write(x):
 """ A non-blocking write function

 Simulates writing to a database asynchronously
 """
 yield gen.sleep(0.2)
 print(x)

Within the Event Loop

You may have an application that runs strictly within an event loop.

from streamz import Stream
from tornado.ioloop import IOLoop

@gen.coroutine
def f():
 source = Stream(asynchronous=True) # tell the stream we're working asynchronously
 source.map(increment).rate_limit(0.500).sink(write)

 for x in range(10):
 yield source.emit(x)

IOLoop().run_sync(f)

We call Stream with the asynchronous=True keyword, informing it that it
should expect to operate within an event loop. This ensures that calls to
emit return Tornado futures rather than block. We wait on results using
yield.

yield source.emit(x) # waits until the pipeline is ready

This would also work with async-await syntax in Python 3

from streamz import Stream
from tornado.ioloop import IOLoop

async def f():
 source = Stream(asynchronous=True) # tell the stream we're working asynchronously
 source.map(increment).rate_limit(0.500).sink(write)

 for x in range(10):
 await source.emit(x)

IOLoop().run_sync(f)

Event Loop on a Separate Thread

Sometimes the event loop runs on a separate thread. This is common when you
want to support interactive workloads (the user needs their own thread for
interaction) or when using Dask (next section).

from streamz import Stream

source = Stream(asynchronous=False) # starts IOLoop in separate thread
source.map(increment).rate_limit('500ms').sink(write)

for x in range(10):
 source.emit(x)

In this case we pass asynchronous=False to inform the stream that it is
expected to perform time-based computation (our write function is a coroutine)
but that it should not expect to run in an event loop, and so needs to start
its own in a separate thread. Now when we call source.emit normally
without using yield or await the emit call blocks, waiting on a
coroutine to finish within the IOLoop.

All functions here happen on the IOLoop. This is good for consistency, but can
cause other concurrent applications to become unresponsive if your functions
(like increment) block for long periods of time. You might address this by
using Dask (see below) which will offload these computations onto separate
threads or processes.

Using Dask

Dask [https://dask.pydata.org/en/latest/] is a parallel computing library that uses Tornado for concurrency and
threads for computation. The DaskStream object is a drop-in replacement
for Stream (mostly). Typically we create a Dask client, and then
scatter a local Stream to become a DaskStream.

from dask.distributed import Client
client = Client(processes=False) # starts thread pool, IOLoop in separate thread

from streamz import Stream
source = Stream()
(source.scatter() # scatter local elements to cluster, creating a DaskStream
 .map(increment) # map a function remotely
 .buffer(5) # allow five futures to stay on the cluster at any time
 .gather() # bring results back to local process
 .sink(write)) # call write locally

for x in range(10):
 source.emit(x)

This operates very much like the synchronous case in terms of coding style (no
@gen.coroutine or yield) but does computations on separate threads.
This also provides parallelism and access to a dashboard at
http://localhost:8787/status .

Asynchronous Dask

Dask can also operate within an event loop if preferred. Here you can get the
non-blocking operation within an event loop while also offloading computations
to separate threads.

from dask.distributed import Client
from tornado.ioloop import IOLoop

async def f():
 client = await Client(processes=False, asynchronous=True)
 source = Stream(asynchronous=True)
 source.scatter().map(increment).rate_limit('500ms').gather().sink(write)

 for x in range(10):
 await source.emit(x)

IOLoop().run_sync(f)

Visualizing streamz

A variety of tools are available to help you understand, debug,
visualize your streaming objects:

	Most Streamz objects automatically display themselves in Jupyter
notebooks, periodically updating their visual representation as text
or tables by registering events with the Tornado IOLoop used by Jupyter

	The network graph underlying a stream can be visualized using dot to
render a PNG using Stream.visualize(filename)

	Streaming data can be visualized using the optional separate packages
hvPlot, HoloViews, and Panel (see below)

hvplot.streamz

hvPlot is a separate plotting library providing Bokeh-based plots for
Pandas dataframes and a variety of other object types, including
streamz DataFrame and Series objects.

See hvplot.holoviz.org [https://hvplot.holoviz.org] for
instructions on how to install hvplot. Once it is installed, you can
use the Pandas .plot() API to get a dynamically updating plot in
Jupyter or in Bokeh/Panel Server:

import hvplot.streamz
from streamz.dataframe import Random

df = Random()
df.hvplot(backlog=100)

See the streaming section [https://hvplot.holoviz.org/user_guide/Streaming.html] of the hvPlot
user guide for more details, and the dataframes.ipynb example that
comes with streamz for a simple runnable example.

HoloViews

hvPlot is built on HoloViews, and you can also use HoloViews directly
if you want more control over events and how they are processed. See
the HoloViews user guide [http://holoviews.org/user_guide/Streaming_Data.html] for more
details.

Panel

Panel is a general purpose dashboard and app framework, supporting a
wide variety of displayable objects as “Panes”. Panel provides a
streamz Pane [https://panel.holoviz.org/reference/panes/Streamz.html] for
rendering arbitrary streamz objects, and streamz DataFrames are
handled by the Panel DataFrame Pane [https://panel.holoviz.org/reference/panes/DataFrame.html].

Plugins

In addition to using @Stream.register_api() decorator, custom stream nodes can
be added to Streamz by installing 3rd-party Python packages.

Known plugins

Extras

These plugins are supported by the Streamz community and can be installed as extras,
e.g. pip install streamz[kafka].

There are no plugins here yet, but hopefully soon there will be.

Entry points

Plugins register themselves with Streamz by using entry_points argument
in setup.py:

setup.py

from setuptools import setup

setup(
 name="streamz_example_plugin",
 version="0.0.1",
 entry_points={
 "streamz.nodes": [
 "repeat = streamz_example_plugin:RepeatNode"
]
 }
)

In this example, RepeatNode class will be imported from
streamz_example_plugin package and will be available as Stream.repeat.
In practice, class name and entry point name (the part before = in entry point
definition) are usually the same, but they can be different.

Different kinds of add-ons go into different entry point groups:

	Node type

	Required parent class

	Entry point group

	Source

	streamz.Source

	streamz.sources

	Node

	streamz.Stream

	streamz.nodes

	Sink

	streamz.Sink

	streamz.sinks

Lazy loading

Streamz will attach methods from existing plugins to the Stream class when it’s
imported, but actual classes will be loaded only when the corresponding Stream
method is first called. Streamz will also validate the loaded class before attaching it
and will raise an appropriate exception if validation fails.

Reference implementation

Let’s look at how stream nodes can be implemented.

__init__.py

from tornado import gen
from streamz import Stream

class RepeatNode(Stream):

 def __init__(self, upstream, n, **kwargs):
 super().__init__(upstream, ensure_io_loop=True, **kwargs)
 self._n = n

 @gen.coroutine
 def update(self, x, who=None, metadata=None):
 for _ in range(self._n):
 yield self._emit(x, metadata=metadata)

As you can see, implementation is the same as usual, but there’s no
@Stream.register_api() — Streamz will take care of that when loading the plugin.
It will still work if you add the decorator, but you don’t have to.

Index

 A
 | B
 | C
 | D
 | E
 | F
 | G
 | M
 | P
 | Q
 | R
 | S
 | T
 | U
 | V
 | W
 | Z

A

 	
 	accumulate() (in module streamz)

 	accumulate_partitions() (streamz.batch.Batch method)

 	(streamz.collection.Streaming method)

 	(streamz.dataframe.DataFrame method)

 	
 	aggregate() (streamz.dataframe.Rolling method)

 	apply() (streamz.dataframe.Window method)

 	assign() (streamz.dataframe.DataFrame method)

B

 	
 	Batch (class in streamz.batch)

 	
 	buffer() (in module streamz)

C

 	
 	collect() (in module streamz)

 	combine_latest() (in module streamz)

 	connect() (streamz.Stream method)

 	count() (streamz.dataframe.DataFrame method)

 	(streamz.dataframe.GroupBy method)

 	(streamz.dataframe.Rolling method)

 	(streamz.dataframe.Window method)

 	
 	cummax() (streamz.dataframe.DataFrame method)

 	cummin() (streamz.dataframe.DataFrame method)

 	cumprod() (streamz.dataframe.DataFrame method)

 	cumsum() (streamz.dataframe.DataFrame method)

D

 	
 	DaskStream() (in module streamz.dask)

 	DataFrame (class in streamz.dataframe)

 	
 	delay() (in module streamz)

 	destroy() (streamz.Stream method)

 	disconnect() (streamz.Stream method)

E

 	
 	emit() (streamz.Stream method)

F

 	
 	filenames() (in module streamz)

 	filter() (in module streamz)

 	(streamz.batch.Batch method)

 	flatten() (in module streamz)

 	frequencies() (streamz.Stream method)

 	
 	from_iterable() (in module streamz)

 	from_kafka() (in module streamz)

 	from_kafka_batched() (in module streamz)

 	from_periodic (streamz.dataframe.DataFrame attribute)

 	from_textfile() (in module streamz)

G

 	
 	gather() (in module streamz.dask)

 	GroupBy (class in streamz.dataframe)

 	
 	groupby() (streamz.dataframe.DataFrame method)

 	(streamz.dataframe.Window method)

M

 	
 	map() (in module streamz)

 	(streamz.batch.Batch method)

 	map_partitions() (streamz.batch.Batch static method)

 	(streamz.collection.Streaming static method)

 	(streamz.dataframe.DataFrame static method)

 	max() (streamz.dataframe.Rolling method)

 	
 	mean() (streamz.dataframe.DataFrame method)

 	(streamz.dataframe.GroupBy method)

 	(streamz.dataframe.Rolling method)

 	(streamz.dataframe.Window method)

 	median() (streamz.dataframe.Rolling method)

 	min() (streamz.dataframe.Rolling method)

P

 	
 	partition() (in module streamz)

 	
 	pluck() (in module streamz)

 	(streamz.batch.Batch method)

Q

 	
 	quantile() (streamz.dataframe.Rolling method)

R

 	
 	Random (class in streamz.dataframe)

 	random (streamz.dataframe.DataFrame attribute)

 	rate_limit() (in module streamz)

 	register_api() (streamz.batch.Batch class method)

 	(streamz.dataframe.DataFrame class method)

 	(streamz.Stream class method)

 	
 	reset_index() (streamz.dataframe.DataFrame method)

 	Rolling (class in streamz.dataframe)

 	rolling() (streamz.dataframe.DataFrame method)

 	round() (streamz.dataframe.DataFrame method)

S

 	
 	set_index() (streamz.dataframe.DataFrame method)

 	sink() (in module streamz)

 	(streamz.Stream method)

 	sink_to_list() (streamz.Stream method)

 	sink_to_textfile() (in module streamz)

 	(streamz.Stream method)

 	size (streamz.dataframe.DataFrame property)

 	(streamz.dataframe.Window property)

 	size() (streamz.dataframe.GroupBy method)

 	sliding_window() (in module streamz)

 	
 	std() (streamz.dataframe.GroupBy method)

 	(streamz.dataframe.Rolling method)

 	(streamz.dataframe.Window method)

 	Stream() (in module streamz)

 	Streaming (class in streamz.collection)

 	sum() (streamz.batch.Batch method)

 	(streamz.dataframe.DataFrame method)

 	(streamz.dataframe.GroupBy method)

 	(streamz.dataframe.Rolling method)

 	(streamz.dataframe.Window method)

T

 	
 	tail() (streamz.dataframe.DataFrame method)

 	timed_window() (in module streamz)

 	to_dataframe() (streamz.batch.Batch method)

 	
 	to_frame() (streamz.dataframe.DataFrame method)

 	to_mqtt() (streamz.Stream method)

 	to_stream() (streamz.batch.Batch method)

 	to_websocket() (streamz.Stream method)

U

 	
 	union() (in module streamz)

 	
 	unique() (in module streamz)

 	update() (streamz.Stream method)

V

 	
 	value_counts() (streamz.dataframe.Window method)

 	var() (streamz.dataframe.GroupBy method)

 	(streamz.dataframe.Rolling method)

 	(streamz.dataframe.Window method)

 	
 	verify() (streamz.batch.Batch method)

 	(streamz.collection.Streaming method)

 	(streamz.dataframe.DataFrame method)

 	visualize() (streamz.Stream method)

W

 	
 	Window (class in streamz.dataframe)

 	
 	window() (streamz.dataframe.DataFrame method)

Z

 	
 	zip() (in module streamz)

 	
 	zip_latest() (in module streamz)

 _static/file.png

_static/minus.png

nav.xhtml

 Table of Contents

 		
 Streamz

_static/plus.png

