
Streams Documentation
Release 0.6b

Sergey Arkhipov

September 30, 2016





Contents

1 Terms of content 3
1.1 Installation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 User Guide . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Streams API . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.4 Internal modules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2 Indices and tables 27

Python Module Index 29

i



ii



Streams Documentation, Release 0.6b

Streams is an easy to use library to allow you to interpret your information as a data flow and process it in this way. It
allows you parallel processing of a data flow and you can control it.

Actually Streams is dramatically inspired by Java 8 Stream API. Of course it is not a new beast in the zoo, I used the
same approach in several projects before but this pattern goes to mainstream now and it is good to have it in Python
too.

Just several examples to help you to feel what is it:

from requests import get
from operator import itemgetter

average_price = Stream(urls) \ # make a stream from the list of urls
.map(requests.get, parallel=4) \ # do url fetching in parallel. 4 threads / greenlets
.map(lambda response: response.json()["model"]) \ # extract required field from JSON.
.exclude(lambda model: model["deleted_at"] is None) \ # we need only active accounts so filter out deleted ones
.map(itemgetter("price")) \ # get a price from the model
.decimals() \ # convert prices into decimals
.average() \ # calulate average from the list

And now let’s check the piece of code which does almost the same.

from concurrent.futures import ThreadPoolExecutor
from requests import get

with ThreadPoolExecutor(4) as pool:
average_price = Decimal("0.00")
fetched_items = pool.map(requests.get, urls)
for response in fetched_items:

model = response.json()["model]
if model["deleted_at"] is None: continue
sum_of += Decimal(model["price"])

average_price /= len(urls)

So this is Stream approach. Streams is a lazy library and won’t do anything that is not needed. Let’s say you have urls
as an iterator and it contains several billions of URLs that you can’t fit into the memory (ThreadPoolExecutor creates
a list in the memory) or you want to build a pipeline of your data management and manipulate it according to some
conditions, checkout Streams, maybe it will help you to create more accurate and maintainable code.

Just suppose Streams as a pipes from your *nix environment but migrated into Python. It also has some cool features
you need to know about:

• Laziness,

• Small memory footprint even for massive data sets,

• Automatic and configurable parallelization,

• Smart concurrent pool management.

Contents 1



Streams Documentation, Release 0.6b

2 Contents



CHAPTER 1

Terms of content

1.1 Installation

Install with Pip or easy_install.

$ pip install pystreams

or

$ easy_install pystreams

If you want, you can always download the latest bleeding edge from GitHub:

$ git clone git://github.com/9seconds/streams.git
$ cd streams
$ ./setup.py install

Streams supports Python 2.6, 2.7, 3.2, 3.3, 3.4 and PyPy. Probably other implementations like Jython or IronPython
will work, but I haven’t tested them there.

1.2 User Guide

I supposed you’ve worked with Django and you’ve been using its ORM a lot. I will try to lead you to the idea of
functional streams by example. Actually I did no Django for a while and syntax might be outdated a bit or I may
confuse you so you are free to correct me through issue or pull request. Please do it, I appreciate your feedback.

If you didn’t work with any ORM just try to follow the idea, I will try to explain what is going on and things that really
matter.

1.2.1 What is Stream?

Let’s go back to default Django example: libraries and books. Let’s assume that we have app up and running and it
does some data management from your beloved database. Let’s say you want to fetch some recent books.

from library.models import Book

books = Book.objects.filter(pub_date__year=2014)

3



Streams Documentation, Release 0.6b

Good, isn’t it? You have a collection of models called Book which possibly presents books in your app. And you
want to have only those which were published in 2014. Good, figured out. Let’s go further. Let’s say you want to be
more specific and you want to have only bestsellers. It is ok.

from library.models import Book

books = Book.objects.filter(pub_date__year=2014)
bestsellers = books.order_by("-sales_count")[:10]

You can do it like this. But why is it better than this approach?

from operator import attrgetter
from library.models import Book

books = Book.objects.all()
books = [book for book in books if book.pub_date.year == 2014]
bestsellers = sorted(books, key=attrgetter("sales_count"), reverse=True)
bestsellers = bestsellers[:10]

You will get the same result, right? Actually no. Look, on filtering step you fetch all objects from the database and
process them all. It is ok if you have a dozen of models in your database but it can be big bottleneck if your data is
growing. That’s why everyone is trying to move as much filtering as possible into the database. Database knows how
to manage your data accurately and what do to in the most efficient way. It will use indexes etc to speedup whole
process and you do not need to do full scan everytime. It is best practice to fetch only that data you actually need from
the database.

So instead of

SELECT * FROM book

you do

SELECT * FROM book
WHERE EXTRACT(year FROM "pub_date") == 2014
ORDER BY sales_count DESC
LIMIT 10

Sounds legit. But let’s checkout how it looks like when do you work with ORM. Let’s go back to our example:

books = Book.objects.filter(pub_date__year=2014)
bestsellers = books.order_by("-sales_count")[:10]

or in a short way

bestsellers = Book.objects \
.filter(pub_date__year=2014) \
.order_by("-sales_count")[:10]

You may assume it like a data stream you are processing on every step. First you set initial source of data, this is
Book.objects.all(). Good. You may consider it as an iterable flow of data and you apply processing functions
on that stream, first if filtering, second is sorting, third is slicing. You process the flow, not every objects, this is crucial
concept. Everytime after execution of some flow (or QuerySet) method you get another instance of the same flow
but with your modifications.

You may suppose that Streams library to provide you the same functionality but for any iterable. Of course this is not
that efficient as Django ORM which knows the context of database and helps you to execute your queries in the most
efficient way.

4 Chapter 1. Terms of content



Streams Documentation, Release 0.6b

1.2.2 How to use Streams

Now you got an idea of Streams: to manage data flow itself, not every component. You can build your own toy
map/reduce stuff with it if you really need to have it. Our you can just filter and process your data to exclude some
Nones etc in parallel or to have some generic way to do it. It is up to you, I’ll just show you some examples and if you
want to have more information just go to the API documentation

So, for simplicity let’s assume that you have giant gzipped CSV, in 10 GB. And you can use only 1GB of your memory
so it is not possible to put everything in memory at once. This CSV has 5 columns, author_id, book_name.

Yeah, books again. Why not?

So your boss asked you to implement function which will read this csvfile and do some optional filtering on it. Also
you must fetch the data from predefined external sources, search on prices in different shops (Amazon at least) and
write some big XML file with an average price.

I some explanation on the go.

from csv import reader
from gzip import open as gzopen
from collections import namedtuple
try:

from xml.etree import cElementTree as ET
except ImportError:

from xml.etree import ElementTree as ET
from streams import Stream
from other_module import shop_prices_fetch, author_fetch, publisher_fetch

def extract_averages(csv_filename, xml_filename,
author_prefix=None, count=None, publisher=None, shops=None,
available=None):

file_handler = gzopen(csv_filename, "r")
try:

csv_iterator = reader(file_handler)

# great, we have CSV iterator right now which will read our
# file line by line now let's convert it to stream
stream = Stream(csv_iterator)

# now let's fetch author names. Since every row looks like a
# tuple of (key, value) where key is an author_id and value is
# a book name we can do key_mapping here. And let's do it in
# parallel it is I/O bound
stream = stream.key_map(author_fetch, parallel=True)

# okay, now let's keep only author name here
stream = stream.key_map(lambda author: author["name"])

# we have author prefix, right?
if author_prefix is not None:

stream = stream.filter(lambda (author, book): author.startswith(author_prefix))

# let's fetch publisher now. Let's do it in 10 threads
if publisher is not None:

stream = stream.map(
lambda (author, book): (author, book, publisher_fetch(author, book)),
parallel=10

)

1.2. User Guide 5



Streams Documentation, Release 0.6b

stream = stream.filter(lambda item: item[-1] == publisher)
# we do not have to have publisher now, let's remove it
stream = stream.map(lambda item: item[:2])

# good. Let's compose the list of shops here
stream.map(

lambda (author, book): (author, book, shop_prices_fetch(author, book, shops))
)

# now let's make averages
stream.map(lambda item: item[:2] + sum(item[3]) / len(item[3]))

# let's remove unavailable books now.
if available is not None:

if available:
stream = stream.filter(lambda item: item[-1])

else:
stream = stream.filter(lambda item: not item[-1])

# ok, great. Now we have only those entries which we are requiring
# let's compose xml now. Remember whole our data won't fit in memory.
with open(xml_filename, "w") as xml:

xml.write("<?xml version='1.0' encoding='UTF-8' standalone='yes'?>\n")
xml.write("<books>\n")
for author, book, average in stream:

book_element = ET.Element("book")
ET.SubElement(book_element, "name").text = unicode(book)
ET.SubElement(book_element, "author").text = unicode(author)
ET.SubElement(book_element, "average_price").text = unicode(average)
xml.write(ET.dumps(book_element) + "\n")

xml.write("</books>\n")
finally:

file_handler.close()

That’s it. On every step we’ve manipulated with given stream to direct it in the way we need. We’ve parallelized where
neccessary and actually nothing was executed before we started to iterate the stream. Stream is lazy and it yields one
record by one so we haven’t swaped.

I guess it is a time to proceed to API documentation. Actually you need to check only Stream class methods docu-
mentation, the rest of are utility ones.

1.3 Streams API

This chapter contains documentation on Streams API. As a rule you have to use documentation on Stream class only
but if you want you can check internals also. streams module contains just a Stream class. Basically you want to use
only this class and nothing else from the module.

class streams.Stream(iterator, max_cache=0)
Stream class provides you with the basic functionality of Streams. Please checkout member documentation to
get an examples.

__init__(iterator, max_cache=0)
Initializes the Stream.

Actually it does some smart handling of iterator. If you give it an instance of dict or its derivatives (such
as collections.OrderedDict), it will iterate through it’s items (key and values). Otherwise just
normal iterator would be used.

6 Chapter 1. Terms of content

http://docs.python.org/library/stdtypes.html#dict
http://docs.python.org/library/collections.html#collections.OrderedDict


Streams Documentation, Release 0.6b

Parameters

• iterator (Iterable) – Iterator which has to be converted into Stream.

• max_cache (int) – the number of items to cache (defaults to Stream.ALL).

__iter__()
To support iteration protocol.

__len__()
To support len() function if given iterator supports it.

__reversed__()
To support reversed() iterator.

all(predicate=<type ‘bool’>, **concurrency_kwargs)
Check if all elements matching given predicate exist in the stream. If predicate is not defined,
bool() is used.

Parameters

• predicate (function) – Predicate to apply to each element of the Stream.

• concurrency_kwargs (dict) – The same concurrency keywords as for
Stream.map().

Returns The result if we have matched elements or not.

>>> stream = Stream.range(5)
>>> stream.all(lambda item: item > 100)
... False

any(predicate=<type ‘bool’>, **concurrency_kwargs)
Check if any element matching given predicate exists in the stream. If predicate is not defined,
bool() is used.

Parameters

• predicate (function) – Predicate to apply to each element of the Stream.

• concurrency_kwargs (dict) – The same concurrency keywords as for
Stream.map().

Returns The result if we have matched elements or not.

>>> stream = Stream.range(5)
>>> stream.any(lambda item: item < 100)
... True

average()
Calculates the average of elements in the stream.

Returns The average of elements.

>>> stream = Stream.range(10000)
>>> stream.average()
... 4999.5

cache(max_cache=<object object>)
Return a stream which caches elements for future iteration.

By default the new stream will cache all elements. If passing an integer to max_cache, the new stream
will cache up to that many of the most recently iterated elements.

Parameters max_cache (int) – the number of items to cache (defaults to Stream.ALL).

1.3. Streams API 7

http://docs.python.org/library/functions.html#int
http://docs.python.org/library/functions.html#len
http://docs.python.org/library/stdtypes.html#dict
http://docs.python.org/library/stdtypes.html#dict
http://docs.python.org/library/functions.html#int


Streams Documentation, Release 0.6b

Returns new processed Stream instance.

>>> stream = Stream.range(10).cache()
>>> list(stream)
... [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
>>> list(stream)
... [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
>>> stream = stream.cache(5)
>>> list(stream)
... [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
>>> list(stream)
... [5, 6, 7, 8, 9]

chain()
If elements of the stream are iterable, tries to flat that stream.

Returns new processed Stream instance.

>>> stream = Stream.range(3)
>>> stream = stream.tuplify()
>>> stream = stream.chain()
>>> list(stream)
>>> [0, 0, 1, 1, 2, 2]

classmethod concat(*streams)
Lazily concatenates several stream into one. The same as Java 8 concat.

Parameters streams – The Stream instances you want to concatenate.

Returns new processed Stream instance.

>>> stream1 = Stream(range(2))
>>> stream2 = Stream(["2", "3", "4"])
>>> stream3 = Stream([list(), dict()])
>>> concatenated_stream = Stream.concat(stream1, stream2, stream3)
>>> list(concatenated_stream)
... [0, 1, "2", "3", "4", [], {}]

count(element=<object object>)
Returns the number of elements in the stream. If element is set, returns the count of particular element
in the stream.

Parameters element (object) – The element we need to count in the stream

Returns The number of elements of the count of particular element.

decimals()
Tries to convert everything to decimal.Decimal and keeps only successful attempts.

Returns new processed Stream instance.

>>> stream = Stream([1, 2.0, "3", "4.0", None, {}])
>>> stream = stream.longs()
>>> list(stream)
... [Decimal('1'), Decimal('2'), Decimal('3'), Decimal('4.0')]

Note: It is not the same as stream.map(Decimal) because it removes failed attempts.

8 Chapter 1. Terms of content

http://docs.oracle.com/javase/8/docs/api/java/util/stream/Stream.html#concat-java.util.stream.Stream-java.util.stream.Stream-
http://docs.python.org/library/functions.html#object
http://docs.python.org/library/decimal.html#decimal.Decimal


Streams Documentation, Release 0.6b

Note: It tries to use cdecimal module if possible.

distinct()
Removes duplicates from the stream.

Returns new processed Stream instance.

Note: All objects in the stream have to be hashable (support __hash__()).

Note: Please use it carefully. It returns new Stream but will keep every element in your memory.

divisible_by(number)
Filters stream for the numbers divisible by the given one.

Parameters number (int) – Number which every element should be divisible by.

Returns new processed Stream instance.

>>> stream = Stream.range(6)
>>> stream = stream.divisible_by(2)
>>> list(stream)
... [0, 2, 4]

evens()
Filters and keeps only even numbers from the stream.

Returns new processed Stream instance.

>>> stream = Stream.range(6)
>>> stream = stream.evens()
>>> list(stream)
... [0, 2, 4]

exclude(predicate, **concurrency_kwargs)
Excludes items from Stream according to the predicate. You can consider behaviour as the same as for
itertools.ifilterfalse().

As Stream.filter() it also supports parallelization. Please checkout Stream.map() keyword
arguments.

Parameters

• predicate (function) – Predicate for filtering elements of the Stream.

• concurrency_kwargs (dict) – The same concurrency keywords as for
Stream.map().

Returns new processed Stream instance.

>>> stream = Stream.range(6)
>>> stream = stream.exclude(lambda item: item % 2 == 0)
>>> list(stream)
... [1, 3, 5]

exclude_nones()
Excludes None from the stream.

Returns new processed Stream instance.

1.3. Streams API 9

http://docs.python.org/library/functions.html#int
http://docs.python.org/library/itertools.html#itertools.ifilterfalse
http://docs.python.org/library/stdtypes.html#dict


Streams Documentation, Release 0.6b

>>> stream = Stream([1, 2, None, 3, None, 4])
>>> stream = stream.exclude_nones()
>>> list(stream)
... [1, 2, 3, 4]

filter(predicate, **concurrency_kwargs)
Does filtering according to the given predicate function. Also it supports parallelization (if predicate
is pretty heavy function).

You may consider it as equivalent of itertools.ifilter() but for stream with a possibility to
parallelize this process.

Parameters

• predicate (function) – Predicate for filtering elements of the Stream.

• concurrency_kwargs (dict) – The same concurrency keywords as for
Stream.map().

Returns new processed Stream instance.

>>> stream = Stream.range(5)
>>> stream = stream.filter(lambda item: item % 2 == 0)
>>> list(stream)
... [0, 2, 4]

first
Returns a first element from iterator and does not changes internals.

>>> stream = Stream.range(10)
>>> stream.first
... 0
>>> stream.first
... 0
>>> list(stream)
... [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

floats()
Tries to convert everything to float() and keeps only successful attempts.

Returns new processed Stream instance.

>>> stream = Stream([1, 2, "3", "4", None, {}, 5])
>>> stream = stream.floats()
>>> list(stream)
... [1.0, 2.0, 3.0, 4.0, 5.0]

Note: It is not the same as stream.map(float) because it removes failed attempts.

instances_of(cls)
Filters and keeps only instances of the given class.

Parameters cls (class) – Class for filtering.

Returns new processed Stream instance.

>>> int_stream = Stream.range(4)
>>> str_stream = Stream.range(4).strings()
>>> result_stream = Stream.concat(int_stream, str_stream)
>>> result_stream = result_stream.instances_of(str)

10 Chapter 1. Terms of content

http://docs.python.org/library/itertools.html#itertools.ifilter
http://docs.python.org/library/stdtypes.html#dict


Streams Documentation, Release 0.6b

>>> list(result_stream)
... ['0', '1', '2', '3']

ints()
Tries to convert everything to int() and keeps only successful attempts.

Returns new processed Stream instance.

>>> stream = Stream([1, 2, "3", "4", None, {}, 5])
>>> stream = stream.ints()
>>> list(stream)
... [1, 2, 3, 4, 5]

Note: It is not the same as stream.map(int) because it removes failed attempts.

classmethod iterate(function, seed_value)
Returns seed stream. The same as for Java 8 iterate.

Returns an infinite sequential ordered Stream produced by iterative application of a function f to an initial
element seed, producing a Stream consisting of seed, f(seed), f(f(seed)), etc.

The first element (position 0) in the Stream will be the provided seed. For n > 0, the element at position
n, will be the result of applying the function f to the element at position n - 1.

Parameters

• function (function) – The function to apply to the seed.

• seed_value (object) – The seed value of the function.

Returns new processed Stream instance.

>>> stream = Stream.iterate(lambda value: value ** 2, 2)
>>> iterator = iter(stream)
>>> next(iterator)
... 2
>>> next(iterator)
... 4
>>> next(iterator)
... 8

key_map(predicate, **concurrency_kwargs)
Maps only key in (key, value) pair. If element is single one, then it would be Stream.tuplify() first.

Parameters

• predicate (function) – Predicate to apply to the key of element in the Stream.

• concurrency_kwargs (dict) – The same concurrency keywords as for
Stream.map().

Returns new processed Stream instance.

>>> stream = Stream.range(4)
>>> stream = stream.tuplify()
>>> stream = stream.key_map(lambda item: item ** 3)
>>> list(stream)
... [(0, 0), (1, 1), (8, 2), (27, 3)]
>>> stream = Stream.range(4)
>>> stream = stream.key_map(lambda item: item ** 3)

1.3. Streams API 11

http://docs.oracle.com/javase/8/docs/api/java/util/stream/Stream.html#iterate-T-java.util.function.UnaryOperator-
http://docs.python.org/library/functions.html#object
http://docs.python.org/library/stdtypes.html#dict


Streams Documentation, Release 0.6b

>>> list(stream)
... [(0, 0), (1, 1), (8, 2), (27, 3)]

keys()
Iterates only keys from the stream (first element from the tuple). If element is single then it will be used.

Returns new processed Stream instance.

>>> stream = Stream.range(5)
>>> stream = stream.key_map(lambda item: item ** 3)
>>> stream = stream.keys()
>>> list(stream)
... [0, 1, 8, 27, 64]

largest(size)
Returns size largest elements from the stream.

Returns new processed Stream instance.

>>> stream = Stream.range(3000)
>>> stream.largest(5)
>>> list(stream)
>>> [2999, 2998, 2997, 2996, 2995]

limit(size)
Limits stream to given size.

Parameters size (int) – The size of new Stream.

Returns new processed Stream instance.

>>> stream = Stream.range(1000)
>>> stream = stream.limit(5)
>>> list(stream)
... [0, 1, 2, 3, 4]

longs()
Tries to convert everything to long() and keeps only successful attempts.

Returns new processed Stream instance.

>>> stream = Stream([1, 2, "3", "4", None, {}, 5])
>>> stream = stream.longs()
>>> list(stream)
... [1L, 2L, 3L, 4L, 5L]

Note: It is not the same as stream.map(long) because it removes failed attempts.

map(predicate, **concurrency_kwargs)
The corner method of the Stream and others are basing on it. It supports parallelization out of box.
Actually it works just like itertools.imap().

Parameters

• predicate (function) – Predicate to map each element of the Stream.

• concurrency_kwargs (dict) – The same concurrency keywords.

Returns new processed Stream instance.

12 Chapter 1. Terms of content

http://docs.python.org/library/functions.html#int
http://docs.python.org/library/itertools.html#itertools.imap
http://docs.python.org/library/stdtypes.html#dict


Streams Documentation, Release 0.6b

Parallelization is configurable by keywords. There is 2 keywords supported: parallel and process.
If you set one keyword to True then Stream would try to map everything concurrently. If you want
more intelligent tuning just set the number of workers you want.

For example, you have a list of URLs to fetch

>>> stream = Stream(urls)

You can fetch them in parallel

>>> stream.map(requests.get, parallel=True)

By default, the number of workers is the number of cores on your computer. But if you want to have 64
workers, you are free to do it

>>> stream.map(requests.get, parallel=64)

The same for process which will try to use processes.

>>> stream.map(requests.get, process=True)

and

>>> stream.map(requests.get, process=64)

Note: Python multiprocessing has its caveats and pitfalls, please use it carefully (especially
predicate). Read the documentation on multiprocessing and try to google best practices.

Note: If you set both parallel and process keywords only parallel would be used. If you want
to disable some type of concurrency just set it to None.

>>> stream.map(requests.get, parallel=None, process=64)

is equal to

>>> stream.map(requests.get, process=64)

The same for parallel

>>> stream.map(requests.get, parallel=True, process=None)

is equal to

>>> stream.map(requests.get, parallel=True)

Note: By default no concurrency is used.

median()
Returns median value from the stream.

Returns The median of the stream.

>>> stream = Stream.range(10000)
>>> stream.median()
... 5000

1.3. Streams API 13

http://docs.python.org/library/multiprocessing.html#module-multiprocessing


Streams Documentation, Release 0.6b

Note: Please be noticed that all elements from the stream would be fetched in the memory.

nth(nth_element)
Returns Nth element from the stream.

Parameters nth_element (int) – Number of element to return.

Returns Nth element.

>>> stream = Stream.range(10000)
>>> stream.average()
... 4999.5

Note: Please be noticed that all elements from the stream would be fetched in the memory (except of the
case where nth_element == 1).

odds()
Filters and keeps only odd numbers from the stream.

Returns new processed Stream instance.

>>> stream = Stream.range(6)
>>> stream = stream.odds()
>>> list(stream)
... [1, 3, 5]

only_falses()
Keeps only those elements where bool(item) == False.

Returns new processed Stream instance.

>>> stream = Stream([1, 2, None, 0, {}, [], 3])
>>> stream = stream.only_trues()
>>> list(stream)
... [None, 0, {}, []]

Opposite to Stream.only_trues().

only_nones()
Keeps only None in the stream (for example, for counting).

Returns new processed Stream instance.

>>> stream = Stream([1, 2, None, 3, None, 4])
>>> stream = stream.only_nones()
>>> list(stream)
... [None, None]

only_trues()
Keeps only those elements where bool(element) == True.

Returns new processed Stream instance.

>>> stream = Stream([1, 2, None, 0, {}, [], 3])
>>> stream = stream.only_trues()
>>> list(stream)
... [1, 2, 3]

14 Chapter 1. Terms of content

http://docs.python.org/library/functions.html#int


Streams Documentation, Release 0.6b

partly_distinct()
Excludes some duplicates from the memory.

Returns new processed Stream instance.

Note: All objects in the stream have to be hashable (support __hash__()).

Note: It won’t guarantee you that all duplicates will be removed especially if your stream is pretty big
and cardinallity is huge.

peek(predicate)
Does the same as Java 8 peek.

Parameters predicate (function) – Predicate to apply on each element.

Returns new processed Stream instance.

Returns a stream consisting of the elements of this stream, additionally performing the provided action on
each element as elements are consumed from the resulting stream.

classmethod range(*args, **kwargs)
Creates numerial iterator. Absoultely the same as Stream.range(10) and Stream(range(10))
(in Python 2: Stream(xrange(10))). All arguments go to range() (xrange()) directly.

Returns new processed Stream instance.

>>> stream = Stream.range(6)
>>> list(stream)
... [0, 1, 2, 3 ,4, 5]
>>> stream = Stream.range(1, 6)
>>> list(stream)
... [1, 2, 3, 4, 5]
>>> stream = Stream.range(1, 6, 2)
>>> list(stream)
... [1, 3, 5]

reduce(function, initial=<object object>)
Applies reduce() for the iterator

Parameters

• function (function) – Reduce function

• initial (object) – Initial value (if nothing set, first element) would be used.

>>> Stream = stream.range(5)
>>> stream.reduce(operator.add)
... 10

regexp(regexp, flags=0)
Filters stream according to the regular expression using re.match(). It also supports the same flags as
re.match().

Parameters

• regexp (str) – Regular expression for filtering.

• flags (int) – Flags from re.

Returns new processed Stream instance.

1.3. Streams API 15

http://docs.oracle.com/javase/8/docs/api/java/util/stream/Stream.html#peek-java.util.function.Consumer-
http://docs.python.org/library/functions.html#xrange
http://docs.python.org/library/functions.html#object
http://docs.python.org/library/re.html#re.match
http://docs.python.org/library/re.html#re.match
http://docs.python.org/library/functions.html#str
http://docs.python.org/library/functions.html#int
http://docs.python.org/library/re.html#module-re


Streams Documentation, Release 0.6b

>>> stream = Stream.range(100)
>>> stream = stream.strings()
>>> stream = stream.regexp(r"^1")
>>> list(stream)
... ['1', '10', '11', '12', '13', '14', '15', '16', '17', '18', '19']

reversed()
Reverses the stream.

Returns new processed Stream instance.

... note:: If underlying iterator won’t support reversing, we are in trouble and need to fetch everything
into the memory.

skip(size)
Skips first size elements.

Parameters size (int) – The amount of elements to skip.

Returns new processed Stream instance.

>>> stream = Stream.range(10)
>>> stream = stream.skip(5)
>>> list(stream)
... [5, 6, 7, 8, 9]

smallest(size)
Returns size largest elements from the stream.

Returns new processed Stream instance.

>>> stream = Stream.range(3000)
>>> stream.smallest(5)
>>> list(stream)
>>> [0, 1, 2, 3, 4]

sorted(key=None, reverse=False)
Sorts the stream elements.

Parameters

• key (function) – Key function for sorting

• reverse (bool) – Do we need to sort in descending order?

Returns new processed Stream instance.

... note:: Of course no magic here, we need to fetch all elements for sorting into the memory.

strings()
Tries to convert everything to unicode() (str for Python 3) and keeps only successful attempts.

Returns new processed Stream instance.

>>> stream = Stream([1, 2.0, "3", "4.0", None, {}])
>>> stream = stream.strings()
>>> list(stream)
... ['1', '2.0', '3', '4.0', 'None', '{}']

16 Chapter 1. Terms of content

http://docs.python.org/library/functions.html#int
http://docs.python.org/library/functions.html#bool
http://docs.python.org/library/functions.html#unicode
http://docs.python.org/library/functions.html#str


Streams Documentation, Release 0.6b

Note: It is not the same as stream.map(str) because it removes failed attempts.

Note: It tries to convert to unicode if possible, not bytes.

sum()
Returns the sum of elements in the stream.

>>> Stream = stream.range(10)
>>> stream = stream.decimals()
>>> stream = stream.sum()
... Decimal('45')

Note: Do not use sum() here. It does sum regarding to defined __add__() of the classes. So it can
sum decimal.Decimal with int for example.

tuplify(clones=2)
Tuplifies iterator. Creates a tuple from iterable with clones elements.

Parameters clones (int) – The count of elements in result tuple.

Returns new processed Stream instance.

>>> stream = Stream.range(2)
>>> stream = stream.tuplify(3)
>>> list(stream)
... [(0, 0, 0), (1, 1, 1)]

value_map(predicate, **concurrency_kwargs)
Maps only value in (key, value) pair. If element is single one, then it would be Stream.tuplify()
first.

Parameters

• predicate (function) – Predicate to apply to the value of element in the Stream.

• concurrency_kwargs (dict) – The same concurrency keywords as for
Stream.map().

Returns new processed Stream instance.

>>> stream = Stream.range(4)
>>> stream = stream.tuplify()
>>> stream = stream.value_map(lambda item: item ** 3)
>>> list(stream)
... [(0, 0), (1, 1), (2, 8), (3, 27)]
>>> stream = Stream.range(4)
>>> stream = stream.value_map(lambda item: item ** 3)
>>> list(stream)
... [(0, 0), (1, 1), (2, 8), (3, 27)]

values()
Iterates only values from the stream (last element from the tuple). If element is single then it will be
used.

Returns new processed Stream instance.

1.3. Streams API 17

http://docs.python.org/library/decimal.html#decimal.Decimal
http://docs.python.org/library/functions.html#int
http://docs.python.org/library/functions.html#int
http://docs.python.org/library/stdtypes.html#dict


Streams Documentation, Release 0.6b

>>> stream = Stream.range(5)
>>> stream = stream.key_map(lambda item: item ** 3)
>>> stream = stream.values()
>>> list(stream)
... [0, 1, 2, 3, 4]

1.4 Internal modules

Basically you do not need this API but if you are curious feel free to check it out.

1.4.1 streams.executors

This module provides different implementation of concurrent executors suitable to work with
streams.poolofpools.PoolOfPools. If Gevent is available then you can also import
streams.executors._gevent.GeventExecutor here.

Also it has some class called streams.executors.ParallelExecutor. This is dy-
namically calculated class for default concurrent execution. If code is monkey patched by
Gevent, then it uses streams.executors._gevent.GeventExecutor. Otherwise -
streams.executors.executors.ThreadPoolExecutor.

streams.executors.executors

This module has implementation of executors wrapped by streams.executors.mixins.PoolOfPoolsMixin
and applicable to work with streams.poolofpools.PoolOfPools.

Basically all of them are thin extensions of classes from concurrent.futures.

class streams.executors.executors.ProcessPoolExecutor(max_workers=None)
Implementation of concurrent.futures.ProcessPoolExecutor applicable to work with
streams.poolofpools.PoolOfPools.

class streams.executors.executors.SequentalExecutor(*args, **kwargs)
Debug executor. No concurrency, it just yields elements one by one.

class streams.executors.executors.ThreadPoolExecutor(max_workers)
Implementation of concurrent.futures.ThreadPoolExecutor applicable to work with
streams.poolofpools.PoolOfPools.

streams.executors.mixins

This module provides PoolOfPoolMixin only. Basically you need to mix it into
concurrent.futures.Executor implementation and it will be possible to use it with PoolOfPools.

class streams.executors.mixins.PoolOfPoolsMixin
Mixin to support streams.poolofpools.PoolOfPools execution properly.

Basically it replaces map implementation and provides some additional interface which helps
streams.poolofpools.PoolOfPools to manage executor instance. Current implementation supports
expanding only (dynamically increasing, on the fly) the number of workers.

18 Chapter 1. Terms of content



Streams Documentation, Release 0.6b

static dummy_callback(*args, **kwargs)
Just a dummy callback if no streams.poolofpools.PoolOfPools.worker_finished() is
supplied for the mapper. Basically does nothing. Literally nothing. Good thing though, no bugs.

expand(expand_to)
The hack to increase an amount of workers in executor.

Parameters expand_to (int) – The amount of worker we need to add to the executor.

Note: It works perfect with streams.executors._gevent.GeventExecutor
and concurrent.futures.ThreadPoolExecutor but has some issues with
concurrent.futures.ProcessPoolExecutor.

It increases the amount of workers who manage task queue but it is not possible to expand queue itself in
a good way (current implementation has a limit of tasks in the queue).

static get_first(queue)
Extracts the result of the execution from the first element of the queue (to support or-
der since a map is ordering function). Also it tries to handle exceptions if pre-
sented in the same way as concurrent.futures.ThreadPoolExecutor or
concurrent.futures.ProcessPoolExecutor do.

Note: It relies on given implementation of map method in both
concurrent.futures.ThreadPoolExecutor and concurrent.futures.ProcessPoolExecutor
so if you see some differences in behaviour please create an issue.

map(fn, *iterables, **kwargs)
New implementation of concurrent mapper.

It has 2 new arguments: callback and required_workers

Parameters

• callback (Callable) – Callback to execute after map is done

• required_workers (int) – The amount of workers we have to use for this map pro-
cedure.

It differs from default implementation in 2 ways:

1. It uses the limit of workers (required_workers). It can be less than max workers defined
on executor initialization hence it is possible to utilize the same executor for several tasks more
efficient.

2. It doesn’t create a list of futures in memory. Actually it creates only required_workers
amount of futures and tries to keep this count the same during whole procedure. Yes, it is not
naturally concurrent execution because it just submits task by task but on big iterables it utilizes
as less memory as possible providing reasonable concurrency.

streams.executors._gevent

This module provides implementation of streams.executors._gevent.GreenletFuture
(thin wrapper around concurrent.futures.Future) and implementation of
streams.executors._gevent.GeventExecutor.

1.4. Internal modules 19

http://docs.python.org/library/functions.html#int
http://docs.python.org/library/functions.html#int


Streams Documentation, Release 0.6b

Basically you can use concurrent.futures.ThreadPoolExecutor, it is ok and will work but to utilize the
power of greenlets more carefully it makes sense to use custom one.

class streams.executors._gevent.GeventExecutor(*args, **kwargs)
Implementation of Gevent executor fully compatible with concurrent.futures.Executor.

class streams.executors._gevent.GreenletFuture(greenlet)
Just a thin wrapper around a concurrent.futures.Future to support greenlets.

1.4.2 streams.iterators

This module contains some useful iterators. Consider it as a small ad-hoc extension pack for itertools.

streams.iterators.accumulate(iterable, function=<built-in function add>)
Implementation of itertools.accumulate() from Python 3.3.

streams.iterators.distinct(iterable)
Filters items from iterable and returns only distinct ones. Keeps order.

Parameters iterable (Iterable) – Something iterable we have to filter.

>>> list(distinct([1, 2, 3, 2, 1, 2, 3, 4]))
... [1, 2, 3, 4]

Note: This is fair implementation and we have to keep all items in memory.

Note: All items have to be hashable.

streams.iterators.partly_distinct(iterable)
Filters items from iterable and tries to return only distincts. Keeps order.

Parameters iterable (Iterable) – Something iterable we have to filter.

>>> list(partly_distinct([1, 2, 3, 2, 1, 2, 3, 4]))
... [1, 2, 3, 4]

Note: Unlike distinct() it won’t guarantee that all elements would be distinct. But if you have rather
small cardinality of the stream, this would work.

Note: Current implementation guarantees support for 10000 distinct values. If your cardinality is bigger, there
might be some duplicates.

streams.iterators.peek(iterable, function)
Does the same as Java 8 peek does.

Parameters

• iterable (Iterable) – Iterable we want to peek

• function (function) – Peek function

20 Chapter 1. Terms of content

http://docs.python.org/library/itertools.html#module-itertools
http://docs.oracle.com/javase/8/docs/api/java/util/stream/Stream.html#peek-java.util.function.Consumer-


Streams Documentation, Release 0.6b

>>> def peek_func(item):
... print "peek", item
>>> list(peek([1, 2, 3], peek_func))
... peek 1
... peek 2
... peek 3
... [1, 2, 3]

streams.iterators.seed(function, seed_value)
Does the same as Java 8 iterate.

Parameters

• iterable (Iterable) – Iterable we want to peek

• function (function) – Peek function

>>> iterator = seed(lambda x: x * 10, 1)
>>> next(iterator)
... 1
>>> next(iterator)
... 10
>>> next(iterator)
... 100

1.4.3 streams.poolofpools

class streams.poolofpools.ExecutorPool(worker_class)
Executor pool for PoolOfPools which does accurate and intelligent management for the pools of predefined
classes.

Basically it tries to reuse existing executors if possible. If it is not possible it creates new ones.

Just an example: you’ve done a big mapping of the data in 10 threads. As a rule you need to shutdown and clean
this pool. But a bit later you see that you need for the pool of 4 threads. Why not to reuse existing pool? This
class allow you to do that and it tracks that 6 threads are idle. So if you will have a task where you need <= 6
threads it will reuse that pool also. Task with 4 threads may continue to work in parallel but you have 6 threads
you can occupy. So this is the main idea.

Also it tries to squash pools into single instance if you have several which idle by expanding an amount of
workers in one instance throwing out another one.

__init__(worker_class)
Constructor of the class. worker_class has to be a class which supports required interface and behaviour,
it has to be an instance of streams.executors.mixins.PoolOfPoolsMixin.

Parameters worker_class (PoolOfPoolsMixin) – The class of executors this pool has
to maintain.

__weakref__
list of weak references to the object (if defined)

get(required_workers)
Returns a mapper which guarantees that you can utilize given number of workers.

Parameters required_workers (int) – The number of workers you need to utilize for
your task.

1.4. Internal modules 21

http://docs.oracle.com/javase/8/docs/api/java/util/stream/Stream.html#iterate-T-java.util.function.UnaryOperator-
http://docs.python.org/library/functions.html#int


Streams Documentation, Release 0.6b

get_any()
Returns any map function, it is undetermined how many workers does it have. As a rule, you get a minimal
amount of workers within a pool of executors.

get_suitable_worker(required_workers)
Returns suitable executor which has required amount of workers. Returns None if nothing is available.

Actually it returns a tuple of worker and a count of workers available for utilization within a given pool. It
may be more than required_workers but it can’t be less.

Parameters required_workers (int) – The amount of workers user requires.

name_to_worker_mapping()
Maps worker names (the result of applying id() to the executor) to executor instances.

real_worker_availability()
Returns mapping of the name for the executor and it real availability. Since worker_finished()
does not do any defragmentation of availability it may be possible that internal structure contains multiple
controversial information about worker availability. This method is intended to restore the truth.

squash()
Squashes pools and tries to minimize the amount of pools available to avoid unnecessary fragmentation
and complexity.

squash_workers(names, avails)
Does actual squashing/defragmentation of internal structure.

worker_finished(worker, required_workers)
The callback used by streams.executors.mixins.PoolOfPoolsMixin.

class streams.poolofpools.PoolOfPools
Just a convenient interface to the set of multiple ExecutorPool instances, nothing more.

__weakref__
list of weak references to the object (if defined)

get(kwargs)
Returns the mapper.

Parameters kwargs (dict) – Keyword arguments for the mapper. Please checkout
streams.Stream.map() documentation to understand what this dict has to have.

static get_from_pool(pool, required_workers)
Fetches mapper from the pool.

Parameters

• pool (ExecutorPool) – The pool you want to fetch mapper from.

• required_workers (int) – The amount of workers you are requiring. It can be None
then ExecutorPool.get_any() would be executed.

parallel(required_workers)
Fetches parallel executor mapper from the underlying ExecutorPool.

Parameters required_workers (int) – The amount of workers you are requiring. It can
be None then ExecutorPool.get_any() would be executed.

process(required_workers)
Fetches process executor mapper from the underlying ExecutorPool.

Parameters required_workers (int) – The amount of workers you are requiring. It can
be None then ExecutorPool.get_any() would be executed.

22 Chapter 1. Terms of content

http://docs.python.org/library/functions.html#int
http://docs.python.org/library/functions.html#id
http://docs.python.org/library/stdtypes.html#dict
http://docs.python.org/library/functions.html#int
http://docs.python.org/library/functions.html#int
http://docs.python.org/library/functions.html#int


Streams Documentation, Release 0.6b

1.4.4 streams.utils

This module contains some utility functions for Streams.

You may wonder why do we need for such simple filter-* functions. The reason is simple and this is about how
multiprocessing and therefore concurrent.futures.ProcessPoolExecutor works. It can’t pickle
lambdas so we need for whole pickleable functions.

class streams.utils.MaxHeapItem(value)
This is small wrapper around item to give it a possibility to use heaps from heapq as max-heaps. Unfortunately
this module provides min-heaps only.

Guys, come on. We need for max-heaps to.

streams.utils.apply_to_tuple(*funcs, **kwargs)
Applies several functions to one item and returns tuple of results.

Parameters

• func (list) – The list of functions we need to apply.

• kwargs (dict) – Keyword arguments with only one mandatory argument, item. Func-
tions would be applied to this item.

>>> apply_to_tuple(int, float, item="1")
... (1, 1.0)

streams.utils.decimal_or_none(item)
Tries to convert item to decimal.Decimal. If it is not possible, returns None.

Parameters item (object) – Element to convert into decimal.Decimal.

>>> decimal_or_none(1)
... Decimal("1")
>>> decimal_or_none("1")
... Decimal("1")
>>> decimal_or_none("smth")
... None

streams.utils.filter_false(argument)
Opposite to streams.utils.filter_true()

Parameters argument (tuple) – Argument consists of predicate function and item iteself.

>>> filter_false((lambda x: x <= 5, 5))
... False, 5
>>> filter_false((lambda x: x > 100, 1))
... True, 1

streams.utils.filter_keys(item)
Returns first element of the tuple or item itself.

Parameters item (object) – It can be tuple, list or just an object.

>>> filter_keys(1)
... 1
>>> filter_keys((1, 2))
... 1

streams.utils.filter_true(argument)
Return the predicate value of given item and the item itself.

Parameters argument (tuple) – Argument consists of predicate function and item iteself.

1.4. Internal modules 23

http://docs.python.org/library/multiprocessing.html#module-multiprocessing
http://docs.python.org/library/heapq.html#module-heapq
http://docs.python.org/library/functions.html#list
http://docs.python.org/library/stdtypes.html#dict
http://docs.python.org/library/decimal.html#decimal.Decimal
http://docs.python.org/library/functions.html#object
http://docs.python.org/library/decimal.html#decimal.Decimal
http://docs.python.org/library/functions.html#tuple
http://docs.python.org/library/functions.html#object
http://docs.python.org/library/functions.html#tuple


Streams Documentation, Release 0.6b

>>> filter_true((lambda x: x <= 5, 5))
... True, 5
>>> filter_true((lambda x: x > 100, 1)
... False, 1

streams.utils.filter_values(item)
Returns last element of the tuple or item itself.

Parameters item (object) – It can be tuple, list or just an object.

>>> filter_values(1)
... 1
>>> filter_values((1, 2))
... 2

streams.utils.float_or_none(item)
Tries to convert item to float(). If it is not possible, returns None.

Parameters item (object) – Element to convert into float().

>>> float_or_none(1)
... 1.0
>>> float_or_none("1")
... 1.0
>>> float_or_none("smth")
... None

streams.utils.int_or_none(item)
Tries to convert item to int(). If it is not possible, returns None.

Parameters item (object) – Element to convert into int().

>>> int_or_none(1)
... 1
>>> int_or_none("1")
... 1
>>> int_or_none("smth")
... None

streams.utils.key_mapper(argument)
Maps predicate only to key (first element) of a item. If item is not tuple() then tuplifies it first.

Parameters argument (tuple) – The tuple of (predicate and item).

>>> key_mapper((lambda x: x + 10, (1, 2)))
... (11, 2)

streams.utils.long_or_none(item)
Tries to convert item to long(). If it is not possible, returns None.

Parameters item (object) – Element to convert into long().

>>> long_or_none(1)
... 1L
>>> long_or_none("1")
... 1L
>>> long_or_none("smth")
... None

streams.utils.make_list(iterable)
Makes a list from given iterable. But won’t create new one if iterable is a list() or tuple() itself.

24 Chapter 1. Terms of content

http://docs.python.org/library/functions.html#object
http://docs.python.org/library/functions.html#object
http://docs.python.org/library/functions.html#object
http://docs.python.org/library/functions.html#tuple
http://docs.python.org/library/functions.html#tuple
http://docs.python.org/library/functions.html#object
http://docs.python.org/library/functions.html#tuple


Streams Documentation, Release 0.6b

Parameters iterable (Iterable) – Some iterable entity we need to convert into list().

streams.utils.unicode_or_none(item)
Tries to convert item to unicode(). If it is not possible, returns None.

Parameters item (object) – Element to convert into unicode().

>>> unicode_or_none(1)
... u"1"
>>> unicode_or_none("1")
... u"1"
>>> unicode_or_none("smth")
... u"smth"

Note: This is relevant for Python 2 only. Python 3 will use native str().

streams.utils.value_mapper(argument)
Maps predicate only to value (last element) of a item. If item is not tuple() then tuplifies it first.

Parameters argument (tuple) – The tuple of (predicate and item).

>>> value_mapper((lambda x: x + 10, (1, 2)))
... (1, 12)

1.4. Internal modules 25

http://docs.python.org/library/functions.html#unicode
http://docs.python.org/library/functions.html#object
http://docs.python.org/library/functions.html#unicode
http://docs.python.org/library/functions.html#tuple
http://docs.python.org/library/functions.html#tuple


Streams Documentation, Release 0.6b

26 Chapter 1. Terms of content



CHAPTER 2

Indices and tables

• genindex

• modindex

• search

27



Streams Documentation, Release 0.6b

28 Chapter 2. Indices and tables



Python Module Index

s
streams, 6
streams.executors, 18
streams.executors._gevent, 19
streams.executors.executors, 18
streams.executors.mixins, 18
streams.iterators, 20
streams.poolofpools, 21
streams.utils, 23

29



Streams Documentation, Release 0.6b

30 Python Module Index



Index

Symbols
__init__() (streams.Stream method), 6
__init__() (streams.poolofpools.ExecutorPool method),

21
__iter__() (streams.Stream method), 7
__len__() (streams.Stream method), 7
__reversed__() (streams.Stream method), 7
__weakref__ (streams.poolofpools.ExecutorPool at-

tribute), 21
__weakref__ (streams.poolofpools.PoolOfPools at-

tribute), 22

A
accumulate() (in module streams.iterators), 20
all() (streams.Stream method), 7
any() (streams.Stream method), 7
apply_to_tuple() (in module streams.utils), 23
average() (streams.Stream method), 7

C
cache() (streams.Stream method), 7
chain() (streams.Stream method), 8
concat() (streams.Stream class method), 8
count() (streams.Stream method), 8

D
decimal_or_none() (in module streams.utils), 23
decimals() (streams.Stream method), 8
distinct() (in module streams.iterators), 20
distinct() (streams.Stream method), 9
divisible_by() (streams.Stream method), 9
dummy_callback() (streams.executors.mixins.PoolOfPoolsMixin

static method), 18

E
evens() (streams.Stream method), 9
exclude() (streams.Stream method), 9
exclude_nones() (streams.Stream method), 9
ExecutorPool (class in streams.poolofpools), 21

expand() (streams.executors.mixins.PoolOfPoolsMixin
method), 19

F
filter() (streams.Stream method), 10
filter_false() (in module streams.utils), 23
filter_keys() (in module streams.utils), 23
filter_true() (in module streams.utils), 23
filter_values() (in module streams.utils), 24
first (streams.Stream attribute), 10
float_or_none() (in module streams.utils), 24
floats() (streams.Stream method), 10

G
get() (streams.poolofpools.ExecutorPool method), 21
get() (streams.poolofpools.PoolOfPools method), 22
get_any() (streams.poolofpools.ExecutorPool method),

21
get_first() (streams.executors.mixins.PoolOfPoolsMixin

static method), 19
get_from_pool() (streams.poolofpools.PoolOfPools static

method), 22
get_suitable_worker() (streams.poolofpools.ExecutorPool

method), 22
GeventExecutor (class in streams.executors._gevent), 20
GreenletFuture (class in streams.executors._gevent), 20

I
instances_of() (streams.Stream method), 10
int_or_none() (in module streams.utils), 24
ints() (streams.Stream method), 11
iterate() (streams.Stream class method), 11

K
key_map() (streams.Stream method), 11
key_mapper() (in module streams.utils), 24
keys() (streams.Stream method), 12

L
largest() (streams.Stream method), 12

31



Streams Documentation, Release 0.6b

limit() (streams.Stream method), 12
long_or_none() (in module streams.utils), 24
longs() (streams.Stream method), 12

M
make_list() (in module streams.utils), 24
map() (streams.executors.mixins.PoolOfPoolsMixin

method), 19
map() (streams.Stream method), 12
MaxHeapItem (class in streams.utils), 23
median() (streams.Stream method), 13

N
name_to_worker_mapping()

(streams.poolofpools.ExecutorPool method),
22

nth() (streams.Stream method), 14

O
odds() (streams.Stream method), 14
only_falses() (streams.Stream method), 14
only_nones() (streams.Stream method), 14
only_trues() (streams.Stream method), 14

P
parallel() (streams.poolofpools.PoolOfPools method), 22
partly_distinct() (in module streams.iterators), 20
partly_distinct() (streams.Stream method), 14
peek() (in module streams.iterators), 20
peek() (streams.Stream method), 15
PoolOfPools (class in streams.poolofpools), 22
PoolOfPoolsMixin (class in streams.executors.mixins),

18
process() (streams.poolofpools.PoolOfPools method), 22
ProcessPoolExecutor (class in

streams.executors.executors), 18

R
range() (streams.Stream class method), 15
real_worker_availability()

(streams.poolofpools.ExecutorPool method),
22

reduce() (streams.Stream method), 15
regexp() (streams.Stream method), 15
reversed() (streams.Stream method), 16

S
seed() (in module streams.iterators), 21
SequentalExecutor (class in streams.executors.executors),

18
skip() (streams.Stream method), 16
smallest() (streams.Stream method), 16
sorted() (streams.Stream method), 16

squash() (streams.poolofpools.ExecutorPool method), 22
squash_workers() (streams.poolofpools.ExecutorPool

method), 22
Stream (class in streams), 6
streams (module), 6
streams.executors (module), 18
streams.executors._gevent (module), 19
streams.executors.executors (module), 18
streams.executors.mixins (module), 18
streams.iterators (module), 20
streams.poolofpools (module), 21
streams.utils (module), 23
strings() (streams.Stream method), 16
sum() (streams.Stream method), 17

T
ThreadPoolExecutor (class in

streams.executors.executors), 18
tuplify() (streams.Stream method), 17

U
unicode_or_none() (in module streams.utils), 25

V
value_map() (streams.Stream method), 17
value_mapper() (in module streams.utils), 25
values() (streams.Stream method), 17

W
worker_finished() (streams.poolofpools.ExecutorPool

method), 22

32 Index


	Terms of content
	Installation
	User Guide
	Streams API
	Internal modules

	Indices and tables
	Python Module Index

