
Streampie Documentation
Release 0.1

Luka Malisa

Apr 20, 2016

Contents

1 Getting Started 3
1.1 Installing . 3
1.2 Streams . 3
1.3 URL Retrieval . 4
1.4 Integer Factorization . 4

2 Streampie Module 7

3 License 13

Python Module Index 15

i

ii

Streampie Documentation, Release 0.1

Streampie is a tiny library for simple and parallel execution of job processing tasks. The project heavily draws
both concepts and code from the awesome stream.py project by Anh Hai Trinh. However, it is a leaner, cleaner
re-implementation with the addition of simple distributed computation.

Streampie is released under the MIT License.

Contents:

Contents 1

http://www.trinhhaianh.com/stream.py/

Streampie Documentation, Release 0.1

2 Contents

CHAPTER 1

Getting Started

1.1 Installing

You can install the library through pip

pip install streampie

or head over to the github repository streampie. The whole library is contained in a single file.

1.2 Streams

Streams (Stream) are the basic class of the library. Each stream can be thought of as a class that takes an element
from the input iterator, performs some work on the element, and then passes it on to the next stream in line. When
working with streams, we overload the >> operator as it intuitively captures the notion of “passing on” the results from
one stream into another.

Let’s first start by including the library

In [1]: from streampie import *

To illustrate the concept of streams and processors, let’s take the following example

In [2]: [0, 1, 2, 3] >> take(2) >> list
Out[2]: [0, 1]

In this example, we took our list and passed it to the take processor that took the first two elements of the list and
discarded the rest. The final outcome was then converted to a plain list. Another common task in stream processing is
splitting inputs into equally-sized chunks. For that purpose we can use chop.

In [3]: range(4) >> chop(2) >> list
Out[3]: [[0, 1], [2, 3]]

We are not limited to a single processor; we can chain arbitrarily many blocks

In [4]: range(4) >> chop(2) >> take(2) >> list
Out[4]: [[0, 1], [2, 3]]

For a full list of processors, see streampie. To illustrate where Streampie is useful, let’s consider two examples that
naturally benefit from paralellism.

3

https://github.com/malisal/streampie/

Streampie Documentation, Release 0.1

1.3 URL Retrieval

Retrieving URLs is not a CPU-intensive task. To retrieve URLs in parallel (with four threads), we can utilize the
ThreadPool to code the following program

import urllib2
from streampie import *

URLs = [
"http://www.cnn.com/",
"http://www.bbc.co.uk/",
"http://www.economist.com/",
"http://nonexistant.website.at.baddomain/",
"http://slashdot.org/",
"http://reddit.com/",
"http://news.ycombinator.com/",

]

def retrieve(wid, items):
for url in items:

yield url, urllib2.urlopen(url).read()

for url, content in URLs >> ThreadPool(retrieve, poolsize=4):
print url, len(content)

1.4 Integer Factorization

The second example is integer factorization, which is CPU intensive. Running a ThreadPool would not result in
large performance gains due to the python global lock. However, we can use ProcessPool. Let’s first look at a
simple, iterative solution.

A set of integers, each a product of two primes
ints = [2498834631017, 14536621517459, 6528633441793, 1941760544137, 7311548077279,

8567757849149, 5012823744127, 806981130983, 15687248010773, 7750678781801,
2703878052163, 3581512537619, 12656415588017, 468180585877, 19268446801283,
5719647740869, 11493581481859, 366611086739]

def factor(n):
"""

Integer factorization.
"""
result = set()
for i in range(1, int(n ** 0.5) + 1):

div, mod = divmod(n, i)
if mod == 0:

result |= {i, div}
return sorted(list(result))[:-1]

print map(factor, ints)

The program just iterates over the list of composite integers (each integer is a product of two primes). We can re-code
the example in the following way.

4 Chapter 1. Getting Started

Streampie Documentation, Release 0.1

from streampie import *

ints = [2498834631017, 14536621517459, 6528633441793, 1941760544137, 7311548077279,
8567757849149, 5012823744127, 806981130983, 15687248010773, 7750678781801,
2703878052163, 3581512537619, 12656415588017, 468180585877, 19268446801283,
5719647740869, 11493581481859, 366611086739]

def factor(n):
result = set()
for i in range(1, int(n ** 0.5) + 1):

div, mod = divmod(n, i)
if mod == 0:

result |= {i, div}
return sorted(list(result))[:-1]

def do_work(wid, items):
for i in items:

yield factor(i)

print ints >> ProcessPool(do_work, poolsize=8) >> list

We now use 8 parallel local processes, and the task of factoring the numbers will be ~8 times as fast. But what
if we want to compute the same task on a small cluster (e.g., two machines)? For that purpose, we can use the
DistributedPool.

from streampie import *

ints = [2498834631017, 14536621517459, 6528633441793, 1941760544137, 7311548077279,
8567757849149, 5012823744127, 806981130983, 15687248010773, 7750678781801,
2703878052163, 3581512537619, 12656415588017, 468180585877, 19268446801283,
5719647740869, 11493581481859, 366611086739]

def factor(n):
result = set()
for i in range(1, int(n ** 0.5) + 1):

div, mod = divmod(n, i)
if mod == 0:

result |= {i, div}
return sorted(list(result))[:-1]

print ints >> DistributedPool(factor) >> list

This code will now wait for workers to perform the job. We can start a single-process worker with

python streampie.py

1.4. Integer Factorization 5

Streampie Documentation, Release 0.1

6 Chapter 1. Getting Started

CHAPTER 2

Streampie Module

class Stream(obj=None)
This is our generic stream class. It is iterable and it overloads the >> operator for convenience.

next()

class take(n)
Take the first n elements, and drop the rest.

>>> range(4) >> take(2) >> list
[0, 1]

class takei(indices)
Take only the elements whose indices are given in the list.

>>> range(4) >> takei([0, 1]) >> list
[0, 1]

class drop(n)
Drop the first n elements, and take the rest.

>>> range(4) >> drop(2) >> list
[2, 3]

class dropi(indices)
Drop only the elements whose indices are given in the indices list.

>>> range(4) >> dropi([0, 1]) >> list
[2, 3]

class chop(n)
Split the stream into n-sized chunks.

>>> range(4) >> chop(2) >> list
[[0, 1], [2, 3]]

class map(function)
Call the function func for every element, with the element as input.

>>> square = lambda x: x**2
>>> range(4) >> map(square) >> list
[0, 1, 4, 9]

class filter(function)
Return only the elements for which the predicate func evaluates to True.

7

Streampie Documentation, Release 0.1

>>> even = lambda x: x % 2 == 0
>>> range(4) >> filter(even) >> list
[0, 2]

class apply(function)
Call the function func for every element, with the element as arguments.

>>> sum = lambda x,y: x+y
>>> range(4) >> chop(2) >> apply(sum) >> list
[1, 5]

class takewhile(predicate)
Keep taking elements until the predicate func is True, then stop.

>>> range(4) >> takewhile(lambda x: x < 3) >> list
[0, 1, 2]

class dropwhile(predicate)
Keep dropping elements until the predicate func is True, then stop.

>>> range(4) >> dropwhile(lambda x: x < 3) >> list
[3]

class prepend(prep_iterator)
Prepend elements to a stream.

>>> range(4) >> prepend([10, 9]) >> list
[10, 9, 0, 1, 2, 3]

class flatten(obj=None)
Flatten an arbitrarily-deep list of lists into a single list.

>>> [0,[1,[2,[3]]]] >> flatten() >> list
[0, 1, 2, 3]

class LocalPool(function, poolsize=None, args=[])
A generic class shared by all local (executed on the same machine) pools.

stop()
Terminate and wait for all workers to finish.

class ProcessPool(function, poolsize=None, args=[])
Create a process pool.

Parameters

• function (int) – Function that each worker executes

• poolsize (int) – How many workers the pool should make

• args (list) – List of arguments to pass to the worker function

A simple that calls the sum function for every pair of inputs.

>>> def sum(wid, items):
... # wid is the worker id
... # items is an iterator for the inputs to the stream
... for x, y in items:
... yield x + y
>>> range(6) >> chop(2) >> ProcessPool(sum) >> list
[1, 5, 9]

8 Chapter 2. Streampie Module

Streampie Documentation, Release 0.1

Note that the order of the output list is not guaranteed, as it depends in which order the elements were consumed.
By default, the class creates as many workers as there are cores. Here is a more advanced examples showing
poolsize control and passing additional arguments.

>>> def sum(wid, items, arg1, arg2):
... # arg1 and arg2 are additional arguments passed to the function
... for x, y in items:
... yield x + y
>>> sorted(range(6) >> chop(2) >> ProcessPool(sum, poolsize=8, args=[0, 1]) >> list)
[1, 5, 9]

The function can yield arbitrarily many results. For example, for a single input, two or more yields can be made.

>>> def sum(wid, items):
... for x, y in items:
... yield x + y
... yield x + y
>>> sorted(range(6) >> chop(2) >> ProcessPool(sum) >> list)
[1, 1, 5, 5, 9, 9]

class ThreadPool(function, poolsize=None, args=[])
Create a thread pool.

Parameters

• function (int) – Function that each worker executes

• poolsize (int) – How many workers the pool should make

• args (list) – List of arguments to pass to the worker function

>>> def sum(wid, items):
... # wid is the worker id
... # items is an iterator for the inputs to the stream
... for x, y in items:
... yield x + y
>>> range(6) >> chop(2) >> ThreadPool(sum) >> list
[1, 5, 9]

class StandaloneProcessPool(function, poolsize=None, args=[])
The standalone process pool is exactly like the ProcessPool class, other than the fact that it does not take
any input, but constantly yields output.

Parameters

• function (int) – Function that each worker executes

• poolsize (int) – How many workers the pool should make

• args (list) – List of arguments to pass to the worker function

To illustrate, here is an example of a worker that constantly returns random numbers. Since there is no input
stream, the pool needs to be manually terminated.

>>> import random
>>> def do_work(wid):
... yield random.random()
>>> pool = StandaloneProcessPool(do_work)
>>> for x, r in enumerate(pool):
... if x == 2:
... pool.stop()
... break
... print r

9

Streampie Documentation, Release 0.1

0.600151963181
0.144348185086

class Job(target_id, args=[])
This class is our unit of work. It it fetched by a Worker, it’s target is executed, the result (ret) and
exception (if any) is stored and sent back to the JobQueue.

Parameters

• target_id (int) – ID of the code to execute. See the source of JobQueue.enqueue
for details.

• args (list) – List of arguments to pass to the worker function

class Worker(host=’localhost’, port=6379, db=10)
The workhorse of our implementation. Each worker fetches a job from Redis, executes it, then stores the results
back into Redis.

Parameters

• host (str) – Redis hostname

• port (int) – Redis port

• db (int) – Redis database number

run()
In an infinite loop, wait for jobs, then execute them and return the results to Redis.

class JobQueue(host=’localhost’, port=6379, db=10)

Warning: The JobQueue flushes the selected Redis database! Be sure to specify an unused database!

The queue that allows submission and fetching of completed jobs.

Parameters

• host (str) – Redis hostname

• port (int) – Redis port

• db (int) – Redis database number

That being said, here is an example of how to use the queue.

>>> def sum(x, y):
... return x + y
>>> q = JobQueue()
>>> q.enqueue(sum, (1, 2))
>>> q.enqueue(sum, (2, 3))
>>> q.enqueue(sum, (3, 4))
>>> q.finalize()
>>> for r in q:
... print r.ret
3
5
7

next()

enqueue(target, args)
Add a job to the queue.

Parameters

10 Chapter 2. Streampie Module

Streampie Documentation, Release 0.1

• target (function) – Function to be executed

• args (list) – Arguments provided to the job

finalize()
Indicate to the queue that no more jobs will be submitted.

class DistributedPool(function, host=’localhost’, port=6379, db=10)
The distributed pool is a simple wrapper around the JobQueue that makes is even more convenient to use, just
like ProcessPool and ThreadPool.

Parameters

• host (str) – Redis hostname

• port (int) – Redis port

• db (int) – Redis database number

First, on one machine let’s start a single worker.

python streampie.py

We then execute:

>>> def mul(x, y):
... return x * y
>>> range(4) >> chop(2) >> DistributedPool(mul) >> list
[0, 6]

stop()
Currently not implemented. Is it even needed?

11

Streampie Documentation, Release 0.1

12 Chapter 2. Streampie Module

CHAPTER 3

License

The MIT License (MIT)

Copyright (c) 2016 Luka Malisa

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.

13

Streampie Documentation, Release 0.1

14 Chapter 3. License

Python Module Index

s
streampie, 7

15

Streampie Documentation, Release 0.1

16 Python Module Index

Index

A
apply (class in streampie), 8

C
chop (class in streampie), 7

D
DistributedPool (class in streampie), 11
drop (class in streampie), 7
dropi (class in streampie), 7
dropwhile (class in streampie), 8

E
enqueue() (JobQueue method), 10

F
filter (class in streampie), 7
finalize() (JobQueue method), 11
flatten (class in streampie), 8

J
Job (class in streampie), 10
JobQueue (class in streampie), 10

L
LocalPool (class in streampie), 8

M
map (class in streampie), 7

N
next() (JobQueue method), 10
next() (Stream method), 7

P
prepend (class in streampie), 8
ProcessPool (class in streampie), 8

R
run() (Worker method), 10

S
StandaloneProcessPool (class in streampie), 9
stop() (DistributedPool method), 11
stop() (LocalPool method), 8
Stream (class in streampie), 7
streampie (module), 7

T
take (class in streampie), 7
takei (class in streampie), 7
takewhile (class in streampie), 8
ThreadPool (class in streampie), 9

W
Worker (class in streampie), 10

17

	Getting Started
	Installing
	Streams
	URL Retrieval
	Integer Factorization

	Streampie Module
	License
	Python Module Index

