

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	Streampie 0.1 documentation

Welcome to Streampie

Streampie is a tiny library for simple and parallel execution of job processing tasks. The project heavily draws both concepts and code from the awesome stream.py [http://www.trinhhaianh.com/stream.py/] project by Anh Hai Trinh. However, it is a leaner, cleaner re-implementation with the addition of simple distributed computation.

Streampie is released under the MIT License.

Contents:

	Getting Started
	Installing

	Streams

	URL Retrieval

	Integer Factorization

	Streampie Module

	License

 Copyright 2016, Luka Malisa <luka.malisha@gmail.com>.
 Created using Sphinx 1.4.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Streampie 0.1 documentation

Getting Started

Installing

You can install the library through pip

pip install streampie

or head over to the github repository streampie [https://github.com/malisal/streampie/]. The whole library is contained in a single file.

Streams

Streams (Stream) are the basic class of the library. Each stream can be thought of as a class that takes an element from the input iterator, performs some work on the element, and then passes it on to the next stream in line. When working with streams, we overload the >> operator as it intuitively captures the notion of “passing on” the results from one stream into another.

Let’s first start by including the library

In [1]: from streampie import *

To illustrate the concept of streams and processors, let’s take the following example

In [2]: [0, 1, 2, 3] >> take(2) >> list
Out[2]: [0, 1]

In this example, we took our list and passed it to the take processor that took the first two elements of the list and discarded the rest. The final outcome was then converted to a plain list. Another common task in stream processing is splitting inputs into equally-sized chunks. For that purpose we can use chop.

In [3]: range(4) >> chop(2) >> list
Out[3]: [[0, 1], [2, 3]]

We are not limited to a single processor; we can chain arbitrarily many blocks

In [4]: range(4) >> chop(2) >> take(2) >> list
Out[4]: [[0, 1], [2, 3]]

For a full list of processors, see streampie. To illustrate where Streampie is useful, let’s consider two examples that naturally benefit from paralellism.

URL Retrieval

Retrieving URLs is not a CPU-intensive task. To retrieve URLs in parallel (with four threads), we can utilize the ThreadPool to code the following program

import urllib2
from streampie import *

URLs = [
 "http://www.cnn.com/",
 "http://www.bbc.co.uk/",
 "http://www.economist.com/",
 "http://nonexistant.website.at.baddomain/",
 "http://slashdot.org/",
 "http://reddit.com/",
 "http://news.ycombinator.com/",
]

def retrieve(wid, items):
 for url in items:
 yield url, urllib2.urlopen(url).read()

for url, content in URLs >> ThreadPool(retrieve, poolsize=4):
 print url, len(content)

Integer Factorization

The second example is integer factorization, which is CPU intensive. Running a ThreadPool would not result in large performance gains due to the python global lock. However, we can use ProcessPool. Let’s first look at a simple, iterative solution.

A set of integers, each a product of two primes
ints = [2498834631017, 14536621517459, 6528633441793, 1941760544137, 7311548077279,
 8567757849149, 5012823744127, 806981130983, 15687248010773, 7750678781801,
 2703878052163, 3581512537619, 12656415588017, 468180585877, 19268446801283,
 5719647740869, 11493581481859, 366611086739]

def factor(n):
 """
 Integer factorization.
 """
 result = set()
 for i in range(1, int(n ** 0.5) + 1):
 div, mod = divmod(n, i)
 if mod == 0:
 result |= {i, div}
 return sorted(list(result))[:-1]

print map(factor, ints)

The program just iterates over the list of composite integers (each integer is a product of two primes). We can re-code the example in the following way.

from streampie import *

ints = [2498834631017, 14536621517459, 6528633441793, 1941760544137, 7311548077279,
 8567757849149, 5012823744127, 806981130983, 15687248010773, 7750678781801,
 2703878052163, 3581512537619, 12656415588017, 468180585877, 19268446801283,
 5719647740869, 11493581481859, 366611086739]

def factor(n):
 result = set()
 for i in range(1, int(n ** 0.5) + 1):
 div, mod = divmod(n, i)
 if mod == 0:
 result |= {i, div}
 return sorted(list(result))[:-1]

def do_work(wid, items):
 for i in items:
 yield factor(i)

print ints >> ProcessPool(do_work, poolsize=8) >> list

We now use 8 parallel local processes, and the task of factoring the numbers will be ~8 times as fast. But what if we want to compute the same task on a small cluster (e.g., two machines)? For that purpose, we can use the DistributedPool.

from streampie import *

ints = [2498834631017, 14536621517459, 6528633441793, 1941760544137, 7311548077279,
 8567757849149, 5012823744127, 806981130983, 15687248010773, 7750678781801,
 2703878052163, 3581512537619, 12656415588017, 468180585877, 19268446801283,
 5719647740869, 11493581481859, 366611086739]

def factor(n):
 result = set()
 for i in range(1, int(n ** 0.5) + 1):
 div, mod = divmod(n, i)
 if mod == 0:
 result |= {i, div}
 return sorted(list(result))[:-1]

print ints >> DistributedPool(factor) >> list

This code will now wait for workers to perform the job. We can start a single-process worker with

python streampie.py

 Copyright 2016, Luka Malisa <luka.malisha@gmail.com>.
 Created using Sphinx 1.4.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Streampie 0.1 documentation

Streampie Module

	
class Stream(obj=None)[source]

	This is our generic stream class. It is iterable and it overloads the >> operator
for convenience.

	
next()[source]

	

	
class take(n)[source]

	Take the first n elements, and drop the rest.

>>> range(4) >> take(2) >> list
[0, 1]

	
class takei(indices)[source]

	Take only the elements whose indices are given in the list.

>>> range(4) >> takei([0, 1]) >> list
[0, 1]

	
class drop(n)[source]

	Drop the first n elements, and take the rest.

>>> range(4) >> drop(2) >> list
[2, 3]

	
class dropi(indices)[source]

	Drop only the elements whose indices are given in the indices list.

>>> range(4) >> dropi([0, 1]) >> list
[2, 3]

	
class chop(n)[source]

	Split the stream into n-sized chunks.

>>> range(4) >> chop(2) >> list
[[0, 1], [2, 3]]

	
class map(function)[source]

	Call the function func for every element, with the element as input.

>>> square = lambda x: x**2
>>> range(4) >> map(square) >> list
[0, 1, 4, 9]

	
class filter(function)[source]

	Return only the elements for which the predicate func evaluates to True.

>>> even = lambda x: x % 2 == 0
>>> range(4) >> filter(even) >> list
[0, 2]

	
class apply(function)[source]

	Call the function func for every element, with the element as arguments.

>>> sum = lambda x,y: x+y
>>> range(4) >> chop(2) >> apply(sum) >> list
[1, 5]

	
class takewhile(predicate)[source]

	Keep taking elements until the predicate func is True, then stop.

>>> range(4) >> takewhile(lambda x: x < 3) >> list
[0, 1, 2]

	
class dropwhile(predicate)[source]

	Keep dropping elements until the predicate func is True, then stop.

>>> range(4) >> dropwhile(lambda x: x < 3) >> list
[3]

	
class prepend(prep_iterator)[source]

	Prepend elements to a stream.

>>> range(4) >> prepend([10, 9]) >> list
[10, 9, 0, 1, 2, 3]

	
class flatten(obj=None)[source]

	Flatten an arbitrarily-deep list of lists into a single list.

>>> [0,[1,[2,[3]]]] >> flatten() >> list
[0, 1, 2, 3]

	
class LocalPool(function, poolsize=None, args=[])[source]

	A generic class shared by all local (executed on the same machine) pools.

	
stop()[source]

	Terminate and wait for all workers to finish.

	
class ProcessPool(function, poolsize=None, args=[])[source]

	Create a process pool.

	Parameters:	
	function (int) – Function that each worker executes

	poolsize (int) – How many workers the pool should make

	args (list) – List of arguments to pass to the worker function

A simple that calls the sum function for every pair of inputs.

>>> def sum(wid, items):
... # wid is the worker id
... # items is an iterator for the inputs to the stream
... for x, y in items:
... yield x + y
>>> range(6) >> chop(2) >> ProcessPool(sum) >> list
[1, 5, 9]

Note that the order of the output list is not guaranteed, as it depends
in which order the elements were consumed. By default, the class creates
as many workers as there are cores. Here is a more advanced examples
showing poolsize control and passing additional arguments.

>>> def sum(wid, items, arg1, arg2):
... # arg1 and arg2 are additional arguments passed to the function
... for x, y in items:
... yield x + y
>>> sorted(range(6) >> chop(2) >> ProcessPool(sum, poolsize=8, args=[0, 1]) >> list)
[1, 5, 9]

The function can yield arbitrarily many results. For example, for a single input, two or more
yields can be made.

>>> def sum(wid, items):
... for x, y in items:
... yield x + y
... yield x + y
>>> sorted(range(6) >> chop(2) >> ProcessPool(sum) >> list)
[1, 1, 5, 5, 9, 9]

	
class ThreadPool(function, poolsize=None, args=[])[source]

	Create a thread pool.

	Parameters:	
	function (int) – Function that each worker executes

	poolsize (int) – How many workers the pool should make

	args (list) – List of arguments to pass to the worker function

>>> def sum(wid, items):
... # wid is the worker id
... # items is an iterator for the inputs to the stream
... for x, y in items:
... yield x + y
>>> range(6) >> chop(2) >> ThreadPool(sum) >> list
[1, 5, 9]

	
class StandaloneProcessPool(function, poolsize=None, args=[])[source]

	The standalone process pool is exactly like the ProcessPool class, other than
the fact that it does not take any input, but constantly yields output.

	Parameters:	
	function (int) – Function that each worker executes

	poolsize (int) – How many workers the pool should make

	args (list) – List of arguments to pass to the worker function

To illustrate, here is an example of a worker that constantly returns random numbers.
Since there is no input stream, the pool needs to be manually terminated.

>>> import random
>>> def do_work(wid):
... yield random.random()
>>> pool = StandaloneProcessPool(do_work)
>>> for x, r in enumerate(pool):
... if x == 2:
... pool.stop()
... break
... print r
0.600151963181
0.144348185086

	
class Job(target_id, args=[])[source]

	This class is our unit of work. It it fetched by a Worker, it’s target is executed, the
result (ret) and exception (if any) is stored and sent back to the JobQueue.

	Parameters:	
	target_id (int) – ID of the code to execute. See the source of JobQueue.enqueue for details.

	args (list) – List of arguments to pass to the worker function

	
class Worker(host='localhost', port=6379, db=10)[source]

	The workhorse of our implementation. Each worker fetches a job from Redis,
executes it, then stores the results back into Redis.

	Parameters:	
	host (str) – Redis hostname

	port (int) – Redis port

	db (int) – Redis database number

	
run()[source]

	In an infinite loop, wait for jobs, then execute them and return the results to Redis.

	
class JobQueue(host='localhost', port=6379, db=10)[source]

	
Warning

The JobQueue flushes the selected Redis database! Be sure to specify an unused database!

The queue that allows submission and fetching of completed jobs.

	Parameters:	
	host (str) – Redis hostname

	port (int) – Redis port

	db (int) – Redis database number

That being said, here is an example of how to use the queue.

>>> def sum(x, y):
... return x + y
>>> q = JobQueue()
>>> q.enqueue(sum, (1, 2))
>>> q.enqueue(sum, (2, 3))
>>> q.enqueue(sum, (3, 4))
>>> q.finalize()
>>> for r in q:
... print r.ret
3
5
7

	
next()[source]

	

	
enqueue(target, args)[source]

	Add a job to the queue.

	Parameters:	
	target (function) – Function to be executed

	args (list) – Arguments provided to the job

	
finalize()[source]

	Indicate to the queue that no more jobs will be submitted.

	
class DistributedPool(function, host='localhost', port=6379, db=10)[source]

	The distributed pool is a simple wrapper around the JobQueue that makes is even more
convenient to use, just like ProcessPool and ThreadPool.

	Parameters:	
	host (str) – Redis hostname

	port (int) – Redis port

	db (int) – Redis database number

First, on one machine let’s start a single worker.

python streampie.py

We then execute:

>>> def mul(x, y):
... return x * y
>>> range(4) >> chop(2) >> DistributedPool(mul) >> list
[0, 6]

	
stop()[source]

	Currently not implemented. Is it even needed?

 Copyright 2016, Luka Malisa <luka.malisha@gmail.com>.
 Created using Sphinx 1.4.1.

 Navigation

 	
 index

 	
 modules |

 	
 previous |

 	Streampie 0.1 documentation

License

The MIT License (MIT)

Copyright (c) 2016 Luka Malisa

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.

 Copyright 2016, Luka Malisa <luka.malisha@gmail.com>.
 Created using Sphinx 1.4.1.

 Navigation

 	
 index

 	
 modules |

 	Streampie 0.1 documentation

 Python Module Index

 s

 			

 		
 s	

 	
 	
 streampie	

 Copyright 2016, Luka Malisa <luka.malisha@gmail.com>.
 Created using Sphinx 1.4.1.

 Navigation

 	
 index

 	
 modules |

 	Streampie 0.1 documentation

Index

 A
 | C
 | D
 | E
 | F
 | J
 | L
 | M
 | N
 | P
 | R
 | S
 | T
 | W

A

 	

 	apply (class in streampie)

C

 	

 	chop (class in streampie)

D

 	

 	DistributedPool (class in streampie)

 	drop (class in streampie)

 	

 	dropi (class in streampie)

 	dropwhile (class in streampie)

E

 	

 	enqueue() (JobQueue method)

F

 	

 	filter (class in streampie)

 	finalize() (JobQueue method)

 	

 	flatten (class in streampie)

J

 	

 	Job (class in streampie)

 	

 	JobQueue (class in streampie)

L

 	

 	LocalPool (class in streampie)

M

 	

 	map (class in streampie)

N

 	

 	next() (JobQueue method)

 	

 	(Stream method)

P

 	

 	prepend (class in streampie)

 	

 	ProcessPool (class in streampie)

R

 	

 	run() (Worker method)

S

 	

 	StandaloneProcessPool (class in streampie)

 	stop() (DistributedPool method)

 	

 	(LocalPool method)

 	

 	Stream (class in streampie)

 	streampie (module)

T

 	

 	take (class in streampie)

 	takei (class in streampie)

 	

 	takewhile (class in streampie)

 	ThreadPool (class in streampie)

W

 	

 	Worker (class in streampie)

 Copyright 2016, Luka Malisa <luka.malisha@gmail.com>.
 Created using Sphinx 1.4.1.

 _static/comment.png

_static/plus.png

search.html

 Navigation

 		
 index

 		
 modules |

 		Streampie 0.1 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2016, Luka Malisa <luka.malisha@gmail.com>.
 Created using Sphinx 1.4.1.

_static/down.png

_modules/streampie.html

 Navigation

 		
 index

 		
 modules |

 		Streampie 0.1 documentation »

 		Module code »

 Source code for streampie

import sys
import zlib
import dill
import redis
import random
import inspect
import threading
import traceback
import itertools
import collections
import multiprocessing

try:
 # Python2
 import Queue as queue

 ifilter = itertools.ifilter
 imap = itertools.imap
except:
 # Python3
 import queue

 # In python3, filter and map by default return iterators
 ifilter = filter
 imap = map

def _ifilter_ext(predicate, iterable):
 for i, val in enumerate(iterable):
 if predicate and predicate(i, val):
 yield val

def _iterqueue(queue):
 """
 Take a queue and return an iterator over that queue.
 """
 while 1:
 item = queue.get()

 if item is StopIteration:
 queue.put(StopIteration)
 break

 yield item

[docs]class Stream():
 """
 This is our generic stream class. It is iterable and it overloads the ``>>`` operator
 for convenience.
 """
 def __init__(self, obj=None):
 self.iterator = None

 if isinstance(obj, collections.Iterable):
 self.iterator = iter(obj)

 def __iter__(self):
 return self

 # For python3
 def __next__(self):
 return self.next()

[docs] def next(self):
 return next(self.iterator)

 def __rshift__(self, other):
 if inspect.isclass(other):
 return other(self)

 other.iterator = self
 other._on_connect()

 return Stream(other)

 def __rrshift__(self, other):
 return Stream(other) >> self

 def __repr__(self):
 return "Stream(%s)" % repr(self.iterator)

 def _on_connect(self):
 return NotImplemented

#
Stream Processors
#

[docs]class take(Stream):
 def __init__(self, n):
 """
 Take the first ``n`` elements, and drop the rest.

 >>> range(4) >> take(2) >> list
 [0, 1]
 """
 Stream.__init__(self)
 self.n = n

 def __iter__(self):
 return itertools.islice(self.iterator, self.n)

[docs]class takei(Stream):
 def __init__(self, indices):
 """
 Take only the elements whose indices are given in the list.

 >>> range(4) >> takei([0, 1]) >> list
 [0, 1]
 """
 Stream.__init__(self)
 self.indices = indices

 def __iter__(self):
 def _filter(i, val):
 return i in self.indices

 return _ifilter_ext(_filter, self.iterator)

[docs]class drop(Stream):
 def __init__(self, n):
 """
 Drop the first `n` elements, and take the rest.

 >>> range(4) >> drop(2) >> list
 [2, 3]
 """
 Stream.__init__(self)
 self.n = n

 def __iter__(self):
 collections.deque(itertools.islice(self.iterator, self.n))
 return self.iterator

[docs]class dropi(Stream):
 def __init__(self, indices):
 """
 Drop only the elements whose indices are given in the ``indices`` list.

 >>> range(4) >> dropi([0, 1]) >> list
 [2, 3]
 """
 Stream.__init__(self)
 self.indices = indices

 def __iter__(self):
 def _filter(i, val):
 return not i in self.indices

 return _ifilter_ext(_filter, self.iterator)

[docs]class chop(Stream):
 def __init__(self, n):
 """
 Split the stream into ``n``-sized chunks.

 >>> range(4) >> chop(2) >> list
 [[0, 1], [2, 3]]
 """
 Stream.__init__(self)
 self.n = n

 def __iter__(self):
 def _chop():
 while 1:
 chunk = list(itertools.islice(self.iterator, self.n))

 if not chunk:
 break

 yield chunk

 return _chop()

[docs]class map(Stream):
 def __init__(self, function):
 """
 Call the function ``func`` for every element, with the element as input.

 >>> square = lambda x: x**2
 >>> range(4) >> map(square) >> list
 [0, 1, 4, 9]
 """
 Stream.__init__(self)
 self.function = function

 def __iter__(self):
 return imap(self.function, self.iterator)

[docs]class filter(Stream):
 def __init__(self, function):
 """
 Return only the elements for which the predicate ``func`` evaluates to ``True``.

 >>> even = lambda x: x % 2 == 0
 >>> range(4) >> filter(even) >> list
 [0, 2]
 """
 Stream.__init__(self)
 self.function = function

 def __iter__(self):
 return ifilter(self.function, self.iterator)

[docs]class apply(Stream):
 def __init__(self, function):
 """
 Call the function ``func`` for every element, with the element as arguments.

 >>> sum = lambda x,y: x+y
 >>> range(4) >> chop(2) >> apply(sum) >> list
 [1, 5]
 """
 Stream.__init__(self)
 self.function = function

 def __iter__(self):
 return itertools.starmap(self.function, self.iterator)

[docs]class takewhile(Stream):
 def __init__(self, predicate):
 """
 Keep taking elements until the predicate ``func`` is ``True``, then stop.

 >>> range(4) >> takewhile(lambda x: x < 3) >> list
 [0, 1, 2]
 """
 Stream.__init__(self)
 self.predicate = predicate

 def __iter__(self):
 return itertools.takewhile(self.predicate, self.iterator)

[docs]class dropwhile(Stream):
 def __init__(self, predicate):
 """
 Keep dropping elements until the predicate ``func`` is ``True``, then stop.

 >>> range(4) >> dropwhile(lambda x: x < 3) >> list
 [3]
 """
 Stream.__init__(self)
 self.predicate = predicate

 def __iter__(self):
 return itertools.dropwhile(self.predicate, self.iterator)

[docs]class prepend(Stream):
 def __init__(self, prep_iterator):
 """
 Prepend elements to a stream.

 >>> range(4) >> prepend([10, 9]) >> list
 [10, 9, 0, 1, 2, 3]
 """
 Stream.__init__(self)
 self.prep_iterator = prep_iterator

 def __iter__(self):
 return itertools.chain(self.prep_iterator, self.iterator)

[docs]class flatten(Stream):
 """
 Flatten an arbitrarily-deep list of lists into a single list.

 >>> [0,[1,[2,[3]]]] >> flatten() >> list
 [0, 1, 2, 3]
 """
 def __iter__(self):
 def _flatten(iterator):
 stack = []

 while 1:
 try:
 item = next(iterator)

 if isinstance(item, collections.Iterable):
 stack.append(iter(item))
 else:
 yield item

 except StopIteration:
 try:
 iterator = stack.pop()
 except IndexError:
 break

 return _flatten(self.iterator)

#
Paralellism
#

[docs]class LocalPool(Stream):
 def __init__(self, function, poolsize=None, args=[]):
 """
 A generic class shared by all local (executed on the same machine) pools.
 """
 Stream.__init__(self)
 self.function = function
 self.poolsize = poolsize
 self.args = args
 self.pool = []

 if self.poolsize == None:
 # No prefered poolsize? Use number of cores
 self.poolsize = multiprocessing.cpu_count()

 def _worker(self, wid):
 try:
 for val in self.function(wid, _iterqueue(self.in_queue), *self.args):
 self.out_queue.put(val)
 except:
 # Catch all exceptions and just print them, but keep working
 traceback.print_exc()

 def _control(self):
 # Move all data from the iterator to the input queue
 for val in self.iterator:
 self.in_queue.put(val)

 # Last item in the queue is the stop-signal
 self.in_queue.put(StopIteration)

 # Wait for all workers to finish
 for p in self.pool:
 p.join()

 # All workers finished, stop the output queue iterator
 self.out_queue.put(StopIteration)

[docs] def stop(self):
 """
 Terminate and wait for all workers to finish.
 """
 # Wait for all workers to finish
 for p in self.pool:
 p.terminate()

 def __iter__(self):
 return _iterqueue(self.out_queue)

 def _on_connect(self):
 # Start the control thread
 t = threading.Thread(target=self._start_workers)
 t.daemon = True
 t.start()

[docs]class ProcessPool(LocalPool):
 def __init__(self, function, poolsize=None, args=[]):
 """
 Create a process pool.

 :param int function: Function that each worker executes
 :param int poolsize: How many workers the pool should make
 :param list args: List of arguments to pass to the worker function

 A simple that calls the ``sum`` function for every pair of inputs.

 >>> def sum(wid, items):
 ... # wid is the worker id
 ... # items is an iterator for the inputs to the stream
 ... for x, y in items:
 ... yield x + y
 >>> range(6) >> chop(2) >> ProcessPool(sum) >> list # doctest: +SKIP
 [1, 5, 9]

 Note that the order of the output list is not guaranteed, as it depends
 in which order the elements were consumed. By default, the class creates
 as many workers as there are cores. Here is a more advanced examples
 showing ``poolsize`` control and passing additional arguments.

 >>> def sum(wid, items, arg1, arg2):
 ... # arg1 and arg2 are additional arguments passed to the function
 ... for x, y in items:
 ... yield x + y
 >>> sorted(range(6) >> chop(2) >> ProcessPool(sum, poolsize=8, args=[0, 1]) >> list)
 [1, 5, 9]

 The function can yield arbitrarily many results. For example, for a single input, two or more
 yields can be made.

 >>> def sum(wid, items):
 ... for x, y in items:
 ... yield x + y
 ... yield x + y
 >>> sorted(range(6) >> chop(2) >> ProcessPool(sum) >> list)
 [1, 1, 5, 5, 9, 9]

 """
 LocalPool.__init__(self, function, poolsize, args)
 self.in_queue = multiprocessing.Queue()
 self.out_queue = multiprocessing.Queue()

 def _start_workers(self):
 # Start the worker processes
 for x in range(self.poolsize):
 p = multiprocessing.Process(target=self._worker, args=[x])
 p.daemon = True
 p.start()
 self.pool.append(p)

 self._control()

[docs]class ThreadPool(LocalPool):
 def __init__(self, function, poolsize=None, args=[]):
 """
 Create a thread pool.

 :param int function: Function that each worker executes
 :param int poolsize: How many workers the pool should make
 :param list args: List of arguments to pass to the worker function

 >>> def sum(wid, items):
 ... # wid is the worker id
 ... # items is an iterator for the inputs to the stream
 ... for x, y in items:
 ... yield x + y
 >>> range(6) >> chop(2) >> ThreadPool(sum) >> list # doctest: +SKIP
 [1, 5, 9]
 """
 LocalPool.__init__(self, function, poolsize, args)
 self.in_queue = queue.Queue()
 self.out_queue = queue.Queue()

 def _start_workers(self):
 # Start the worker threads
 for x in range(self.poolsize):
 t = threading.Thread(target=self._worker, args=[x])
 t.daemon = True
 t.start()
 self.pool.append(t)

 self._control()

[docs]class StandaloneProcessPool(ProcessPool):
 def __init__(self, function, poolsize=None, args=[]):
 """
 The standalone process pool is exactly like the :class:`ProcessPool` class, other than
 the fact that it does not take any input, but constantly yields output.

 :param int function: Function that each worker executes
 :param int poolsize: How many workers the pool should make
 :param list args: List of arguments to pass to the worker function

 To illustrate, here is an example of a worker that constantly returns random numbers.
 Since there is no input stream, the pool needs to be manually terminated.

 >>> import random
 >>> def do_work(wid):
 ... yield random.random()
 >>> pool = StandaloneProcessPool(do_work)
 >>> for x, r in enumerate(pool): # doctest: +SKIP
 ... if x == 2:
 ... pool.stop()
 ... break
 ... print r
 0.600151963181
 0.144348185086
 """
 ProcessPool.__init__(self, function, poolsize, args)
 self.iterator = _iterqueue(self.out_queue)

 multiprocessing.Process(target=self._start_workers).start()

 def _worker(self, wid):
 try:
 for val in self.function(wid, *self.args):
 self.out_queue.put(val)
 except:
 # Catch all exceptions and just print them, but keep working
 traceback.print_exc()

 def _control(self):
 # Wait for all workers to finish
 for p in self.pool:
 p.join()

 # All workers finished, stop the output queue iterator
 self.out_queue.put(StopIteration)

#
Distributed Paralellism
#

def _dumps(obj):
 """
 Serialize and compress an object.
 """
 return zlib.compress(dill.dumps(obj))

def _loads(data):
 """
 Decompress and deserialize.
 """
 return dill.loads(zlib.decompress(data))

[docs]class Job:
 def __init__(self, target_id, args=[]):
 """
 This class is our unit of work. It it fetched by a :class:`Worker`, it's ``target`` is executed, the
 result (``ret``) and exception (if any) is stored and sent back to the JobQueue.

 :param int target_id: ID of the code to execute. See the source of :class:`JobQueue.enqueue` for details.
 :param list args: List of arguments to pass to the worker function
 """
 self.id = random.getrandbits(32)
 self.target_id = target_id
 self.args = args

 # The return and exception values are populated by the Worker later on
 self.ret = None
 self.exception = None

[docs]class Worker:
 def __init__(self, host="localhost", port=6379, db=10):
 """
 The workhorse of our implementation. Each worker fetches a job from Redis,
 executes it, then stores the results back into Redis.

 :param str host: Redis hostname
 :param int port: Redis port
 :param int db: Redis database number
 """
 self.db = redis.Redis(host=host, port=port, db=db)
 self.target_cache = {}

 def _fetch_job(self):
 return _loads(self.db.blpop("job_queue")[1])

 def _do_job(self, target, job):
 try:
 args = job.args

 if not isinstance(args, list) and not(isinstance(args, tuple)):
 # Make sure that args are always a list/tuple
 args = [args]

 job.ret = target(*args)
 except Exception as e:
 # An exception occured, print and log it
 traceback.print_exc()
 job.exception = e

 # Aadd the job to the response queue
 self.db.rpush("response_queue", _dumps(job))

[docs] def run(self):
 """
 In an infinite loop, wait for jobs, then execute them and return the results to Redis.
 """
 while 1:
 # Blocks until a job is available
 job = self._fetch_job()

 if job.target_id in self.target_cache:
 # We have the target code cached, great!
 target = self.target_cache[job.target_id]
 else:
 # Fetch the code from redis and cache it
 target = _loads(self.db.get("target_%d" % (job.target_id)))
 self.target_cache[job.target_id] = target

 print("Got job: 0x%08x" % (job.id))

 # Execute the job in a separate process
 p = multiprocessing.Process(target=self._do_job, args=(target, job))
 p.daemon = True
 p.start()

 p.join()

[docs]class JobQueue(Stream):
 def __init__(self, host="localhost", port=6379, db=10):
 """
 .. warning:: The :class:`JobQueue` flushes the selected Redis database! Be sure to specify an unused database!

 The queue that allows submission and fetching of completed jobs.

 :param str host: Redis hostname
 :param int port: Redis port
 :param int db: Redis database number

 That being said, here is an example of how to use the queue.

 >>> def sum(x, y):
 ... return x + y
 >>> q = JobQueue()
 >>> q.enqueue(sum, (1, 2)) # doctest: +SKIP
 >>> q.enqueue(sum, (2, 3)) # doctest: +SKIP
 >>> q.enqueue(sum, (3, 4)) # doctest: +SKIP
 >>> q.finalize()
 >>> for r in q: # doctest: +SKIP
 ... print r.ret
 3
 5
 7
 """
 Stream.__init__(self)
 self.db = redis.Redis(host=host, port=port, db=db)
 self.db.flushdb()

 self.cnt_queued = 0
 self.cnt_got = 0
 self.finalized = False

[docs] def next(self):
 if self.finalized and self.cnt_got == self.cnt_queued:
 raise StopIteration

 job = _loads(self.db.blpop("response_queue")[1])
 self.cnt_got += 1

 return job

[docs] def enqueue(self, target, args):
 """
 Add a job to the queue.

 :param function target: Function to be executed
 :param list args: Arguments provided to the job
 """
 if self.finalized:
 raise Exception("No more jobs allowed")

 # Check if we have to add the target's code to redis
 target_data = _dumps(target)
 target_id = hash(target_data)

 if not self.db.get("target_%d" % (target_id)):
 # This target does not exist, add it to the cache so that we don't have to download
 # the method code every time a job is submitted/fetched.
 self.db.set("target_%d" % (target_id), target_data)

 # Add the new job to the redis list
 self.db.rpush("job_queue", _dumps(Job(target_id, args)))
 self.cnt_queued += 1

[docs] def finalize(self):
 """
 Indicate to the queue that no more jobs will be submitted.
 """
 self.finalized = True

[docs]class DistributedPool(Stream):
 def __init__(self, function, host="localhost", port=6379, db=10):
 """
 The distributed pool is a simple wrapper around the :class:`JobQueue` that makes is even more
 convenient to use, just like :class:`ProcessPool` and :class:`ThreadPool`.

 :param str host: Redis hostname
 :param int port: Redis port
 :param int db: Redis database number

 First, on one machine let's start a single worker.

 .. code-block:: bash

 python streampie.py

 We then execute:

 >>> def mul(x, y):
 ... return x * y
 >>> range(4) >> chop(2) >> DistributedPool(mul) >> list # doctest: +SKIP
 [0, 6]
 """
 Stream.__init__(self)
 self.in_queue = queue.Queue()
 self.out_queue = queue.Queue()
 self.function = function

 self.jq = JobQueue(host=host, port=port, db=db)

 def _input_control(self):
 # Move all data from the iterator to the input queue
 for val in self.iterator:
 self.jq.enqueue(self.function, val)

 # Indicate to the queue that no more jobs will be added
 self.jq.finalize()

 def _output_control(self):
 # Move all data from the job queue to the output queue
 for job in self.jq:
 self.out_queue.put(job.ret)

 # All workers finished, stop the output queue iterator
 self.out_queue.put(StopIteration)

 def __iter__(self):
 return _iterqueue(self.out_queue)

 def _on_connect(self):
 # Start the input and output control threads
 self._input_thread = threading.Thread(target=self._input_control)
 self._input_thread.daemon = True
 self._input_thread .start()

 self._output_control()

[docs] def stop(self):
 """
 Currently not implemented. Is it even needed?
 """
 return NotImplemented

if __name__ == "__main__":
 # Act as a simple worker process
 print("Starting worker...")

 w = Worker()
 w.run()
 w.stop()

 © Copyright 2016, Luka Malisa <luka.malisha@gmail.com>.
 Created using Sphinx 1.4.1.

_static/comment-close.png

_modules/index.html

 Navigation

 		
 index

 		
 modules |

 		Streampie 0.1 documentation »

 All modules for which code is available

		streampie

 © Copyright 2016, Luka Malisa <luka.malisha@gmail.com>.
 Created using Sphinx 1.4.1.

_static/file.png

_static/minus.png

_static/up-pressed.png

_static/comment-bright.png

_static/up.png

_static/down-pressed.png

_static/ajax-loader.gif

