

Welcome to Read the Docs

This is an autogenerated index file.

Please create an index.rst or README.rst file with your own content
under the root (or /docs) directory in your repository.

If you want to use another markup, choose a different builder in your settings.
Check out our Getting Started Guide [https://docs.readthedocs.io/en/latest/getting_started.html] to become more
familiar with Read the Docs.

Index

Website location

http://localhost:8084

Starting and Stopping Docker

docker-compose up -d
docker-compose stop

RabbitMQ

Purge messages from the queue:

docker exec -i strava-rabbitmq sh -c "rabbitmqctl purge_queue messages"

Start a consumer:

docker exec -i strava-php-fpm sh -c "php bin/console messenger:consume &" 2> /dev/null

Running tests

You can run tests as individual docker commands:

docker exec -i strava-php-fpm sh -c "APP_ENV=test ./vendor/bin/phpunit"
docker exec -i strava-php-fpm sh -c "APP_ENV=test ./vendor/bin/behat"

Or run it as a single composer command (inside docroot):

composer test

 [image: https://travis-ci.org/bdlangton/strava.svg?branch=2.x]Build Status [https://travis-ci.org/bdlangton/strava]

strava

Strava app built with Silex.

about

When a user approves this app to access their Strava data, then it can pull in
data and display that data in interesting ways. Strava is a great product, but
it isn’t great at reporting on data that it has. That is the gap that this app
is intending to fix. Currently, you can view individual activities, personal
records, and course records. You can also view graphs of data broken up by
activity type and date range, and also group it monthly, weekly, or yearly.

PHPDocker.io generated environment

Add to your project

Simply, unzip the file into your project, this will create docker-compose.yml on the root of your project and a folder named phpdocker containing nginx and php-fpm config for it.

Ensure the webserver config on phpdocker/nginx/nginx.conf is correct for your project. PHPDocker.io will have customised this file according to the application type you chose on the generator, for instance web/app|app_dev.php on a Symfony project, or public/index.php on generic apps.

Note: you may place the files elsewhere in your project. Make sure you modify the locations for the php-fpm dockerfile, the php.ini overrides and nginx config on docker-compose.yml if you do so.

How to run

Dependencies:

	Docker engine v1.13 or higher. Your OS provided package might be a little old, if you encounter problems, do upgrade. See https://docs.docker.com/engine/installation

	Docker compose v1.12 or higher. See docs.docker.com/compose/install [https://docs.docker.com/compose/install/]

Once you’re done, simply cd to your project and run docker-compose up -d. This will initialise and start all the containers, then leave them running in the background.

Services exposed outside your environment

You can access your application via localhost, if you’re running the containers directly, or through `` when run on a vm. nginx and mailhog both respond to any hostname, in case you want to add your own hostname on your /etc/hosts

Service|Address outside containers
——|———|———–
Webserver|localhost:8255 [http://localhost:8255]
MySQL|host: localhost; port: 8257

Hosts within your environment

You’ll need to configure your application to use any services you enabled:

Service|Hostname|Port number
——|———|———–
php-fpm|php-fpm|9000
MySQL|mysql|3306 (default)
Memcached|memcached|11211 (default)

Docker compose cheatsheet

Note: you need to cd first to where your docker-compose.yml file lives.

	Start containers in the background: docker-compose up -d

	Start containers on the foreground: docker-compose up. You will see a stream of logs for every container running.

	Stop containers: docker-compose stop

	Kill containers: docker-compose kill

	View container logs: docker-compose logs

	Execute command inside of container: docker-compose exec SERVICE_NAME COMMAND where COMMAND is whatever you want to run. Examples:
* Shell into the PHP container, docker-compose exec php-fpm bash
* Run symfony console, docker-compose exec php-fpm bin/console
* Open a mysql shell, docker-compose exec mysql mysql -uroot -pCHOSEN_ROOT_PASSWORD

Recommendations

It’s hard to avoid file permission issues when fiddling about with containers due to the fact that, from your OS point of view, any files created within the container are owned by the process that runs the docker engine (this is usually root). Different OS will also have different problems, for instance you can run stuff in containers using docker exec -it -u $(id -u):$(id -g) CONTAINER_NAME COMMAND to force your current user ID into the process, but this will only work if your host OS is Linux, not mac. Follow a couple of simple rules and save yourself a world of hurt.

	Run composer outside of the php container, as doing so would install all your dependencies owned by root within your vendor folder.

	Run commands (ie Symfony’s console, or Laravel’s artisan) straight inside of your container. You can easily open a shell as described above and do your thing from there.

 nav.xhtml

 Table of Contents

 		
 Welcome to Read the Docs

_static/file.png

_static/ajax-loader.gif

_static/minus.png

_static/down.png

_static/up-pressed.png

_static/up.png

_static/plus.png

_static/comment-close.png

_static/comment.png

_static/comment-bright.png

_static/down-pressed.png

