

 Navigation

 	
 index

 	
 next |

 	straight.plugin 1.4.0 documentation

Welcome to straight.plugin’s documentation!

	Getting Started

	Writing Plugins

	Using Plugins

	API

	Glossary

Overview

Straight Plugin is very easy.

Straight Plugin provides a type of plugin you can create
from almost any existing Python modules, and an easy way for outside developers
to add functionality and customization to your projects with their own
plugins.

Using any available plugins is a snap.

from straight.plugin import load

plugins = load('theproject.plugins', subclasses=FileHandler)

handlers = plugins.produce()
for line in open(filename):
 print handlers.pipe(line)

And, writing plugins is just as easy.

from theproject import FileHandler

class LineNumbers(FileHandler):
 def __init__(self):
 self.lineno = 0
 def pipe(line):
 self.lineno += 1
 return "%04d %s" % (self.lineno, line)

Plugins are found from a namespace, which means the above example
would find any FileHandler classes defined in modules you might import
as theproject.plugins.default or theproject.plugins.extra. Through
the magic of namespace packages, we can even
split these up into separate installations, even managed by different teams.
This means you can ship a project with a set of default plugins implementing
its behavior, and allow other projects to hook in new functionality simply
by shipping their own plugins under the same namespace.

Get started and learn more, today

More Resources

	Full Documentation: http://readthedocs.org/docs/straightplugin/

	Mailing List: https://groups.google.com/forum/#!forum/straight.plugin

Indices and tables

	Index

	Module Index

	Search Page

 Copyright 2012, Calvin Spealman.
 Created using Sphinx 1.3.4.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	straight.plugin 1.4.0 documentation

Getting Started

Install

pip install straight.plugin

That was super easy.

Decide on a Namespace

You’ll want to decide on a namespace within your package where you’ll
keep your own plugins and where other developers can add more plugins for
your package to use.

For example, if you’re writing a log filtering library named logfilter you may
choose logfilter.plugins as a package to hold your plugins, so you’ll create
the empty package as you would any other python package. However, the only
contents of logfilter/plugins/__init__.py will be a little bit of special
code telling python this is a namespace package.

This file will not be needed in Python 3.3
from pkgutil import extend_path
__path__ = extend_path(__path__, __name__)

Now, any modules you place in this package are plugin modules able to be loaded
by straight.plugin.

from straight.plugin import load

plugins = load("logfilter.plugins")

If you’ll be using more plugins than writing them, you should
read more about the loaders available and how they work.

Write a Plugin

Writing a plugin is even easier than loading them. There are two important
plugin types to learn: Module plugins and class Plugins. Every module in
your namespace package is a module plugin. Every class they define
is a class plugin.

When you load module plugins, you get all of them.

When you load class plugins, you filter them by a common base and only get
those class plugins which inherit it.

Module plugins are simple and usually define a few functions with names
expected by whoever is loading and using the plugins.

This is a module plugin

def add_extra(data):
 if 'x' in data and 'y' in data:
 data['z'] = x * y

This was a fairly useless plugin

Class plugins are only a little longer, but can be a bit more controlled to
work with. They depend on a common class the plugins inherit, and this would
be defined by the project loading and using the plugins.

This is a class plugin

class RstContentParser(ContentPlugin):
 """Parses any .rst files in a bundle."""

 extensions = ('.rst',)

 def parse(self, content_file):
 src = content_file.read()
 return self.parse_string(src)

 def parse_string(self, src):
 parts = publish_parts(source=src, writer_name='html')
 return parts['html_body']

You can fit as many class plugins inside a module plugin as you want, and
to load them instead of the modules you simply pass a subclasses
parameter to load().

from straight.plugin import load

plugins = load("jules.plugins", subclasses=ContentPlugin)

The resulting set of plugins are all the classes found which inherit from
ContentPlugin. You can do whatever you want with these, but there are some
helpful tools to make it easier to work with Class plugins.

You can easily create instances of all the classes, which gives you a set
of Instance plugins.

instances = plugins.produce()

You can even pass initialization parameters to produce() and they’ll
be used when creating instances of all the classes. You can see the
API docs for the PluginManager to see the
other ways you can work with groups of plugins.

 Copyright 2012, Calvin Spealman.
 Created using Sphinx 1.3.4.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	straight.plugin 1.4.0 documentation

Writing Plugins

Plugins can exist inside your
existing packages or in special namespace packages, which exist
only to house plugins.

The only requirement is that any package containing plugins be
designated a “namespace package”, which is currently performed
in Python via the pkgutil.extend_path utility, seen below.
This allows the namespace to be provided in multiple places on
the python sys.path, where import looks, and all the
contents will be combined.

Use a namespace package

This allows multiple packages installed on your system to share
this name, so they may come from different installed projects
and all combine to provide a larger set of plugins.

Example

logfilter/__init__.py

from pkgutil import extend_path
__path__ = extend_path(__path__, __name__)

logfilter/hide_extra.py

from logfilter import Skip

def filter(log_entry):
 level = log_entry.split(':', 1)[0]
 if level != 'EXTRA':
 return log_entry
 else:
 raise Skip()

Using the plugin

In our log tool, we might load all the modules in the logfilter
namespace, and then use them all to process each entry in our logs.
We don’t need to know all the filters ahead of time, and other packages
can be installed on a user’s system providing additional modules
in the namespace, which we never even knew about.

from straight.plugin import load

class Skip(Exception):
 pass

plugins = load('logfilter')

def filter_entry(log_entry):
 for plugin in plugins:
 try:
 log_entry = plugin.filter(log_entry)
 except Skip:
 pass
 return log_entry

Distributing Plugins

If you are writing plugins inside your own project to use, they’ll be
distributed like any other modules in your package. There is no extra work
to do here.

However, if you want to release and distribute plugins on their own, you’ll
need to tell your setup.py about your namespace package.

setup(
 # ...
 namespace_packages = ['logfilter.plugins']
)

This will make sure when your plugins are installed alongside the original
project, both are importable, even though they came from their own
distributions.

You can read more about this at the Distribute
documentation on namespace packages [http://packages.python.org/distribute/setuptools.html#namespace-packages].

 Copyright 2012, Calvin Spealman.
 Created using Sphinx 1.3.4.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	straight.plugin 1.4.0 documentation

Plugin Loaders

Currently, three simple loaders are provided.

	The ModuleLoader simply loads the modules found

	The ClassLoader loads the subclasses of a given type

	The ObjectLoader loads arbitrary objects from the modules

ClassLoader

The recommended loader is the ClassLoader, used to load all the
classes from all of the modules in the namespace given. Optionally,
you can pass a subclasses parameter to load(), which will
filter the loaded classes to those which are a sub-class of any given
type.

For example,

import os
from straight.plugin.loaders import ClassLoader
from myapp import FileHandler

plugins = ClassLoader().load('myplugins', subclasses=FileHandler)

for filename in os.listdir('.'):
 for handler_cls in plugins:
 handler = handler_cls(filename)
 if handler.valid():
 handler.process()

However, it is preferred that you use the load() helper provided.

from straight.plugin import load

plugins = load('myplugins', subclasses=FileHandler)

This will automatically use the ClassLoader when given a subclasses
argument.

ModuleLoader

Before anything else, straight.plugin loads modules. The
ModuleLoader is used to do this.

from straight.plugin.loaders import ModuleLoader

plugins = ModuleLoader().load('myplugins')

A note about PEP-420 [http://www.python.org/dev/peps/pep-0420/]:

Python 3.3 will support a new type of package, the Namespace Package. This
allows language-level support for the namespaces that make straight.plugin
work and when 3.3 lands, you can create addition plugins to be found in a
namespace. For now, continue to use the pkgutil boilerplate, but when
3.3 is released, straight.plugin already supports both forms of
namespace package!

ObjectLoader

If you need to combine multiple plugins inside each module, you can
load all the objects from the modules, rather than the modules themselves.

from straight.plugin.loaders import ObjectLoader

plugins = ObjectLoader().load('myplugins')

 Copyright 2012, Calvin Spealman.
 Created using Sphinx 1.3.4.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	straight.plugin 1.4.0 documentation

Straight Plugin API

Loaders

	
straight.plugin.loaders.unified_load(namespace, subclasses=None, recurse=False)

	Provides a unified interface to both the module and class loaders,
finding modules by default or classes if given a subclasses parameter.

	
class straight.plugin.loaders.Loader(*args, **kwargs)

	Base loader class. Only used as a base-class for other loaders.

	
class straight.plugin.loaders.ModuleLoader(recurse=False)

	Performs the work of locating and loading straight plugins.

This looks for plugins in every location in the import path.

	
class straight.plugin.loaders.ObjectLoader(recurse=False)

	Loads classes or objects out of modules in a namespace, based on a
provided criteria.

The load() method returns all objects exported by the module.

	
class straight.plugin.loaders.ClassLoader(recurse=False)

	Loads classes out of plugin modules which are subclasses of a single
given base class.

PluginManager

	
class straight.plugin.manager.PluginManager(plugins)

	
	
call(methodname, *args, **kwargs)

	Call a common method on all the plugins, if it exists.

	
first(methodname, *args, **kwargs)

	Call a common method on all the plugins, if it exists. Return the
first result (the first non-None)

	
pipe(methodname, first_arg, *args, **kwargs)

	Call a common method on all the plugins, if it exists. The return
value of each call becomes the replaces the first argument in the given
argument list to pass to the next.

Useful to utilize plugins as sets of filters.

	
produce(*args, **kwargs)

	Produce a new set of plugins, treating the current set as plugin
factories.

 Copyright 2012, Calvin Spealman.
 Created using Sphinx 1.3.4.

 Navigation

 	
 index

 	
 previous |

 	straight.plugin 1.4.0 documentation

Glossary

	distribution

	Separately installable sets of Python modules as stored in the
Python package index, and installed by distutils or setuptools.

definition taken from PEP 382 [http://www.python.org/dev/peps/pep-0382/] text

	module

	An importable python namespace defined in a single file.

	namespace package

	Mechanism for splitting a single Python package across multiple
directories on disk. One or more distributions (see distribution)
may provide modules which exist inside the same namespace package.

definition taken from PEP 382 [http://www.python.org/dev/peps/pep-0382/] text

	package

	A Python package is a module defined by a directory, containing
a __init__.py file, and can contain other modules or other
packages within it.

package/
 __init__.py
 subpackage/
 __init__.py
 submodule.py

see also, namespace package

	vendor package

	Groups of files installed by an operating system’s packaging
mechanism (e.g. Debian or Redhat packages install on Linux systems).

definition taken from PEP 382 [http://www.python.org/dev/peps/pep-0382/] text

 Copyright 2012, Calvin Spealman.
 Created using Sphinx 1.3.4.

 Navigation

 	
 index

 	straight.plugin 1.4.0 documentation

Index

 C
 | D
 | F
 | L
 | M
 | N
 | O
 | P
 | U
 | V

C

 	

 	call() (straight.plugin.manager.PluginManager method)

 	

 	ClassLoader (class in straight.plugin.loaders)

D

 	

 	distribution

F

 	

 	first() (straight.plugin.manager.PluginManager method)

L

 	

 	Loader (class in straight.plugin.loaders)

M

 	

 	module

 	

 	ModuleLoader (class in straight.plugin.loaders)

N

 	

 	namespace package

O

 	

 	ObjectLoader (class in straight.plugin.loaders)

P

 	

 	package

 	pipe() (straight.plugin.manager.PluginManager method)

 	

 	PluginManager (class in straight.plugin.manager)

 	produce() (straight.plugin.manager.PluginManager method)

U

 	

 	unified_load() (in module straight.plugin.loaders)

V

 	

 	vendor package

 Copyright 2012, Calvin Spealman.
 Created using Sphinx 1.3.4.

 _static/plus.png

_static/ajax-loader.gif

search.html

 Navigation

 		
 index

 		straight.plugin 1.4.0 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2012, Calvin Spealman.
 Created using Sphinx 1.3.4.

_static/up.png

_static/comment-bright.png

_static/file.png

_static/comment-close.png

_static/down.png

_static/down-pressed.png

_static/comment.png

_static/minus.png

_static/up-pressed.png

