STP Core

STP Core provides .....

Here is how to add a link to your documentation Docs and here is how to add a reference [A1]

Features

  • Example of how to write documentation

Content

About

This section describes what the STP Core project is about ...

Install

This section covers the basics of how to download and install STP Core

Installing from source

Clone the STP Core from GitHub repository:

git clone https://github.com/ElettraSciComp/STP-Core.git STP-Core

then:

cd STP-Core
python setup.py install

API reference

project Modules:

io.tdf

Functions:

parse_metadata(f, xml_command) Fill the specified HDF5 file with metadata according to the DataExchange initiative.
read_tomo(dataset, index) Extract the tomographic projection at the specified relative index from the HDF5 dataset.
parse_metadata(f, xml_command) Fill the specified HDF5 file with metadata according to the DataExchange initiative.
read_sino(dataset, index) Extract the sinogram at the specified relative index from the HDF5 dataset.
write_tomo(dataset, index, im) Modify the tomographic projection at the specified relative index from the HDF5 dataset with the image passed as input.
write_sino(dataset, index, im) Modify the sinogram at the specified relative index from the HDF5 dataset with the image passed as input.
get_nr_projs(dataset) Get the number of projections of the input dataset.
get_nr_sinos(dataset) Get the number of sinograms (or slices) of the input dataset.
get_det_size(dataset) Get the width of the detector (nr of pixels) of the input dataset.
get_dset_shape(det_size, fov_height, nr_proj) Get the shape of the dataset by arranging the input parameters.
get_dset_chunks(det_size) Get a good chunk combination.
stp_core.io.tdf.get_det_size(dataset)[source]

Get the width of the detector (nr of pixels) of the input dataset.

Parameters:dataset (HDF5 dataset) – HDF5 dataset as returned by the h5py API.
stp_core.io.tdf.get_dset_chunks(det_size)[source]

Get a good chunk combination. This function needs improvement...

Parameters:det_size (int) – Width of the detector.
stp_core.io.tdf.get_dset_shape(det_size, fov_height, nr_proj)[source]

Get the shape of the dataset by arranging the input parameters.

Parameters:
  • det_size (int) – Width of the detector.
  • fov_height (int) – Height of the FOV, i.e. the number of sinograms (or slices) of the dataset.
  • nr_proj (int) – Number of collected projections.
stp_core.io.tdf.get_nr_projs(dataset)[source]

Get the number of projections of the input dataset.

Parameters:dataset (HDF5 dataset) – HDF5 dataset as returned by the h5py API.
stp_core.io.tdf.get_nr_sinos(dataset)[source]

Get the number of sinograms (or slices) of the input dataset.

Parameters:dataset (HDF5 dataset) – HDF5 dataset as returned by the h5py API.
stp_core.io.tdf.parse_metadata(f, xml_command)[source]

Fill the specified HDF5 file with metadata according to the DataExchange initiative. The metadata in input are described in a XML format.

Parameters:
  • f (HDF5 file) – HDF5 file open with h5py API
  • xml_command (string) – Immaginary part of the complex X-ray refraction index.
stp_core.io.tdf.read_sino(dataset, index)[source]

Extract the sinogram at the specified relative index from the HDF5 dataset.

Parameters:
  • dataset (HDF5 dataset) – HDF5 dataset as returned by the h5py API.
  • index (int) – Relative position of the sinogram within the dataset.
stp_core.io.tdf.read_tomo(dataset, index)[source]

Extract the tomographic projection at the specified relative index from the HDF5 dataset.

Parameters:
  • dataset (HDF5 dataset) – HDF5 dataset as returned by the h5py API.
  • index (int) – Relative position of the tomographic projection within the dataset.
stp_core.io.tdf.write_sino(dataset, index, im)[source]

Modify the sinogram at the specified relative index from the HDF5 dataset with the image passed as input.

Parameters:
  • dataset (HDF5 dataset) – HDF5 dataset as returned by the h5py API.
  • index (int) – Relative position of the sinogram within the dataset.
  • im (array_like) – Image data as numpy array.
stp_core.io.tdf.write_tomo(dataset, index, im)[source]

Modify the tomographic projection at the specified relative index from the HDF5 dataset with the image passed as input.

Parameters:
  • dataset (HDF5 dataset) – HDF5 dataset as returned by the h5py API.
  • index (int) – Relative position of the tomographic projection within the dataset.
  • im (array_like) – Image data as numpy array.

phaseretrieval.tiehom

Functions:

tiehom_plan(im, beta, delta, energy, ...) Pre-compute data to save time in further execution of phase_retrieval with TIE-HOM (Paganin’s) algorithm.
tiehom(im, plan[, nr_threads]) Process a tomographic projection image with the TIE-HOM (Paganin’s) phase retrieval algorithm.
stp_core.phaseretrieval.tiehom.tiehom(im, plan, nr_threads=2)[source]

Process a tomographic projection image with the TIE-HOM (Paganin’s) phase retrieval algorithm.

Parameters:
  • im (array_like) – Flat corrected image data as numpy array.
  • plan (structure) – Structure with pre-computed data (see tiehom_plan function).
  • nr_threads (int) – Number of threads to be used in the computation of FFT by PyFFTW (default = 2).
stp_core.phaseretrieval.tiehom.tiehom_plan(im, beta, delta, energy, distance, pixsize, padding)[source]

Pre-compute data to save time in further execution of phase_retrieval with TIE-HOM (Paganin’s) algorithm.

Parameters:
  • im (array_like) – Image data as numpy array. Only image size (shape) is actually used.
  • beta (double) – Immaginary part of the complex X-ray refraction index.
  • delta (double) – Decrement from unity of the complex X-ray refraction index.
  • energy [KeV] (double) – Energy in KeV of the incident X-ray beam.
  • distance [mm] (double) – Sample-to-detector distance in mm.
  • pixsize [mm] (double) – Size in mm of the detector element.
  • padding (bool) – Apply image padding to better process the boundary of the image

phaseretrieval.phrt

Functions:

phrt_plan(im, energy, distance, pixsize, ...) Pre-compute data to save time in further execution of phase_retrieval.
phrt(im, plan[, method, nr_threads]) Process a tomographic projection image with the selected phase retrieval algorithm.
stp_core.phaseretrieval.phrt.phrt(im, plan, method=4, nr_threads=2)[source]

Process a tomographic projection image with the selected phase retrieval algorithm.

Parameters:
  • im (array_like) – Flat corrected image data as numpy array.
  • plan (structure) – Structure with pre-computed data (see prepare_plan function)
  • method (int) – Phase retrieval filter {1 = TIE (default), 2 = CTF, 3 = CTF first-half sine, 4 = Quasiparticle, 5 = Quasiparticle first half sine}.
  • nr_threads (int) – Number of threads to be used in the computation of FFT by PyFFTW
  • Credits
  • ——-
  • Julian Moosmann, KIT (Germany) is acknowledged for this code
stp_core.phaseretrieval.phrt.phrt_plan(im, energy, distance, pixsize, regpar, thresh, method, padding)[source]

Pre-compute data to save time in further execution of phase_retrieval.

Parameters:
  • im (array_like) – Image data as numpy array. Only image size (shape) is actually used.
  • energy [KeV] (double) – Energy in KeV of the incident X-ray beam.
  • distance [mm] (double) – Sample-to-detector distance in mm.
  • pixsize [mm] (double) – Size in mm of the detector element.
  • regpar (double) – Regularization parameter: RegPar is - log10 of the constant to be added to the denominator to regularize the singularity at zero frequency, i.e. 1/sin(x) -> 1/(sin(x)+10^-RegPar). Typical values in the range [2.0, 3.0]. (Suggestion for default: 2.5).
  • thresh (double) – Parameter for Quasiparticle phase retrieval which defines the width of the rings to be cropped around the zero crossing of the CTF denominator in Fourier space. Typical values in the range [0.01, 0.1]. (Suggestion for default: 0.1).
  • method (int) – Phase retrieval algorithm {1 = TIE (default), 2 = CTF, 3 = CTF first-half sine, 4 = Quasiparticle, 5 = Quasiparticle first half sine}.
  • padding (bool) – Apply image padding to better process the boundary of the image.

References

Notes

Credits to Julian Moosmann, KIT (Germany) is acknowledged for this code

postprocess

Functions:

postprocess(im, convert_opt, crop_opt) Post-process a reconstructed image.
stp_core.postprocess.postprocess.postprocess(im, convert_opt, crop_opt)[source]

Post-process a reconstructed image.

Parameters:

im (array_like) – Image data as numpy array.

convert_opt : string

String containing degradation method (8-bit or 16-bit) and min/max rescaling value (e.g. “linear8:-0.01;0.01”). In current version only “linear” for 16-bit and “linear8” are implemented.

crop_opt : double

String containing the parameters to crop an image separated by : with order top, bottom, left, right. (e.g. “100:100:100:100”)

preprocess.extfov_correction

Functions:

extfov_correction(im, ext_fov, ...) Apply sinogram correction for extended FOV acquisition mode
stp_core.preprocess.extfov_correction.extfov_correction(im, ext_fov, ext_fov_rot_right, ext_fov_overlap)[source]

Apply sinogram correction for extended FOV acquisition mode

Parameters:
  • im (array_like) – Image data (sinogram) as numpy array.

  • ext (bool) – True if the extended FOV mode has been performed.

  • ext_fov_rot_right (bool) –

    True if the extended FOV mode has been performed with rotation center

    shifted to the right, left otherwise.

    ext_fov_overlap : int

    Number of overlapping pixels.

preprocess.extract_flatdark

Functions:

extract_flatdark(f_in, flat_end, logfilename) Extract the flat and dark reference images to be used during the pre-processing step.
stp_core.preprocess.extract_flatdark.extract_flatdark(f_in, flat_end, logfilename)[source]

Extract the flat and dark reference images to be used during the pre-processing step.

Parameters:
  • f_in (HDF5 data structure) – The data structure containing the flat and dark acquired images.
  • flat_end (bool) – Consider the flat/dark images acquired after the projections (if any).
  • logilename (string) – Absolute file of a log text file where infos are appended.

preprocess.flat_fielding

Functions:

flat_fielding(im, i, plan, flat_end, ...) Process a sinogram with conventional flat fielding plus reference normalization.
stp_core.preprocess.flat_fielding.flat_fielding(im, i, plan, flat_end, half_half, half_half_line, norm_sx, norm_dx)[source]

Process a sinogram with conventional flat fielding plus reference normalization.

Parameters:
  • im (array_like) – Image data as numpy array
  • i (int) – Index of the sinogram with reference to the height of a projection
  • plan (structure) – Structure created by the extract_flatdark function (see extract_flatdark.py). This structure contains the flat/dark images acquired before the acquisition of the projections and the flat/dark images acquired after the acquisition of the projections as well as a few flags.
  • flat_end (bool) – True if the process considers the flat/dark images (if any) acquired after the acquisition of the projections.
  • half_half (bool) – True if the process has to be separated by processing the first part of the sinogram with the flat/dark images acquired before the acquisition of the projections and the second part with the flat/dark images acquired after the acquisition of the projections.
  • half_half_line (int) – Usually this value is equal to the height of the projection FOV / 2 but the two parts of the sinogram to process can have a different size.
  • norm_sx (int) – Width in pixels of the left window to be consider for the normalization of the sinogram. This value has to be zero in the case of ROI-CT.
  • norm_dx (int) – Width in pixels of the right window to be consider for the normalization of the sinogram. This value has to be zero in the case of ROI-CT.
  • Example (using h5py, tdf.py, tifffile.py)
  • ————————–
  • >>> sino_idx = 512
  • >>> f = getHDF5(‘dataset.h5’, ‘r’)
  • >>> im = tdf.read_sino(f[‘exchange/data’], sino_idx)
  • >>> plan = extract_flatdark(f_in, True, False, False, ‘tomo’, ‘dark’, ‘flat’, ‘logfile.txt’)
  • >>> im = flat_fielding(im, sino_idx, plan, True, True, 900, 0, 0)
  • >>> imsave(‘sino_corr.tif’, im)

preprocess.ring_correction

Functions:

ring_correction(im, ringrem, flat_end, ...) Apply ring artifacts compensation by de-striping the input sinogram.
stp_core.preprocess.ring_correction.ring_correction(im, ringrem, flat_end, skip_flat_after, half_half, half_half_line, ext_fov)[source]

Apply ring artifacts compensation by de-striping the input sinogram.

Parameters:

im (array_like) – Image data (sinogram) as numpy array.

ringrem : string

String containing ring removal method and parameters

half_half : bool

True to separately process the sinogram in two parts

half_half_line : int

Line number considered to identify the two parts to be processed separately. (This parameter is ignored if half_half is False)

skip_flat_after e ext_fov SERVE???

reconstruct.rec_astra

Functions:

recon_astra_fbp(im, angles, method, filter_type) Reconstruct the input sinogram by using the FBP implemented in ASTRA toolbox.
recon_astra_iterative(im, angles, method, ...) Reconstruct the input sinogram by using one of the iterative algorithms implemented in ASTRA toolbox.
stp_core.reconstruct.rec_astra.recon_astra_fbp(im, angles, method, filter_type)[source]

Reconstruct the input sinogram by using the FBP implemented in ASTRA toolbox.

Parameters:

im (array_like) – Image data (sinogram) as numpy array.

angles : double

Value in radians representing the number of angles of the sinogram.

method : string

A string with either “FBP” or “FBP_CUDA”.

filter_type : string

The available options are “ram-lak”, “shepp-logan”, “cosine”, “hamming”, “hann”, “tukey”, “lanczos”, “triangular”, “gaussian”, “barlett-hann”, “blackman”, “nuttall”, “blackman-harris”, “blackman-nuttall”, “flat-top”, “kaiser”, “parzen”.

stp_core.reconstruct.rec_astra.recon_astra_iterative(im, angles, method, iterations, zerone_mode)[source]

Reconstruct the input sinogram by using one of the iterative algorithms implemented in ASTRA toolbox.

Parameters:

im (array_like) – Image data (sinogram) as numpy array.

angles : double

Value in radians representing the number of angles of the sinogram.

method : string

A string with e.g “SIRT” or “SIRT_CUDA” (see ASTRA documentation)

iterations : int

Number of iterations for the algebraic technique

zerone_mode : bool

True if the input sinogram has been rescaled to the [0,1] range (therefore positivity constraints are applied)

reconstruct.rec_fista_tv

Functions:

recon_fista_tv(im, angles, lam, fista_iter, iter) Reconstruct the input sinogram by using the FISTA-TV algorithm
stp_core.reconstruct.rec_fista_tv.recon_fista_tv(im, angles, lam, fista_iter, iter)[source]

Reconstruct the input sinogram by using the FISTA-TV algorithm

Parameters:

im (array_like) – Image data (sinogram) as numpy array.

angles : double

Value in radians representing the number of angles of the input sinogram.

lam : double

Regularization parameter of the FISTA algorithm.

fista_iter : int

Number of iterations of the FISTA algorihtm.

iter : int

Number of iterations of the TV minimization.

reconstruct.rec_gridrec

Functions:

recon_gridrec(im1, im2, angles, oversampling) Reconstruct two sinograms (of the same CT scan) with direct Fourier algorithm.
stp_core.reconstruct.rec_gridrec.recon_gridrec(im1, im2, angles, oversampling)[source]

Reconstruct two sinograms (of the same CT scan) with direct Fourier algorithm.

Parameters:
  • im1 (array_like) – Sinogram image data as numpy array.
  • im2 (array_like) – Sinogram image data as numpy array.
  • angles (double) – Value in radians representing the number of angles of the input sinogram.
  • oversampling (double) – Input sinogram is rescaled to increase the sampling of the Fourier space and avoid artifacts. Suggested value in the range [1.2,1.6].

reconstruct.rec_mr_fbp

Functions:

recon_mr_fbp(im, angles) Reconstruct a sinogram with the Minimum Residual FBP algorithm (Pelt, 2013).
stp_core.reconstruct.rec_mr_fbp.recon_mr_fbp(im, angles)[source]

Reconstruct a sinogram with the Minimum Residual FBP algorithm (Pelt, 2013).

Parameters:
  • im (array_like) – Sinogram image data as numpy array.
  • angles (double) – Value in radians representing the number of angles of the input sinogram.

utils.caching

Functions:

cache2plan(infile, cachepath) Read from cache the flat/dark images of the input TDF file.
plan2cache(corr_plan, infile, cachepath) Write to cache the flat/dark images of the input TDF file.
stp_core.utils.caching.cache2plan(infile, cachepath)[source]

Read from cache the flat/dark images of the input TDF file.

Parameters:

infile (string) – Absolute path of the input TDF dataset.

returns:A structure with flat/dark images and related flags.
stp_core.utils.caching.plan2cache(corr_plan, infile, cachepath)[source]

Write to cache the flat/dark images of the input TDF file.

Parameters:

infile (string) – Absolute path of the input TDF dataset.

corr_plan : structure

The plan with flat/dark images and flags.

returns:No return value.

utils.findcenter

Functions:

usecorrelation(im1, im2) Assess the offset (to be used for e.g.
stp_core.utils.findcenter.usecorrelation(im1, im2)[source]
Assess the offset (to be used for e.g. the assessment of the center of rotation or the
ovarlap) by computation the peak of the correlation between the two input images.
Parameters:

im1 (array_like) – Image data as numpy array.

im2 : array_like

Image data as numpy array.

returns:An integer value of the location of the maximum peak correlation.

utils.padding

Functions:

upperPowerOfTwo(v) Return the upper power of two of input value
replicatePadImage(im, marg0, marg1) Pad the input image by replicating first and last column as well as first and last row the specified number of times.
zeroPadImage(im, marg0, marg1) Pad the input image by adding zeros.
padImage(im, n_pad0, n_pad1) Replicate pad the input image to the specified new dimensions.
padSmoothWidth(im, n_pad) Pad the input image to the specified new width by replicate padding with Hanning smoothing to zero.
stp_core.utils.padding.padImage(im, n_pad0, n_pad1)[source]

Replicate pad the input image to the specified new dimensions.

Parameters:
  • im (array_like) – Image data as numpy array
  • n_pad0 (int) – The new height of the image
  • n_pad1 (int) – The new width of the image
  • Return value
  • ———-
  • A padded image
stp_core.utils.padding.padSmoothWidth(im, n_pad)[source]

Pad the input image to the specified new width by replicate padding with Hanning smoothing to zero.

Parameters:
  • im (array_like) – Image data as numpy array.
  • n_pad (int) – The new width of the image.
  • Return value
  • ———-
  • A padded image
stp_core.utils.padding.replicatePadImage(im, marg0, marg1)[source]
Pad the input image by replicating first and last column as well as first and last row
the specified number of times.
Parameters:
  • im (array_like) – Image data as numpy array.
  • marg0 (int) – The number of times first and last row have to be replicated.
  • marg1 (int) – The number of times first and last column have to be replicated.
  • Return value
  • ———-
  • A replicated-padded image.
stp_core.utils.padding.upperPowerOfTwo(v)[source]

Return the upper power of two of input value

Parameters:
  • v (int) – A positive integer value
  • Return value
  • ———-
  • An integer value
stp_core.utils.padding.zeroPadImage(im, marg0, marg1)[source]

Pad the input image by adding zeros.

Parameters:
  • im (array_like) – Image data as numpy array.
  • marg0 (int) – The number of zero rows to add before first and after last row.
  • marg1 (int) – The number of zero rows to add before first and after last column.
  • Return value
  • ———-
  • A zero-padded image.

Examples

Here we describe what the examples are doing. You can cite with [B1].

exec_his2tdf

This section contains the exec_his2tdf script.

Download file: exec_his2tdf.py

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
###########################################################################
# (C) 2016 Elettra - Sincrotrone Trieste S.C.p.A.. All rights reserved.   #
#                                                                         #
#                                                                         #
# This file is part of STP-Core, the Python core of SYRMEP Tomo Project,  #
# a software tool for the reconstruction of experimental CT datasets.     #
#                                                                         #
# STP-Core is free software: you can redistribute it and/or modify it     #
# under the terms of the GNU General Public License as published by the   #
# Free Software Foundation, either version 3 of the License, or (at your  #
# option) any later version.                                              #
#                                                                         #
# STP-Core is distributed in the hope that it will be useful, but WITHOUT #
# ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or   #
# FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License    #
# for more details.                                                       #
#                                                                         #
# You should have received a copy of the GNU General Public License       #
# along with STP-Core. If not, see <http://www.gnu.org/licenses/>.        #
#                                                                         #
###########################################################################

#
# Author: Francesco Brun
# Last modified: July, 8th 2016
#

import datetime
import os
import os.path
import numpy
import time

from time import strftime
from sys import argv, exit
from glob import glob
from h5py import File as getHDF5
import stp_core.io.tdf as tdf

def _getHISdim ( HISfilename ):
    
    dim1 = 0
    dim2 = 0
    dimz = 0    
    bytecode = numpy.uint16
    
    # Open file:
    try:
        infile = open(HISfilename, "rb")

        # Get file infos:
        tot_bytes = os.path.getsize(HISfilename)

        # Read header:
        Image_tag = infile.read(2)
        Comment_len = numpy.fromstring(infile.read(2), numpy.uint16)[0].astype(numpy.int_)
        dim1 = numpy.fromstring(infile.read(2), numpy.uint16)[0].astype(numpy.int_)
        dim2 = numpy.fromstring(infile.read(2), numpy.uint16)[0].astype(numpy.int_) 
        dim1_offset = numpy.fromstring(infile.read(2), numpy.uint16)[0].astype(numpy.int_)
        dim2_offset = numpy.fromstring(infile.read(2), numpy.uint16)[0].astype(numpy.int_)
        HeaderType = numpy.fromstring(infile.read(2), numpy.uint16)[0]
        Dump = infile.read(50)
        Comment = infile.read(Comment_len)  

        # Set total number of bytes read so far:
        bytes_read = 64 + Comment_len   

        # Set image type:
        bpp = len(numpy.array(0, bytecode).tostring())
        
        # Define chunk size:
        chunksize = dim1 * dim2 * bpp
        
        # Determine number of expected projections:
        dimz = (tot_bytes - bytes_read) / (chunksize + 64) + 1  
        
    finally:
        # Close file:
        infile.close()  
        
    return (dim1, dim2, dimz, bytecode)
    


def _processHIS( HISfilename, dset, dset_offset, provenance_dset, provenance_offset, time_offset, prefix, crop_top, crop_bottom, crop_left, crop_right, logfilename, int_from=0, int_to=-1):

    # Open file:
    infile = open(HISfilename, "rb")

    # Get file infos:
    tot_bytes = os.path.getsize(HISfilename)

    # Read header:
    Image_tag = infile.read(2)
    Comment_len = numpy.fromstring(infile.read(2), numpy.uint16)[0].astype(numpy.int_)
    dim1 = numpy.fromstring(infile.read(2), numpy.uint16)[0].astype(numpy.int_)
    dim2 = numpy.fromstring(infile.read(2), numpy.uint16)[0].astype(numpy.int_) 
    dim1_offset = numpy.fromstring(infile.read(2), numpy.uint16)[0].astype(numpy.int_)
    dim2_offset = numpy.fromstring(infile.read(2), numpy.uint16)[0].astype(numpy.int_)
    HeaderType = numpy.fromstring(infile.read(2), numpy.uint16)[0]
    Dump = infile.read(50)
    Comment = infile.read(Comment_len)  

    # Set total number of bytes read so far:
    bytes_read = 64 + Comment_len   

    # Set image type:
    bytecode = numpy.uint16
    bpp = len(numpy.array(0, bytecode).tostring())
    
    # Define chunk size:
    chunksize = dim1 * dim2 * bpp
    
    # Determine number of expected projections:
    num_proj = (tot_bytes - bytes_read) / (chunksize + 64) + 1  
    
    # Read first projection:
    t1 = time.time()
    block = infile.read(chunksize)
    
    # Convert as numpy array:
    data = numpy.fromstring(block, bytecode)
    im = numpy.reshape( data, [dim2, dim1]) 
    im = im[crop_top:im.shape[0]-crop_bottom,crop_left:im.shape[1]-crop_right]  
    
    print numpy.amax(im[:])
    print dset.attrs['max']
    
    # Set minimum and maximum:
    if ( numpy.amin(im[:]) < float(dset.attrs['min']) ):
        dset.attrs['min'] = str(numpy.amin(im[:]))
    if ( numpy.amax(im[:]) > float(dset.attrs['max'])):
        dset.attrs['max'] = str(numpy.amax(im[:]))
        
    print numpy.amax(im[:])
    print dset.attrs['max']
        
    # Check extrema (int_to == -1 means all files) for the projections:
    if ( (int_to >= num_proj) or (int_to <= 0) ):
        int_to = num_proj - 1
    if ( (int_from >= num_proj) or (int_from < 0) ):
        int_from = 0    
        
    # Process first projection (fill HDF5):
    i = 0
    first_index = int(provenance_dset.attrs['first_index']) 
                        
    # Save processed image to HDF5 file:                                                
    #tifffile.imsave('tomo_' + str(i).zfill(4) + '.tif', data)
    if (i >= int_from) and (i <= int_to):   
        tdf.write_tomo(dset, i + dset_offset  - int_from,im)    
        
        # Save provenance metadata:
        t = time.time() + time_offset*3600          
        provenance_dset["filename", provenance_offset + i  - int_from] = prefix + '_' + str(i + dset_offset + first_index).zfill(4) 
        provenance_dset["timestamp", provenance_offset + i  - int_from] = numpy.string_(datetime.datetime.fromtimestamp(t).strftime('%Y-%m-%d %H:%M:%S.%f')[:-3])
                
        # Print out execution time: 
        t2 = time.time()
        log = open(logfilename,"a")     
        log.write(os.linesep + "\t%s converted in %0.3f sec." % (provenance_dset["filename", provenance_offset + i  - int_from], t2 - t1))          
        log.close()     
    
    # Read all the other projections:   
    try:
        while block:        
                
            # Skip a few bytes:
            t1 = time.time()
            dump = infile.read(64)
            
            # Read the meaningful data:
            block = infile.read(chunksize)                      
            
            # Convert as numpy array:
            data  = numpy.fromstring(block, bytecode)
            im    = numpy.reshape( data, [dim2, dim1])          
            im    = im[crop_top:im.shape[0]-crop_bottom,crop_left:im.shape[1]-crop_right]   
                                    
            # Set minimum and maximum:
            if ( float(numpy.amin(im[:])) < float(dset.attrs['min']) ):             
                dset.attrs['min'] = str(numpy.amin(im[:]))              
            if ( float(numpy.amax(im[:])) > float(dset.attrs['max'])):              
                dset.attrs['max'] = str(numpy.amax(im[:]))              
            
            # Process first projection (fill HDF5):
            i = i + 1
                                
            # Save processed image to HDF5 file:                                                
            #tifffile.imsave('tomo_' + str(i).zfill(4) + '.tif', data)
            if (i >= int_from) and (i <= int_to):               
                tdf.write_tomo( dset, i + dset_offset - int_from,im )   
                
                # Save provenance metadata:
                t = time.time() + time_offset*3600          
                provenance_dset["filename", provenance_offset + i  - int_from] = prefix + '_' + str(i + dset_offset + first_index  - int_from).zfill(4)
                provenance_dset["timestamp", provenance_offset + i  - int_from] = numpy.string_(datetime.datetime.fromtimestamp(t).strftime('%Y-%m-%d %H:%M:%S.%f')[:-3])
                            
                # Print out execution time: 
                t2 = time.time()
                log = open(logfilename,"a")     
                log.write(os.linesep + "\t%s converted in %0.3f sec." % (provenance_dset["filename", provenance_offset + i  - int_from], t2 - t1))          
                log.close() 
            
    except  Exception, e:   
        #log = open(logfilename,"a")        
        #log.write(str(e))          
        #log.close()
        pass
    
    finally: 
        # Close file:
        infile.close()

    return provenance_offset + i + 1


def main(argv):          
    """
    Converts a set of HIS files into a TDF file (HDF5 Tomo Data Format).
        
    Parameters
    ----------
    from : scalar, integer
        among all the projections (or sinogram) files, a subset of files can be specified, 
        ranging from the parameter "from" to the parameter "to" (see next). In most 
        cases, this parameter is 0.
        
    to : scalar, integer
        among all the projections (or sinogram) files, a subset of files can be specified, 
        ranging from the parameter "from" (see previous parameter) to the parameter 
        "to". If the value -1 is specified, all the projection files will be considered.
        
    data_in_path : string
        path of the HIS file of the projections (e.g. "Z:\\sample1.his").
    
    dark_in_path : string
        path of the HIS file of the flat (e.g. "Z:\\sample1_dark.his").
        
    flat_in_path : string
        path of the HIS file of the flat (e.g. "Z:\\sample1_flat.his").
            
    postdark_in_path : string
        path of the HIS file of the flat (e.g. "Z:\\sample1_postdark.his").
        
    postflat_in_path : string
        path of the HIS file of the flat (e.g. "Z:\\sample1_postflat.his").
        
    out_file : string
        path with filename of the TDF to create (e.g. "Z:\\sample1.tdf"). WARNING: the program 
        does NOT automatically create non-existing folders and subfolders specified in the path. 
        Moreover, if a file with the same name already exists it will be automatically deleted and 
        overwritten.
        
    crop_top : scalar, integer
        during the conversion, images can be cropped if required. This parameter specifies the number 
        of pixels to crop from the top of the image. Leave 0 for no cropping.
        
    crop_bottom : scalar, integer
        during the conversion, images can be cropped if required. This parameter specifies the number 
        of pixels to crop from the bottom of the image. Leave 0 for no cropping.
        
    crop_left : scalar, integer
        during the conversion, images can be cropped if required. This parameter specifies the number 
        of pixels to crop from the left of the image. Leave 0 for no cropping.
        
    crop_right : scalar, integer
        during the conversion, images can be cropped if required. This parameter specifies the number 
        of pixels to crop from the right of the image. Leave 0 for no cropping. 

    privilege_sino : boolean string
        specify the string "True" if the TDF will privilege a fast read/write of sinograms (the most common 
        case), "False" for fast read/write of projections.
        
    compression : scalar, integer
        an integer value in the range of [1,9] to be used as GZIP compression factor in the HDF5 file, where
        1 is the minimum compression (and maximum speed) and 9 is the maximum (and slow) compression.
        The value 0 can be specified with the meaning of no compression.
        
    log_file : string
        path with filename of a log file (e.g. "R:\\log.txt") where info about the conversion is reported.

    Returns
    -------
    no return value
        
    Example
    -------
    Example call to convert all the tomo*.tif* projections to a TDF with no cropping and minimum compression:
    
        python his2tdf.py 0 -1 "tomo.his" "dark.his" "flat.his" "postdark.his" "postflat.his" "dataset.tdf" 0 0 0 0 
        True True 1 "S:\\conversion.txt"
    
    Requirements
    -------
    - Python 2.7 with the latest NumPy, SciPy, H5Py.
    - tdf.py
    
    Tests
    -------
    Tested with WinPython-64bit-2.7.6.3 (Windows) and Anaconda 2.1.0 (Linux 64-bit).        
    
    """ 
    
    # Get the from and to number of files to process:
    int_from = int(argv[0])
    int_to = int(argv[1]) # -1 means "all files"
       
    # Get paths:
    tomo_file = argv[2]
    dark_file = argv[3]
    flat_file = argv[4]
    darkpost_file = argv[5]
    flatpost_file = argv[6]
    
    outfile = argv[7]
    
    crop_top      = int(argv[8])  # 0 for all means "no cropping"
    crop_bottom = int(argv[9])
    crop_left      = int(argv[10])
    crop_right    = int(argv[11])
        
    projorder = argv[12]
    if projorder == "True":
        projorder = True
    else:
        projorder = False
        
    privilege_sino = argv[13]
    if privilege_sino == "True":
        privilege_sino = True
    else:
        privilege_sino = False

    # Get compression factor:
    compr_opts = int(argv[14])
    compressionFlag = True;
    if (compr_opts <= 0):
        compressionFlag = False;
    elif (compr_opts > 9):
        compr_opts = 9      
        
    logfilename = argv[15]      

    # Get the files in inpath:
    log = open(logfilename,"w") 
    log.write(os.linesep + "\tInput HIS files:")    
    log.write(os.linesep + "\t\tProjections: %s" % (tomo_file))
    log.write(os.linesep + "\t\tDark: %s" % (dark_file))
    log.write(os.linesep + "\t\tFlat: %s" % (flat_file))
    log.write(os.linesep + "\t\tPost dark: %s" % (darkpost_file))
    log.write(os.linesep + "\t\tPost flat: %s" % (flatpost_file))
    log.write(os.linesep + "\tOutput TDF file: %s" % (outfile))     
    log.write(os.linesep + "\t--------------")          
    log.write(os.linesep + "\tCropping:")
    log.write(os.linesep + "\t\tTop: %d pixels" % (crop_top))
    log.write(os.linesep + "\t\tBottom: %d pixels" % (crop_bottom))
    log.write(os.linesep + "\t\tLeft: %d pixels" % (crop_left))
    log.write(os.linesep + "\t\tRight: %d pixels" % (crop_right))
    if (int_to != -1):
        log.write(os.linesep + "\tThe subset [%d,%d] of the input files will be considered." % (int_from, int_to))
    
    if (projorder):
        log.write(os.linesep + "\tProjection order assumed.")
    else:
        log.write(os.linesep + "\tSinogram order assumed.")
        
    if (privilege_sino):
        log.write(os.linesep + "\tFast I/O for sinograms privileged.")
    else:
        log.write(os.linesep + "\tFast I/O for projections privileged.")
    
    if (compressionFlag):
        log.write(os.linesep + "\tTDF compression factor: %d" % (compr_opts))
    else:
        log.write(os.linesep + "\tTDF compression: none.")

    log.write(os.linesep + "\t--------------")  
    log.close()
    
    # Remove a previous copy of output:
    if os.path.exists(outfile):
        log = open(logfilename,"a")
        log.write(os.linesep + "\tWarning: an output file with the same name was overwritten.")
        os.remove(outfile)
        log.close() 
            
    # Check input file:
    if not os.path.exists(tomo_file):       
        log = open(logfilename,"a")
        log.write(os.linesep + "\tError: input HIS file for projections does not exist. Process will end.")             
        log.close()         
        exit()  
        
    # First time get the plan:
    log = open(logfilename,"a")
    log.write(os.linesep + "\tPreparing the work plan...")  
    log.close()
            
    # Get info from projection file:
    dim1, dim2, dimz, dtype = _getHISdim ( tomo_file )  
    
    
    if ( ((int_to - int_from + 1) > 0) and ((int_to - int_from + 1) < dimz) ):
        dimz = int_to - int_from + 1
                        
    #dsetshape = (num_files,) + im.shape
    if projorder:           
        #dsetshape = tdf.get_dset_shape(privilege_sino, im.shape[1], im.shape[0], num_files)
        dsetshape = tdf.get_dset_shape(dim1 - crop_left - crop_right, dim2 - crop_top - crop_bottom, dimz)
    else:
        #dsetshape = tdf.get_dset_shape(privilege_sino, im.shape[1], num_files, im.shape[0])
        dsetshape = tdf.get_dset_shape(dim1 - crop_left - crop_right, dim2 - crop_top - crop_bottom, dimz)
        
    f = getHDF5( outfile, 'w' )
    print dsetshape
        
    f.attrs['version'] = '1.0'
    f.attrs['implements'] = "exchange:provenance"
    echange_group  = f.create_group( 'exchange' )           
            
    if (compressionFlag):
        dset = f.create_dataset('exchange/data', dsetshape, dtype, chunks=tdf.get_dset_chunks(dim1 - crop_left - crop_right), compression="gzip", compression_opts=compr_opts, shuffle=True, fletcher32=True)
    else:
        dset = f.create_dataset('exchange/data', dsetshape, dtype)      

    if privilege_sino:          
        dset.attrs['axes'] = "y:theta:x"
    else:
        dset.attrs['axes'] = "theta:y:x"
            
    dset.attrs['min'] = str(numpy.iinfo(dtype).max)
    dset.attrs['max'] = str(numpy.iinfo(dtype).min)

    # Get the total number of files to consider:
    num_darks = 0
    num_flats = 0
    num_postdarks = 0
    num_postflats = 0
            
    if os.path.exists(dark_file):   
        dim1, dim2, num_darks, dtype = _getHISdim ( dark_file ) 
    if os.path.exists(flat_file):   
        dim1, dim2, num_flats, dtype = _getHISdim ( flat_file ) 
    if os.path.exists(darkpost_file):   
        dim1, dim2, num_postdarks, dtype = _getHISdim ( darkpost_file )     
    if os.path.exists(flatpost_file):   
        dim1, dim2, num_postflats, dtype = _getHISdim ( flatpost_file ) 
            
    tot_files = dimz + num_darks + num_flats + num_postdarks + num_postflats
                
    # Create provenance dataset:
    provenance_dt    = numpy.dtype([("filename", numpy.dtype("S255")), ("timestamp",  numpy.dtype("S255"))])
    metadata_group  = f.create_group( 'provenance' )
    provenance_dset = metadata_group.create_dataset('detector_output', (tot_files,), dtype=provenance_dt)   
            
    provenance_dset.attrs['tomo_prefix'] = 'tomo';
    provenance_dset.attrs['dark_prefix'] = 'dark';
    provenance_dset.attrs['flat_prefix'] = 'flat';
    provenance_dset.attrs['first_index'] = 1;
            
    # Handle the metadata:
    if (os.path.isfile(os.path.dirname(tomo_file) + os.sep + 'logfile.xml')):
        with open (os.path.dirname(tomo_file) + os.sep + 'logfile.xml', "r") as file:
            xml_command = file.read()
        tdf.parse_metadata(f, xml_command)              

    # Print out about plan preparation:
    first_done = True
    log = open(logfilename,"a")
    log.write(os.linesep + "\tWork plan prepared succesfully.") 
    log.close()             
        
        
    # Get the data from HIS:
    if (num_darks > 0) or (num_postdarks > 0):
        #dsetshape = (num_files,) + im.shape
        if projorder:           
            #dsetshape = tdf.get_dset_shape(privilege_sino, im.shape[1], im.shape[0], num_files)
            dsetshape = tdf.get_dset_shape(dim1 - crop_left - crop_right, dim2 - crop_top - crop_bottom, num_darks + num_postdarks)
        else:
            #dsetshape = tdf.get_dset_shape(privilege_sino, im.shape[1], num_files, im.shape[0])
            dsetshape = tdf.get_dset_shape(dim1 - crop_left - crop_right, dim2 - crop_top - crop_bottom, num_darks + num_postdarks)
        
        if (compressionFlag):
            darkdset = f.create_dataset('exchange/data_dark', dsetshape, dtype, chunks=tdf.get_dset_chunks(dim1 - crop_left - crop_right), compression="gzip", compression_opts=compr_opts, shuffle=True, fletcher32=True)
        else:
            darkdset = f.create_dataset('exchange/data_dark', dsetshape, dtype)     

        if privilege_sino:          
            darkdset.attrs['axes'] = "y:theta:x"
        else:
            darkdset.attrs['axes'] = "theta:y:x"
            
        darkdset.attrs['min'] = str(numpy.iinfo(dtype).max)
        darkdset.attrs['max'] = str(numpy.iinfo(dtype).min)
    else:
        log = open(logfilename,"a")
        log.write(os.linesep + "\tWarning: dark images (if any) not considered.")       
        log.close()     
            
    if (num_flats > 0) or (num_postflats > 0):
        
        #dsetshape = (num_files,) + im.shape
        if projorder:           
            #dsetshape = tdf.get_dset_shape(privilege_sino, im.shape[1], im.shape[0], num_files)
            dsetshape = tdf.get_dset_shape(dim1 - crop_left - crop_right, dim2 - crop_top - crop_bottom, num_flats + num_postflats)
        else:
            #dsetshape = tdf.get_dset_shape(privilege_sino, im.shape[1], num_files, im.shape[0])
            dsetshape = tdf.get_dset_shape(dim1 - crop_left - crop_right, dim2 - crop_top - crop_bottom, num_flats + num_postflats)
        
        if (compressionFlag):
            flatdset = f.create_dataset('exchange/data_white', dsetshape, dtype, chunks=tdf.get_dset_chunks(dim1 - crop_left - crop_right), compression="gzip", compression_opts=compr_opts, shuffle=True, fletcher32=True)
        else:
            flatdset = f.create_dataset('exchange/data_white', dsetshape, dtype)        

        if privilege_sino:          
            flatdset.attrs['axes'] = "y:theta:x"
        else:
            flatdset.attrs['axes'] = "theta:y:x"
            
        flatdset.attrs['min'] = str(numpy.iinfo(dtype).max)
        flatdset.attrs['max'] = str(numpy.iinfo(dtype).min)
        
    else:
        log = open(logfilename,"a")
        log.write(os.linesep + "\tWarning: flat images (if any) not considered.")       
        log.close()
            
    # Process the HIS:
    provenance_offset = 0
        
    if num_flats > 0:
        provenance_offset = _processHIS( flat_file, flatdset, 0, provenance_dset, provenance_offset, 
            0, 'flat', crop_top, crop_bottom, crop_left, crop_right, logfilename )  
    if num_postflats > 0:
        provenance_offset = _processHIS( flatpost_file, flatdset, num_flats, provenance_dset, provenance_offset, 
            7, 'flat', crop_top, crop_bottom, crop_left, crop_right, logfilename )

    if num_darks > 0:
        provenance_offset = _processHIS( dark_file, darkdset, 0, provenance_dset, provenance_offset,  
            0, 'dark', crop_top, crop_bottom, crop_left, crop_right, logfilename )  
    if num_postdarks > 0:
        provenance_offset = _processHIS( darkpost_file, darkdset, num_darks, provenance_dset, provenance_offset, 
            7, 'dark', crop_top, crop_bottom, crop_left, crop_right, logfilename )

    provenance_offset = _processHIS( tomo_file, dset, 0, provenance_dset, provenance_offset, 
            0, 'tomo', crop_top, crop_bottom, crop_left, crop_right, logfilename, int_from, int_to )    

    
    # Close TDF:
    f.close()   
    
if __name__ == "__main__":
    main(argv[1:])

exec_preprocessing

This section contains the exec_preprocessing script.

Download file: exec_preprocessing.py

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
###########################################################################
# (C) 2016 Elettra - Sincrotrone Trieste S.C.p.A.. All rights reserved.   #
#                                                                         #
#                                                                         #
# This file is part of STP-Core, the Python core of SYRMEP Tomo Project,  #
# a software tool for the reconstruction of experimental CT datasets.     #
#                                                                         #
# STP-Core is free software: you can redistribute it and/or modify it     #
# under the terms of the GNU General Public License as published by the   #
# Free Software Foundation, either version 3 of the License, or (at your  #
# option) any later version.                                              #
#                                                                         #
# STP-Core is distributed in the hope that it will be useful, but WITHOUT #
# ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or   #
# FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License    #
# for more details.                                                       #
#                                                                         #
# You should have received a copy of the GNU General Public License       #
# along with STP-Core. If not, see <http://www.gnu.org/licenses/>.        #
#                                                                         #
###########################################################################

#
# Author: Francesco Brun
# Last modified: August, 8th 2016
#

from sys import argv, exit
from os import remove, sep,  linesep
from os.path import exists
from numpy import float32, amin, amax, isscalar
from time import time
from multiprocessing import Process, Lock

# pystp-specific:
from stp_core.preprocess.extfov_correction import extfov_correction
from stp_core.preprocess.flat_fielding import flat_fielding
from stp_core.preprocess.dynamic_flatfielding import dff_prepare_plan, dynamic_flat_fielding
from stp_core.preprocess.ring_correction import ring_correction
from stp_core.preprocess.extract_flatdark import extract_flatdark, _medianize

from h5py import File as getHDF5

# pystp-specific:
import stp_core.io.tdf as tdf


def _write_data(lock, im, index, outfile, outshape, outtype, logfilename, cputime, itime):            

    lock.acquire()
    try:        
        t0 = time()             
        f_out = getHDF5( outfile, 'a' )                  
        f_out_dset = f_out.require_dataset('exchange/data', outshape, outtype, chunks=tdf.get_dset_chunks(outshape[0])) 
        tdf.write_sino(f_out_dset,index,im.astype(float32))
                    
        # Set minimum and maximum:
        if ( amin(im[:]) < float(f_out_dset.attrs['min']) ):
            f_out_dset.attrs['min'] = str(amin(im[:]))
        if ( amax(im[:]) > float(f_out_dset.attrs['max'])):
            f_out_dset.attrs['max'] = str(amax(im[:]))      
        f_out.close()           
        t1 = time() 

        # Print out execution time:
        log = open(logfilename,"a")
        log.write(linesep + "\tsino_%s processed (CPU: %0.3f sec - I/O: %0.3f sec)." % (str(index).zfill(4), cputime, t1 - t0 + itime))
        log.close() 

    finally:
        lock.release()  

def _process (lock, int_from, int_to, infile, outfile, outshape, outtype, skipflat, plan, norm_sx, norm_dx, flat_end, 
             half_half, half_half_line, ext_fov, ext_fov_rot_right, ext_fov_overlap, ringrem, dynamic_ff, EFF, 
             filtEFF, im_dark, logfilename):

    # Process the required subset of images:
    for i in range(int_from, int_to + 1):                 
                
        # Read input image:
        t0 = time()
        f_in = getHDF5(infile, 'r')
        if "/tomo" in f_in:
            dset = f_in['tomo']
        else: 
            dset = f_in['exchange/data']
        im = tdf.read_sino(dset,i).astype(float32)      
        f_in.close()
        t1 = time()         

        # Perform pre-processing (flat fielding, extended FOV, ring removal):   
        if not skipflat:
            if dynamic_ff:
                # Dynamic flat fielding with downsampling = 2:
                im = dynamic_flat_fielding(im, i, EFF, filtEFF, 2, im_dark, norm_sx, norm_dx)
            else:
                im = flat_fielding(im, i, plan, flat_end, half_half, half_half_line, norm_sx, norm_dx)          
        im = extfov_correction(im, ext_fov, ext_fov_rot_right, ext_fov_overlap)
        if not skipflat and not dynamic_ff:
            im = ring_correction (im, ringrem, flat_end, plan['skip_flat_after'], half_half, half_half_line, ext_fov)
        else:
            im = ring_correction (im, ringrem, False, False, half_half, half_half_line, ext_fov)
        t2 = time()         
                                
        # Save processed image to HDF5 file (atomic procedure - lock used):
        _write_data(lock, im, i, outfile, outshape, outtype, logfilename, t2 - t1, t1 - t0)


def main(argv):          
    """To do...

    Usage
    -----
    
    Parameters
    ---------
           
    Example
    -------
    The following line processes the first ten TIFF files of input path 
    "/home/in" and saves the processed files to "/home/out" with the 
    application of the Boin and Haibel filter with smoothing via a Butterworth
    filter of order 4 and cutoff frequency 0.01:

    destripe /home/in /home/out 1 10 1 0.01 4    

    """
    lock = Lock()

    # Get the from and to number of files to process:
    int_from = int(argv[0])
    int_to = int(argv[1])
       
    # Get paths:
    infile = argv[2]
    outfile = argv[3]
    
    # Normalization parameters:
    norm_sx = int(argv[4])
    norm_dx = int(argv[5])
    
    # Params for flat fielding with post flats/darks:
    flat_end = True if argv[6] == "True" else False
    half_half = True if argv[7] == "True" else False
    half_half_line = int(argv[8])
        
    # Params for extended FOV:
    ext_fov = True if argv[9] == "True" else False
    ext_fov_rot_right = argv[10]
    if ext_fov_rot_right == "True":
        ext_fov_rot_right = True
        if (ext_fov):
            norm_sx = 0
    else:
        ext_fov_rot_right = False
        if (ext_fov):
            norm_dx = 0     
    ext_fov_overlap = int(argv[11])
        
    # Method and parameters coded into a string:
    ringrem = argv[12]  

    # Flat fielding method (conventional or dynamic):
    dynamic_ff = True if argv[13] == "True" else False
    
    # Nr of threads and log file:
    nr_threads = int(argv[14])
    logfilename = argv[15]      




    # Log input parameters:
    log = open(logfilename,"w")
    log.write(linesep + "\tInput TDF file: %s" % (infile))  
    log.write(linesep + "\tOutput TDF file: %s" % (outfile))        
    log.write(linesep + "\t--------------") 
    log.write(linesep + "\tOpening input dataset...")   
    log.close()
    
    # Remove a previous copy of output:
    if exists(outfile):
        remove(outfile)
    
    # Open the HDF5 file:   
    f_in = getHDF5(infile, 'r')


    if "/tomo" in f_in:
        dset = f_in['tomo']

        tomoprefix = 'tomo'
        flatprefix = 'flat'
        darkprefix = 'dark'
    else: 
        dset = f_in['exchange/data']
        if "/provenance/detector_output" in f_in:
            prov_dset = f_in['provenance/detector_output']      
    
            tomoprefix = prov_dset.attrs['tomo_prefix']
            flatprefix = prov_dset.attrs['flat_prefix']
            darkprefix = prov_dset.attrs['dark_prefix']
            
    num_proj = tdf.get_nr_projs(dset)
    num_sinos = tdf.get_nr_sinos(dset)
    
    if (num_sinos == 0):
        log = open(logfilename,"a")
        log.write(linesep + "\tNo projections found. Process will end.")    
        log.close()         
        exit()      

    # Check extrema (int_to == -1 means all files):
    if ((int_to >= num_sinos) or (int_to == -1)):
        int_to = num_sinos - 1

    # Prepare the work plan for flat and dark images:
    log = open(logfilename,"a")
    log.write(linesep + "\t--------------")
    log.write(linesep + "\tPreparing the work plan...")             
    log.close()

    # Extract flat and darks:
    skipflat = False
    skipdark = False

    # Following variables make sense only for dynamic flat fielding:
    EFF = -1
    filtEFF = -1
    im_dark = -1
    
    # Following variable makes sense only for conventional flat fielding:
    plan = -1

    if not dynamic_ff:
        plan = extract_flatdark(f_in, flat_end, logfilename)
        if (isscalar(plan['im_flat']) and isscalar(plan['im_flat_after']) ):
            skipflat = True
        else:
            skipflat = False        
    else:
        # Dynamic flat fielding:
        if "/tomo" in f_in:             
            if "/flat" in f_in:
                flat_dset = f_in['flat']
                if "/dark" in f_in:
                    im_dark = _medianize(f_in['dark'])
                else:                                       
                    skipdark = True
            else:
                skipflat = True # Nothing to do in this case            
        else: 
            if "/exchange/data_white" in f_in:
                flat_dset = f_in['/exchange/data_white']
                if "/exchange/data_dark" in f_in:
                    im_dark = _medianize(f_in['/exchange/data_dark'])
                else:                   
                    skipdark = True
            else:
                skipflat = True # Nothing to do in this case
    
        # Prepare plan for dynamic flat fielding with 16 repetitions:   
        if not skipflat:    
            EFF, filtEFF = dff_prepare_plan(flat_dset, 16, im_dark)
    
    # Outfile shape can be determined only after first processing in ext FOV mode:
    if (ext_fov):

        # Read input sino:
        idx = num_sinos / 2
        im = tdf.read_sino(dset,idx).astype(float32)                
        im = extfov_correction(im, ext_fov, ext_fov_rot_right, ext_fov_overlap)
        
        # Get the corrected outshape:       
        outshape = tdf.get_dset_shape(im.shape[1], num_sinos, im.shape[0])      

    else:
        # Get the corrected outshape (in this case it's easy):
        im = tdf.read_tomo(dset,0).astype(float32)  
        outshape = tdf.get_dset_shape(im.shape[1], im.shape[0], num_proj)           
    
    # Create the output HDF5 file:  
    f_out = getHDF5(outfile, 'w')
    f_out_dset = f_out.create_dataset('exchange/data', outshape, im.dtype) 
    f_out_dset.attrs['min'] = str(amin(im[:]))
    f_out_dset.attrs['max'] = str(amax(im[:]))
    f_out_dset.attrs['version'] = '1.0'
    f_out_dset.attrs['axes'] = "y:theta:x"

    f_out.close()
    f_in.close()
        
    # Log infos:
    log = open(logfilename,"a")
    log.write(linesep + "\tWork plan prepared correctly.")  
    log.write(linesep + "\t--------------")
    log.write(linesep + "\tPerforming pre processing...")           
    log.close() 

    # Run several threads for independent computation without waiting for threads completion:
    for num in range(nr_threads):
        start = (num_sinos / nr_threads)*num
        if (num == nr_threads - 1):
            end = num_sinos - 1
        else:
            end = (num_sinos / nr_threads)*(num + 1) - 1
        Process(target=_process, args=(lock, start, end, infile, outfile, outshape, im.dtype, skipflat, plan, norm_sx, 
                norm_dx, flat_end, half_half, half_half_line, ext_fov, ext_fov_rot_right, ext_fov_overlap, ringrem, 
                dynamic_ff, EFF, filtEFF, im_dark, logfilename )).start()


    #start = int_from # 0
    #end = int_to # num_sinos - 1
    #_process(lock, start, end, infile, outfile, outshape, im.dtype, skipflat, plan, norm_sx, 
    #           norm_dx, flat_end, half_half, half_half_line, ext_fov, ext_fov_rot_right, ext_fov_overlap, ringrem, 
    #           dynamic_ff, EFF, filtEFF, im_dark, logfilename)

    #255 256 C:\Temp\BrunGeorgos.tdf C:\Temp\BrunGeorgos_corr.tdf 0 0 True True 900 False False 0 rivers:11;0 False 1 C:\Temp\log_00.txt

    
if __name__ == "__main__":
    main(argv[1:])

exec_reconstruct

This section contains the exec_reconstruct script.

Download file: exec_reconstruct.py

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
###########################################################################
# (C) 2016 Elettra - Sincrotrone Trieste S.C.p.A.. All rights reserved.   #
#                                                                         #
#                                                                         #
# This file is part of STP-Core, the Python core of SYRMEP Tomo Project,  #
# a software tool for the reconstruction of experimental CT datasets.     #
#                                                                         #
# STP-Core is free software: you can redistribute it and/or modify it     #
# under the terms of the GNU General Public License as published by the   #
# Free Software Foundation, either version 3 of the License, or (at your  #
# option) any later version.                                              #
#                                                                         #
# STP-Core is distributed in the hope that it will be useful, but WITHOUT #
# ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or   #
# FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License    #
# for more details.                                                       #
#                                                                         #
# You should have received a copy of the GNU General Public License       #
# along with STP-Core. If not, see <http://www.gnu.org/licenses/>.        #
#                                                                         #
###########################################################################

#
# Author: Francesco Brun
# Last modified: July, 8th 2016
#

# python:
from sys import argv, exit
from os import remove, sep, makedirs, linesep
from os.path import basename, exists
from numpy import finfo, copy, float32, double, amin, amax, tile, concatenate, log as nplog
from numpy import arange, meshgrid, isscalar, ndarray, pi, roll
from time import time
from multiprocessing import Process, Lock

# pystp-specific:
from stp_core.preprocess.extfov_correction import extfov_correction
from stp_core.preprocess.flat_fielding import flat_fielding
from stp_core.preprocess.ring_correction import ring_correction
from stp_core.preprocess.extract_flatdark import extract_flatdark, _medianize
from stp_core.preprocess.dynamic_flatfielding import dff_prepare_plan, dynamic_flat_fielding

from stp_core.reconstruct.rec_astra import recon_astra_fbp, recon_astra_iterative
from stp_core.reconstruct.rec_fista_tv import recon_fista_tv
from stp_core.reconstruct.rec_mr_fbp import recon_mr_fbp
from stp_core.reconstruct.rec_gridrec import recon_gridrec

from stp_core.postprocess.postprocess import postprocess

from stp_core.utils.padding import upperPowerOfTwo, padImage, padSmoothWidth

from tifffile import imread, imsave
from h5py import File as getHDF5

# pystp-specific:
import stp_core.io.tdf as tdf


def reconstruct(im, angles, offset, logtransform, param1, circle, scale, pad, method, rolling, roll_shift,
                zerone_mode, dset_min, dset_max, decim_factor, downsc_factor, corr_offset):
    """Reconstruct a sinogram with FBP algorithm (from ASTRA toolbox).

    Parameters
    ----------
    im1 : array_like
        Sinogram image data as numpy array.
    center : float
        Offset of the center of rotation to use for the tomographic 
        reconstruction with respect to the half of sinogram width 
        (default=0, i.e. half width).
    logtransform : boolean
        Apply logarithmic transformation before reconstruction (default=True).
    filter : string
        Filter to apply before the application of the reconstruction algorithm. Filter 
        types are: ram-lak, shepp-logan, cosine, hamming, hann, tukey, lanczos, triangular, 
        gaussian, barlett-hann, blackman, nuttall, blackman-harris, blackman-nuttall, 
        flat-top, kaiser, parzen.
    circle : boolean
        Create a circle in the reconstructed image and set to zero pixels outside the 
        circle (default=False).

    Example (using tiffile.py)
    --------------------------
    >>> # Read input (uncorrected) sinogram
    >>> sino_im1 = imread('sino_0050.tif')
    >>>
    >>> # Get flat and dark correction images:
    >>> im_dark = medianize("\project\tomo", "dark*.tif")
    >>> im_flat = medianize("\project\tomo", "flat*.tif")
    >>>
    >>> # Perform flat fielding and normalization:
    >>> sino_im = normalize(sino_im1, (10,10), (0,0), im_dark, im_flat, 50)    
    >>>  
    >>> # Actual reconstruction: 
    >>> out = reconstruct_fbp(sino_im, -3.0)   
    >>> 
    >>> # Save output slice:
    >>> imsave('slice_0050.tif', out)       
    
    """
        
    # Copy images and ensure they are of type float32:
    #im_f = copy(im.astype(float32))   
    im_f = im.astype(float32)

    # Decimate projections if required:
    if decim_factor > 1:
        im_f = im_f[::decim_factor,:]   
    
    # Upscale projections (if required):
    if (abs(scale - 1.0) > finfo(float32).eps):     
        siz_orig1 = im_f.shape[1]       
        im_f = imresize(im_f, (im_f.shape[0], int(round(scale * im_f.shape[1]))), interp='bicubic', mode='F')
        offset = int(offset * scale)        
            
    # Apply transformation for changes in the center of rotation:
    if (offset != 0):
        if (offset >= 0):
            im_f = im_f[:,:-offset]
            
            tmp = im_f[:,0] # Get first column
            tmp = tile(tmp, (offset,1)) # Replicate the first column the right number of times
            im_f = concatenate((tmp.T,im_f), axis=1) # Concatenate tmp before the image
                        
        else:
            im_f = im_f[:,abs(offset):]     
            
            tmp = im_f[:,im_f.shape[1] - 1] # Get last column
            tmp = tile(tmp, (abs(offset),1)) # Replicate the last column the right number of times
            im_f = concatenate((im_f,tmp.T), axis=1) # Concatenate tmp after the image  
    
    # Downscale projections (without pixel averaging):
    if downsc_factor > 1:
        im_f = im_f[:,::downsc_factor]  
        
    # Sinogram rolling (if required).  It doesn't make sense in limited angle tomography, so check if 180 or 360:
    if ((rolling == True) and (roll_shift > 0)):
        if ( (angles - pi) < finfo(float32).eps ):
            # Flip the last rows:
            im_f[-roll_shift:,:] = im_f[-roll_shift:,::-1]
            # Now roll the sinogram:
            im_f = roll(im_f, roll_shift, axis=0)
        elif ((angles - pi*2.0) < finfo(float32).eps):  
            # Only roll the sinogram:
            im_f = roll(im_f, roll_shift, axis=0)       
            
    # Scale image to [0,1] range (if required):
    if (zerone_mode):
        
        #print dset_min
        #print dset_max
        #print numpy.amin(im_f[:])
        #print numpy.amax(im_f[:])
        #im_f = (im_f - dset_min) / (dset_max - dset_min)
        
        # Cheating the whole process:
        im_f = (im_f - numpy.amin(im_f[:])) / (numpy.amax(im_f[:]) - numpy.amin(im_f[:]))
    
    # Apply log transform:
    if (logtransform == True):                      
        im_f[im_f <= finfo(float32).eps] = finfo(float32).eps
        im_f = -nplog(im_f + corr_offset)   
    
    # Replicate pad image to double the width:
    if (pad):   

        dim_o = im_f.shape[1]       
        n_pad = im_f.shape[1] + im_f.shape[1] / 2               
        marg  = (n_pad - dim_o) / 2 
    
        # Pad image:
        im_f = padSmoothWidth(im_f, n_pad)              
    
    # Perform the actual reconstruction:
    if (method.startswith('FBP')):
        im_f = recon_astra_fbp(im_f, angles, method, param1)    
    elif (method == 'MR-FBP_CUDA'):
        im_f = recon_mr_fbp(im_f, angles)
    elif (method == 'FISTA-TV_CUDA'):
        im_f = recon_fista_tv(im_f, angles, param1, param1)
    else:
        im_f = recon_astra_iterative(im_f, angles, method, param1, zerone_mode) 

        
    # Crop:
    if (pad):       
        im_f = im_f[marg:dim_o + marg, marg:dim_o + marg]           

    # Resize (if necessary):
    if (abs(scale - 1.0) > finfo(float32).eps):
        im_f = imresize(im_f, (siz_orig1, siz_orig1), interp='nearest', mode='F')

    # Return output:
    return im_f.astype(float32)

def reconstruct_gridrec(im1, im2, angles, offset, logtransform, param1, circle, scale, pad, rolling, roll_shift,
                zerone_mode, dset_min, dset_max, decim_factor, downsc_factor, corr_offset):
    """Reconstruct a sinogram with FBP algorithm (from ASTRA toolbox).

    Parameters
    ----------
    im1 : array_like
        Sinogram image data as numpy array.
    center : float
        Offset of the center of rotation to use for the tomographic 
        reconstruction with respect to the half of sinogram width 
        (default=0, i.e. half width).
    logtransform : boolean
        Apply logarithmic transformation before reconstruction (default=True).
    filter : string
        Filter to apply before the application of the reconstruction algorithm. Filter 
        types are: ram-lak, shepp-logan, cosine, hamming, hann, tukey, lanczos, triangular, 
        gaussian, barlett-hann, blackman, nuttall, blackman-harris, blackman-nuttall, 
        flat-top, kaiser, parzen.
    circle : boolean
        Create a circle in the reconstructed image and set to zero pixels outside the 
        circle (default=False).

    Example (using tiffile.py)
    --------------------------
    >>> # Read input (uncorrected) sinogram
    >>> sino_im1 = imread('sino_0050.tif')
    >>>
    >>> # Get flat and dark correction images:
    >>> im_dark = medianize("\project\tomo", "dark*.tif")
    >>> im_flat = medianize("\project\tomo", "flat*.tif")
    >>>
    >>> # Perform flat fielding and normalization:
    >>> sino_im = normalize(sino_im1, (10,10), (0,0), im_dark, im_flat, 50)    
    >>>  
    >>> # Actual reconstruction: 
    >>> out = reconstruct_fbp(sino_im, -3.0)   
    >>> 
    >>> # Save output slice:
    >>> imsave('slice_0050.tif', out)       
    
    """     
    # Ensure images are of type float32:
    im_f1 = im1.astype(float32)   
    im_f2 = im2.astype(float32)   

    # Decimate projections if required:
    if decim_factor > 1:
        im_f1 = im_f1[::decim_factor,:] 
        im_f2 = im_f2[::decim_factor,:]
    
    # Upscale projections (if required):
    if (abs(scale - 1.0) > finfo(float32).eps):     
        siz_orig1 = im_f.shape[1]       
        im_f1 = imresize(im_f1, (im_f1.shape[0], int(round(scale * im_f1.shape[1]))), interp='bicubic', mode='F')
        im_f2 = imresize(im_f2, (im_f2.shape[0], int(round(scale * im_f2.shape[1]))), interp='bicubic', mode='F')
        offset = int(offset * scale)        
            
    # Apply transformation for changes in the center of rotation:
    if (offset != 0):
        if (offset >= 0):
            im_f1 = im_f1[:,:-offset]
            
            tmp = im_f1[:,0] # Get first column
            tmp = tile(tmp, (offset,1)) # Replicate the first column the right number of times
            im_f1 = concatenate((tmp.T,im_f1), axis=1) # Concatenate tmp before the image

            im_f2 = im_f2[:,:-offset]
            
            tmp = im_f2[:,0] # Get first column
            tmp = tile(tmp, (offset,1)) # Replicate the first column the right number of times
            im_f2 = concatenate((tmp.T,im_f2), axis=1) # Concatenate tmp before the image
                        
        else:
            im_f1 = im_f1[:,abs(offset):]   
            
            tmp = im_f1[:,im_f1.shape[1] - 1] # Get last column
            tmp = tile(tmp, (abs(offset),1)) # Replicate the last column the right number of times
            im_f1 = concatenate((im_f1,tmp.T), axis=1) # Concatenate tmp after the image    

            im_f2 = im_f2[:,abs(offset):]   
            
            tmp = im_f2[:,im_f2.shape[1] - 1] # Get last column
            tmp = tile(tmp, (abs(offset),1)) # Replicate the last column the right number of times
            im_f2 = concatenate((im_f2,tmp.T), axis=1) # Concatenate tmp after the image    
    
    # Downscale projections (without pixel averaging):
    if downsc_factor > 1:
        im_f1 = im_f1[:,::downsc_factor]            
        im_f2 = im_f2[:,::downsc_factor]    

    # Sinogram rolling (if required).  It doesn't make sense in limited angle tomography, so check if 180 or 360:
    if ((rolling == True) and (roll_shift > 0)):
        if ( (angles - pi) < finfo(float32).eps ):
            # Flip the last rows:
            im_f1[-roll_shift:,:] = im_f1[-roll_shift:,::-1]
            im_f2[-roll_shift:,:] = im_f2[-roll_shift:,::-1]
            # Now roll the sinogram:
            im_f1 = roll(im_f1, roll_shift, axis=0)
            im_f2 = roll(im_f2, roll_shift, axis=0)
        elif ((angles - pi*2.0) < finfo(float32).eps):  
            # Only roll the sinogram:
            im_f1 = roll(im_f1, roll_shift, axis=0)     
            im_f2 = roll(im_f2, roll_shift, axis=0)         
            
    # Scale image to [0,1] range (if required):
    if (zerone_mode):
        
        #print dset_min
        #print dset_max
        #print numpy.amin(im_f[:])
        #print numpy.amax(im_f[:])
        #im_f = (im_f - dset_min) / (dset_max - dset_min)
        
        # Cheating the whole process:
        im_f1 = (im_f1 - numpy.amin(im_f1[:])) / (numpy.amax(im_f1[:]) - numpy.amin(im_f1[:]))
        im_f2 = (im_f2 - numpy.amin(im_f2[:])) / (numpy.amax(im_f2[:]) - numpy.amin(im_f2[:]))      
    
    
    # Apply log transform:
    if (logtransform == True):                      
        im_f1[im_f1 <= finfo(float32).eps] = finfo(float32).eps
        im_f1 = -nplog(im_f1 + corr_offset) 

        im_f2[im_f2 <= finfo(float32).eps] = finfo(float32).eps
        im_f2 = -nplog(im_f2 + corr_offset) 
    
    # Replicate pad image to double the width:
    if (pad):   

        dim_o = im_f1.shape[1]      
        n_pad = im_f1.shape[1] + im_f1.shape[1] / 2                 
        marg  = (n_pad - dim_o) / 2 

        # Pad image:
        im_f1 = padSmoothWidth(im_f1, n_pad)    
        im_f2 = padSmoothWidth(im_f2, n_pad)        
    
    # Perform the actual reconstruction:    
    [im_f1, im_f2] = recon_gridrec(im_f1, im_f2, angles, param1) 
    
        
    # Crop:
    if (pad):       
        im_f1 = im_f1[marg:dim_o + marg, marg:dim_o + marg]     
        im_f2 = im_f2[marg:dim_o + marg, marg:dim_o + marg] 
        
    # Resize (if necessary):
    if (abs(scale - 1.0) > finfo(float32).eps):
        im_f1 = imresize(im_f1, (siz_orig1, siz_orig1), interp='nearest', mode='F')
        im_f2 = imresize(im_f2, (siz_orig1, siz_orig1), interp='nearest', mode='F')

    # Return output:
    return [im_f1.astype(float32), im_f2.astype(float32)]

def write_log(lock, fname, logfilename, cputime, iotime):             
    """To do...

    """
    lock.acquire()
    try: 
        # Print out execution time:
        log = open(logfilename,"a")
        log.write(linesep + "\t%s reconstructed (CPU: %0.3f sec - I/O: %0.3f sec)." % (basename(fname), cputime, iotime))
        log.close() 

    finally:
        lock.release()  

def write_log_gridrec(lock, fname1, fname2, logfilename, cputime, iotime):            
    """To do...

    """
    lock.acquire()
    try: 
        # Print out execution time:
        log = open(logfilename,"a")
        log.write(linesep + "\t%s reconstructed (CPU: %0.3f sec - I/O: %0.3f sec)." % (basename(fname1), cputime/2, iotime/2))
        log.write(linesep + "\t%s reconstructed (CPU: %0.3f sec - I/O: %0.3f sec)." % (basename(fname2), cputime/2, iotime/2))
        log.close() 

    finally:
        lock.release()  

def process_gridrec(lock, int_from, int_to, num_sinos, infile, outpath, preprocessing_required, skipflat, corr_plan, 
            norm_sx, norm_dx, flat_end, half_half, 
            half_half_line, ext_fov, ext_fov_rot_right, ext_fov_overlap, ringrem, angles, angles_projfrom, angles_projto,
            offset, logtransform, param1, circle, scale, pad, rolling, roll_shift, zerone_mode, dset_min, dset_max, decim_factor, 
            downsc_factor, corr_offset, postprocess_required, convert_opt, crop_opt, dynamic_ff, EFF, filtEFF, im_dark, 
            outprefix, logfilename):
    """To do...

    """
    # Process the required subset of images:
    for i in range(int_from, int_to + 1, 2):               
        
        # Read two sinograms:
        t0 = time()
        f_in = getHDF5(infile, 'r')
        if "/tomo" in f_in:
            dset = f_in['tomo']
        else: 
            dset = f_in['exchange/data']
        im1 = tdf.read_sino(dset,i).astype(float32)     
        if ( (i + 1) <= (int_to + 1) ):
            im2 = tdf.read_sino(dset,i + 1).astype(float32)     
        else:
            im2 = im1
        f_in.close()
        t1 = time()     


        # Apply projection removal (if required):
        im1 = im1[angles_projfrom:angles_projto, :]             
        im2 = im2[angles_projfrom:angles_projto, :]             
            
        # Perform the preprocessing of the sinograms (if required):
        if (preprocessing_required):
            if not skipflat:            
                if dynamic_ff:
                    # Dynamic flat fielding with downsampling = 2:
                    im1 = dynamic_flat_fielding(im1, i, EFF, filtEFF, 2, im_dark, norm_sx, norm_dx)
                else:
                    im1 = flat_fielding (im1, i, corr_plan, flat_end, half_half, half_half_line, norm_sx, norm_dx).astype(float32)      
            im1 = extfov_correction (im1, ext_fov, ext_fov_rot_right, ext_fov_overlap)
            if not skipflat:
                im1 = ring_correction (im1, ringrem, flat_end, corr_plan['skip_flat_after'], half_half, half_half_line, ext_fov)
            else:
                im1 = ring_correction (im1, ringrem, False, False, half_half, half_half_line, ext_fov)

            if not skipflat:
                if dynamic_ff:
                    # Dynamic flat fielding with downsampling = 2:
                    im2 = dynamic_flat_fielding(im2, i, EFF, filtEFF, 2, im_dark, norm_sx, norm_dx)
                else:
                    im2 = flat_fielding (im2, i + 1, corr_plan, flat_end, half_half, half_half_line, norm_sx, norm_dx).astype(float32)      
            im2 = extfov_correction (im2, ext_fov, ext_fov_rot_right, ext_fov_overlap)
            if not skipflat and not dynamic_ff:     
                im2 = ring_correction (im2, ringrem, flat_end, corr_plan['skip_flat_after'], half_half, half_half_line, ext_fov)
            else:
                im2 = ring_correction (im2, ringrem, False, False, half_half, half_half_line, ext_fov)
        

        # Actual reconstruction:
        [im1, im2] = reconstruct_gridrec(im1, im2, angles, offset, logtransform, param1, circle, scale, pad, rolling, roll_shift,
                        zerone_mode, dset_min, dset_max, decim_factor, downsc_factor, corr_offset)                  

        # Appy post-processing (if required):
        if postprocess_required:
            im1 = postprocess(im1, convert_opt, crop_opt, circle)
            im2 = postprocess(im2, convert_opt, crop_opt, circle)
        else:
            # Create the circle mask for fancy output:
            if (circle == True):
                siz = im1.shape[1]
                if siz % 2:
                    rang = arange(-siz / 2 + 1, siz / 2 + 1)
                else:
                    rang = arange(-siz / 2,siz / 2)
                x,y = meshgrid(rang,rang)
                z = x ** 2 + y ** 2
                a = (z < (siz / 2 - int(round(abs(offset)/downsc_factor)) ) ** 2)
                
                im1 = im1 * a           
                im2 = im2 * a   
    
        # Write down reconstructed slices:
        t2 = time()     

        fname1 = outpath + outprefix + '_' + str(i).zfill(4) + '.tif'
        imsave(fname1, im1)

        fname2 = outpath + outprefix + '_' + str(i + 1).zfill(4) + '.tif'
        imsave(fname2, im2)

        t3 = time()
                                
        # Write log (atomic procedure - lock used):
        write_log_gridrec(lock, fname1, fname2, logfilename, t2 - t1, (t3 - t2) + (t1 - t0) )       


def process(lock, int_from, int_to, num_sinos, infile, outpath, preprocessing_required, skipflat, corr_plan, norm_sx, norm_dx, 
            flat_end, half_half, 
            half_half_line, ext_fov, ext_fov_rot_right, ext_fov_overlap, ringrem, angles, angles_projfrom, angles_projto,
            offset, logtransform, param1, circle, scale, pad, method, rolling, roll_shift, zerone_mode, dset_min, dset_max, decim_factor, 
            downsc_factor, corr_offset, postprocess_required, convert_opt, crop_opt, dynamic_ff, EFF, filtEFF, im_dark, 
            outprefix, logfilename):
    """To do...

    """
    # Process the required subset of images:
    for i in range(int_from, int_to + 1):                 
        
        # Perform reconstruction (on-the-fly preprocessing and phase retrieval, if required):
        #if (phaseretrieval_required):
            
        #   # Load into memory a bunch of sinograms:
        #   t0 = time()

        #   # Open the TDF file for reading:
        #   f_in = getHDF5(infile, 'r')
        #   if "/tomo" in f_in:
        #       dset = f_in['tomo']
        #   else: 
        #       dset = f_in['exchange/data']

        #   # Prepare the data structure according to the approximation window:
        #   tmp_im = numpy.empty((tdf.get_nr_projs(dset),tdf.get_det_size(dset), approx_win), dtype=float32)

        #   # Load the temporary data structure reading the input TDF file:
        #   # (It can be parallelized Open-MP style)
        #   ct = 0
        #   for j in range(i - approx_win/2, i + approx_win/2 + 1):
        #       if (j < 0):
        #           j = 0
        #       if (j >= num_sinos):
        #           j = num_sinos - 1
        #       a = tdf.read_sino(dset,j).astype(float32)
        #       tmp_im[:,:,ct] = a          
        #       ct = ct + 1
            
        #   # Close the TDF file:   
        #   f_in.close()
        #   t1 = time()                     

        #   # Perform the processing:
        #   if (preprocessing_required):
        #       ct = 0
        #       # (It can be parallelized Open-MP style)
        #       for j in range(i - approx_win/2, i + approx_win/2 + 1):
        #           if (j < 0):
        #               j = 0
        #           if (j >= num_sinos):
        #               j = num_sinos - 1                   

        #           tmp_im[:,:,ct] = flat_fielding (tmp_im[:,:,ct], j, corr_plan, flat_end, half_half, half_half_line, norm_sx, norm_dx).astype(float32)            
        #           tmp_im[:,:,ct] = extfov_correction (tmp_im[:,:,ct], ext_fov, ext_fov_rot_right, ext_fov_overlap).astype(float32)            
        #           tmp_im[:,:,ct] = ring_correction (tmp_im[:,:,ct], ringrem, flat_end, corr_plan['skip_flat_after'], half_half, half_half_line, ext_fov).astype(float32)
        #           ct = ct + 1

        #   # Perform phase retrieval:
        #   # (It can be parallelized Open-MP style)
        #   for ct in range(0, tmp_im.shape[0]):

        #       tmp_im[ct,:,:] = phase_retrieval(tmp_im[ct,:,:].T, phrt_plan).astype(float32).T
        #       ct = ct + 1
            
        #   # Extract the central processed sinogram:
        #   im = tmp_im[:,:,approx_win/2]
            
        #else:

        # Read only one sinogram:
        t0 = time()
        f_in = getHDF5(infile, 'r')
        if "/tomo" in f_in:
            dset = f_in['tomo']
        else: 
            dset = f_in['exchange/data']
        im = tdf.read_sino(dset,i).astype(float32)      
        f_in.close()
        t1 = time()     

        # Apply projection removal (if required):
        im = im[angles_projfrom:angles_projto, :]               
            
        # Perform the preprocessing of the sinogram (if required):
        if (preprocessing_required):
            if not skipflat:
                if dynamic_ff:
                    # Dynamic flat fielding with downsampling = 2:
                    im = dynamic_flat_fielding(im, i, EFF, filtEFF, 2, im_dark, norm_sx, norm_dx).astype(float32)
                else:
                    im = flat_fielding (im, i, corr_plan, flat_end, half_half, half_half_line, norm_sx, norm_dx).astype(float32)        
            im = extfov_correction (im, ext_fov, ext_fov_rot_right, ext_fov_overlap)
            if not skipflat and not dynamic_ff:
                im = ring_correction (im, ringrem, flat_end, corr_plan['skip_flat_after'], half_half, half_half_line, ext_fov)
            else:
                im = ring_correction (im, ringrem, False, False, half_half, half_half_line, ext_fov)
        

        # Actual reconstruction:
        im = reconstruct(im, angles, offset, logtransform, param1, circle, scale, pad, method, rolling, roll_shift,
                        zerone_mode, dset_min, dset_max, decim_factor, downsc_factor, corr_offset).astype(float32)          
        
        # Apply post-processing (if required):
        if postprocess_required:
            im = postprocess(im, convert_opt, crop_opt)
        else:
            # Create the circle mask for fancy output:
            if (circle == True):
                siz = im.shape[1]
                if siz % 2:
                    rang = arange(-siz / 2 + 1, siz / 2 + 1)
                else:
                    rang = arange(-siz / 2,siz / 2)
                x,y = meshgrid(rang,rang)
                z = x ** 2 + y ** 2
                a = (z < (siz / 2 - abs(offset) ) ** 2)
                im = im * a         

        # Write down reconstructed slice:
        t2 = time()     
        fname = outpath + outprefix + '_' + str(i).zfill(4) + '.tif'
        imsave(fname, im)
        t3 = time()
                                
        # Write log (atomic procedure - lock used):
        write_log(lock, fname, logfilename, t2 - t1, (t3 - t2) + (t1 - t0) )


def main(argv):          
    """To do...

    Usage
    -----
    

    Parameters
    ---------
           
    Example
    --------------------------
    The following line processes the first ten TIFF files of input path 
    "/home/in" and saves the processed files to "/home/out" with the 
    application of the Boin and Haibel filter with smoothing via a Butterworth
    filter of order 4 and cutoff frequency 0.01:

    reconstruct 0 4 C:\Temp\Dullin_Aug_2012\sino_noflat C:\Temp\Dullin_Aug_2012\sino_noflat\output 
    9.0 10.0 0.0 0.0 0.0 true sino slice C:\Temp\Dullin_Aug_2012\sino_noflat\tomo_conv flat dark

    """
    lock = Lock()
    skip_flat = False
    skip_flat_after = True  

    # Get the from and to number of files to process:
    int_from = int(argv[0])
    int_to = int(argv[1])
       
    # Get paths:
    infile = argv[2]
    outpath = argv[3]

    # Essential reconstruction parameters:
    angles = float(argv[4])
    offset = float(argv[5])
    param1 = argv[6]    
    scale  = int(float(argv[7]))
    
    overpad = True if argv[8] == "True" else False
    logtrsf = True if argv[9] == "True" else False
    circle = True if argv[10] == "True" else False

    outprefix = argv[11]    
    
    # Parameters for on-the-fly pre-processing:
    preprocessing_required = True if argv[12] == "True" else False      
    flat_end = True if argv[13] == "True" else False        
    half_half = True if argv[14] == "True" else False
        
    half_half_line = int(argv[15])
        
    ext_fov = True if argv[16] == "True" else False
        
    norm_sx = int(argv[19])
    norm_dx = int(argv[20]) 
        
    ext_fov_rot_right = argv[17]
    if ext_fov_rot_right == "True":
        ext_fov_rot_right = True
        if (ext_fov):
            norm_sx = 0
    else:
        ext_fov_rot_right = False
        if (ext_fov):
            norm_dx = 0
        
    ext_fov_overlap = int(argv[18])
        
    skip_ringrem = True if argv[21] == "True" else False
    ringrem = argv[22]
    
    # Extra reconstruction parameters:
    zerone_mode = True if argv[23] == "True" else False     
    corr_offset = float(argv[24])
        
    reconmethod = argv[25]      
    
    decim_factor = int(argv[26])
    downsc_factor = int(argv[27])
    
    # Parameters for postprocessing:
    postprocess_required = True if argv[28] == "True" else False
    convert_opt = argv[29]
    crop_opt = argv[30]

    angles_projfrom = int(argv[31]) 
    angles_projto = int(argv[32])

    rolling = True if argv[33] == "True" else False
    roll_shift = int(argv[34])

    dynamic_ff  = True if argv[35] == "True" else False
    
    nr_threads = int(argv[36])  
    logfilename = argv[37]  
    process_id = int(logfilename[-6:-4])
    
    # Check prefixes and path:
    #if not infile.endswith(sep): infile += sep
    if not exists(outpath):
        makedirs(outpath)
    
    if not outpath.endswith(sep): outpath += sep
        
    # Open the HDF5 file:
    f_in = getHDF5(infile, 'r')
    if "/tomo" in f_in:
        dset = f_in['tomo']
        
        tomoprefix = 'tomo'
        flatprefix = 'flat'
        darkprefix = 'dark'
    else: 
        dset = f_in['exchange/data']
        if "/provenance/detector_output" in f_in:
            prov_dset = f_in['provenance/detector_output']      
            
            tomoprefix = prov_dset.attrs['tomo_prefix']
            flatprefix = prov_dset.attrs['flat_prefix']
            darkprefix = prov_dset.attrs['dark_prefix']
    
    dset_min = -1
    dset_max = -1
    if (zerone_mode):
        if ('min' in dset.attrs):
            dset_min = float(dset.attrs['min'])                             
        else:
            zerone_mode = False
            
        if ('max' in dset.attrs):
            dset_max = float(dset.attrs['max'])             
        else:
            zerone_mode = False 
        
    num_sinos = tdf.get_nr_sinos(dset) # Pay attention to the downscale factor
    
    if (num_sinos == 0):
        log = open(logfilename,"a")
        log.write(linesep + "\tNo projections found. Process will end.")    
        log.close()         
        exit()      

    # Check extrema (int_to == -1 means all files):
    if ((int_to >= num_sinos) or (int_to == -1)):
        int_to = num_sinos - 1
        
    # Log info:
    log = open(logfilename,"w")
    log.write(linesep + "\tInput file: %s" % (infile))  
    log.write(linesep + "\tOutput path: %s" % (outpath))        
    log.write(linesep + "\t--------------")     
    log.write(linesep + "\tPreparing the work plan...") 
    log.close() 
    
    # Get correction plan and phase retrieval plan (if required):
    corrplan = -1
    phrtplan = -1
    
    skipflat = False    

    im_dark = -1
    EFF = -1
    filtEFF = -1
    if (preprocessing_required):
        if not dynamic_ff:
            # Load flat fielding plan either from cache (if required) or from TDF file and cache it for faster re-use:          
            corrplan = extract_flatdark(f_in, flat_end, logfilename)
            if (isscalar(corrplan['im_flat']) and isscalar(corrplan['im_flat_after']) ):
                skipflat = True
            
            # Dowscale flat and dark images if necessary:
            if isinstance(corrplan['im_flat'], ndarray):
                corrplan['im_flat'] = corrplan['im_flat'][::downsc_factor,::downsc_factor]      
            if isinstance(corrplan['im_dark'], ndarray):
                corrplan['im_dark'] = corrplan['im_dark'][::downsc_factor,::downsc_factor]  
            if isinstance(corrplan['im_flat_after'], ndarray):
                corrplan['im_flat_after'] = corrplan['im_flat_after'][::downsc_factor,::downsc_factor]  
            if isinstance(corrplan['im_dark_after'], ndarray):
                corrplan['im_dark_after'] = corrplan['im_dark_after'][::downsc_factor,::downsc_factor]          

        else:
            # Dynamic flat fielding:
            if "/tomo" in f_in:             
                if "/flat" in f_in:
                    flat_dset = f_in['flat']
                    if "/dark" in f_in:
                        im_dark = _medianize(f_in['dark'])
                    else:                                       
                        skipdark = True
                else:
                    skipflat = True # Nothing to do in this case            
            else: 
                if "/exchange/data_white" in f_in:
                    flat_dset = f_in['/exchange/data_white']
                    if "/exchange/data_dark" in f_in:
                        im_dark = _medianize(f_in['/exchange/data_dark'])   
                    else:                   
                        skipdark = True
                else:
                    skipflat = True # Nothing to do in this case
    
            # Prepare plan for dynamic flat fielding with 16 repetitions:       
            if not skipflat:
                EFF, filtEFF = dff_prepare_plan(flat_dset, 16, im_dark)

                # Downscale images if necessary:
                im_dark = im_dark[::downsc_factor,::downsc_factor]
                EFF = EFF[::downsc_factor,::downsc_factor,:]    
                filtEFF = filtEFF[::downsc_factor,::downsc_factor,:]    
            
    f_in.close()            
        
    # Log infos:
    log = open(logfilename,"a")
    log.write(linesep + "\tWork plan prepared correctly.")  
    log.write(linesep + "\t--------------")
    log.write(linesep + "\tPerforming reconstruction...")           
    log.close() 

    # Run several threads for independent computation without waiting for threads completion:
    for num in range(nr_threads):
        start = ( (int_to - int_from + 1) / nr_threads)*num + int_from
        if (num == nr_threads - 1):
            end = int_to
        else:
            end = ( (int_to - int_from + 1) / nr_threads)*(num + 1) + int_from - 1
        if (reconmethod == 'GRIDREC'):
            Process(target=process_gridrec, args=(lock, start, end, num_sinos, infile, outpath, preprocessing_required, skipflat, 
                        corrplan, norm_sx, norm_dx, flat_end, half_half, half_half_line, ext_fov, ext_fov_rot_right, 
                        ext_fov_overlap, ringrem, 
                        angles, angles_projfrom, angles_projto, offset, logtrsf, param1, circle, scale, overpad, 
                        rolling, roll_shift,
                        zerone_mode, dset_min, dset_max, decim_factor, downsc_factor, corr_offset, 
                        postprocess_required, convert_opt, crop_opt, dynamic_ff, EFF, filtEFF, im_dark, outprefix, 
                        logfilename )).start()
        else:
            Process(target=process, args=(lock, start, end, num_sinos, infile, outpath, preprocessing_required, skipflat, 
                        corrplan, norm_sx, 
                        norm_dx, flat_end, half_half, half_half_line, ext_fov, ext_fov_rot_right, ext_fov_overlap, ringrem, 
                        angles, angles_projfrom, angles_projto, offset, logtrsf, param1, circle, scale, overpad, 
                        reconmethod, rolling, roll_shift,
                        zerone_mode, dset_min, dset_max, decim_factor, downsc_factor, corr_offset, 
                        postprocess_required, convert_opt, crop_opt, dynamic_ff, EFF, filtEFF, im_dark, outprefix, 
                        logfilename )).start()

    #start = int_from
    #end = int_to
    #if (reconmethod == 'GRIDREC'):
    #   process_gridrec(lock, start, end, num_sinos, infile, outpath, preprocessing_required, skipflat, corrplan, norm_sx, 
    #                   norm_dx, flat_end, half_half, half_half_line, ext_fov, ext_fov_rot_right, ext_fov_overlap, ringrem, 
    #                   angles, angles_projfrom, angles_projto, offset, logtrsf, param1, circle, scale, overpad, 
    #                   rolling, roll_shift,
    #                   zerone_mode, dset_min, dset_max, decim_factor, downsc_factor, corr_offset, 
    #                   postprocess_required, convert_opt, crop_opt, dynamic_ff, EFF, filtEFF, im_dark, outprefix, logfilename)
    #else:
    #   process(lock, start, end, num_sinos, infile, outpath, preprocessing_required, skipflat, corrplan, norm_sx, 
    #                   norm_dx, flat_end, half_half, half_half_line, ext_fov, ext_fov_rot_right, ext_fov_overlap, ringrem, 
    #                   angles, angles_projfrom, angles_projto, offset, logtrsf, param1, circle, scale, overpad, 
    #                   reconmethod, rolling, roll_shift, zerone_mode, dset_min, dset_max, decim_factor, downsc_factor, corr_offset, 
    #                   postprocess_required, convert_opt, crop_opt, dynamic_ff, EFF, filtEFF, im_dark, outprefix, logfilename)

    # Example:
    # 255 255 C:\Temp\BrunGeorgos.tdf C:\Temp\BrunGeorgos 3.1416 -31.0 shepp-logan 1.0 False False True slice True True True 5 False False 100 0 0 False rivers:11;0 False 0.0 FBP_CUDA 1 1 False - - 0 1799 False 2 C:\Temp\log_00.txt


if __name__ == "__main__":
    main(argv[1:])

exec_postprocessing

This section contains the exec_postprocessing script.

Download file: exec_postprocessing.py

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
###########################################################################
# (C) 2016 Elettra - Sincrotrone Trieste S.C.p.A.. All rights reserved.   #
#                                                                         #
#                                                                         #
# This file is part of STP-Core, the Python core of SYRMEP Tomo Project,  #
# a software tool for the reconstruction of experimental CT datasets.     #
#                                                                         #
# STP-Core is free software: you can redistribute it and/or modify it     #
# under the terms of the GNU General Public License as published by the   #
# Free Software Foundation, either version 3 of the License, or (at your  #
# option) any later version.                                              #
#                                                                         #
# STP-Core is distributed in the hope that it will be useful, but WITHOUT #
# ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or   #
# FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License    #
# for more details.                                                       #
#                                                                         #
# You should have received a copy of the GNU General Public License       #
# along with STP-Core. If not, see <http://www.gnu.org/licenses/>.        #
#                                                                         #
###########################################################################

#
# Author: Francesco Brun
# Last modified: July, 8th 2016
#

from sys import argv, exit
from glob import glob
from os import linesep
from os.path import sep, basename, exists
from time import time
from multiprocessing import Process, Lock

# pystp-specific:
from stp_core.postprocess.postprocess import postprocess

from tifffile import imread, imsave

def _write_log(lock, fname, logfilename, cputime, iotime):            

    lock.acquire()
    try: 
        # Print out execution time:
        log = open(logfilename,"a")
        log.write(linesep + "\t%s processed (CPU: %0.3f sec - I/O: %0.3f sec)." % (basename(fname), cputime, iotime))
        log.close() 

    finally:
        lock.release()  

def _process(lock, int_from, int_to, files, outpath, convert_opt, crop_opt, outprefix, logfilename):

    # Process the required subset of images:
    for i in range(int_from, int_to + 1):                 
        
        # Read i-th slice:
        t0 = time() 
        im = imread(files[i])
        t1 = time() 
            
        # Post process the image:
        im = postprocess(im, convert_opt, crop_opt) 

        # Write down post-processed slice:
        t2 = time()
        fname = outpath + outprefix + '_' + str(i).zfill(4) + '.tif'
        imsave(fname, im)
        t3 = time()
                                
        # Write log (atomic procedure - lock used):
        _write_log(lock, fname, logfilename, t2 - t1, (t3 - t2) + (t1 - t0) )


def main(argv):          
    """To do...

    Usage
    -----
    

    Parameters
    ---------
           
    Example
    --------------------------
    The following line processes the first ten TIFF files of input path 
    "/home/in" and saves the processed files to "/home/out" with the 
    application of the Boin and Haibel filter with smoothing via a Butterworth
    filter of order 4 and cutoff frequency 0.01:

    reconstruct 0 4 C:\Temp\Dullin_Aug_2012\sino_noflat C:\Temp\Dullin_Aug_2012\sino_noflat\output 
    9.0 10.0 0.0 0.0 0.0 true sino slice C:\Temp\Dullin_Aug_2012\sino_noflat\tomo_conv flat dark

    """
    lock = Lock()
    # Get the from and to number of files to process:
    int_from = int(argv[0])
    int_to = int(argv[1])
       
    # Get input and output paths:
    inpath = argv[2]
    outpath = argv[3]
    
    if not inpath.endswith(sep): inpath += sep
    if not outpath.endswith(sep): outpath += sep

    # Get parameters:
    convert_opt = argv[4]
    crop_opt = argv[5]  

    outprefix = argv[6]

    # Number of threads to use and logfile:
    nr_threads = int(argv[7])
    logfilename = argv[8]       

    # Get the files in infile:
    log = open(logfilename,"w")
    log.write(linesep + "\tInput TIFF folder: %s" % (inpath))   
    log.write(linesep + "\tOutput TIFF folder: %s" % (outpath))     
    log.write(linesep + "\t--------------")         
    if (int_to != -1):
        log.write(linesep + "\tThe subset [%d,%d] of the input files will be considered." % (int_from, int_to))
    log.write(linesep + "\tCropping:")
    crop_opt_num = crop_opt.split(":")
    log.write(linesep + "\t\tTop: %s pixels" % (crop_opt_num[0]))
    log.write(linesep + "\t\tBottom: %s pixels" % (crop_opt_num[1]))
    log.write(linesep + "\t\tLeft: %s pixels" % (crop_opt_num[2]))
    log.write(linesep + "\t\tRight: %s pixels" % (crop_opt_num[3]))
    conv_method, conv_args = convert_opt.split(":", 1)
    if (conv_method == "linear8"):
        min, max = conv_args.split(";")   
        log.write(linesep + "\tConversion to 8-bit by remapping range [%s,%s] to [0,255]." % (min, max))
    elif (conv_method == "linear"):
        min, max = conv_args.split(";")   
        log.write(linesep + "\tConversion to 16-bit by remapping range [%s,%s] to [0,65535]." % (min, max))
    log.write(linesep + "\t--------------") 
    log.write(linesep + "\tBrowsing input folder...")   
    log.close()
        
    files = sorted(glob(inpath + '*.tif*'))
    num_files = len(files)      
    
    if ((int_to >= num_files) or (int_to == -1)):
        int_to = num_files - 1
    
    # Log infos:
    log = open(logfilename,"a")
    log.write(linesep + "\tInput folder browsed correctly.")    
    log.close() 

    # Run several threads for independent computation without waiting for threads completion:
    for num in range(nr_threads):
        start = ( (int_to - int_from + 1) / nr_threads)*num + int_from
        if (num == nr_threads - 1):
            end = int_to
        else:
            end = ( (int_to - int_from + 1) / nr_threads)*(num + 1) + int_from - 1
        Process(target=_process, args=(lock, start, end, files, outpath, convert_opt, crop_opt, outprefix, logfilename )).start()

    #start = 0
    #end = num_files - 1
    #process(lock, start, end, files, outpath, convert_opt, crop_opt, outprefix, logfilename )

    #0 -1 C:\Temp\BrunGeorgos C:\Temp\BrunGeorgos\slice_8 linear8:-0.01;0.01 10:10:10:20 slice C:\Temp\log_00_conv.txt


if __name__ == "__main__":
    main(argv[1:])

exec_phaseretrieval

This section contains the exec_phaseretrieval script.

Download file: exec_phaseretrieval.py

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
###########################################################################
# (C) 2016 Elettra - Sincrotrone Trieste S.C.p.A.. All rights reserved.   #
#                                                                         #
#                                                                         #
# This file is part of STP-Core, the Python core of SYRMEP Tomo Project,  #
# a software tool for the reconstruction of experimental CT datasets.     #
#                                                                         #
# STP-Core is free software: you can redistribute it and/or modify it     #
# under the terms of the GNU General Public License as published by the   #
# Free Software Foundation, either version 3 of the License, or (at your  #
# option) any later version.                                              #
#                                                                         #
# STP-Core is distributed in the hope that it will be useful, but WITHOUT #
# ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or   #
# FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License    #
# for more details.                                                       #
#                                                                         #
# You should have received a copy of the GNU General Public License       #
# along with STP-Core. If not, see <http://www.gnu.org/licenses/>.        #
#                                                                         #
###########################################################################

#
# Author: Francesco Brun
# Last modified: July, 8th 2016
#

from sys import argv, exit
from os import remove, sep, linesep
from os.path import exists
from numpy import float32, double, amin, amax
from time import time
from multiprocessing import Process, Lock
from pyfftw.interfaces.cache import enable as pyfftw_cache_enable, disable as pyfftw_cache_disable
from pyfftw.interfaces.cache import set_keepalive_time as pyfftw_set_keepalive_time

# pystp-specific:
from stp_core.phaseretrieval.tiehom import tiehom, tiehom_plan
from stp_core.phaseretrieval.phrt   import phrt, phrt_plan

from h5py import File as getHDF5

# pystp-specific:
import stp_core.io.tdf as tdf


def _write_data(lock, im, index, outfile, outshape, outtype, logfilename, cputime, itime):            

    lock.acquire()
    try:        
        t0 = time()             
        f_out = getHDF5( outfile, 'a' )                  
        f_out_dset = f_out.require_dataset('exchange/data', outshape, outtype, chunks=tdf.get_dset_chunks(outshape[0])) 
        tdf.write_tomo(f_out_dset,index,im.astype(float32))
                    
        # Set minimum and maximum:
        if ( amin(im[:]) < float(f_out_dset.attrs['min']) ):
            f_out_dset.attrs['min'] = str(amin(im[:]))
        if ( amax(im[:]) > float(f_out_dset.attrs['max'])):
            f_out_dset.attrs['max'] = str(amax(im[:]))      
        f_out.close()           
        t1 = time() 

        # Print out execution time:
        log = open(logfilename,"a")
        log.write(linesep + "\ttomo_%s processed (CPU: %0.3f sec - I/O: %0.3f sec)." % (str(index).zfill(4), cputime, t1 - t0 + itime))
        log.close() 

    finally:
        lock.release()


def _process(lock, int_from, int_to, infile, outfile, outshape, outtype, method, plan, logfilename):

    # Process the required subset of images:
    for i in range(int_from, int_to + 1):                 
                
        # Read input image:
        t0 = time()
        f_in = getHDF5(infile, 'r')
        if "/tomo" in f_in:
            dset = f_in['tomo']
        else: 
            dset = f_in['exchange/data']
        im = tdf.read_tomo(dset,i).astype(float32)      
        f_in.close()
        t1 = time()         

        # Perform phase retrieval (first time also PyFFTW prepares a plan):     
        if (method == 0):
            im = tiehom(im, plan).astype(float32)           
        else:
            im = phrt(im, plan, method).astype(float32)         
        t2 = time()         
                                
        # Save processed image to HDF5 file (atomic procedure - lock used):
        _write_data(lock, im, i, outfile, outshape, outtype, logfilename, t2 - t1, t1 - t0)


def main(argv):
    """To do...

    """
    lock = Lock()

    skip_flat = True
    first_done = False  
    pyfftw_cache_disable()
    pyfftw_cache_enable()
    pyfftw_set_keepalive_time(1800) 

    # Get the from and to number of files to process:
    int_from = int(argv[0])
    int_to = int(argv[1])
       
    # Get full paths of input TDF and output TDF:
    infile = argv[2]
    outfile = argv[3]
    
    # Get the phase retrieval parameters:
    method = int(argv[4])
    param1 = double(argv[5])   # e.g. regParam, or beta
    param2 = double(argv[6])   # e.g. thresh or delta
    energy = double(argv[7])
    distance = double(argv[8])    
    pixsize = double(argv[9]) / 1000.0 # pixsixe from micron to mm: 
    pad = True if argv[10] == "True" else False
    
    # Number of threads (actually processes) to use and logfile:
    nr_threads = int(argv[11])
    logfilename = argv[12]      

    # Log infos:
    log = open(logfilename,"w")
    log.write(linesep + "\tInput TDF file: %s" % (infile))  
    log.write(linesep + "\tOutput TDF file: %s" % (outfile))        
    log.write(linesep + "\t--------------")
    if (method == 0):
        log.write(linesep + "\tMethod: TIE-Hom (Paganin et al., 2002)")     
        log.write(linesep + "\t--------------") 
        log.write(linesep + "\tDelta/Beta: %0.1f" % ((param2/param1))   )
    #else:
    #   log.write(linesep + "\tMethod: Projected CTF (Moosmann et al., 2011)")      
    #   log.write(linesep + "\t--------------") 
    #   log.write(linesep + "\tDelta/Beta: %0.1f" % ((param2/param1))   )
    log.write(linesep + "\tEnergy: %0.1f keV" % (energy))
    log.write(linesep + "\tDistance: %0.1f mm" % (distance))
    log.write(linesep + "\tPixel size: %0.3f micron" % (pixsize*1000))
    log.write(linesep + "\t--------------") 
    log.write(linesep + "\tBrowsing input files...")    
    log.close()
    
    # Remove a previous copy of output:
    if exists(outfile):
        remove(outfile)
    
    # Open the HDF5 file:
    f_in = getHDF5(infile, 'r')
    if "/tomo" in f_in:
        dset = f_in['tomo']
    else: 
        dset = f_in['exchange/data']
    num_proj = tdf.get_nr_projs(dset)
    num_sinos = tdf.get_nr_sinos(dset)
    
    if (num_proj == 0):
        log = open(logfilename,"a")
        log.write(linesep + "\tNo projections found. Process will end.")    
        log.close()         
        exit()  
    
    log = open(logfilename,"a")
    log.write(linesep + "\tInput files browsed correctly.") 
    log.close()                 

    # Check extrema (int_to == -1 means all files):
    if ( (int_to >= num_proj) or (int_to == -1) ):
        int_to = num_proj - 1

    if ( (int_from < 0) ):
        int_from = 0

    # Prepare the plan:
    log = open(logfilename,"a")
    log.write(linesep + "\tPreparing the work plan...") 
    log.close()         

    im = tdf.read_tomo(dset,0).astype(float32)  
    

    outshape = tdf.get_dset_shape(im.shape[1], im.shape[0], num_proj)           
    f_out = getHDF5(outfile, 'w')
    f_out_dset = f_out.create_dataset('exchange/data', outshape, im.dtype) 
    f_out_dset.attrs['min'] = str(amin(im[:]))
    f_out_dset.attrs['max'] = str(amax(im[:]))
    
    f_out_dset.attrs['version'] = '1.0'
    f_out_dset.attrs['axes'] = "y:theta:x"

    f_in.close()
    f_out.close()
                
    if (method == 0):
        # Paganin's:
        plan = tiehom_plan (im, param1, param2, energy, distance, pixsize, pad)
    else:
        plan = phrt_plan (im, energy, distance, pixsize, param2, param1, method, pad)

    # Run several threads for independent computation without waiting for threads completion:
    for num in range(nr_threads):
        start = (num_proj / nr_threads)*num
        if (num == nr_threads - 1):
            end = num_proj - 1
        else:
            end = (num_proj / nr_threads)*(num + 1) - 1
        Process(target=_process, args=(lock, start, end, infile, outfile, outshape, im.dtype, method, plan, logfilename)).start()

    #start = 0
    #end = num_proj - 1
    #_process(lock, start, end, infile, outfile, outshape, im.dtype, method, plan, logfilename)

    #255 256 C:\Temp\BrunGeorgos_corr.tdf C:\Temp\BrunGeorgos_corr_phrt.tdf 0 1.0 2000.0 22.0 300.0 2.2 False 1 C:\Temp\log_00.txt
    #255 256 C:\Temp\BrunGeorgos_corr.tdf C:\Temp\BrunGeorgos_corr_phrt.tdf 4 2.5 1.0 22.0 300.0 2.2 False 1 C:\Temp\log_00.txt
    
if __name__ == "__main__":
    main(argv[1:])

exec_tdf2tiff

This section contains the exec_tdf2tiff script.

Download file: exec_tdf2tiff.py

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
###########################################################################
# (C) 2016 Elettra - Sincrotrone Trieste S.C.p.A.. All rights reserved.   #
#                                                                         #
#                                                                         #
# This file is part of STP-Core, the Python core of SYRMEP Tomo Project,  #
# a software tool for the reconstruction of experimental CT datasets.     #
#                                                                         #
# STP-Core is free software: you can redistribute it and/or modify it     #
# under the terms of the GNU General Public License as published by the   #
# Free Software Foundation, either version 3 of the License, or (at your  #
# option) any later version.                                              #
#                                                                         #
# STP-Core is distributed in the hope that it will be useful, but WITHOUT #
# ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or   #
# FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License    #
# for more details.                                                       #
#                                                                         #
# You should have received a copy of the GNU General Public License       #
# along with STP-Core. If not, see <http://www.gnu.org/licenses/>.        #
#                                                                         #
###########################################################################

#
# Author: Francesco Brun
# Last modified: July, 8th 2016
#

import datetime
import os
import os.path
import time

from sys import argv, exit
from numpy import float32, float64

from tifffile import imread, imsave
from h5py import File as getHDF5

# pystp-specific:
import stp_core.io.tdf as tdf

from multiprocessing import Process, Lock

def _write_log(lock, fname, logfilename, iotime):             
    """To do...

    """
    lock.acquire()
    try: 
        # Print out execution time:
        log = open(logfilename,"a")
        log.write(os.linesep + "\t%s converted in %0.3f sec." % (os.path.basename(fname), iotime))
        log.close() 

    finally:
        lock.release()  

def _process(lock, int_from, int_to, infile, dset_str, TIFFFormat, projorder, outpath, outprefix, logfilename):
    """To do...

    """                         
    try:            

        f = getHDF5( infile, 'r' )  
        dset = f[dset_str]
                
        # Process the required subset of images:
        for i in range(int_from, int_to + 1):                           
                    
            # Read input image:
            t0 = time.time()

            if projorder:
                im = tdf.read_tomo( dset, i )               
            else:
                im = tdf.read_sino( dset, i )

            if ( TIFFFormat ):              
                fname = outpath + outprefix + '_' + str(i).zfill(4) + '.tif'
            else:
                fname = outpath + outprefix + '_' + str(i).zfill(4) + '_' + str(im.shape[1]) + \
                        'x' + str(im.shape[0]) + '_' + str(im.dtype)    + '.raw'
                
            # Cast type (if required but it should never occur):        
            if ((im.dtype).type is float64):
                im = im.astype(float32, copy=False)
                
            if ( TIFFFormat ):
                imsave(fname, im)
            else:
                im.tofile(fname)

            t1 = time.time() 

            # Print out execution time: 
            _write_log(lock, fname, logfilename, t1 - t0)
                    
        f.close()
                
    except Exception: 
        
        pass                    
    

def main(argv):          
    """
    Converts a TDF file (HDF5 Tomo Data Format) into a sequence of TIFF (uncompressed) files.
        
    Parameters
    ----------
    from : scalar, integer
        among all the projections (or sinogram) data, a subset of the volume can 
        be specified, ranging from the parameter "from" to the parameter "to" 
        (see next). In most cases, this parameter is 0.
        
    to : scalar, integer
        among all the projections (or sinogram) data, a subset of the volume can 
        be specified, ranging from the parameter "from" (see previous parameter) to 
        the parameter "to". If the value -1 is specified, all the projection (or sinogram)
        data will be considered.
        
    in_file : string
        path with filename of the TDF to read from (e.g. "Z:\\sample1.tdf").
        
    out_path : string
        path that will contain the sequence of TIFF files (e.g. "Z:\\sample1\\tomo\\"). WARNING: 
        the program does NOT automatically create non-existing folders and subfolders specified 
        in the path. Moreover, if files with the same name already exist they will be automatically 
        overwritten.
        
    file_prefix : string
        string to be assumed as the filename prefix of the TIFF files to create for the projection (or 
        sinogram) data. E.g. "tomo" will create files having name "tomo_0001.tif", "tomo_0002.tif".
        
    flat_prefix : string
        string to be assumed as the filename prefix of the TIFF files to create for the flat (white field)
        data. E.g. "flat" will create files having name "flat_1.tif", "flat_2.tif". If dark or flat data have
        to be skipped the string "-" can be specified.
        
    dark_prefix : string
        string to be assumed as the filename prefix of the TIFF files to create for the dark (dark field)
        data. E.g. "dark" will create files having name "dark_1.tif", "dark_2.tif". If dark or flat data have
        to be skipped the string "-" can be specified.
        
    projection_order : boolean string
        specify the string "True" to create TIFF files for projections (the most common case), "False" 
        for sinograms.      

    TIFF_format : boolean string
        specify the string "True" to create TIFF files, "False" for RAW files.  

    nr_threads : int
        number of multiple threads (actually processes) to consider to speed up the whole conversion process.
        
    log_file : string
        path with filename of a log file (e.g. "R:\\log.txt") where info about the conversion is reported.

    Returns
    -------
    no return value
        
    Example
    -------
    Example call to convert all the projections data to a sequence of tomo*.tif files:
    
        python tdf2tiff.py 0 -1 "C:\Temp\wet12T4part2.tdf" "C:\Temp\tomo" tomo flat dark True True 3 "C:\Temp\log.txt"
    
    Requirements
    -------
    - Python 2.7 with the latest NumPy, SciPy, H5Py.
    - TIFFFile from C. Gohlke
    - tdf.py
    
    Tests
    -------
    Tested with WinPython-64bit-2.7.6.3 (Windows) and Anaconda 2.1.0 (Linux 64-bit).        

    """ 

    lock = Lock()

    # To be used without flat fielding (just conversion):
    first_done = False  

    # Get the from and to number of files to process:
    int_from = int(argv[0])
    int_to = int(argv[1]) # -1 means "all files"
       
    # Get paths:
    infile = argv[2]
    outpath = argv[3]
    
    fileprefix = argv[4]
    flatprefix = argv[5]
    darkprefix = argv[6]
    
    if (flatprefix == "-"):
        skipflat = True
    else:
        skipflat = False

    if (darkprefix == "-"):
        skipdark = True
    else:
        skipdark = False

    if (fileprefix == "-"):
        skiptomo = True
    else:
        skiptomo = False
    
    projorder = argv[7]
    if projorder == "True":
        projorder = True
    else:
        projorder = False   
        
    TIFFFormat = argv[8]
    if TIFFFormat == "True":
        TIFFFormat = True
    else:
        TIFFFormat = False  
        
    nr_threads  = int(argv[9])
    logfilename = argv[10]
    
    # Check prefixes and path:
    if not outpath.endswith(os.path.sep): outpath += os.path.sep
    
    # Init variables:
    num_files = 0
    num_flats = 0
    num_darks = 0

    # Get the files in infile:
    log = open(logfilename,"w")
    log.write(os.linesep + "\tInput TDF: %s" % (infile))
    if ( TIFFFormat ):
        log.write(os.linesep + "\tOutput path where TIFF files will be created: %s" % (outpath))        
    else:
        log.write(os.linesep + "\tOutput path where RAW files will be created: %s" % (outpath))     
    log.write(os.linesep + "\t--------------")          
    log.write(os.linesep + "\tFile output prefix: %s"  % (fileprefix))
    log.write(os.linesep + "\tFlat images output prefix: %s" % (flatprefix))
    log.write(os.linesep + "\tDark images output prefix: %s" % (darkprefix))
    log.write(os.linesep + "\t--------------")  
    
    if (not (skiptomo)):
        if (int_to != -1):
            log.write(os.linesep + "\tThe subset [%d,%d] of the data will be considered." % (int_from, int_to))
    
        if (projorder):
            log.write(os.linesep + "\tProjection order assumed.")
        else:
            log.write(os.linesep + "\tSinogram order assumed.")
    
        log.write(os.linesep + "\t--------------")  
    log.close() 

    if not os.path.exists(infile):      
        log = open(logfilename,"a")
        log.write(os.linesep + "\tError: input TDF file not found. Process will end.")              
        log.close()         
        exit()  

    # Open the HDF5 file:
    f = getHDF5( infile, 'r' )
    
    oldTDF = False;
    
    try:        
        dset = f['tomo']            
        oldTDF = True
        
    except Exception:
        
        pass
        
    if not oldTDF:
        
        #try:
            dset = f['exchange/data']
            
        #except Exception:      
            
        #   log = open(logfilename,"a")
        #   log.write(os.linesep + "\tError: invalid TDF format. Process will end.")                    
        #   log.close()         
        #   exit()
    
    if projorder:
        num_files = tdf.get_nr_projs(dset)  
    else:
        num_files = tdf.get_nr_sinos(dset)          
    f.close()
    


    # Get attributes:
    try:
        f = getHDF5( infile, 'r' )
        if ('version' in f.attrs) and (f.attrs['version'] == 'TDF 1.0'):    
            log = open(logfilename,"a")
            log.write(os.linesep + "\tTDF version 1.0 found.")
            log.write(os.linesep + "\t--------------")
            log.close()
        f.close()               
            
    except:     
        log = open(logfilename,"a")
        log.write(os.linesep + "\tWarning: TDF version unknown. Some features will not be available.")              
        log.write(os.linesep + "\t--------------")
        log.close()         

    # Check extrema (int_to == -1 means all files):
    if ( (int_to >= num_files) or (int_to == -1) ):
        int_to = num_files - 1
        


    # Spawn the process for the conversion of flat images:
    if not skipflat:

        f = getHDF5( infile, 'r' )
        if oldTDF:
            dset_str = 'flat'
        else:
            dset_str = 'exchange/data_white'
        num_flats = tdf.get_nr_projs(f[dset_str])
        f.close()   

        if ( num_flats > 0):
            Process(target=_process, args=(lock, 0, num_flats - 1, infile, dset_str, TIFFFormat, 
                                            True, outpath, flatprefix, logfilename)).start()
            #_process(lock, 0, num_flats - 1, infile, dset_str, TIFFFormat, projorder, outpath, flatprefix, logfilename)

    # Spawn the process for the conversion of dark images:
    if not skipdark:

        f = getHDF5( infile, 'r' )
        if oldTDF:
            dset_str = 'dark'
        else:
            dset_str = 'exchange/data_dark'
        num_darks = tdf.get_nr_projs(f[dset_str])
        f.close()   

        if ( num_darks > 0):
            Process(target=_process, args=(lock, 0, num_darks - 1, infile, dset_str, TIFFFormat, 
                                            True, outpath, darkprefix, logfilename)).start()
            #_process(lock, 0, num_darks - 1, infile, dset_str, TIFFFormat, projorder, outpath, darkprefix, logfilename)

    # Spawn the processes for the conversion of projection or sinogram images:
    if not skiptomo:

        if oldTDF:
            dset_str = 'tomo'
        else:
            dset_str = 'exchange/data'
        
        # Start the process for the conversion of the projections (or sinograms) in a multi-threaded way:
        for num in range(nr_threads):
            start = ( (int_to - int_from + 1) / nr_threads)*num + int_from
            if (num == nr_threads - 1):
                end = int_to
            else:
                end = ( (int_to - int_from + 1) / nr_threads)*(num + 1) + int_from - 1

            Process(target=_process, args=(lock, start, end, infile, dset_str, TIFFFormat, 
                                            projorder, outpath, fileprefix, logfilename)).start()
            
            #_process(lock, start, end, infile, dset_str, TIFFFormat, projorder, outpath, fileprefix, logfilename)
    
    
if __name__ == "__main__":
    main(argv[1:])

exec_tiff2tdf

This section contains the exec_tiff2tdf script.

Download file: exec_tiff2tdf.py

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
###########################################################################
# (C) 2016 Elettra - Sincrotrone Trieste S.C.p.A.. All rights reserved.   #
#                                                                         #
#                                                                         #
# This file is part of STP-Core, the Python core of SYRMEP Tomo Project,  #
# a software tool for the reconstruction of experimental CT datasets.     #
#                                                                         #
# STP-Core is free software: you can redistribute it and/or modify it     #
# under the terms of the GNU General Public License as published by the   #
# Free Software Foundation, either version 3 of the License, or (at your  #
# option) any later version.                                              #
#                                                                         #
# STP-Core is distributed in the hope that it will be useful, but WITHOUT #
# ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or   #
# FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License    #
# for more details.                                                       #
#                                                                         #
# You should have received a copy of the GNU General Public License       #
# along with STP-Core. If not, see <http://www.gnu.org/licenses/>.        #
#                                                                         #
###########################################################################

#
# Author: Francesco Brun
# Last modified: July, 8th 2016
#

import datetime
import os
import os.path
import numpy
import time

from time import strftime
from sys import argv, exit
from glob import glob

from tifffile import imread, imsave
from h5py import File as getHDF5

# pystp-specific:
import stp_core.io.tdf as tdf
from multiprocessing import Process, Lock


def _write_data(lock, im, index, offset, abs_offset, imfilename, timestamp, projorder, tot_files, 
                provenance_dt, outfile, dsetname, outshape, outtype, logfilename, itime):             
    """To do...

    """
    lock.acquire()
    try:  

        # Open the HDF5 file to be populated with projections (or sinograms):
        t0 = time.time()            
        f_out = getHDF5( outfile, 'a' )                  
        f_out_dset = f_out.require_dataset(dsetname, outshape, outtype, chunks=tdf.get_dset_chunks(outshape[0])) 
        
        # Write the projection file or sinogram file:
        if projorder:
            tdf.write_tomo(f_out_dset, index - abs_offset, im)
        else:
            tdf.write_sino(f_out_dset, index - abs_offset, im)
                    
        # Set minimum and maximum:
        if ( numpy.amin(im[:]) < float(f_out_dset.attrs['min']) ):
            f_out_dset.attrs['min'] = str(numpy.amin(im[:]))
        if ( numpy.amax(im[:]) > float(f_out_dset.attrs['max'])):
            f_out_dset.attrs['max'] = str(numpy.amax(im[:]))    
            
        # Save provenance metadata:
        provenance_dset =  f_out.require_dataset('provenance/detector_output', (tot_files,), dtype=provenance_dt)   
        provenance_dset["filename", offset - abs_offset + index] = numpy.string_(os.path.basename(imfilename))
        provenance_dset["timestamp", offset - abs_offset + index] = numpy.string_(
            datetime.datetime.fromtimestamp(timestamp).strftime('%Y-%m-%d %H:%M:%S.%f')[:-3])
        
        # Close the HDF5:
        f_out.close()   
        t1 = time.time()

        # Print out execution time:
        log = open(logfilename,"a")
        log.write(os.linesep + "\t%s processed (I: %0.3f sec - O: %0.3f sec)." % (os.path.basename(imfilename), itime, t1 - t0))
        log.close() 

    finally:
        lock.release()  

def _process(lock, int_from, int_to, offset, abs_offset, files, projorder, outfile, dsetname, outshape, outtype, 
            crop_top, crop_bottom, crop_left, crop_right, tot_files, provenance_dt, logfilename):
    """To do...

    """
    # Process the required subset of images:
    for i in range(int_from, int_to + 1):    
        
        # Read input image:
        t0 = time.time()
        im = imread(files[i])

        # Crop:
        im = im[crop_top:im.shape[0]-crop_bottom,crop_left:im.shape[1]-crop_right]  

        # Get the timestamp:
        t = os.path.getmtime(files[i])
        t1 = time.time()                    
                                
        # Save processed image to HDF5 file (atomic procedure - lock used):
        _write_data(lock, im, i, offset, abs_offset, files[i], t, projorder, tot_files, provenance_dt, 
                    outfile, dsetname, outshape, outtype, logfilename, t1 - t0)


def main(argv):          
    """
    Converts a sequence of TIFF files into a TDF file (HDF5 Tomo Data Format).
        
    Parameters
    ----------
    from : scalar, integer
        among all the projections (or sinogram) files, a subset of files can be specified, 
        ranging from the parameter "from" to the parameter "to" (see next). In most 
        cases, this parameter is 0.
        
    to : scalar, integer
        among all the projections (or sinogram) files, a subset of files can be specified, 
        ranging from the parameter "from" (see previous parameter) to the parameter 
        "to". If the value -1 is specified, all the projection files will be considered.
        
    in_path : string
        path containing the sequence of TIFF files to consider (e.g. "Z:\\sample1\\tomo\\").
        
    out_file : string
        path with filename of the TDF to create (e.g. "Z:\\sample1.tdf"). WARNING: the program 
        does NOT automatically create non-existing folders and subfolders specified in the path. 
        Moreover, if a file with the same name already exists it will be automatically deleted and 
        overwritten.
        
    crop_top : scalar, integer
        during the conversion, images can be cropped if required. This parameter specifies the number 
        of pixels to crop from the top of the image. Leave 0 for no cropping.
        
    crop_bottom : scalar, integer
        during the conversion, images can be cropped if required. This parameter specifies the number 
        of pixels to crop from the bottom of the image. Leave 0 for no cropping.
        
    crop_left : scalar, integer
        during the conversion, images can be cropped if required. This parameter specifies the number 
        of pixels to crop from the left of the image. Leave 0 for no cropping.
        
    crop_right : scalar, integer
        during the conversion, images can be cropped if required. This parameter specifies the number 
        of pixels to crop from the right of the image. Leave 0 for no cropping.
        
    file_prefix : string
        string to be assumed as the filename prefix of the TIFF files to consider for the projection (or 
        sinogram) files.    E.g. "tomo" will consider files having name "tomo_0001.tif", "tomo_0002.tif". 
        
    flat_prefix : string
        string to be assumed as the filename prefix of the TIFF files to consider for the flat (white field)
        files. E.g. "flat" will consider files having name "flat_1.tif", "flat_2.tif". If dark or flat files have
        to be skipped the string "-" can be specified.
        
    dark_prefix : string
        string to be assumed as the filename prefix of the TIFF files to consider for the dark (dark field)
        files. E.g. "dark" will consider files having name "dark_1.tif", "dark_2.tif". If dark or flat files have
        to be skipped the string "-" can be specified.
        
    projection_order : boolean string
        specify the string "True" if the TIFF files represent projections (the most common case), "False" 
        for sinograms.
        
    privilege_sino : boolean string
        specify the string "True" if the TDF will privilege a fast read/write of sinograms (the most common 
        case), "False" for fast read/write of projections.
        
    compression : scalar, integer
        an integer value in the range of [1,9] to be used as GZIP compression factor in the HDF5 file, where
        1 is the minimum compression (and maximum speed) and 9 is the maximum (and slow) compression.
        The value 0 can be specified with the meaning of no compression.

    nr_threads : int
        number of multiple threads (actually processes) to consider to speed up the whole conversion process.
        
    log_file : string
        path with filename of a log file (e.g. "R:\\log.txt") where info about the conversion is reported.

    Returns
    -------
    no return value
        
    Example
    -------
    Example call to convert all the tomo*.tif* projections to a TDF with no cropping and minimum compression:
    
        python tiff2tdf.py 0 -1 "Z:\\rawdata\\c_1\\tomo\\" "Z:\\work\\c1_compr9.tdf" 0 0 0 0 tomo flat 
        dark True True 1 "S:\\conversion.txt"
    
    Requirements
    -------
    - Python 2.7 with the latest NumPy, SciPy, H5Py.
    - TIFFFile from C. Gohlke's website http://www.lfd.uci.edu/~gohlke/ 
      (consider also to install TIFFFile.c for performances).
    - tdf.py
    
    Tests
    -------
    Tested with WinPython-64bit-2.7.6.3 (Windows) and Anaconda 2.1.0 (Linux 64-bit).        
    """ 

    lock = Lock()

    # Get the from and to number of files to process:
    int_from = int(argv[0])
    int_to   = int(argv[1]) # -1 means "all files"
       
    # Get paths:
    inpath  = argv[2]
    outfile = argv[3]
    
    crop_top    = int(argv[4])  # 0 for all means "no cropping"
    crop_bottom = int(argv[5])
    crop_left   = int(argv[6])
    crop_right  = int(argv[7])

    tomoprefix = argv[8]
    flatprefix = argv[9]   # - means "do not consider flat or darks"
    darkprefix = argv[10]  # - means "do not consider flat or darks"

    if (flatprefix == "-") or (darkprefix == "-"):
        skipflat = True
    else:
        skipflat = False
        
    projorder = True if argv[11] == "True" else False       
    privilege_sino = True if argv[12] == "True" else False

    # Get compression factor:
    compr_opts = int(argv[13])
    compressionFlag = True;
    if (compr_opts <= 0):
        compressionFlag = False;
    elif (compr_opts > 9):
        compr_opts = 9      
    
    nr_threads  = int(argv[14])
    logfilename = argv[15]  
    
    # Check prefixes and path:
    if not inpath.endswith(os.path.sep): inpath += os.path.sep

    # Get the files in inpath:
    log = open(logfilename,"w") 
    log.write(os.linesep + "\tInput path: %s" % (inpath))   
    log.write(os.linesep + "\tOutput TDF file: %s" % (outfile))     
    log.write(os.linesep + "\t--------------")          
    log.write(os.linesep + "\tProjection file prefix: %s"  % (tomoprefix))
    log.write(os.linesep + "\tDark file prefix: %s" % (darkprefix))
    log.write(os.linesep + "\tFlat file prefix: %s" % (flatprefix))
    log.write(os.linesep + "\t--------------")          
    log.write(os.linesep + "\tCropping:")
    log.write(os.linesep + "\t\tTop: %d pixels" % (crop_top))
    log.write(os.linesep + "\t\tBottom: %d pixels" % (crop_bottom))
    log.write(os.linesep + "\t\tLeft: %d pixels" % (crop_left))
    log.write(os.linesep + "\t\tRight: %d pixels" % (crop_right))
    if (int_to != -1):
        log.write(os.linesep + "\tThe subset [%d,%d] of the input files will be considered." % (int_from, int_to))
    
    if (projorder):
        log.write(os.linesep + "\tProjection order assumed.")
    else:
        log.write(os.linesep + "\tSinogram order assumed.")
        
    if (privilege_sino):
        log.write(os.linesep + "\tFast I/O for sinograms privileged.")
    else:
        log.write(os.linesep + "\tFast I/O for projections privileged.")
    
    if (compressionFlag):
        log.write(os.linesep + "\tTDF compression factor: %d" % (compr_opts))
    else:
        log.write(os.linesep + "\tTDF compression: none.")
    
    if (skipflat):
        log.write(os.linesep + "\tWarning: flat/dark images (if any) will not be considered.")      
    log.write(os.linesep + "\t--------------")  
    log.close()
    
    # Remove a previous copy of output:
    if os.path.exists(outfile):
        log = open(logfilename,"a")
        log.write(os.linesep + "\tWarning: an output file with the same name was overwritten.")
        os.remove(outfile)
        log.close()     
    
    log = open(logfilename,"a")
    log.write(os.linesep + "\tBrowsing input files...") 
    log.close()
            
    # Pythonic way to get file list:
    if os.path.exists(inpath):
        tomo_files = sorted(glob(inpath + tomoprefix + '*.tif*'))
        num_files = len(tomo_files)
    else:       
        log = open(logfilename,"a")
        log.write(os.linesep + "\tError: input path does not exist. Process will end.")             
        log.close()         
        exit()
    
    if (num_files == 0):
        log = open(logfilename,"a")
        log.write(os.linesep + "\tError: no projection files found. Check input path and file prefixes.")               
        log.close()         
        exit()  

    log = open(logfilename,"a")
    log.write(os.linesep + "\tInput files browsed correctly.")  
    log.close() 

    # Check extrema (int_to == -1 means all files):
    if ( (int_to >= num_files) or (int_to == -1) ):
        int_from = 0
        int_to   = num_files - 1

    # In case of subset specified:
    num_files = int_to - int_from + 1

    # Prepare output HDF5 output (should this be atomic?):  
    im = imread(tomo_files[0])  

    # Crop:
    im = im[crop_top:im.shape[0]-crop_bottom,crop_left:im.shape[1]-crop_right]      
                
    log = open(logfilename,"a")
    log.write(os.linesep + "\tPreparing the work plan...")  
    log.close()
                        
    #dsetshape = (num_files,) + im.shape
    if projorder:           
        #dsetshape = tdf.get_dset_shape(privilege_sino, im.shape[1], im.shape[0], num_files)
        datashape = tdf.get_dset_shape(im.shape[1], im.shape[0], num_files)
    else:
        #dsetshape = tdf.get_dset_shape(privilege_sino, im.shape[1], num_files, im.shape[0])
        datashape = tdf.get_dset_shape(im.shape[1], num_files, im.shape[0])
            
    if not os.path.isfile(outfile):                                 
        f = getHDF5( outfile, 'w' )
            
        f.attrs['version'] = '1.0'
        f.attrs['implements'] = "exchange:provenance"
        echange_group  = f.create_group( 'exchange' )           
            
        if (compressionFlag):
            dset = f.create_dataset('exchange/data', datashape, im.dtype, chunks=tdf.get_dset_chunks(im.shape[1]), 
                compression="gzip", compression_opts=compr_opts, shuffle=True, fletcher32=True)
        else:
            dset = f.create_dataset('exchange/data', datashape, im.dtype)       

        if privilege_sino:          
            dset.attrs['axes'] = "y:theta:x"
        else:
            dset.attrs['axes'] = "theta:y:x"
                
        dset.attrs['min'] = str(numpy.amin(im[:]))
        dset.attrs['max'] = str(numpy.amax(im[:]))  

        # Get the total number of files to consider:
        tot_files = num_files   
        if not skipflat:        
            num_flats = len(sorted(glob(inpath + flatprefix + '*.tif*')))           
            num_darks = len(sorted(glob(inpath + darkprefix + '*.tif*')))   
            tot_files = tot_files + num_flats + num_darks
                
        # Create provenance dataset:
        provenance_dt   = numpy.dtype([("filename", numpy.dtype("S255")), ("timestamp",  numpy.dtype("S255"))])
        metadata_group  = f.create_group( 'provenance' )
        provenance_dset = metadata_group.create_dataset('detector_output', (tot_files,), dtype=provenance_dt)   
                
        provenance_dset.attrs['tomo_prefix'] = tomoprefix;
        provenance_dset.attrs['dark_prefix'] = darkprefix;
        provenance_dset.attrs['flat_prefix'] = flatprefix;
        provenance_dset.attrs['first_index'] = int(tomo_files[0][-8:-4]);
            
        # Handle the metadata:
        if (os.path.isfile(inpath + 'logfile.xml')):
            with open (inpath + 'logfile.xml', "r") as file:
                xml_command = file.read()
            tdf.parse_metadata(f, xml_command)
                    
        f.close()                       

    # Print out about plan preparation:
    log = open(logfilename,"a")
    log.write(os.linesep + "\tWork plan prepared succesfully.") 
    log.close()     
        
    # Get the files in inpath:
    if not skipflat:
    
        #
        # Flat part
        #                           
        flat_files = sorted(glob(inpath + flatprefix + '*.tif*'))
        num_flats = len(flat_files)     
            
        if ( num_flats > 0):
            
            # Create acquisition group:             
            im = imread(flat_files[0])                              
            im = im[crop_top:im.shape[0]-crop_bottom,crop_left:im.shape[1]-crop_right]
            
            #flatshape = tdf.get_dset_shape(privilege_sino, im.shape[1], im.shape[0], num_flats)
            flatshape = tdf.get_dset_shape(im.shape[1], im.shape[0], num_flats)
            f = getHDF5( outfile, 'a' ) 
            if (compressionFlag):
                dset = f.create_dataset('exchange/data_white', flatshape, im.dtype, chunks=tdf.get_dset_chunks(im.shape[1]), 
                    compression="gzip", compression_opts=compr_opts, shuffle=True, fletcher32=True)
            else:
                dset = f.create_dataset('exchange/data_white', flatshape, im.dtype)     
                        
            dset.attrs['min'] = str(numpy.amin(im[:]))
            dset.attrs['max'] = str(numpy.amax(im[:]))
            
            if privilege_sino:          
                dset.attrs['axes'] = "y:theta:x"
            else:
                dset.attrs['axes'] = "theta:y:x"
            f.close()
            
            #process(lock, 0, num_flats - 1, 0, flat_files, True, outfile, 'exchange/data_white', dsetshape, im.dtype, 
            #   crop_top, crop_bottom, crop_left, crop_right, tot_files, provenance_dt, logfilename )
                
        else:   
            log = open(logfilename,"a")
            log.write(os.linesep + "\tWarning: flat files not found.")
            log.close()                     
                
        #
        # Dark part
        #   
        dark_files = sorted(glob(inpath + darkprefix + '*.tif*'))
        num_darks = len(dark_files)             
            
        if ( num_darks > 0):
            im = imread(dark_files[0])          
            im = im[crop_top:im.shape[0]-crop_bottom,crop_left:im.shape[1]-crop_right]
            
            #darkshape = tdf.get_dset_shape(privilege_sino, im.shape[1], im.shape[0], num_flats)
            darkshape = tdf.get_dset_shape(im.shape[1], im.shape[0], num_darks)
            f = getHDF5( outfile, 'a' ) 
            if (compressionFlag):
                dset = f.create_dataset('exchange/data_dark', darkshape, im.dtype, chunks=tdf.get_dset_chunks(im.shape[1]), 
                    compression="gzip", compression_opts=compr_opts, shuffle=True, fletcher32=True)
            else:
                dset = f.create_dataset('exchange/data_dark', darkshape, im.dtype)  
            
            dset.attrs['min'] = str(numpy.amin(im))
            dset.attrs['max'] = str(numpy.amax(im))
            
            if privilege_sino:          
                dset.attrs['axes'] = "y:theta:x"
            else:
                dset.attrs['axes'] = "theta:y:x"
            f.close()       
            
            #process(lock, 0, num_darks - 1, num_flats, dark_files, True, outfile, 'exchange/data_dark', dsetshape, im.dtype, 
            #   crop_top, crop_bottom, crop_left, crop_right,  tot_files, provenance_dt, logfilename )

        else:
            
            log = open(logfilename,"a")
            log.write(os.linesep + "\tWarning: dark files not found.")
            log.close()     
        
    # Process the required subset of images:
    if not skipflat:
        flatdark_offset = num_flats + num_darks
    else:
        flatdark_offset = 0

    # Spawn the process for the conversion of flat images:
    if ( num_flats > 0):
        Process(target=_process, args=(lock, 0, num_flats - 1, 0, 0, flat_files, True, outfile, 'exchange/data_white', 
            flatshape, im.dtype, crop_top, crop_bottom, crop_left, crop_right, tot_files, provenance_dt, logfilename )).start()

    # Spawn the process for the conversion of dark images:
    if ( num_darks > 0):
        Process(target=_process, args=(lock, 0, num_darks - 1, num_flats, 0, dark_files, True, outfile, 'exchange/data_dark', 
            darkshape, im.dtype, crop_top, crop_bottom, crop_left, crop_right, tot_files, provenance_dt, logfilename )).start()

    # Start the process for the conversion of the projections (or sinograms) in a multi-threaded way:
    for num in range(nr_threads):
        start = ( (int_to - int_from + 1) / nr_threads)*num + int_from
        if (num == nr_threads - 1):
            end = int_to
        else:
            end = ( (int_to - int_from + 1) / nr_threads)*(num + 1) + int_from - 1

        Process(target=_process, args=(lock, start, end, flatdark_offset, int_from, tomo_files, projorder, outfile, 'exchange/data', 
                datashape, im.dtype, crop_top, crop_bottom, crop_left, crop_right, tot_files, provenance_dt, logfilename )).start()
        
        #process(lock, start, end, offset, tomo_files, projorder, outfile, 'exchange/data', 
        #       datashape, im.dtype, crop_top, crop_bottom, crop_left, crop_right, tot_files, provenance_dt, logfilename )
    
if __name__ == "__main__":
    main(argv[1:])

tools_autolimit

This section contains the tools_autolimit script.

Download file: tools_autolimit.py

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
###########################################################################
# (C) 2016 Elettra - Sincrotrone Trieste S.C.p.A.. All rights reserved.   #
#                                                                         #
#                                                                         #
# This file is part of STP-Core, the Python core of SYRMEP Tomo Project,  #
# a software tool for the reconstruction of experimental CT datasets.     #
#                                                                         #
# STP-Core is free software: you can redistribute it and/or modify it     #
# under the terms of the GNU General Public License as published by the   #
# Free Software Foundation, either version 3 of the License, or (at your  #
# option) any later version.                                              #
#                                                                         #
# STP-Core is distributed in the hope that it will be useful, but WITHOUT #
# ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or   #
# FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License    #
# for more details.                                                       #
#                                                                         #
# You should have received a copy of the GNU General Public License       #
# along with STP-Core. If not, see <http://www.gnu.org/licenses/>.        #
#                                                                         #
###########################################################################

#
# Author: Francesco Brun
# Last modified: July, 8th 2016
#
 
import os
import os.path
import numpy
import time

from glob import glob
from sys import argv, exit
from h5py import File as getHDF5
from numpy import float32
from tifffile import imread, imsave

# pystp-specific:
import stp_core.io.tdf as tdf

def main(argv):    
    """Computes min/max limits to be used in image degradation to 8-bit or 16-bit.

    Parameters
    ----------
    argv[0] : string
        The absolute path of the input folder containing reconstructed TIFF files.

    argv[1] : string
        The absolute path of the output txt file with the proposed limits as string "min:max".

    Example
    -------
    tools_autolimit "S:\\SampleA\\slices" "R:\\Temp\\autolimit.txt" 

    """
    try:
           
        # Get input and output paths:
        inpath  = argv[0]
        outfile  = argv[1]  # The txt file with the proposed center
    
        if not inpath.endswith(os.path.sep): inpath += os.path.sep
    
        # Get the number of files in folder:
        files = sorted(glob(inpath + '*.tif*'))
        num_files = len(files)          
    
        # Read the median slice from disk:
        im = imread(files[num_files/2])
    
        # Flat the image and sort it:
        im_flat = im.flatten()
        im_flat = numpy.sort(im_flat)
    
        # Return as minimum the value the skip 0.30% of "black" tail and 0.005% of "white" tail:
        low_idx  = int(im_flat.shape[0] * 0.0030)
        high_idx = int(im_flat.shape[0] * 0.9995)
    
        min = im_flat[low_idx]
        max = im_flat[high_idx]
    
        # Print center to output file:
        text_file = open(outfile, "w")
        text_file.write( str(min) + ":" + str(max) )
        text_file.close()           
    
    except:             
        
        exit()

if __name__ == "__main__":
    main(argv[1:])

tools_multiangle

This section contains the tools_multiangle script.

Download file: tools_multiangle.py

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
###########################################################################
# (C) 2016 Elettra - Sincrotrone Trieste S.C.p.A.. All rights reserved.   #
#                                                                         #
#                                                                         #
# This file is part of STP-Core, the Python core of SYRMEP Tomo Project,  #
# a software tool for the reconstruction of experimental CT datasets.     #
#                                                                         #
# STP-Core is free software: you can redistribute it and/or modify it     #
# under the terms of the GNU General Public License as published by the   #
# Free Software Foundation, either version 3 of the License, or (at your  #
# option) any later version.                                              #
#                                                                         #
# STP-Core is distributed in the hope that it will be useful, but WITHOUT #
# ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or   #
# FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License    #
# for more details.                                                       #
#                                                                         #
# You should have received a copy of the GNU General Public License       #
# along with STP-Core. If not, see <http://www.gnu.org/licenses/>.        #
#                                                                         #
###########################################################################

#
# Author: Francesco Brun
# Last modified: Sept, 28th 2016
#

# python:
from sys import argv, exit
from os import remove, sep, linesep, listdir, makedirs
from os.path import exists, dirname, basename, splitext
from numpy import array, finfo, copy, float32, double, amin, amax, tile, concatenate, asarray
from numpy import empty, reshape, log as nplog, arange, squeeze, fromfile, ndarray, where, meshgrid
from time import time
from multiprocessing import Process, Lock

# pystp-specific:
from stp_core.preprocess.extfov_correction import extfov_correction
from stp_core.preprocess.flat_fielding import flat_fielding
from stp_core.preprocess.ring_correction import ring_correction
from stp_core.preprocess.extract_flatdark import extract_flatdark

from stp_core.phaseretrieval.tiehom import tiehom, tiehom_plan
from stp_core.phaseretrieval.phrt   import phrt, phrt_plan

from stp_core.reconstruct.rec_astra import recon_astra_fbp, recon_astra_iterative
from stp_core.reconstruct.rec_fista_tv import recon_fista_tv
from stp_core.reconstruct.rec_mr_fbp import recon_mr_fbp
from stp_core.reconstruct.rec_gridrec import recon_gridrec

from stp_core.postprocess.postprocess import postprocess

from stp_core.utils.padding import upperPowerOfTwo, padImage, padSmoothWidth
from stp_core.utils.caching import cache2plan, plan2cache

from tifffile import imread, imsave
from h5py import File as getHDF5
import stp_core.io.tdf as tdf


def write_log(lock, fname, logfilename):              
    """To do...

    """
    lock.acquire()
    try: 
        # Print out execution time:
        log = open(logfilename,"a")
        log.write(linesep + "\t%s reconstructed." % basename(fname))
        log.close() 

    finally:
        lock.release()  

def reconstruct(im, angles, offset, logtransform, param1, circle, scale, pad, method, 
                zerone_mode, dset_min, dset_max, corr_offset, postprocess_required, convert_opt, 
                crop_opt, start, end, outpath, sino_idx, downsc_factor, decim_factor, logfilename, lock, slice_prefix):
    """Reconstruct a sinogram with FBP algorithm (from ASTRA toolbox).

    Parameters
    ----------
    im1 : array_like
        Sinogram image data as numpy array.
    center : float
        Offset of the center of rotation to use for the tomographic 
        reconstruction with respect to the half of sinogram width 
        (default=0, i.e. half width).
    logtransform : boolean
        Apply logarithmic transformation before reconstruction (default=True).
    filter : string
        Filter to apply before the application of the reconstruction algorithm. Filter 
        types are: ram-lak, shepp-logan, cosine, hamming, hann, tukey, lanczos, triangular, 
        gaussian, barlett-hann, blackman, nuttall, blackman-harris, blackman-nuttall, 
        flat-top, kaiser, parzen.
    circle : boolean
        Create a circle in the reconstructed image and set to zero pixels outside the 
        circle (default=False). 
    
    """
    # Copy required due to multithreading:
    im_f = im

    # Decimate projections if required:
    #if decim_factor > 1:
    #   im = im[::decim_factor,:]   
    
    # Upscale projections (if required):
    if (abs(scale - 1.0) > finfo(float32).eps):     
        siz_orig1 = im_f.shape[1]       
        im_f = imresize(im_f, (im_f.shape[0], int(round(scale * im_f.shape[1]))), interp='bicubic', mode='F')
        offset = int(offset * scale)    
    
    offset = int(round(offset))

    # Apply transformation for changes in the center of rotation:
    if (offset != 0):
        if (offset >= 0):
            im_f = im_f[:,:-offset]
        
            tmp = im_f[:,0] # Get first column
            tmp = tile(tmp, (offset,1)) # Replicate the first column the right number of times
            im_f = concatenate((tmp.T,im_f), axis=1) # Concatenate tmp before the image
                        
        else:
            im_f = im_f[:,abs(offset):]     
        
            tmp = im_f[:,im_f.shape[1] - 1] # Get last column
            tmp = tile(tmp, (abs(offset),1)) # Replicate the last column the right number of times
            im_f = concatenate((im_f,tmp.T), axis=1) # Concatenate tmp after the image  
    
    # Downscale projections (without pixel averaging):
    #if downsc_factor > 1:
    #   im = im[:,::downsc_factor]          
            
    # Scale image to [0,1] range (if required):
    if (zerone_mode):
        
        #print dset_min
        #print dset_max
        #print numpy.amin(im_f[:])
        #print numpy.amax(im_f[:])
        #im_f = (im_f - dset_min) / (dset_max - dset_min)
        
        # Cheating the whole process:
        im_f = (im_f - numpy.amin(im_f[:])) / (numpy.amax(im_f[:]) - numpy.amin(im_f[:]))
            
    # Apply log transform:
    if (logtransform == True):                      
        im_f[im_f <= finfo(float32).eps] = finfo(float32).eps
        im_f = -nplog(im_f + corr_offset)   
    
    # Replicate pad image to double the width:
    if (pad):   

        dim_o = im_f.shape[1]       
        n_pad = im_f.shape[1] + im_f.shape[1] / 2                   
        marg  = (n_pad - dim_o) / 2 
    
        # Pad image:
        im_f = padSmoothWidth(im_f, n_pad)      

    # Loop for all the required angles:
    for i in range(int(round(start)), int(round(end)) + 1):         

        # Save image for next step:
        im = im_f
        
        # Apply projection removal (if required):
        im_f = im_f[0:int(round(i/decim_factor)), :]    
    
        # Perform the actual reconstruction:
        if (method.startswith('FBP')):
            im_f = recon_astra_fbp(im_f, angles, method, param1)    
        elif (method == 'MR-FBP_CUDA'):
            im_f = recon_mr_fbp(im_f, angles)
        elif (method == 'FISTA-TV_CUDA'):
            im_f = recon_fista_tv(im_f, angles, param1, param1)
        elif (method == 'MLEM'):
            im_f = recon_tomopy_iterative(im_f, angles, method, param1)     
        elif (method == 'GRIDREC'):
            [im_f, im_f] = recon_gridrec(im_f, im_f, angles, param1)        
        else:
            im_f = recon_astra_iterative(im_f, angles, method, param1, zerone_mode) 
        
        # Crop:
        if (pad):       
            im_f = im_f[marg:dim_o + marg, marg:dim_o + marg]           

        # Resize (if necessary):
        if (abs(scale - 1.0) > finfo(float32).eps):
            im_f = imresize(im_f, (siz_orig1, siz_orig1), interp='nearest', mode='F')

        # Apply post-processing (if required):
        if postprocess_required:
            im_f = postprocess(im_f, convert_opt, crop_opt)
        else:
            # Create the circle mask for fancy output:
            if (circle == True):
                siz = im_f.shape[1]
                if siz % 2:
                    rang = arange(-siz / 2 + 1, siz / 2 + 1)
                else:
                    rang = arange(-siz / 2,siz / 2)
                x,y = meshgrid(rang,rang)
                z = x ** 2 + y ** 2
                a = (z < (siz / 2 - int(round(abs(offset)/downsc_factor)) ) ** 2)
                im_f = im_f * a         

        # Write down reconstructed image (file name modified with metadata):        
        fname = outpath + slice_prefix + '_' + str(sino_idx).zfill(4) + '_off=' + str(offset*downsc_factor).zfill(4) + '_proj=' + str(i).zfill(4) + '.tif'
        imsave(fname, im_f) 

        # Restore original image for next step:
        im_f = im

        # Write log (atomic procedure - lock used):
        write_log(lock, fname, logfilename )

        
def process(sino_idx, num_sinos, infile, outpath, preprocessing_required, corr_plan, norm_sx, norm_dx, flat_end, half_half, 
            half_half_line, ext_fov, ext_fov_rot_right, ext_fov_overlap, ringrem, phaseretrieval_required, phrtmethod, 
            phrt_param1, phrt_param2, 
            energy, distance, pixsize, phrtpad, approx_win, angles, offset, logtransform, param1, circle, scale, pad, method, 
            zerone_mode, dset_min, dset_max, decim_factor, downsc_factor, corr_offset, postprocess_required, convert_opt, 
            crop_opt, nr_threads, angles_from, angles_to, logfilename, lock, slice_prefix):
    """To do...

    """
    slice_nr = sino_idx
    
    # Perform reconstruction (on-the-fly preprocessing and phase retrieval, if required):
    if (phaseretrieval_required):
        
        # In this case a bunch of sinograms is loaded into memory:      

        #
        # Load the temporary data structure reading the input TDF file.
        # To know the right dimension the first sinogram is pre-processed.
        #       

        # Open the TDF file and get the dataset:
        f_in = getHDF5(infile, 'r')
        if "/tomo" in f_in:
            dset = f_in['tomo']
        else: 
            dset = f_in['exchange/data']
        
        # Downscaling and decimation factors considered when determining the approximation window:
        zrange = arange(sino_idx - approx_win*downsc_factor/2, sino_idx + approx_win*downsc_factor/2, downsc_factor)
        zrange = zrange[ (zrange >= 0) ]
        zrange = zrange[ (zrange < num_sinos) ]
        approx_win = zrange.shape[0]
        
        # Approximation window cannot be odd:
        if (approx_win % 2 == 1):
            approx_win = approx_win-1 
            zrange     = zrange[0:approx_win]
        
        # Read one sinogram to get the proper dimensions:
        test_im = tdf.read_sino(dset, zrange[0]).astype(float32)        
        test_im = test_im[::decim_factor, ::downsc_factor]

        # Perform the pre-processing of the first sinogram to get the right dimension:
        if (preprocessing_required):
            test_im = flat_fielding (test_im, zrange[0]/downsc_factor, corr_plan, flat_end, half_half, 
                                        half_half_line/decim_factor, norm_sx, norm_dx).astype(float32)  
            test_im = extfov_correction (test_im, ext_fov, ext_fov_rot_right, ext_fov_overlap/downsc_factor).astype(float32)            
            test_im = ring_correction (test_im, ringrem, flat_end, corr_plan['skip_flat_after'], half_half, 
                                            half_half_line/decim_factor, ext_fov).astype(float32)   
        
        # Now we can allocate memory for the bunch of slices:       
        tmp_im = empty((approx_win, test_im.shape[0], test_im.shape[1]), dtype=float32)
        tmp_im[0,:,:] = test_im

        # Reading all the the sinos from TDF file and close:
        for ct in range(1, approx_win):
            
            test_im = tdf.read_sino(dset, zrange[ct]).astype(float32)
            test_im = test_im[::decim_factor, ::downsc_factor]
            
            # Perform the pre-processing for each sinogram of the bunch:
            if (preprocessing_required):
                test_im = flat_fielding (test_im, zrange[ct]/downsc_factor, corr_plan, flat_end, half_half, 
                                            half_half_line/decim_factor, norm_sx, norm_dx).astype(float32)  
                test_im = extfov_correction (test_im, ext_fov, ext_fov_rot_right, ext_fov_overlap/downsc_factor).astype(float32)    
                test_im = ring_correction (test_im, ringrem, flat_end, corr_plan['skip_flat_after'], half_half, 
                                            half_half_line/decim_factor, ext_fov).astype(float32)   
            
            tmp_im[ct,:,:] = test_im
    
        f_in.close()

        # Now everything has to refer to a downscaled dataset:
        sino_idx = ((zrange == sino_idx).nonzero())

        #
        # Perform phase retrieval:
        #

        # Prepare the plan:     
        if (phrtmethod == 0):
            # Paganin's:
            phrtplan = tiehom_plan (tmp_im[:,0,:], phrt_param1, phrt_param2, energy, distance, pixsize*downsc_factor, padding=phrtpad)
        else:
            phrtplan = phrt_plan (tmp_im[:,0,:], energy, distance, pixsize*downsc_factor, phrt_param2, phrt_param1, phrtmethod, padding=phrtpad)
        
        # Process each projection (whose height depends on the size of the bunch):
        for ct in range(0, tmp_im.shape[1]):
            if (phrtmethod == 0):
                tmp_im[:,ct,:] = tiehom(tmp_im[:,ct,:], phrtplan).astype(float32)           
            else:
                tmp_im[:,ct,:] = phrt(tmp_im[:,ct,:], phrtplan, phrtmethod).astype(float32) 
        
        # Extract the requested sinogram:
        im = tmp_im[sino_idx[0],:,:].squeeze()  

    else:

        # Read only one sinogram:
        f_in = getHDF5(infile, 'r')
        if "/tomo" in f_in:
            dset = f_in['tomo']
        else: 
            dset = f_in['exchange/data']
        im = tdf.read_sino(dset,sino_idx).astype(float32)       
        f_in.close()

        # Downscale and decimate the sinogram:
        im = im[::decim_factor,::downsc_factor]
        sino_idx = sino_idx/downsc_factor   
            
        # Perform the preprocessing of the sinogram (if required):
        if (preprocessing_required):
            im = flat_fielding (im, sino_idx, corr_plan, flat_end, half_half, half_half_line/decim_factor, 
                                norm_sx, norm_dx).astype(float32)       
            im = extfov_correction (im, ext_fov, ext_fov_rot_right, ext_fov_overlap)
            im = ring_correction (im, ringrem, flat_end, corr_plan['skip_flat_after'], half_half, 
                                half_half_line/decim_factor, ext_fov)

    # Log infos:
    log = open(logfilename,"a") 
    log.write(linesep + "\tPerforming reconstruction with multiple centers of rotation...")         
    log.write(linesep + "\t--------------")     
    log.close() 

    # Split the computation into multiple processes:
    for num in range(nr_threads):
        start = ( (angles_to - angles_from + 1) / nr_threads)*num + angles_from
        if (num == nr_threads - 1):
            end = angles_to
        else:
            end = ( (angles_to - angles_from + 1) / nr_threads)*(num + 1) + angles_from - 1

        #Process(target=reconstruct, args=(im, angles, offset/downsc_factor, logtransform, param1, circle, scale, pad, method, 
        #               zerone_mode, dset_min, dset_max, corr_offset, postprocess_required, convert_opt, crop_opt, start, end, 
        #               outpath, slice_nr, downsc_factor, decim_factor, logfilename, lock, slice_prefix)).start()


        # Actual reconstruction:
        reconstruct(im, angles, offset/downsc_factor, logtransform, param1, circle, scale, pad, method, 
                        zerone_mode, dset_min, dset_max, corr_offset, postprocess_required, convert_opt, crop_opt, 
                        start, end, outpath, slice_nr, downsc_factor, decim_factor, logfilename, lock, slice_prefix)

                                        


def main(argv):          
    """To do...


    """
    lock = Lock()
    skip_flat = False
    skip_flat_after = True  

    # Get the from and to number of files to process:
    sino_idx = int(argv[0])
       
    # Get paths:
    infile  = argv[1]
    outpath = argv[2]

    # Essential reconstruction parameters::
    angles   = float(argv[3])
    offset   = float(argv[4])
    param1   = argv[5]  
    scale    = int(float(argv[6]))
    
    overpad  = True if argv[7] == "True" else False
    logtrsf  = True if argv[8] == "True" else False
    circle   = True if argv[9] == "True" else False
    
    # Parameters for on-the-fly pre-processing:
    preprocessing_required = True if argv[10] == "True" else False      
    flat_end = True if argv[11] == "True" else False        
    half_half = True if argv[12] == "True" else False
        
    half_half_line = int(argv[13])
        
    ext_fov = True if argv[14] == "True" else False
        
    norm_sx = int(argv[17])
    norm_dx = int(argv[18]) 
        
    ext_fov_rot_right = argv[15]
    if ext_fov_rot_right == "True":
        ext_fov_rot_right = True
        if (ext_fov):
            norm_sx = 0
    else:
        ext_fov_rot_right = False
        if (ext_fov):
            norm_dx = 0
        
    ext_fov_overlap = int(argv[16])
        
    skip_ringrem = True if argv[19] == "True" else False
    ringrem = argv[20]
    
    # Extra reconstruction parameters:
    zerone_mode = True if argv[21] == "True" else False     
    corr_offset = float(argv[22])
        
    reconmethod = argv[23]  
    
    decim_factor = int(argv[24])
    downsc_factor = int(argv[25])
    
    # Parameters for postprocessing:
    postprocess_required = True if argv[26] == "True" else False
    convert_opt = argv[27]
    crop_opt = argv[28]

    # Parameters for on-the-fly phase retrieval:
    phaseretrieval_required = True if argv[29] == "True" else False     
    phrtmethod = int(argv[30])
    phrt_param1 = double(argv[31])   # param1( e.g. regParam, or beta)
    phrt_param2 = double(argv[32])   # param2( e.g. thresh or delta)
    energy = double(argv[33])
    distance = double(argv[34])    
    pixsize = double(argv[35]) / 1000.0 # pixsixe from micron to mm:    
    phrtpad = True if argv[36] == "True" else False
    approx_win = int(argv[37])  

    preprocessingplan_fromcache = True if argv[38] == "True" else False
    tmppath    = argv[39]   
    if not tmppath.endswith(sep): tmppath += sep

    nr_threads = int(argv[40])  
    angles_from = float(argv[41])
    angles_to   = float(argv[42])

    slice_prefix = argv[43]
        
    logfilename = argv[44]  

    if not exists(outpath):
        makedirs(outpath)
    
    if not outpath.endswith(sep): outpath += sep    


    # Log info:
    log = open(logfilename,"w")
    log.write(linesep + "\tInput dataset: %s" % (infile))   
    log.write(linesep + "\tOutput path: %s" % (outpath))        
    log.write(linesep + "\t--------------")     
    log.write(linesep + "\tLoading flat and dark images...")    
    log.close() 
            
    # Open the HDF5 file:
    f_in = getHDF5(infile, 'r')
    if "/tomo" in f_in:
        dset = f_in['tomo'] 
    else: 
        dset = f_in['exchange/data']
        if "/provenance/detector_output" in f_in:
            prov_dset = f_in['provenance/detector_output']              
    
    dset_min = -1
    dset_max = -1
    if (zerone_mode):
        if ('min' in dset.attrs):
            dset_min = float(dset.attrs['min'])                             
        else:
            zerone_mode = False
            
        if ('max' in dset.attrs):
            dset_max = float(dset.attrs['max'])             
        else:
            zerone_mode = False 
        
    num_sinos = tdf.get_nr_sinos(dset) # Pay attention to the downscale factor
    
    if (num_sinos == 0):    
        exit()      

    # Check extrema:
    if (sino_idx >= num_sinos):
        sino_idx = num_sinos - 1
    
    # Get correction plan and phase retrieval plan (if required):
    corrplan = 0    
    if (preprocessing_required):        
        # Load flat fielding plan either from cache (if required) or from TDF file and cache it for faster re-use:
        if (preprocessingplan_fromcache):
            try:
                corrplan = cache2plan(infile, tmppath)
            except Exception as e:
                #print "Error(s) when reading from cache"
                corrplan = extract_flatdark(f_in, flat_end, logfilename)
                plan2cache(corrplan, infile, tmppath)
        else:           
            corrplan = extract_flatdark(f_in, flat_end, logfilename)        
            plan2cache(corrplan, infile, tmppath)   

        # Dowscale flat and dark images if necessary:
        if isinstance(corrplan['im_flat'], ndarray):
            corrplan['im_flat'] = corrplan['im_flat'][::downsc_factor,::downsc_factor]      
        if isinstance(corrplan['im_dark'], ndarray):
            corrplan['im_dark'] = corrplan['im_dark'][::downsc_factor,::downsc_factor]  
        if isinstance(corrplan['im_flat_after'], ndarray):
            corrplan['im_flat_after'] = corrplan['im_flat_after'][::downsc_factor,::downsc_factor]  
        if isinstance(corrplan['im_dark_after'], ndarray):
            corrplan['im_dark_after'] = corrplan['im_dark_after'][::downsc_factor,::downsc_factor]          

    f_in.close()    

    # Log infos:
    log = open(logfilename,"a")
    log.write(linesep + "\tPerforming preprocessing...")            
    log.close()         

    # Run computation:  
    process( sino_idx, num_sinos, infile, outpath, preprocessing_required, corrplan, norm_sx, 
            norm_dx, flat_end, half_half, half_half_line, ext_fov, ext_fov_rot_right, ext_fov_overlap, ringrem, 
            phaseretrieval_required, phrtmethod, phrt_param1, phrt_param2, energy, distance, pixsize, phrtpad, 
            approx_win, angles, offset, logtrsf, param1, circle, scale, overpad, reconmethod, zerone_mode, 
            dset_min, dset_max, decim_factor, downsc_factor, corr_offset, postprocess_required, convert_opt, 
            crop_opt, nr_threads, angles_from, angles_to, logfilename, lock, slice_prefix )     

    # Sample:
    # 26 C:\Temp\dataset42.tdf C:\Temp\test_angles 3.1416 -72.0 shepp-logan 1.0 False True True True True False 5 False False 100 0 0 False rivers:11;0 False 0.0 FBP_CUDA 1 4 False - - False 0 1.0 1000.0 22 150 2.2 True 16 False C:\Temp 1 1148 1248 slice C:\Temp\log_angles_00.txt



if __name__ == "__main__":
    main(argv[1:])

tools_extractdata

This section contains the tools_extractdata script.

Download file: tools_extractdata.py

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
###########################################################################
# (C) 2016 Elettra - Sincrotrone Trieste S.C.p.A.. All rights reserved.   #
#                                                                         #
#                                                                         #
# This file is part of STP-Core, the Python core of SYRMEP Tomo Project,  #
# a software tool for the reconstruction of experimental CT datasets.     #
#                                                                         #
# STP-Core is free software: you can redistribute it and/or modify it     #
# under the terms of the GNU General Public License as published by the   #
# Free Software Foundation, either version 3 of the License, or (at your  #
# option) any later version.                                              #
#                                                                         #
# STP-Core is distributed in the hope that it will be useful, but WITHOUT #
# ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or   #
# FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License    #
# for more details.                                                       #
#                                                                         #
# You should have received a copy of the GNU General Public License       #
# along with STP-Core. If not, see <http://www.gnu.org/licenses/>.        #
#                                                                         #
###########################################################################

#
# Author: Francesco Brun
# Last modified: July, 8th 2016
#


import os
import os.path
import numpy
import time

from sys import argv, exit
from h5py import File as getHDF5
from numpy import float32

# pystp-specific:
import stp_core.io.tdf as tdf

def main(argv):    
    """Extract a 2D image (projection or sinogram) from the input TDF file (DataExchange HDF5) and
    creates a 32-bit RAW file to disk.

    Parameters
    ----------
    argv[0] : string
        The absolute path of the input TDF.

    argv[1] : int
        The relative position of the image within the dataset.

    argv[2] : string
        One of the following options: 'tomo', 'sino', 'flat', 'dark'.

    argv[3] : string
        The absolute path of the output 32-bit RAW image file. Filename will be modified by adding 
        image width, image height, minimum and maximum value of the input TDF dataset.

    Example
    -------
    tools_extractdata "S:\\dataset.tdf" 128 tomo "R:\\proj" 

    """
    try:
        #
        # Get input parameters:
        #
        infile   = argv[0]
        index    = int(argv[1]) 
        imtype   = argv[2]
        outfile  = argv[3]      
    
        #
        # Body
        #   
    
        # Check if file exists:
        if not os.path.exists(infile):      
            #log = open(logfilename,"a")
            #log.write(os.linesep + "\tError: input TDF file not found. Process will end.")             
            #log.close()            
            exit()  

        # Open the HDF5 file:

        f = getHDF5( infile, 'r' )
        if (imtype == 'sino'):
            if "/tomo" in f:
                dset = f['tomo']    
            else: 
                dset = f['exchange/data']
            im = tdf.read_sino( dset, index )   
        elif (imtype == 'dark'):
            if "/dark" in f:
                dset = f['dark']    
            else: 
                dset = f['exchange/data_dark']  
            im = tdf.read_tomo( dset, index )
        elif (imtype == 'flat'):
            if "/flat" in f:
                dset = f['flat']    
            else: 
                dset = f['exchange/data_white'] 
            im = tdf.read_tomo( dset, index )
        else:
            if "/tomo" in f:
                dset = f['tomo']    
            else: 
                dset = f['exchange/data']   
            im = tdf.read_tomo( dset, index )
                

        min = float(numpy.nanmin(im[:]))
        max = float(numpy.nanmax(im[:]))
            
        # Get global attributes (if any):
        try:
            if ('version' in f.attrs):
                if (f.attrs['version'] == '1.0'):   
                    min = float(dset_tomo.attrs['min'])
                    max = float(dset_tomo.attrs['max'])         
        except: 
            pass
        
        f.close()
        
        # Cast type:
        im = im.astype(float32)
        
        # Modify file name:
        outfile = outfile + '_' + str(im.shape[1]) + 'x' + str(im.shape[0]) + '_' + str(min) + '$' + str(max)   
        
        # Write RAW data to disk:
        im.tofile(outfile)          
    
    except:             
        
        exit()

if __name__ == "__main__":
    main(argv[1:])

tools_guesscenter

This section contains the tools_guesscenter script.

Download file: tools_guesscenter.py

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
###########################################################################
# (C) 2016 Elettra - Sincrotrone Trieste S.C.p.A.. All rights reserved.   #
#                                                                         #
#                                                                         #
# This file is part of STP-Core, the Python core of SYRMEP Tomo Project,  #
# a software tool for the reconstruction of experimental CT datasets.     #
#                                                                         #
# STP-Core is free software: you can redistribute it and/or modify it     #
# under the terms of the GNU General Public License as published by the   #
# Free Software Foundation, either version 3 of the License, or (at your  #
# option) any later version.                                              #
#                                                                         #
# STP-Core is distributed in the hope that it will be useful, but WITHOUT #
# ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or   #
# FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License    #
# for more details.                                                       #
#                                                                         #
# You should have received a copy of the GNU General Public License       #
# along with STP-Core. If not, see <http://www.gnu.org/licenses/>.        #
#                                                                         #
###########################################################################

#
# Author: Francesco Brun
# Last modified: Sept, 28th 2016
#

from math import pi
from numpy import float32, double, finfo, ndarray
from scipy.misc import imresize #scipy 0.12
from os import sep, remove
from os.path import basename
from sys import argv
from h5py import File as getHDF5

from pyfftw.interfaces.cache import enable as pyfftw_cache_enable, disable as pyfftw_cache_disable
from pyfftw.interfaces.cache import set_keepalive_time as pyfftw_set_keepalive_time

import time

# pystp-specific:
import stp_core.io.tdf as tdf
import stp_core.utils.findcenter as findcenter
from stp_core.utils.caching import cache2plan, plan2cache
from stp_core.preprocess.extract_flatdark import extract_flatdark
from stp_core.preprocess.flat_fielding import flat_fielding

from tifffile import imread, imsave # only for debug

def main(argv):          
    """Try to guess the center of rotation of the input CT dataset.

    Parameters
    ----------
    infile  : array_like
        HDF5 input dataset

    outfile : string
        Full path where the identified center of rotation will be written as output

    scale   : int
        If sub-pixel precision is interesting, use e.g. 2.0 to get a center of rotation 
        of .5 value. Use 1.0 if sub-pixel precision is not required

    angles  : int
        Total number of angles of the input dataset 

    proj_from : int
        Initial projections to consider for the assumed angles

    proj_to : int
        Final projections to consider for the assumed angles

    method : string
        (not implemented yet)

    tmppath : string
        Temporary path where look for cached flat/dark files
       
    """        
    # Get path:
    infile  = argv[0]          # The HDF5 file on the
    outfile = argv[1]          # The txt file with the proposed center
    scale   = float(argv[2])
    angles  = float(argv[3])
    proj_from  = int(argv[4])
    proj_to  = int(argv[5])
    method  = argv[6]
    tmppath = argv[7]   
    if not tmppath.endswith(sep): tmppath += sep    

    pyfftw_cache_disable()
    pyfftw_cache_enable()
    pyfftw_set_keepalive_time(1800) 

    # Create a silly temporary log:
    tmplog  = tmppath + basename(infile) + str(time.time())
            
    # Open the HDF5 file (take into account also older TDF versions):
    f_in = getHDF5( infile, 'r' )
    if "/tomo" in f_in:
        dset = f_in['tomo']
    else: 
        dset = f_in['exchange/data']
    num_proj = tdf.get_nr_projs(dset)   
    num_sinos = tdf.get_nr_sinos(dset)  

    # Get flats and darks from cache or from file:
    try:
        corrplan = cache2plan(infile, tmppath)
    except Exception as e:
        #print "Error(s) when reading from cache"
        corrplan = extract_flatdark(f_in, True, tmplog)
        remove(tmplog)
        plan2cache(corrplan, infile, tmppath)

    # Get first and the 180 deg projections:    
    im1 = tdf.read_tomo(dset,proj_from).astype(float32) 

    idx = int(round( (proj_to - proj_from)/angles * pi)) + proj_from
    im2 = tdf.read_tomo(dset,idx).astype(float32)       

    # Apply simple flat fielding (if applicable):
    if (isinstance(corrplan['im_flat_after'], ndarray) and isinstance(corrplan['im_flat'], ndarray) and
        isinstance(corrplan['im_dark'], ndarray) and isinstance(corrplan['im_dark_after'], ndarray)) :      
        im1 = ((abs(im1 - corrplan['im_dark'])) / (abs(corrplan['im_flat'] - corrplan['im_dark']) 
            + finfo(float32).eps)).astype(float32)  
        im2 = ((abs(im2 - corrplan['im_dark_after'])) / (abs(corrplan['im_flat_after'] - corrplan['im_dark_after']) 
            + finfo(float32).eps)).astype(float32)  

    # Scale projections (if required) to get subpixel estimation:
    if ( abs(scale - 1.0) > finfo(float32).eps ):   
        im1 = imresize(im1, (int(round(scale*im1.shape[0])), int(round(scale*im1.shape[1]))), interp='bicubic', mode='F');  
        im2 = imresize(im2, (int(round(scale*im2.shape[0])), int(round(scale*im2.shape[1]))), interp='bicubic', mode='F');  

    # Find the center (flipping left-right im2):
    cen = findcenter.usecorrelation(im1, im2[ :,::-1])
    cen = cen / scale
    
    # Print center to output file:
    text_file = open(outfile, "w")
    text_file.write(str(int(cen)))
    text_file.close()
    
    # Close input HDF5:
    f_in.close()

if __name__ == "__main__":
    main(argv[1:])

tools_raw2tiff32

This section contains the tools_raw2tiff32 script.

Download file: tools_raw2tiff32.py

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
###########################################################################
# (C) 2016 Elettra - Sincrotrone Trieste S.C.p.A.. All rights reserved.   #
#                                                                         #
#                                                                         #
# This file is part of STP-Core, the Python core of SYRMEP Tomo Project,  #
# a software tool for the reconstruction of experimental CT datasets.     #
#                                                                         #
# STP-Core is free software: you can redistribute it and/or modify it     #
# under the terms of the GNU General Public License as published by the   #
# Free Software Foundation, either version 3 of the License, or (at your  #
# option) any later version.                                              #
#                                                                         #
# STP-Core is distributed in the hope that it will be useful, but WITHOUT #
# ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or   #
# FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License    #
# for more details.                                                       #
#                                                                         #
# You should have received a copy of the GNU General Public License       #
# along with STP-Core. If not, see <http://www.gnu.org/licenses/>.        #
#                                                                         #
###########################################################################

#
# Author: Francesco Brun
# Last modified: July, 8th 2016
#

import os
import os.path

from sys import argv, exit
from tifffile import *
from numpy import zeros, fromfile, float32

def main(argv):    
    """Convert an input 32-bit RAW image to TIFF format

    Parameters
    ----------
    argv[0] : string
        The absolute path of input 32-bit RAW image file.

    argv[1] : string
        The absolute path of output 32-bit TIFF image file.

    argv[2] : int
        Width of the input RAW image.

    argv[3] : int
        Height of the input RAW image.

    Example
    -------
    tools_raw2tiff32 "R:\\slice.raw" "R:\\slice.tiff" 2048 2048
    
    """
    #
    # Get the parameters:
    #
    infile  = argv[0]
    outfile = argv[1]
    width   = int(argv[2]) 
    height  = int(argv[3]) 
    
    #
    # Body
    #   
    
    # Check if file exists:
    if not os.path.exists(infile):      
        exit()  
    
    try:
        # Prepare RAW matrix:
        im = zeros((width,height), dtype=float32)
        
        # Read RAW file:
        im = fromfile(infile, float32).reshape((height,width))
        
        # Save TIFF 32:
        imsave(outfile, im)             
    
    except: 
        exit()

if __name__ == "__main__":
    main(argv[1:])

tools_multioffset

This section contains the tools_multioffset script.

Download file: tools_multioffset.py

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
###########################################################################
# (C) 2016 Elettra - Sincrotrone Trieste S.C.p.A.. All rights reserved.   #
#                                                                         #
#                                                                         #
# This file is part of STP-Core, the Python core of SYRMEP Tomo Project,  #
# a software tool for the reconstruction of experimental CT datasets.     #
#                                                                         #
# STP-Core is free software: you can redistribute it and/or modify it     #
# under the terms of the GNU General Public License as published by the   #
# Free Software Foundation, either version 3 of the License, or (at your  #
# option) any later version.                                              #
#                                                                         #
# STP-Core is distributed in the hope that it will be useful, but WITHOUT #
# ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or   #
# FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License    #
# for more details.                                                       #
#                                                                         #
# You should have received a copy of the GNU General Public License       #
# along with STP-Core. If not, see <http://www.gnu.org/licenses/>.        #
#                                                                         #
###########################################################################

#
# Author: Francesco Brun
# Last modified: Sept, 28th 2016
#

# python:
from sys import argv, exit
from os import remove, sep, linesep, listdir, makedirs
from os.path import exists, dirname, basename, splitext
from numpy import array, finfo, copy, float32, double, amin, amax, tile, concatenate, asarray
from numpy import empty, reshape, log as nplog, arange, squeeze, fromfile, ndarray, where, meshgrid
from time import time
from multiprocessing import Process, Lock

# pystp-specific:
from stp_core.preprocess.extfov_correction import extfov_correction
from stp_core.preprocess.flat_fielding import flat_fielding
from stp_core.preprocess.ring_correction import ring_correction
from stp_core.preprocess.extract_flatdark import extract_flatdark

from stp_core.phaseretrieval.tiehom import tiehom, tiehom_plan
from stp_core.phaseretrieval.phrt   import phrt, phrt_plan

from stp_core.reconstruct.rec_astra import recon_astra_fbp, recon_astra_iterative
from stp_core.reconstruct.rec_fista_tv import recon_fista_tv
from stp_core.reconstruct.rec_mr_fbp import recon_mr_fbp
from stp_core.reconstruct.rec_gridrec import recon_gridrec

from stp_core.postprocess.postprocess import postprocess

from stp_core.utils.padding import upperPowerOfTwo, padImage, padSmoothWidth
from stp_core.utils.caching import cache2plan, plan2cache

from tifffile import imread, imsave
from h5py import File as getHDF5
import stp_core.io.tdf as tdf


def write_log(lock, fname, logfilename):              
    """To do...

    """
    lock.acquire()
    try: 
        # Print out execution time:
        log = open(logfilename,"a")
        log.write(linesep + "\t%s reconstructed." % basename(fname))
        log.close() 

    finally:
        lock.release()  

def reconstruct(im, angles, angles_projfrom, angles_projto, offset, logtransform, param1, circle, scale, pad, method, 
                zerone_mode, dset_min, dset_max, corr_offset, postprocess_required, convert_opt, 
                crop_opt, start, end, outpath, sino_idx, downsc_factor, logfilename, lock, slice_prefix):
    """Reconstruct a sinogram with FBP algorithm (from ASTRA toolbox).

    Parameters
    ----------
    im1 : array_like
        Sinogram image data as numpy array.
    center : float
        Offset of the center of rotation to use for the tomographic 
        reconstruction with respect to the half of sinogram width 
        (default=0, i.e. half width).
    logtransform : boolean
        Apply logarithmic transformation before reconstruction (default=True).
    filter : string
        Filter to apply before the application of the reconstruction algorithm. Filter 
        types are: ram-lak, shepp-logan, cosine, hamming, hann, tukey, lanczos, triangular, 
        gaussian, barlett-hann, blackman, nuttall, blackman-harris, blackman-nuttall, 
        flat-top, kaiser, parzen.
    circle : boolean
        Create a circle in the reconstructed image and set to zero pixels outside the 
        circle (default=False). 
    
    """
    # Copy required due to multithreading:
    im_f = im

    # Decimate projections if required:
    #if decim_factor > 1:
    #   im = im[::decim_factor,:]   
    
    # Upscale projections (if required):
    if (abs(scale - 1.0) > finfo(float32).eps):     
        siz_orig1 = im_f.shape[1]       
        im_f = imresize(im_f, (im_f.shape[0], int(round(scale * im_f.shape[1]))), interp='bicubic', mode='F')
        offset = int(offset * scale)    

    # Loop for all the required offsets for the center of rotation:
    for i in range(int(round(start)), int(round(end)) + 1, downsc_factor):          
        
        offset = int(round(i/downsc_factor))

        # Apply transformation for changes in the center of rotation:
        if (offset != 0):
            if (offset >= 0):
                im_f = im_f[:,:-offset]
            
                tmp = im_f[:,0] # Get first column
                tmp = tile(tmp, (offset,1)) # Replicate the first column the right number of times
                im_f = concatenate((tmp.T,im_f), axis=1) # Concatenate tmp before the image
                        
            else:
                im_f = im_f[:,abs(offset):]     
            
                tmp = im_f[:,im_f.shape[1] - 1] # Get last column
                tmp = tile(tmp, (abs(offset),1)) # Replicate the last column the right number of times
                im_f = concatenate((im_f,tmp.T), axis=1) # Concatenate tmp after the image  
    
        # Downscale projections (without pixel averaging):
        #if downsc_factor > 1:
        #   im = im[:,::downsc_factor]          
            
        # Scale image to [0,1] range (if required):
        if (zerone_mode):
        
            #print dset_min
            #print dset_max
            #print numpy.amin(im_f[:])
            #print numpy.amax(im_f[:])
            #im_f = (im_f - dset_min) / (dset_max - dset_min)
        
            # Cheating the whole process:
            im_f = (im_f - numpy.amin(im_f[:])) / (numpy.amax(im_f[:]) - numpy.amin(im_f[:]))
            
        # Apply log transform:
        if (logtransform == True):                      
            im_f[im_f <= finfo(float32).eps] = finfo(float32).eps
            im_f = -nplog(im_f + corr_offset)   
    
        # Replicate pad image to double the width:
        if (pad):   

            dim_o = im_f.shape[1]       
            n_pad = im_f.shape[1] + im_f.shape[1] / 2                   
            marg  = (n_pad - dim_o) / 2 
    
            # Pad image:
            im_f = padSmoothWidth(im_f, n_pad)      
    
        # Perform the actual reconstruction:
        if (method.startswith('FBP')):
            im_f = recon_astra_fbp(im_f, angles, method, param1)    
        elif (method == 'MR-FBP_CUDA'):
            im_f = recon_mr_fbp(im_f, angles)
        elif (method == 'FISTA-TV_CUDA'):
            im_f = recon_fista_tv(im_f, angles, param1, param1)
        elif (method == 'MLEM'):
            im_f = recon_tomopy_iterative(im_f, angles, method, param1)     
        elif (method == 'GRIDREC'):
            [im_f, im_f] = recon_gridrec(im_f, im_f, angles, param1)        
        else:
            im_f = recon_astra_iterative(im_f, angles, method, param1, zerone_mode) 

        
        # Crop:
        if (pad):       
            im_f = im_f[marg:dim_o + marg, marg:dim_o + marg]           

        # Resize (if necessary):
        if (abs(scale - 1.0) > finfo(float32).eps):
            im_f = imresize(im_f, (siz_orig1, siz_orig1), interp='nearest', mode='F')

        # Apply post-processing (if required):
        if postprocess_required:
            im_f = postprocess(im_f, convert_opt, crop_opt)
        else:
            # Create the circle mask for fancy output:
            if (circle == True):
                siz = im_f.shape[1]
                if siz % 2:
                    rang = arange(-siz / 2 + 1, siz / 2 + 1)
                else:
                    rang = arange(-siz / 2,siz / 2)
                x,y = meshgrid(rang,rang)
                z = x ** 2 + y ** 2
                a = (z < (siz / 2 - int(round(abs(offset)/downsc_factor)) ) ** 2)
                im_f = im_f * a         

        # Write down reconstructed image (file name modified with metadata):        
        if ( i >= 0 ):
            fname = outpath + slice_prefix + '_' + str(sino_idx).zfill(4) + '_proj=' + str(angles_projto - angles_projfrom) + '_col=' + str((im_f.shape[1] + offset)*downsc_factor).zfill(4) + '_off=+' + str(abs(offset*downsc_factor)).zfill(4) + '.tif'
        else:
            fname = outpath + slice_prefix + '_' + str(sino_idx).zfill(4) + '_proj=' + str(angles_projto - angles_projfrom) + '_col=' + str((im_f.shape[1] + offset)*downsc_factor).zfill(4) + '_off=-' + str(abs(offset*downsc_factor)).zfill(4) + '.tif'
        
        imsave(fname, im_f) 

        # Restore original image for next step:
        im_f = im

        # Write log (atomic procedure - lock used):
        write_log(lock, fname, logfilename )

        
def process(sino_idx, num_sinos, infile, outpath, preprocessing_required, corr_plan, norm_sx, norm_dx, flat_end, half_half, 
            half_half_line, ext_fov, ext_fov_rot_right, ext_fov_overlap, ringrem, phaseretrieval_required, phrtmethod, 
            phrt_param1, phrt_param2, energy, distance, pixsize, phrtpad, approx_win, angles, angles_projfrom, angles_projto, 
            offset, logtransform, param1, circle, scale, pad, method, 
            zerone_mode, dset_min, dset_max, decim_factor, downsc_factor, corr_offset, postprocess_required, convert_opt, 
            crop_opt, nr_threads, off_from, off_to, logfilename, lock, slice_prefix):
    """To do...

    """
    slice_nr = sino_idx
    
    # Perform reconstruction (on-the-fly preprocessing and phase retrieval, if required):
    if (phaseretrieval_required):
        
        # In this case a bunch of sinograms is loaded into memory:      

        #
        # Load the temporary data structure reading the input TDF file.
        # To know the right dimension the first sinogram is pre-processed.
        #       

        # Open the TDF file and get the dataset:
        f_in = getHDF5(infile, 'r')
        if "/tomo" in f_in:
            dset = f_in['tomo']
        else: 
            dset = f_in['exchange/data']
        
        # Downscaling and decimation factors considered when determining the approximation window:
        zrange = arange(sino_idx - approx_win*downsc_factor/2, sino_idx + approx_win*downsc_factor/2, downsc_factor)
        zrange = zrange[ (zrange >= 0) ]
        zrange = zrange[ (zrange < num_sinos) ]
        approx_win = zrange.shape[0]
        
        # Approximation window cannot be odd:
        if (approx_win % 2 == 1):
            approx_win = approx_win-1 
            zrange     = zrange[0:approx_win]
        
        # Read one sinogram to get the proper dimensions:
        test_im = tdf.read_sino(dset, zrange[0]).astype(float32)        
        test_im = test_im[::decim_factor, ::downsc_factor]

        # Perform the pre-processing of the first sinogram to get the right dimension:
        if (preprocessing_required):
            test_im = flat_fielding (test_im, zrange[0]/downsc_factor, corr_plan, flat_end, half_half, 
                                        half_half_line/decim_factor, norm_sx, norm_dx).astype(float32)  
            test_im = extfov_correction (test_im, ext_fov, ext_fov_rot_right, ext_fov_overlap/downsc_factor).astype(float32)            
            test_im = ring_correction (test_im, ringrem, flat_end, corr_plan['skip_flat_after'], half_half, 
                                            half_half_line/decim_factor, ext_fov).astype(float32)   
        
        # Now we can allocate memory for the bunch of slices:       
        tmp_im = empty((approx_win, test_im.shape[0], test_im.shape[1]), dtype=float32)
        tmp_im[0,:,:] = test_im

        # Reading all the the sinos from TDF file and close:
        for ct in range(1, approx_win):
            
            test_im = tdf.read_sino(dset, zrange[ct]).astype(float32)

            # Apply projection removal (if required):
            test_im = test_im[angles_projfrom:angles_projto, :]
            
            # Apply decimation and downscaling (if required):
            test_im = test_im[::decim_factor, ::downsc_factor]
            
            # Perform the pre-processing for each sinogram of the bunch:
            if (preprocessing_required):
                test_im = flat_fielding (test_im, zrange[ct]/downsc_factor, corr_plan, flat_end, half_half, 
                                            half_half_line/decim_factor, norm_sx, norm_dx).astype(float32)  
                test_im = extfov_correction (test_im, ext_fov, ext_fov_rot_right, ext_fov_overlap/downsc_factor).astype(float32)    
                test_im = ring_correction (test_im, ringrem, flat_end, corr_plan['skip_flat_after'], half_half, 
                                            half_half_line/decim_factor, ext_fov).astype(float32)   
            
            tmp_im[ct,:,:] = test_im
    
        f_in.close()

        # Now everything has to refer to a downscaled dataset:
        sino_idx = ((zrange == sino_idx).nonzero())

        #
        # Perform phase retrieval:
        #

        # Prepare the plan:     
        if (phrtmethod == 0):
            # Paganin's:
            phrtplan = tiehom_plan (tmp_im[:,0,:], phrt_param1, phrt_param2, energy, distance, pixsize*downsc_factor, padding=phrtpad)
        else:
            phrtplan = phrt_plan (tmp_im[:,0,:], energy, distance, pixsize*downsc_factor, phrt_param2, phrt_param1, phrtmethod, padding=phrtpad)
        
        # Process each projection (whose height depends on the size of the bunch):
        for ct in range(0, tmp_im.shape[1]):
            if (phrtmethod == 0):
                tmp_im[:,ct,:] = tiehom(tmp_im[:,ct,:], phrtplan).astype(float32)           
            else:
                tmp_im[:,ct,:] = phrt(tmp_im[:,ct,:], phrtplan, phrtmethod).astype(float32) 
        
        # Extract the requested sinogram:
        im = tmp_im[sino_idx[0],:,:].squeeze()  

    else:

        # Read only one sinogram:
        f_in = getHDF5(infile, 'r')
        if "/tomo" in f_in:
            dset = f_in['tomo']
        else: 
            dset = f_in['exchange/data']
        im = tdf.read_sino(dset,sino_idx).astype(float32)       
        f_in.close()

        # Apply projection removal (if required):
        im = im[angles_projfrom:angles_projto, :]

        # Downscale and decimate the sinogram:
        im = im[::decim_factor,::downsc_factor]
        sino_idx = sino_idx/downsc_factor   
            
        # Perform the preprocessing of the sinogram (if required):
        if (preprocessing_required):
            im = flat_fielding (im, sino_idx, corr_plan, flat_end, half_half, half_half_line/decim_factor, 
                                norm_sx, norm_dx).astype(float32)       
            im = extfov_correction (im, ext_fov, ext_fov_rot_right, ext_fov_overlap)
            im = ring_correction (im, ringrem, flat_end, corr_plan['skip_flat_after'], half_half, 
                                half_half_line/decim_factor, ext_fov)

    # Log infos:
    log = open(logfilename,"a") 
    log.write(linesep + "\tPerforming reconstruction with multiple centers of rotation...")         
    log.write(linesep + "\t--------------")     
    log.close() 

    # Split the computation into multiple processes:
    for num in range(nr_threads):
        start = ( (off_to - off_from + 1) / nr_threads)*num + off_from
        if (num == nr_threads - 1):
            end = off_to
        else:
            end = ( (off_to - off_from + 1) / nr_threads)*(num + 1) + off_from - 1

        #Process(target=reconstruct, args=(im, angles, angles_projfrom, angles_projto, offset/downsc_factor, 
        #               logtransform, param1, circle, scale, pad, method, 
        #               zerone_mode, dset_min, dset_max, corr_offset, postprocess_required, convert_opt, 
        #               crop_opt, start, end, outpath, slice_nr, downsc_factor, logfilename, lock, slice_prefix)).start()


        # Actual reconstruction:
        reconstruct(im, angles, angles_projfrom, angles_projto, offset/downsc_factor, logtransform, 
                        param1, circle, scale, pad, method, 
                        zerone_mode, dset_min, dset_max, corr_offset, postprocess_required, convert_opt, 
                        crop_opt, start, end, outpath, slice_nr, downsc_factor, logfilename, lock, slice_prefix)

                                        


def main(argv):          
    """To do...



    """
    lock = Lock()
    skip_flat = False
    skip_flat_after = True  

    # Get the from and to number of files to process:
    sino_idx = int(argv[0])
       
    # Get paths:
    infile  = argv[1]
    outpath = argv[2]

    # Essential reconstruction parameters::
    angles   = float(argv[3])
    off_step = float(argv[4])
    param1   = argv[5]  
    scale    = int(float(argv[6]))
    
    overpad  = True if argv[7] == "True" else False
    logtrsf  = True if argv[8] == "True" else False
    circle   = True if argv[9] == "True" else False
    
    # Parameters for on-the-fly pre-processing:
    preprocessing_required = True if argv[10] == "True" else False      
    flat_end = True if argv[11] == "True" else False        
    half_half = True if argv[12] == "True" else False
        
    half_half_line = int(argv[13])
        
    ext_fov = True if argv[14] == "True" else False
        
    norm_sx = int(argv[17])
    norm_dx = int(argv[18]) 
        
    ext_fov_rot_right = argv[15]
    if ext_fov_rot_right == "True":
        ext_fov_rot_right = True
        if (ext_fov):
            norm_sx = 0
    else:
        ext_fov_rot_right = False
        if (ext_fov):
            norm_dx = 0
        
    ext_fov_overlap = int(argv[16])
        
    skip_ringrem = True if argv[19] == "True" else False
    ringrem = argv[20]
    
    # Extra reconstruction parameters:
    zerone_mode = True if argv[21] == "True" else False     
    corr_offset = float(argv[22])
        
    reconmethod = argv[23]  
    
    decim_factor = int(argv[24])
    downsc_factor = int(argv[25])
    
    # Parameters for postprocessing:
    postprocess_required = True if argv[26] == "True" else False
    convert_opt = argv[27]
    crop_opt = argv[28]

    # Parameters for on-the-fly phase retrieval:
    phaseretrieval_required = True if argv[29] == "True" else False     
    phrtmethod = int(argv[30])
    phrt_param1 = double(argv[31])   # param1( e.g. regParam, or beta)
    phrt_param2 = double(argv[32])   # param2( e.g. thresh or delta)
    energy = double(argv[33])
    distance = double(argv[34])    
    pixsize = double(argv[35]) / 1000.0 # pixsixe from micron to mm:    
    phrtpad = True if argv[36] == "True" else False
    approx_win = int(argv[37])  

    angles_projfrom = int(argv[38]) 
    angles_projto = int(argv[39])

    preprocessingplan_fromcache = True if argv[40] == "True" else False
    tmppath    = argv[41]   
    if not tmppath.endswith(sep): tmppath += sep

    nr_threads = int(argv[42])  
    off_from   = float(argv[43])
    off_to     = float(argv[44])

    slice_prefix = argv[45]
        
    logfilename = argv[46]  

    if not exists(outpath):
        makedirs(outpath)
    
    if not outpath.endswith(sep): outpath += sep    


    # Log info:
    log = open(logfilename,"w")
    log.write(linesep + "\tInput dataset: %s" % (infile))   
    log.write(linesep + "\tOutput path: %s" % (outpath))        
    log.write(linesep + "\t--------------")     
    log.write(linesep + "\tLoading flat and dark images...")    
    log.close() 
            
    # Open the HDF5 file:
    f_in = getHDF5(infile, 'r')
    if "/tomo" in f_in:
        dset = f_in['tomo'] 
    else: 
        dset = f_in['exchange/data']
        if "/provenance/detector_output" in f_in:
            prov_dset = f_in['provenance/detector_output']              
    
    dset_min = -1
    dset_max = -1
    if (zerone_mode):
        if ('min' in dset.attrs):
            dset_min = float(dset.attrs['min'])                             
        else:
            zerone_mode = False
            
        if ('max' in dset.attrs):
            dset_max = float(dset.attrs['max'])             
        else:
            zerone_mode = False 
        
    num_sinos = tdf.get_nr_sinos(dset) # Pay attention to the downscale factor
    
    if (num_sinos == 0):    
        exit()      

    # Check extrema:
    if (sino_idx >= num_sinos):
        sino_idx = num_sinos - 1
    
    # Get correction plan and phase retrieval plan (if required):
    corrplan = 0    
    if (preprocessing_required):        
        # Load flat fielding plan either from cache (if required) or from TDF file and cache it for faster re-use:
        if (preprocessingplan_fromcache):
            try:
                corrplan = cache2plan(infile, tmppath)
            except Exception as e:
                #print "Error(s) when reading from cache"
                corrplan = extract_flatdark(f_in, flat_end, logfilename)
                plan2cache(corrplan, infile, tmppath)
        else:           
            corrplan = extract_flatdark(f_in, flat_end, logfilename)        
            plan2cache(corrplan, infile, tmppath)   

        # Dowscale flat and dark images if necessary:
        if isinstance(corrplan['im_flat'], ndarray):
            corrplan['im_flat'] = corrplan['im_flat'][::downsc_factor,::downsc_factor]      
        if isinstance(corrplan['im_dark'], ndarray):
            corrplan['im_dark'] = corrplan['im_dark'][::downsc_factor,::downsc_factor]  
        if isinstance(corrplan['im_flat_after'], ndarray):
            corrplan['im_flat_after'] = corrplan['im_flat_after'][::downsc_factor,::downsc_factor]  
        if isinstance(corrplan['im_dark_after'], ndarray):
            corrplan['im_dark_after'] = corrplan['im_dark_after'][::downsc_factor,::downsc_factor]          

    f_in.close()    

    # Log infos:
    log = open(logfilename,"a")
    log.write(linesep + "\tPerforming preprocessing...")            
    log.close()         

    # Run computation:  
    process( sino_idx, num_sinos, infile, outpath, preprocessing_required, corrplan, norm_sx, 
            norm_dx, flat_end, half_half, half_half_line, ext_fov, ext_fov_rot_right, ext_fov_overlap, ringrem, 
            phaseretrieval_required, phrtmethod, phrt_param1, phrt_param2, energy, distance, pixsize, phrtpad, 
            approx_win, angles, angles_projfrom, angles_projto, 
            off_step, logtrsf, param1, circle, scale, overpad, reconmethod, zerone_mode, 
            dset_min, dset_max, decim_factor, downsc_factor, corr_offset, postprocess_required, convert_opt, 
            crop_opt, nr_threads, off_from, off_to, logfilename, lock, slice_prefix )       

    # Sample:
    # 26 C:\Temp\dataset42.tdf C:\Temp\test_offset 3.1416 1.0 shepp-logan 1.0 False True True True True False 5 False False 100 0 0 False rivers:11;0 False 0.0 FBP_CUDA 1 4 False - - False 0 1.0 1000.0 22 150 2.2 True 16 0 1163 False C:\Temp 1 -78 -70 slice C:\Temp\log_angles_00.txt



if __name__ == "__main__":
    main(argv[1:])

tools_guessoverlap

This section contains the tools_guessoverlap script.

Download file: tools_guessoverlap.py

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
###########################################################################
# (C) 2016 Elettra - Sincrotrone Trieste S.C.p.A.. All rights reserved.   #
#                                                                         #
#                                                                         #
# This file is part of STP-Core, the Python core of SYRMEP Tomo Project,  #
# a software tool for the reconstruction of experimental CT datasets.     #
#                                                                         #
# STP-Core is free software: you can redistribute it and/or modify it     #
# under the terms of the GNU General Public License as published by the   #
# Free Software Foundation, either version 3 of the License, or (at your  #
# option) any later version.                                              #
#                                                                         #
# STP-Core is distributed in the hope that it will be useful, but WITHOUT #
# ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or   #
# FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License    #
# for more details.                                                       #
#                                                                         #
# You should have received a copy of the GNU General Public License       #
# along with STP-Core. If not, see <http://www.gnu.org/licenses/>.        #
#                                                                         #
###########################################################################

#
# Author: Francesco Brun
# Last modified: July, 8th 2016
#

from math import pi
from numpy import float32, double, finfo, ndarray
from scipy.misc import imresize #scipy 0.12
from os import sep, remove
from os.path import basename
from sys import argv
from h5py import File as getHDF5

import time

# pystp-specific:
import stp_core.io.tdf as tdf
import stp_core.utils.findcenter as findcenter
from stp_core.utils.caching import cache2plan, plan2cache
from stp_core.preprocess.extract_flatdark import extract_flatdark


def main(argv):          
    """Try to guess the amount of overlap in the case of extended FOV CT.

    Parameters
    ----------
    infile  : array_like
        HDF5 input dataset

    outfile : string
        Full path where the identified overlap will be written as output

    scale   : int
        If sub-pixel precision is interesting, use e.g. 2.0 to get an overlap 
        of .5 value. Use 1.0 if sub-pixel precision is not required

    tmppath : int
        Temporary path where look for cached flat/dark files
       
    """     
       
    # Get path:
    infile  = argv[0]  # The HDF5 file on the SSD
    outfile  = argv[1]  # The txt file with the proposed center
    scale  = float(argv[2])
    tmppath = argv[3]   
    if not tmppath.endswith(sep): tmppath += sep    

    # Create a silly temporary log:
    tmplog  = tmppath + basename(infile) + str(time.time()) 
            

    # Open the HDF5 file:
    f_in = getHDF5( infile, 'r' )
    if "/tomo" in f_in:
        dset = f_in['tomo']
    else: 
        dset = f_in['exchange/data']
    num_proj = tdf.get_nr_projs(dset)

    
    # Get first and 180 deg projections:    
    im1 = tdf.read_tomo(dset,0).astype(float32)
    im2 = tdf.read_tomo(dset,num_proj/2).astype(float32)

    
    # Get flats and darks from cache or from file:
    try:
        corrplan = cache2plan(infile, tmppath)
    except Exception as e:
        #print "Error(s) when reading from cache"
        corrplan = extract_flatdark(f_in, True, tmplog)
        remove(tmplog)
        plan2cache(corrplan, infile, tmppath)

    # Apply simple flat fielding (if applicable):
    if (isinstance(corrplan['im_flat_after'], ndarray) and isinstance(corrplan['im_flat'], ndarray) and
        isinstance(corrplan['im_dark'], ndarray) and isinstance(corrplan['im_dark_after'], ndarray)) :      
        im1 = ((abs(im1 - corrplan['im_dark'])) / (abs(corrplan['im_flat'] - corrplan['im_dark'])  + finfo(float32).eps)).astype(float32)   
        im2 = ((abs(im2 - corrplan['im_dark_after'])) / (abs(corrplan['im_flat_after'] - corrplan['im_dark_after'])  + finfo(float32).eps)).astype(float32)     


    # Scale projections (if required) to get subpixel estimation:
    if ( abs(scale - 1.0) > finfo(float32).eps ):   
        im1 = imresize(im1, (int(round(scale*im1.shape[0])), int(round(scale*im1.shape[1]))), interp='bicubic', mode='F');  
        im2 = imresize(im2, (int(round(scale*im2.shape[0])), int(round(scale*im2.shape[1]))), interp='bicubic', mode='F');

            
    # Find the center (flipping left-right im2): DISTINGUISH BETWEEN AIR ON THE RIGHT AND ON THE LEFT??????
    cen = findcenter.usecorrelation(im1, im2[ :,::-1])
    cen = (cen / scale)*2.0 
    
    # Print center to output file:
    text_file = open(outfile, "w")
    text_file.write(str(int(abs(cen))))
    text_file.close()
    
    # Close input HDF5:
    f_in.close()

if __name__ == "__main__":
    main(argv[1:])

preview_preprocessing

This section contains the preview_preprocessing script.

Download file: preview_preprocessing.py

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
###########################################################################
# (C) 2016 Elettra - Sincrotrone Trieste S.C.p.A.. All rights reserved.   #
#                                                                         #
#                                                                         #
# This file is part of STP-Core, the Python core of SYRMEP Tomo Project,  #
# a software tool for the reconstruction of experimental CT datasets.     #
#                                                                         #
# STP-Core is free software: you can redistribute it and/or modify it     #
# under the terms of the GNU General Public License as published by the   #
# Free Software Foundation, either version 3 of the License, or (at your  #
# option) any later version.                                              #
#                                                                         #
# STP-Core is distributed in the hope that it will be useful, but WITHOUT #
# ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or   #
# FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License    #
# for more details.                                                       #
#                                                                         #
# You should have received a copy of the GNU General Public License       #
# along with STP-Core. If not, see <http://www.gnu.org/licenses/>.        #
#                                                                         #
###########################################################################

#
# Author: Francesco Brun
# Last modified: Sept, 28th 2016
#

from sys import argv, exit
from os import remove, sep,  linesep
from os.path import exists
from numpy import float32, nanmin, nanmax, isscalar
from time import time
from multiprocessing import Process, Lock

# pystp-specific:
from stp_core.preprocess.extfov_correction import extfov_correction
from stp_core.preprocess.flat_fielding import flat_fielding
from stp_core.preprocess.dynamic_flatfielding import dff_prepare_plan, dynamic_flat_fielding
from stp_core.preprocess.ring_correction import ring_correction
from stp_core.preprocess.extract_flatdark import extract_flatdark, _medianize

from h5py import File as getHDF5
from stp_core.utils.caching import cache2plan, plan2cache
import stp_core.io.tdf as tdf

def main(argv):          
    """To do...


    """
    # Get the zero-order index of the sinogram to pre-process:
    idx = int(argv[0])
       
    # Get paths:
    infile = argv[1]
    outfile = argv[2]
    
    # Normalization parameters:
    norm_sx = int(argv[3])
    norm_dx = int(argv[4])
    
    # Params for flat fielding with post flats/darks:
    flat_end = True if argv[5] == "True" else False
    half_half = True if argv[6] == "True" else False
    half_half_line = int(argv[7])
        
    # Params for extended FOV:
    ext_fov = True if argv[8] == "True" else False
    ext_fov_rot_right = argv[9]
    if ext_fov_rot_right == "True":
        ext_fov_rot_right = True
        if (ext_fov):
            norm_sx = 0
    else:
        ext_fov_rot_right = False
        if (ext_fov):
            norm_dx = 0     
    ext_fov_overlap = int(argv[10])
        
    # Method and parameters coded into a string:
    ringrem = argv[11]  
    
    # Flat fielding method (conventional or dynamic):
    dynamic_ff = True if argv[12] == "True" else False
    
    # Tmp path and log file:
    tmppath = argv[13]  
    if not tmppath.endswith(sep): tmppath += sep        
    logfilename = argv[14]      

    
    # Open the HDF5 file:   
    f_in = getHDF5(infile, 'r')
    
    try:
        if "/tomo" in f_in:
            dset = f_in['tomo']     
        else: 
            dset = f_in['exchange/data']        
    
    except:
        log = open(logfilename,"a")
        log.write(linesep + "\tError reading input dataset. Process will end.")     
        log.close()         
        exit()
        
    num_proj = tdf.get_nr_projs(dset)
    num_sinos = tdf.get_nr_sinos(dset)
    
    # Check if the HDF5 makes sense:
    if (num_sinos == 0):
        log = open(logfilename,"a")
        log.write(linesep + "\tNo projections found. Process will end.")    
        log.close()         
        exit()      

    # Get flat and darks from cache or from file:
    skipflat = False
    skipdark = False
    if not dynamic_ff:
        try:
            corrplan = cache2plan(infile, tmppath)
        except Exception as e:
            #print "Error(s) when reading from cache"
            corrplan = extract_flatdark(f_in, flat_end, logfilename)
            if (isscalar(corrplan['im_flat']) and isscalar(corrplan['im_flat_after']) ):
                skipflat = True
            else:
                plan2cache(corrplan, infile, tmppath)                   
    else:
        # Dynamic flat fielding:
        if "/tomo" in f_in:             
            if "/flat" in f_in:
                flat_dset = f_in['flat']
                if "/dark" in f_in:
                    im_dark = _medianize(f_in['dark'])
                else:                                       
                    skipdark = True
            else:
                skipflat = True # Nothing to do in this case            
        else: 
            if "/exchange/data_white" in f_in:
                flat_dset = f_in['/exchange/data_white']
                if "/exchange/data_dark" in f_in:
                    im_dark = _medianize(f_in['/exchange/data_dark'])
                else:                   
                    skipdark = True
            else:
                skipflat = True # Nothing to do in this case
    
        # Prepare plan for dynamic flat fielding with 16 repetitions:
        if not skipflat:    
            EFF, filtEFF = dff_prepare_plan(flat_dset, 16, im_dark)

    # Read input image:
    im = tdf.read_sino(dset,idx).astype(float32)    
    f_in.close()    

    # Perform pre-processing (flat fielding, extended FOV, ring removal):   
    if not skipflat:
        if dynamic_ff:
            # Dynamic flat fielding with downsampling = 2:
            im = dynamic_flat_fielding(im, idx, EFF, filtEFF, 2, im_dark, norm_sx, norm_dx)
        else:
            im = flat_fielding(im, idx, corrplan, flat_end, half_half, half_half_line, norm_sx, norm_dx)    
                        
    im = extfov_correction(im, ext_fov, ext_fov_rot_right, ext_fov_overlap)
    if not skipflat and not dynamic_ff:
        im = ring_correction (im, ringrem, flat_end, corrplan['skip_flat_after'], half_half, half_half_line, ext_fov)       
    else:
        im = ring_correction (im, ringrem, False, False, half_half, half_half_line, ext_fov)                        

    # Write down reconstructed preview file (file name modified with metadata):     
    im = im.astype(float32)
    outfile = outfile + '_' + str(im.shape[1]) + 'x' + str(im.shape[0]) + '_' + str( nanmin(im)) + '$' + str( nanmax(im) )  
    im.tofile(outfile)

    # 255 C:\Temp\Pippo.tdf C:\Temp\pippo 0 0 True True 900 False False 0 rivers:3;0 False C:\Temp C:\Temp\log_00.txt

    
if __name__ == "__main__":
    main(argv[1:])

preview_postprocessing

This section contains the preview_postprocessing script.

Download file: preview_postprocessing.py

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
###########################################################################
# (C) 2016 Elettra - Sincrotrone Trieste S.C.p.A.. All rights reserved.   #
#                                                                         #
#                                                                         #
# This file is part of STP-Core, the Python core of SYRMEP Tomo Project,  #
# a software tool for the reconstruction of experimental CT datasets.     #
#                                                                         #
# STP-Core is free software: you can redistribute it and/or modify it     #
# under the terms of the GNU General Public License as published by the   #
# Free Software Foundation, either version 3 of the License, or (at your  #
# option) any later version.                                              #
#                                                                         #
# STP-Core is distributed in the hope that it will be useful, but WITHOUT #
# ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or   #
# FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License    #
# for more details.                                                       #
#                                                                         #
# You should have received a copy of the GNU General Public License       #
# along with STP-Core. If not, see <http://www.gnu.org/licenses/>.        #
#                                                                         #
###########################################################################

#
# Author: Francesco Brun
# Last modified: July, 8th 2016
#

from sys import argv, exit
from glob import glob
from os import linesep
from os.path import sep, basename, exists
from time import time
from numpy import float32, nanmin, nanmax
from multiprocessing import Process, Lock

# pystp-specific:
from stp_core.postprocess.postprocess import postprocess

from tifffile import imread, imsave



def main(argv):          
    """To do...

    Usage
    -----
    

    Parameters
    ---------
           
    Example
    --------------------------
    The following line processes the first ten TIFF files of input path 
    "/home/in" and saves the processed files to "/home/out" with the 
    application of the Boin and Haibel filter with smoothing via a Butterworth
    filter of order 4 and cutoff frequency 0.01:

    reconstruct 0 4 C:\Temp\Dullin_Aug_2012\sino_noflat C:\Temp\Dullin_Aug_2012\sino_noflat\output 
    9.0 10.0 0.0 0.0 0.0 true sino slice C:\Temp\Dullin_Aug_2012\sino_noflat\tomo_conv flat dark

    """ 
    lock = Lock()
    # Get the from and to number of files to process:
    idx = int(argv[0])
       
    # Get input and output paths:
    inpath = argv[1]
    outfile = argv[2]
    
    if not inpath.endswith(sep): inpath += sep

    # Get parameters:
    convert_opt = argv[3]
    crop_opt = argv[4]  
    crop_opt = '0:0:0:0'

    outprefix = argv[5]     
    logfilename = argv[6]   

    # Get the files in infile:      
    files = sorted(glob(inpath + '*.tif*'))
    num_files = len(files)      
    
    if ((idx >= num_files) or (idx == -1)):
        idx = num_files - 1

    # Read the image:
    im = imread(files[idx])

    # Process the image:        
    im = postprocess(im, convert_opt, crop_opt) 

    # Write down reconstructed preview file (file name modified with metadata):     
    im = im.astype(float32)
    outfile = outfile + '_' + str(im.shape[1]) + 'x' + str(im.shape[0]) + '_' + str( nanmin(im)) + '$' + str( nanmax(im) )  
    im.tofile(outfile)


if __name__ == "__main__":
    main(argv[1:])

preview_reconstruct

This section contains the preview_reconstruct script.

Download file: preview_reconstruct.py

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
###########################################################################
# (C) 2016 Elettra - Sincrotrone Trieste S.C.p.A.. All rights reserved.   #
#                                                                         #
#                                                                         #
# This file is part of STP-Core, the Python core of SYRMEP Tomo Project,  #
# a software tool for the reconstruction of experimental CT datasets.     #
#                                                                         #
# STP-Core is free software: you can redistribute it and/or modify it     #
# under the terms of the GNU General Public License as published by the   #
# Free Software Foundation, either version 3 of the License, or (at your  #
# option) any later version.                                              #
#                                                                         #
# STP-Core is distributed in the hope that it will be useful, but WITHOUT #
# ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or   #
# FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License    #
# for more details.                                                       #
#                                                                         #
# You should have received a copy of the GNU General Public License       #
# along with STP-Core. If not, see <http://www.gnu.org/licenses/>.        #
#                                                                         #
###########################################################################

#
# Author: Francesco Brun
# Last modified: Sept, 28th 2016
#

# python:
from sys import argv, exit
from os import remove, sep, linesep, listdir
from os.path import exists, dirname, basename, splitext
from numpy import array, finfo, copy, float32, double, amin, amax, tile, concatenate, asarray, isscalar, pi
from numpy import empty, reshape, log as nplog, arange, squeeze, fromfile, ndarray, where, meshgrid, roll
from time import time
from multiprocessing import Process, Array

# pystp-specific:
from stp_core.preprocess.extfov_correction import extfov_correction
from stp_core.preprocess.flat_fielding import flat_fielding
from stp_core.preprocess.dynamic_flatfielding import dff_prepare_plan, dynamic_flat_fielding
from stp_core.preprocess.ring_correction import ring_correction
from stp_core.preprocess.extract_flatdark import extract_flatdark, _medianize

from stp_core.phaseretrieval.tiehom import tiehom, tiehom_plan
from stp_core.phaseretrieval.phrt   import phrt, phrt_plan

from stp_core.reconstruct.rec_astra import recon_astra_fbp, recon_astra_iterative
from stp_core.reconstruct.rec_fista_tv import recon_fista_tv
from stp_core.reconstruct.rec_mr_fbp import recon_mr_fbp
from stp_core.reconstruct.rec_gridrec import recon_gridrec

from stp_core.postprocess.postprocess import postprocess

from stp_core.utils.padding import upperPowerOfTwo, padImage, padSmoothWidth
from stp_core.utils.caching import cache2plan, plan2cache

from tifffile import imread, imsave
from h5py import File as getHDF5
import stp_core.io.tdf as tdf


def reconstruct(im, angles, offset, logtransform, recpar, circle, scale, pad, method, 
                zerone_mode, dset_min, dset_max, corr_offset, rolling, roll_shift):
    """Reconstruct a sinogram with FBP algorithm (from ASTRA toolbox).

    Parameters
    ----------
    im1 : array_like
        Sinogram image data as numpy array.
    center : float
        Offset of the center of rotation to use for the tomographic 
        reconstruction with respect to the half of sinogram width 
        (default=0, i.e. half width).
    logtransform : boolean
        Apply logarithmic transformation before reconstruction (default=True).
    filter : string
        Filter to apply before the application of the reconstruction algorithm. Filter 
        types are: ram-lak, shepp-logan, cosine, hamming, hann, tukey, lanczos, triangular, 
        gaussian, barlett-hann, blackman, nuttall, blackman-harris, blackman-nuttall, 
        flat-top, kaiser, parzen.
    circle : boolean
        Create a circle in the reconstructed image and set to zero pixels outside the 
        circle (default=False). 
    
    """
    offset = int(round(offset))

    # Upscale projections (if required):
    if (abs(scale - 1.0) > finfo(float32).eps):     
        siz_orig1 = im.shape[1]     
        im = imresize(im, (im.shape[0], int(round(scale * im.shape[1]))), interp='bicubic', mode='F')
        offset = int(offset * scale)        
            
    # Apply transformation for changes in the center of rotation:
    if (offset != 0):
        if (offset >= 0):
            im = im[:,:-offset]
            
            tmp = im[:,0] # Get first column
            tmp = tile(tmp, (offset,1)) # Replicate the first column the right number of times
            im = concatenate((tmp.T,im), axis=1) # Concatenate tmp before the image
                        
        else:
            im = im[:,abs(offset):]     
            
            tmp = im[:,im.shape[1] - 1] # Get last column
            tmp = tile(tmp, (abs(offset),1)) # Replicate the last column the right number of times
            im = concatenate((im,tmp.T), axis=1) # Concatenate tmp after the image

    # Sinogram rolling (if required).  It doesn't make sense in limited angle tomography, so check if 180 or 360:
    if ((rolling == True) and (roll_shift > 0)):
        if ( (angles - pi) < finfo(float32).eps ):
            # Flip the last rows:
            im[-roll_shift:,:] = im[-roll_shift:,::-1]
            # Now roll the sinogram:
            im = roll(im, roll_shift, axis=0)
        elif ((angles - pi*2.0) < finfo(float32).eps):  
            # Only roll the sinogram:
            im = roll(im, roll_shift, axis=0)

    # Scale image to [0,1] range (if required):
    if (zerone_mode):
        
        #print dset_min
        #print dset_max
        #print numpy.amin(im_f[:])
        #print numpy.amax(im_f[:])
        #im_f = (im_f - dset_min) / (dset_max - dset_min)
        
        # Cheating the whole process:
        im = (im - numpy.amin(im[:])) / (numpy.amax(im[:]) - numpy.amin(im[:]))
            
    # Apply log transform:
    if (logtransform == True):                      
        im[im <= finfo(float32).eps] = finfo(float32).eps
        im = -nplog(im + corr_offset)   
    
    # Replicate pad image to double the width:
    if (pad):   

        dim_o = im.shape[1]     
        n_pad = im.shape[1] + im.shape[1] / 2                   
        marg = (n_pad - dim_o) / 2  
    
        # Pad image:
        im = padSmoothWidth(im, n_pad)      
    
    # Perform the actual reconstruction:
    if (method.startswith('FBP')):
        im = recon_astra_fbp(im, angles, method, recpar)    
    elif (method == 'MR-FBP_CUDA'):
        im = recon_mr_fbp(im, angles)
    elif (method == 'FISTA-TV_CUDA'):
        im = recon_fista_tv(im, angles, recpar, recpar)
    elif (method == 'GRIDREC'):
        [im, im] = recon_gridrec(im, im, angles, recpar)    
    else:
        im = recon_astra_iterative(im, angles, method, recpar, zerone_mode) 

        
    # Crop:
    if (pad):       
        im = im[marg:dim_o + marg, marg:dim_o + marg]           

    # Resize (if necessary):
    if (abs(scale - 1.0) > finfo(float32).eps):
        im = imresize(im, (siz_orig1, siz_orig1), interp='nearest', mode='F')

    # Return output:
    return im.astype(float32)


#def _testwritedownsino(tmp_im):

#   for ct in range(0, tmp_im.shape[0]):
#       a = tmp_im[ct,:,:].squeeze()            
#       fname = 'C:\\Temp\\StupidFolder\\sino_' + str(ct).zfill(4) + '.tif'
#       imsave(fname, a.astype(float32))

#def _testwritedownproj(tmp_im):

#   for ct in range(0, tmp_im.shape[1]):
#       a = tmp_im[:,ct,:].squeeze()            
#       fname = 'C:\\Temp\\StupidFolder\\proj_' + str(ct).zfill(4) + '.tif'
#       imsave(fname, a.astype(float32))
        
def process(sino_idx, num_sinos, infile, outfile, preprocessing_required, corr_plan, skipflat, norm_sx, norm_dx, flat_end, half_half, 
            half_half_line, ext_fov, ext_fov_rot_right, ext_fov_overlap, ringrem, phaseretrieval_required, phrtmethod, phrt_param1,
            phrt_param2, energy, distance, pixsize, phrtpad, approx_win, angles, angles_projfrom, angles_projto,
            offset, logtransform, recpar, circle, scale, pad, method, rolling, roll_shift,
            zerone_mode, dset_min, dset_max, decim_factor, downsc_factor, corr_offset, postprocess_required, convert_opt, 
            crop_opt, dynamic_ff, EFF, filtEFF, im_dark, nr_threads, logfilename):
    """To do...

    """
    # Perform reconstruction (on-the-fly preprocessing and phase retrieval, if
    # required):
    if (phaseretrieval_required):
        
        # In this case a bunch of sinograms is loaded into memory:

        #
        # Load the temporary data structure reading the input TDF file.
        # To know the right dimension the first sinogram is pre-processed.
        #       

        # Open the TDF file and get the dataset:
        f_in = getHDF5(infile, 'r')
        if "/tomo" in f_in:
            dset = f_in['tomo']
        else: 
            dset = f_in['exchange/data']
        
        # Downscaling and decimation factors considered when determining the
        # approximation window:
        zrange = arange(sino_idx - approx_win * downsc_factor / 2, sino_idx + approx_win * downsc_factor / 2, downsc_factor)
        zrange = zrange[(zrange >= 0)]
        zrange = zrange[(zrange < num_sinos)]
        approx_win = zrange.shape[0]
        
        # Approximation window cannot be odd:
        if (approx_win % 2 == 1):
            approx_win = approx_win - 1 
            zrange = zrange[0:approx_win]
        
        # Read one sinogram to get the proper dimensions:
        test_im = tdf.read_sino(dset, zrange[0]).astype(float32)    

        # Apply projection removal (if required):
        test_im = test_im[angles_projfrom:angles_projto, :]

        # Apply decimation and downscaling (if required):
        test_im = test_im[::decim_factor, ::downsc_factor]

        # Perform the pre-processing of the first sinogram to get the right
        # dimension:
        if (preprocessing_required):
            if not skipflat:            
                if dynamic_ff:
                    # Dynamic flat fielding with downsampling = 2:
                    test_im = dynamic_flat_fielding(test_im, zrange[0] / downsc_factor, EFF, filtEFF, 2, im_dark, norm_sx, norm_dx)
                else:
                    test_im = flat_fielding(test_im, zrange[0] / downsc_factor, corr_plan, flat_end, half_half, 
                                            half_half_line / decim_factor, norm_sx, norm_dx).astype(float32)
            test_im = extfov_correction(test_im, ext_fov, ext_fov_rot_right, ext_fov_overlap / downsc_factor).astype(float32)           
            if not skipflat and not dynamic_ff:
                test_im = ring_correction(test_im, ringrem, flat_end, corr_plan['skip_flat_after'], half_half, 
                                            half_half_line / decim_factor, ext_fov).astype(float32) 
            else:
                test_im = ring_correction(test_im, ringrem, False, False, half_half, 
                                            half_half_line / decim_factor, ext_fov).astype(float32) 
        
        # Now we can allocate memory for the bunch of slices:
        tmp_im = empty((approx_win, test_im.shape[0], test_im.shape[1]), dtype=float32)
        tmp_im[0,:,:] = test_im

        # Reading all the the sinos from TDF file and close:
        for ct in range(1, approx_win):

            # Read the sinogram:
            test_im = tdf.read_sino(dset, zrange[ct]).astype(float32)

            # Apply projection removal (if required):
            test_im = test_im[angles_projfrom:angles_projto, :]

            # Apply decimation and downscaling (if required):
            test_im = test_im[::decim_factor, ::downsc_factor]
            
            # Perform the pre-processing for each sinogram of the bunch:
            if (preprocessing_required):
                if not skipflat:
                    if dynamic_ff:
                        # Dynamic flat fielding with downsampling = 2:
                        test_im = dynamic_flat_fielding(test_im, zrange[ct] / downsc_factor, EFF, filtEFF, 2, im_dark, norm_sx, norm_dx)
                    else:
                        test_im = flat_fielding(test_im, zrange[ct] / downsc_factor, corr_plan, flat_end, half_half, 
                                            half_half_line / decim_factor, norm_sx, norm_dx).astype(float32)    
                test_im = extfov_correction(test_im, ext_fov, ext_fov_rot_right, ext_fov_overlap / downsc_factor).astype(float32)
                if not skipflat and not dynamic_ff:
                    test_im = ring_correction(test_im, ringrem, flat_end, corr_plan['skip_flat_after'], half_half, 
                                            half_half_line / decim_factor, ext_fov).astype(float32) 
                else:
                    test_im = ring_correction(test_im, ringrem, False, False, half_half, 
                                            half_half_line / decim_factor, ext_fov).astype(float32)             

            tmp_im[ct,:,:] = test_im
    
        f_in.close()

        # Now everything has to refer to a downscaled dataset:
        sino_idx = ((zrange == sino_idx).nonzero())

        #
        # Perform phase retrieval:
        #

        # Prepare the plan:
        if (phrtmethod == 0):
            # Paganin's:
            phrtplan = tiehom_plan(tmp_im[:,0,:], phrt_param1, phrt_param2, energy, distance, pixsize * downsc_factor, phrtpad)
        else:
            phrtplan = phrt_plan(tmp_im[:,0,:], energy, distance, pixsize * downsc_factor, phrt_param2, phrt_param1, phrtmethod, phrtpad)
            #phrtplan = prepare_plan (tmp_im[:,0,:], beta, delta, energy, distance,
            #pixsize*downsc_factor, padding=phrtpad)
        
        # Process each projection (whose height depends on the size of the bunch):
        for ct in range(0, tmp_im.shape[1]):
            #tmp_im[:,ct,:] = phase_retrieval(tmp_im[:,ct,:], phrtplan).astype(float32)
            if (phrtmethod == 0):
                tmp_im[:,ct,:] = tiehom(tmp_im[:,ct,:], phrtplan).astype(float32)           
            else:
                tmp_im[:,ct,:] = phrt(tmp_im[:,ct,:], phrtplan, phrtmethod).astype(float32)                 
        
        # Extract the requested sinogram:
        im = tmp_im[sino_idx[0],:,:].squeeze()  

    else:

        # Read only one sinogram:
        f_in = getHDF5(infile, 'r')
        if "/tomo" in f_in:
            dset = f_in['tomo']
        else: 
            dset = f_in['exchange/data']
        im = tdf.read_sino(dset,sino_idx).astype(float32)       
        f_in.close()

        # Apply projection removal (if required):
        im = im[angles_projfrom:angles_projto, :]

        # Apply decimation and downscaling (if required):
        im = im[::decim_factor,::downsc_factor]
        sino_idx = sino_idx / downsc_factor 
            
        # Perform the preprocessing of the sinogram (if required):
        if (preprocessing_required):
            if not skipflat:
                if dynamic_ff:
                    # Dynamic flat fielding with downsampling = 2:
                    im = dynamic_flat_fielding(im, sino_idx, EFF, filtEFF, 2, im_dark, norm_sx, norm_dx)
                else:
                    im = flat_fielding(im, sino_idx, corr_plan, flat_end, half_half, half_half_line / decim_factor, 
                                norm_sx, norm_dx).astype(float32)       
            im = extfov_correction(im, ext_fov, ext_fov_rot_right, ext_fov_overlap)
            if not skipflat and not dynamic_ff:
                im = ring_correction(im, ringrem, flat_end, corr_plan['skip_flat_after'], half_half, 
                                half_half_line / decim_factor, ext_fov)
            else:
                im = ring_correction(im, ringrem, False, False, half_half, 
                                half_half_line / decim_factor, ext_fov)


    # Additional ring removal before reconstruction:
    #im = boinhaibel(im, '11;')
    #im = munchetal(im, '5;1.8')
    #im = rivers(im, '13;')
    #im = raven(im, '11;0.8')
    #im = oimoen(im, '51;51')

    # Actual reconstruction:
    im = reconstruct(im, angles, offset / downsc_factor, logtransform, recpar, circle, scale, pad, method, 
                    zerone_mode, dset_min, dset_max, corr_offset, rolling, roll_shift).astype(float32)  

    # Apply post-processing (if required):
    if postprocess_required:
        im = postprocess(im, convert_opt, crop_opt)
    else:
        # Create the circle mask for fancy output:
        if (circle == True):
            siz = im.shape[1]
            if siz % 2:
                rang = arange(-siz / 2 + 1, siz / 2 + 1)
            else:
                rang = arange(-siz / 2,siz / 2)
            x,y = meshgrid(rang,rang)
            z = x ** 2 + y ** 2
            a = (z < (siz / 2 - int(round(abs(offset) / downsc_factor))) ** 2)
            im = im * a         

    # Write down reconstructed preview file (file name modified with metadata):
    im = im.astype(float32)
    outfile = outfile + '_' + str(im.shape[1]) + 'x' + str(im.shape[0]) + '_' + str(amin(im)) + '$' + str(amax(im)) 
    im.tofile(outfile)  
                                
    #print "With %d thread(s): [%0.3f sec, %0.3f sec, %0.3f sec]." % (nr_threads,
    #t1-t0, t2-t1, t3-t2)

def main(argv):          
    """To do...

    Usage
    -----
    

    Parameters
    ---------
           
    Example
    --------------------------


    """
    # Get the from and to number of files to process:
    sino_idx = int(argv[0])
       
    # Get paths:
    infile = argv[1]
    outfile = argv[2]

    # Essential reconstruction parameters:
    angles = float(argv[3]) 
    offset = float(argv[4])
    recpar = argv[5]    
    scale = int(float(argv[6]))
    
    overpad = True if argv[7] == "True" else False
    logtrsf = True if argv[8] == "True" else False
    circle = True if argv[9] == "True" else False
    
    # Parameters for on-the-fly pre-processing:
    preprocessing_required = True if argv[10] == "True" else False      
    flat_end = True if argv[11] == "True" else False        
    half_half = True if argv[12] == "True" else False
        
    half_half_line = int(argv[13])
        
    ext_fov = True if argv[14] == "True" else False
        
    norm_sx = int(argv[17])
    norm_dx = int(argv[18]) 
        
    ext_fov_rot_right = argv[15]
    if ext_fov_rot_right == "True":
        ext_fov_rot_right = True
        if (ext_fov):
            norm_sx = 0
    else:
        ext_fov_rot_right = False
        if (ext_fov):
            norm_dx = 0
        
    ext_fov_overlap = int(argv[16])
        
    skip_ringrem = True if argv[19] == "True" else False
    ringrem = argv[20]
    
    # Extra reconstruction parameters:
    zerone_mode = True if argv[21] == "True" else False     
    corr_offset = float(argv[22])
        
    reconmethod = argv[23]  
    
    decim_factor = int(argv[24])
    downsc_factor = int(argv[25])
    
    # Parameters for postprocessing:
    postprocess_required = True if argv[26] == "True" else False
    convert_opt = argv[27]
    crop_opt = argv[28]

    # Parameters for on-the-fly phase retrieval:
    phaseretrieval_required = True if argv[29] == "True" else False     
    phrtmethod = int(argv[30])
    phrt_param1 = double(argv[31])   # param1( e.g.  regParam, or beta)
    phrt_param2 = double(argv[32])   # param2( e.g.  thresh or delta)
    energy = double(argv[33])
    distance = double(argv[34])    
    pixsize = double(argv[35]) / 1000.0 # pixsixe from micron to mm:
    phrtpad = True if argv[36] == "True" else False
    approx_win = int(argv[37])  

    angles_projfrom = int(argv[38]) 
    angles_projto = int(argv[39])   

    rolling = True if argv[40] == "True" else False
    roll_shift = int(argv[41])

    preprocessingplan_fromcache = True if argv[42] == "True" else False
    dynamic_ff = True if argv[43] == "True" else False

    nr_threads = int(argv[44])  
    tmppath = argv[45]  
    if not tmppath.endswith(sep): tmppath += sep
        
    logfilename = argv[46]      
            
    # Open the HDF5 file:
    f_in = getHDF5(infile, 'r')
    if "/tomo" in f_in:
        dset = f_in['tomo'] 
    else: 
        dset = f_in['exchange/data']
        if "/provenance/detector_output" in f_in:
            prov_dset = f_in['provenance/detector_output']              
    
    dset_min = -1
    dset_max = -1
    if (zerone_mode):
        if ('min' in dset.attrs):
            dset_min = float(dset.attrs['min'])                             
        else:
            zerone_mode = False
            
        if ('max' in dset.attrs):
            dset_max = float(dset.attrs['max'])             
        else:
            zerone_mode = False 
        
    num_sinos = tdf.get_nr_sinos(dset) # Pay attention to the downscale factor
    
    if (num_sinos == 0):    
        exit()      

    # Check extrema:
    if (sino_idx >= num_sinos):
        sino_idx = num_sinos - 1
    
    # Get correction plan and phase retrieval plan (if required):
    skipflat = False
    
    corrplan = 0    
    im_dark = 0
    EFF = 0
    filtEFF = 0
    if (preprocessing_required):
        if not dynamic_ff:
            # Load flat fielding plan either from cache (if required) or from TDF file
            # and cache it for faster re-use:
            if (preprocessingplan_fromcache):
                try:
                    corrplan = cache2plan(infile, tmppath)
                except Exception as e:
                    #print "Error(s) when reading from cache"
                    corrplan = extract_flatdark(f_in, flat_end, logfilename)
                    if (isscalar(corrplan['im_flat']) and isscalar(corrplan['im_flat_after'])):
                        skipflat = True
                    else:
                        plan2cache(corrplan, infile, tmppath)       
            else:           
                corrplan = extract_flatdark(f_in, flat_end, logfilename)        
                if (isscalar(corrplan['im_flat']) and isscalar(corrplan['im_flat_after'])):
                    skipflat = True
                else:
                    plan2cache(corrplan, infile, tmppath)   

            # Dowscale flat and dark images if necessary:
            if isinstance(corrplan['im_flat'], ndarray):
                corrplan['im_flat'] = corrplan['im_flat'][::downsc_factor,::downsc_factor]      
            if isinstance(corrplan['im_dark'], ndarray):
                corrplan['im_dark'] = corrplan['im_dark'][::downsc_factor,::downsc_factor]  
            if isinstance(corrplan['im_flat_after'], ndarray):
                corrplan['im_flat_after'] = corrplan['im_flat_after'][::downsc_factor,::downsc_factor]  
            if isinstance(corrplan['im_dark_after'], ndarray):
                corrplan['im_dark_after'] = corrplan['im_dark_after'][::downsc_factor,::downsc_factor]          

        else:
            # Dynamic flat fielding:
            if "/tomo" in f_in:             
                if "/flat" in f_in:
                    flat_dset = f_in['flat']
                    if "/dark" in f_in:
                        im_dark = _medianize(f_in['dark'])
                    else:                                       
                        skipdark = True
                else:
                    skipflat = True # Nothing to do in this case
            else: 
                if "/exchange/data_white" in f_in:
                    flat_dset = f_in['/exchange/data_white']
                    if "/exchange/data_dark" in f_in:
                        im_dark = _medianize(f_in['/exchange/data_dark'])   
                    else:                   
                        skipdark = True
                else:
                    skipflat = True # Nothing to do in this case
    
            # Prepare plan for dynamic flat fielding with 16 repetitions:
            if not skipflat:
                EFF, filtEFF = dff_prepare_plan(flat_dset, 16, im_dark)

                # Downscale images if necessary:
                im_dark = im_dark[::downsc_factor,::downsc_factor]
                EFF = EFF[::downsc_factor,::downsc_factor,:]    
                filtEFF = filtEFF[::downsc_factor,::downsc_factor,:]    
            
    f_in.close()            

    # Run computation:
    process(sino_idx, num_sinos, infile, outfile, preprocessing_required, corrplan, skipflat, norm_sx, 
                norm_dx, flat_end, half_half, half_half_line, ext_fov, ext_fov_rot_right, ext_fov_overlap, ringrem, 
                phaseretrieval_required, phrtmethod, phrt_param1, phrt_param2, energy, distance, pixsize, phrtpad, approx_win, angles, 
                angles_projfrom, angles_projto, offset, 
                logtrsf, recpar, circle, scale, overpad, reconmethod, 
                rolling, roll_shift,
                zerone_mode, dset_min, dset_max, decim_factor, 
                downsc_factor, corr_offset, postprocess_required, convert_opt, crop_opt, dynamic_ff, EFF, filtEFF, im_dark, nr_threads, logfilename)        

    # Sample:
    # 311 C:\Temp\BrunGeorgos.tdf C:\Temp\BrunGeorgos.raw 3.1416 -31.0 shepp-logan
    # 1.0 False False True True True True 5 False False 100 0 0 False rivers:11;0
    # False 0.0 FBP_CUDA 1 1 False - - True 5 1.0 1000.0 22 150 2.2 True 16 0 1799
    # True True 2 C:\Temp\StupidFolder C:\Temp\log_00.txt


if __name__ == "__main__":
    main(argv[1:])

preview_phaseretrieval

This section contains the preview_phaseretrieval script.

Download file: preview_phaseretrieval.py

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
###########################################################################
# (C) 2016 Elettra - Sincrotrone Trieste S.C.p.A.. All rights reserved.   #
#                                                                         #
#                                                                         #
# This file is part of STP-Core, the Python core of SYRMEP Tomo Project,  #
# a software tool for the reconstruction of experimental CT datasets.     #
#                                                                         #
# STP-Core is free software: you can redistribute it and/or modify it     #
# under the terms of the GNU General Public License as published by the   #
# Free Software Foundation, either version 3 of the License, or (at your  #
# option) any later version.                                              #
#                                                                         #
# STP-Core is distributed in the hope that it will be useful, but WITHOUT #
# ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or   #
# FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License    #
# for more details.                                                       #
#                                                                         #
# You should have received a copy of the GNU General Public License       #
# along with STP-Core. If not, see <http://www.gnu.org/licenses/>.        #
#                                                                         #
###########################################################################

#
# Author: Francesco Brun
# Last modified: July, 8th 2016
#

from sys import argv, exit
from os import remove, sep, linesep
from os.path import exists
from numpy import float32, double, nanmin, nanmax, finfo, ndarray
from time import time
from multiprocessing import Process, Lock
from pyfftw.interfaces.cache import enable as pyfftw_cache_enable, disable as pyfftw_cache_disable
from pyfftw.interfaces.cache import set_keepalive_time as pyfftw_set_keepalive_time

# pystp-specific:
from stp_core.phaseretrieval.tiehom import tiehom, tiehom_plan
from stp_core.phaseretrieval.phrt   import phrt, phrt_plan

from h5py import File as getHDF5
from stp_core.utils.caching import cache2plan, plan2cache
from stp_core.preprocess.extract_flatdark import extract_flatdark
import stp_core.io.tdf as tdf


def main(argv):
    """To do...

    """
    lock = Lock()

    skip_flat = True
    first_done = False  
    pyfftw_cache_disable()
    pyfftw_cache_enable()
    pyfftw_set_keepalive_time(1800) 

    # Get the from and to number of files to process:
    idx = int(argv[0])
       
    # Get full paths of input TDF and output TDF:
    infile = argv[1]
    outfile = argv[2]
    
    # Get the phase retrieval parameters:
    method = int(argv[3])
    param1 = double(argv[4])   # param1( e.g. regParam, or beta)
    param2 = double(argv[5])   # param2( e.g. thresh or delta)
    energy = double(argv[6])
    distance = double(argv[7])    
    pixsize = double(argv[8]) / 1000.0 # pixsixe from micron to mm: 
    pad = True if argv[9] == "True" else False
    
    # Tmp path and log file:
    tmppath = argv[10]  
    if not tmppath.endswith(sep): tmppath += sep        
    logfilename = argv[11]      

    
    # Open the HDF5 file:
    f_in = getHDF5(infile, 'r')
    if "/tomo" in f_in:
        dset = f_in['tomo']
    else: 
        dset = f_in['exchange/data']
    num_proj = tdf.get_nr_projs(dset)
    num_sinos = tdf.get_nr_sinos(dset)
    
    # Check if the HDF5 makes sense:
    if (num_proj == 0):
        log = open(logfilename,"a")
        log.write(linesep + "\tNo projections found. Process will end.")    
        log.close()         
        exit()      


    # Get flats and darks from cache or from file:
    try:
        corrplan = cache2plan(infile, tmppath)
    except Exception as e:
        #print "Error(s) when reading from cache"
        corrplan = extract_flatdark(f_in, True, logfilename)
        remove(logfilename)
        plan2cache(corrplan, infile, tmppath)

    # Read projection:
    im = tdf.read_tomo(dset,idx).astype(float32)        
    f_in.close()

    # Apply simple flat fielding (if applicable):
    if (isinstance(corrplan['im_flat_after'], ndarray) and isinstance(corrplan['im_flat'], ndarray) and
        isinstance(corrplan['im_dark'], ndarray) and isinstance(corrplan['im_dark_after'], ndarray)) :  
        if (idx < num_proj/2):
            im = (im - corrplan['im_dark']) / (abs(corrplan['im_flat'] - corrplan['im_dark']) + finfo(float32).eps)
        else:
            im = (im - corrplan['im_dark_after']) / (abs(corrplan['im_flat_after'] - corrplan['im_dark_after']) 
                + finfo(float32).eps)   
                    
    # Prepare plan:
    im = im.astype(float32)
    if (method == 0):
        # Paganin's:
        plan = tiehom_plan (im, param1, param2, energy, distance, pixsize, pad)     
        im = tiehom(im, plan).astype(float32)   
    else:
        plan = phrt_plan (im, energy, distance, pixsize, param2, param1, method, pad)
        im = phrt(im, plan, method).astype(float32)             
    
    # Write down reconstructed preview file (file name modified with metadata):     
    im = im.astype(float32)
    outfile = outfile + '_' + str(im.shape[1]) + 'x' + str(im.shape[0]) + '_' + str( nanmin(im)) + '$' + str( nanmax(im) )  
    im.tofile(outfile)      
    
if __name__ == "__main__":
    main(argv[1:])

Credits

Citations

We kindly request that you cite the following article [A1] if you use project.

[A1]Francesco Brun, Serena Pacile, Agostino Accardo, George Kourousias, Diego Dreossi, Lucia Mancini, Giuliana Tromba, and Roberto Pugliese. Enhanced and flexible software tools for x-ray computed tomography at the italian synchrotron radiation facility elettra. Fundamenta Informaticae, 141(2-3):233–243, Oct 2015. URL: http://doi.org/10.3233/FI-2015-1273, doi:10.3233/FI-2015-1273.

References

[B1]Francesco Brun, Serena Pacile, Agostino Accardo, George Kourousias, Diego Dreossi, Lucia Mancini, Giuliana Tromba, and Roberto Pugliese. Enhanced and flexible software tools for x-ray computed tomography at the italian synchrotron radiation facility elettra. Fundamenta Informaticae, 141(2-3):233–243, Oct 2015. URL: http://doi.org/10.3233/FI-2015-1273, doi:10.3233/FI-2015-1273.