

 Navigation

 	
 index

 	stggh latest documentation

Welcome to Read the Docs

This is an autogenerated index file.

Please create a /home/docs/checkouts/readthedocs.org/user_builds/stggh/checkouts/latest/index.rst or /home/docs/checkouts/readthedocs.org/user_builds/stggh/checkouts/latest/README.rst file with your own content.

If you want to use another markup, choose a different builder in your settings.

 Copyright 2016.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	stggh latest documentation

Index

 Copyright 2016.
 Created using Sphinx 1.3.5.

 README.html

 Navigation

 		
 index

 		stggh latest documentation »

PyAbel

[image: Build Status] [https://travis-ci.org/PyAbel/PyAbel]
[image: Appveyor Status] [https://ci.appveyor.com/project/PyAbel/PyAbel]

PyAbel is a Python package for performing Abel and (primarily) inverse Abel transforms. The Abel transform takes a cylindrically symmetric 3D object and finds the 2D projection of that object. The more difficult problem – the inverse Abel transform – takes the 2D projection and finds the central slice of the 3D object by assuming cylindrical symmetry in the vertical direction.

The PyAbel package offers several options for completing the inverse Abel transform:

		The BASEX algorithm creared by Dribinski, Ossadtchi, Mandelshtam, and Reisler [Rev. Sci. Instrum. 73 2634, (2002) [http://dx.doi.org/10.1063/1.1482156]]. The BASEX implementation uses Gaussian basis functions to find the transform instead of analytically solving the inverse Abel transform.

		The “Hansen and Law” recursive method described in [J. Opt. Soc. Am A 2 (4) 510 (1985)]

		In the future, we hope to have more options for the forward and inverse abel transforms.

Symmetry

In this code, the axis of cylindrical symmetry is in assumed to be in the vertical direction. If this is not the case for your data, the numpy.rot90 function can be used to rotate your dataset.

Installation notes

This module requires Python 2.7 or 3.3-3.5. It can be installed with

python setup.py install --user

Or, if you wish to edit the PyAbel code without re-installing each time (advanced users):

python setup.py develop

Example of use

See several example in examples folder.

Contributing

We welcome new implementations of the inverse Abel transform or other code improvements. Please feel free to submit an issue or make a pull request.

Have fun!

 © Copyright 2016.
 Created using Sphinx 1.3.5.

CONTRIBUTING.html

 Navigation

 		
 index

 		stggh latest documentation »

Contributing to PyAbel

Adding a new forward or inverse Abel implementation

We are always looking for new implementation of forward or inverse Abel transform, therefore if you have an implementation that you would want to contribute to PyAbel, don’t hesitate to do so.

In order to allow a consistent user experience between different implementations, and insure an overall code quality, please consider the following points in your pull request.

Naming conventions

The implementation named <implementation>, located under abel/<implementation>.py should use the following naming system for top-level functions,

		fabel_<implemenation> : forward transform (when defined)

		iabel_<implemenation> : inverse implementation (when defined)

		bs<implementation> : function that generates the basis sets (if necessary)

		bs_<implementation>_cached : function that loads the basis sets from disk, and generates them if they are not found (if necessary).

Unit tests

As to detect issues early and avoid regressions, the submitted implementation should have the following properties and pass the corresponding unit tests,

		The reconstruction has the same shape as the original image for the parity (even/odd shape of the image) it supports. When provided with an image size with a parity it does not support a clear exception should be raised.

		Given an array of 0 elements, the reconstruction should also be a 0 array.

		The implementation should be able to calculated the inverse (or forward) transform of a Gaussian function defined by a standard deviation sigma, with better than a 10 % relative error with respect to the analytical solution for 0 > r > 2*sigma.

Unit tests for a given implementation are located under abel/tests/test_<implemenation>.py, which should contain at least the following 3 functions test_<implementation>_shape, test_<implementation>_zeros, test_<implementation>_gaussian. See abel/tests/test_basex.py for a concrete example.

The test suite can be run from within the PyAbel package with,

nose -s abel/tests/ --verbosity=2 --with-coverage --cover-package=abel

or, from any folder with,

python -c "import abel.tests; abel.tests.run_cli(coverage=True)"

which performs an equivalent call.

Dependencies

The current list of dependencies can be found in setup.py [https://github.com/PyAbel/PyAbel/blob/master/setup.py]. Please refrain from adding new dependencies, unless it cannot be avoided.

Before merging

If possible, before merging your pull request please rebase your fork on the last master on PyAbel. This could be done as explained in this post [https://stackoverflow.com/questions/7244321/how-to-update-a-github-forked-repository],

Add the remote, call it "upstream" (only the fist time)
git remote add upstream git@github.com:PyAbel/PyAbel.git

Fetch all the branches of that remote into remote-tracking branches,
such as upstream/master:

git fetch upstream

Make sure that you're on your master branch
or any other branch your are working on

git checkout master # or your other working branch

Rewrite your master branch so that any commits of yours that
aren't already in upstream/master are replayed on top of that
other branch:

git rebase upstream/master

push the changes to your fork

git push -f

See this wiki [https://github.com/edx/edx-platform/wiki/How-to-Rebase-a-Pull-Request] for more information.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

_static/file.png

_static/plus.png

search.html

 Navigation

 		
 index

 		stggh latest documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

_static/down-pressed.png

_static/ajax-loader.gif

_static/comment.png

_static/comment-bright.png

_static/up-pressed.png

_static/down.png

_static/up.png

_static/minus.png

_static/comment-close.png

