
steno3d Documentation
Release 0.3.2

ARANZ Geo Limited

Jun 07, 2017

Contents

1 Demo Video 3

2 Quickstart 5
2.1 Contents . 5
2.2 Index . 32

i

ii

steno3d Documentation, Release 0.3.2

Welcome to the Python client library for Steno3D by ARANZ Geo Limited. Explore and collaborate on your 3D data!

Contents 1

https://steno3d.com
https://www.aranzgeo.com

steno3d Documentation, Release 0.3.2

2 Contents

CHAPTER 1

Demo Video

3

steno3d Documentation, Release 0.3.2

4 Chapter 1. Demo Video

CHAPTER 2

Quickstart

If you have not yet installed Steno3D, simply

pip install steno3d

You also need to sign up for a Steno3D account. From there, you can request a developer API key.

At that point, you can

import steno3d
steno3d.login()

then start building your 3D project. API documentation is available on online. Tutorials and Examples are available as
Jupyter notebooks. Class documentation can also be accessed in the IPython environment with ? and tab completion.
The latest version of Steno3D is 0.3.2. Detailed release notes are available on github.

Contents

Getting Started

Get up and running with Steno3D! This page contains resources for installing Steno3D, trying out a sample project
yourself, and exploring public projects.

• Install Steno3D

• A First Project

• Explore Steno3D

If you run into issues: report them on github.

Install Steno3D

Want to start using Steno3D with your own data? It is available on pip:

5

https://steno3d.com
https://steno3d.com/signup
https://steno3d.com/settings/developer
https://steno3d.com/docs
https://github.com/3ptscience/steno3d-notebooks
https://github.com/3ptscience/steno3dpy/releases
https://steno3d.com
https://github.com/3ptscience/steno3dpy/issues/new
https://pypi.python.org/pypi/steno3d

steno3d Documentation, Release 0.3.2

pip install steno3d

or install from source:

git clone https://github.com/3ptscience/steno3dpy.git
python setup.py install

Example Jupyter notebooks can be cloned or you can follow along online with the First Project below

git clone https://github.com/3ptscience/steno3d-notebooks.git

A First Project

Let’s get started using Steno3D. The following demo project is available online in a Jupyter notebook at mybinder.org,
no installation required.

Here, we will create a public project containing a surface, upload it, and explore it with Steno3D!

Start by importing
Steno3D. If you are using the online notebooks your environment should already be set up; otherwise, Steno3D is
easy to install.

>> import steno3d

Log In

Next, you need to login using your API developer key. If you do not have a Steno3D account, you can sign up and
request a developer key associated with your account.

Then, login using this key within Python. You need to do this step even if you are logged in to steno3d.com; the
developer key and your website login are separate.

6 Chapter 2. Quickstart

https://github.com/3ptscience/steno3dpy
http://jupyter.readthedocs.io/en/latest/install.html
https://github.com/3ptscience/steno3d-notebooks
http://mybinder.org/repo/3ptscience/steno3d-notebooks
http://mybinder.org/repo/3ptscience/steno3d-notebooks
http://mybinder.org/repo/3ptscience/steno3d-notebooks
https://steno3d.com/signup
https://steno3d.com/settings/developer

steno3d Documentation, Release 0.3.2

>> steno3d.login('this-is-a-demo-key')

Note: By default, your developer key will be saved locally to default credentials file ~/.steno3d_client/credentials.
This allows future logins without manually entering your key:

>> steno3d.login()

You may specify a different credentials file with:

>> steno3d.login('this-is-a-demo-key', credentials_file='/path/to/file')

or you may opt to not save the developer key at all with:

>> steno3d.login('this-is-a-demo-key', skip_credentials=True)

If you ever lose your key, you can always generate a new one.

Create Resources

We start by creating a project

>> my_proj = steno3d.Project(
title='Demo Project',
description='My first project',
public=True

)

Here, we will create a topographic surface of a sinc function. We will use numpy to do this.

>> import numpy as np
>> topo = lambda X, Y: 50*np.sinc(np.sqrt(X**2. + Y**2.)/20.)

Next, we define our x and y coordinates to make the mesh

>> x = np.linspace(-100, 100., num=100.)
>> y = np.linspace(-100., 100., num=100.)
>> my_mesh = steno3d.Mesh2DGrid(

h1=np.diff(x),
h2=np.diff(y),
O=np.r_[-100.,-100.,0.]

)

and define the Z vertex topography of the mesh.

>> X, Y = np.meshgrid(x, y, indexing='ij')
>> Z = topo(X, Y)
>> my_mesh.Z = Z.flatten()

Right now, we have a 2D mesh. Let’s create a surface with this mesh geometry.

>> my_surf = steno3d.Surface(
project=my_proj,
mesh=my_mesh

)

2.1. Contents 7

https://steno3d.com/settings/developer
https://en.wikipedia.org/wiki/Sinc_function
http://docs.scipy.org/doc/numpy/reference/

steno3d Documentation, Release 0.3.2

>> my_surf.title = 'Sinc Surface'
>> my_surf.description = '3D rendering of sinc function in Steno3D'

You may want to put data on the mesh. In this case, we assign topography (same as the Z-values of the mesh) as data
on the nodes of the mesh

>> my_topo_data = steno3d.DataArray(
title='Sinc function topography',
array=my_mesh.Z

)
>> my_surf.data = [dict(

location='N',
data=my_topo_data

)]

Upload

In order to view our 3D data, we first need to upload it. Prior to uploading, you can check that all required parameters
are set and valid

>> my_surf.validate()

and then upload the surface.

>> my_surf.upload()

This will return a URL where you can view it.

View

There are two options for viewing, if you are using the Jupyter notebook you can plot the surface inline. This allows
you to inspect it and make sure it is constructed correctly.

>> my_surf.plot()

Once you are happy with your upload, use the project URL to view, explore, and share the project on steno3d.com.

>> print(my_proj.url)

8 Chapter 2. Quickstart

https://steno3d.com

steno3d Documentation, Release 0.3.2

Explore Steno3D

To give you a flavor of Steno3D’s capabilities, you can explore public Steno3D projects

What is Steno3D

Steno3D is designed for you to explore and share your 3D data. Below is a visual overview of this library. An
interactive tutorial is also available online as a Jupyter notebook

Contents

• Projects

• Resources

2.1. Contents 9

https://steno3d.com/explore
https://steno3d.com/explore
https://steno3d.com
https://github.com/3ptscience/steno3d-notebooks

steno3d Documentation, Release 0.3.2

Projects

Projects are groupings of associated resources. Viewing a project allows the user to interact with multiple resources at
once.

Resources

Within Steno3D, any object that can be created and uploaded is a resource. This includes basic component structures
such as data, meshes, and textures as well as more complex objects like points, lines, surfaces, and volumes. Once in
the database, resources are static.

Points, Lines, Surfaces, Volumes

Points, lines, surfaces, and volumes are zero-, one-, two-, and three-dimensional resources, respectively. These re-
sources are composites of pointers to other resources. Specifically, they must contain a mesh resource of the appro-
priate dimensionality to describe the geometry. They may also contain a number of data or texture resources that
correspond to the mesh.

10 Chapter 2. Quickstart

steno3d Documentation, Release 0.3.2

Vectors

Vectors are also a composite resesource. They use the same mesh as points but also include vectors at each point.

Meshes

Mesh resources define spatial structure. Meshes contain nodes and cells (except 0-D which only has nodes). Some
types of meshes are built by defining nodes and cells explicitly; others structured meshes are defined more simply, for
example 2D grids are constructed from two vectors of cell widths.

Data

Data resources define values that correspond to mesh locations. Data resources are tied to mesh resources within a
Point, Line, Surface, or Volume. Data location must be specified as node or cell center, and the length of the data array
must equal the number of nodes or cell centers in the associated mesh.

Textures

Texture resources also define values in space. However, they differ from data resources because they do not need to
correspond to specific mesh locations. Instead, they are continuous within a domain so values at nodes or cell centers
can be extracted. Example textures include 2- or 3-D images or functions dependent on spatial location.

API

The Steno3D API contains tools for making Projects and creating and adding Resources. Checkout the Getting Started
for a reference of how to get up and running and What is Steno3D for an overview of the elements of Steno3D.

Project API

Steno3D projects organize resources so they can be viewed. The steps to construct the project pictured above can be
found online in the example notebooks.

2.1. Contents 11

https://steno3d.com
https://github.com/3ptscience/steno3d-notebooks

steno3d Documentation, Release 0.3.2

class steno3d.project.Project(**metadata)
Steno3D top-level project

Required Properties:

•public (Bool): Public visibility of project, a boolean, Default: False

•resources (a list of CompositeResource): Project Resources, a list (each item is an instance of
CompositeResource)

Optional Properties:

•description (String): Description of the model., a unicode string

•title (String): Title of the model., a unicode string

Resource API

Resources are elements that you can view. They require a mesh which defines locations in 3D space and may have
data and textures.

Point

Steno3D Points are 0D resources. The steps to construct the point resource pictured above can be found online in the
example notebooks.

class steno3d.point.Point(project=None, **kwargs)
Contains all the information about a 0D point cloud

Required Properties:

•mesh (Mesh0D): Mesh, an instance of Mesh0D, Default: new instance of Mesh0D

12 Chapter 2. Quickstart

http://propertiespy.readthedocs.io/en/latest/content/primitive.html#properties.Bool
http://propertiespy.readthedocs.io/en/latest/content/primitive.html#properties.String
http://propertiespy.readthedocs.io/en/latest/content/primitive.html#properties.String
https://github.com/3ptscience/steno3d-notebooks

steno3d Documentation, Release 0.3.2

•opts (_PointOptions): Options, an instance of _PointOptions, Default: new instance of _PointOptions

•project (a list of Project): Project containing the resource, a list (each item is an instance of
Project)

Optional Properties:

•data (a list of _PointBinder): Data, a list (each item is an instance of _PointBinder)

•description (String): Description of the model., a unicode string

•textures (a list of Texture2DImage): Textures, a list (each item is an instance of Tex-
ture2DImage)

•title (String): Title of the model., a unicode string

Meshes

class steno3d.point.Mesh0D(**metadata)
Contains spatial information of a 0D point cloud.

Required Properties:

•opts (_Mesh0DOptions): Mesh0D Options, an instance of _Mesh0DOptions, Default: new instance of
_Mesh0DOptions

•vertices (Array): Point locations, a list or numpy array of <type ‘float’> with shape (*, 3)

Optional Properties:

•description (String): Description of the model., a unicode string

•title (String): Title of the model., a unicode string

Data

The intended method of binding data to points is simply using a dictionary containing location (nodes/vertices, ‘N’, is
the only available location for points) and data, a DataArray.

>> ...
>> my_point = steno3d.Point(...)
>> ...
>> my_data = steno3d.DataArray(

title='Six Numbers',
array=[0.0, 1.0, 2.0, 3.0, 4.0, 5.0]

)
>> my_point.data = [dict(

location='N',
data=my_data

)]

Under the surface, this dictionary becomes a _PointBinder.

Binding data to Points requires the data array to correspond to mesh vertices.

class steno3d.point._PointBinder(**metadata)
Contains the data on a 0D point cloud

Required Properties:

•data (DataArray): Data, an instance of DataArray, Default: new instance of DataArray

2.1. Contents 13

http://propertiespy.readthedocs.io/en/latest/content/primitive.html#properties.String
http://propertiespy.readthedocs.io/en/latest/content/primitive.html#properties.String
http://propertiespy.readthedocs.io/en/latest/content/math.html#properties.Array
http://propertiespy.readthedocs.io/en/latest/content/primitive.html#properties.String
http://propertiespy.readthedocs.io/en/latest/content/primitive.html#properties.String

steno3d Documentation, Release 0.3.2

•location (StringChoice): Location of the data on mesh, any of “N”, Default: N

Options

Similar to data, options are intended to be constructed simply as a dictionary.

>> ...
>> my_point = steno3d.Point(...)
>> ...
>> my_point.opts = dict(

color='red',
opacity=0.75

)

This dictionary then becomes _PointOptions.

class steno3d.point._PointOptions(**metadata)
Optional Properties:

•color (Color): Solid color, a color, Default: random

•opacity (Float): Opacity, a float in range [0.0, 1.0], Default: 1.0

class steno3d.point._Mesh0DOptions(**metadata)

Line

14 Chapter 2. Quickstart

http://propertiespy.readthedocs.io/en/latest/content/other.html#properties.StringChoice
http://propertiespy.readthedocs.io/en/latest/content/other.html#properties.Color
http://propertiespy.readthedocs.io/en/latest/content/primitive.html#properties.Float

steno3d Documentation, Release 0.3.2

Steno3D Lines are 1D resources. The steps to construct the line resource pictured above can be found online in the
example notebooks.

class steno3d.line.Line(project=None, **kwargs)
Contains all the information about a 1D line set

Required Properties:

•mesh (Mesh1D): Mesh, an instance of Mesh1D, Default: new instance of Mesh1D

•opts (_LineOptions): Options, an instance of _LineOptions, Default: new instance of _LineOptions

•project (a list of Project): Project containing the resource, a list (each item is an instance of
Project)

Optional Properties:

•data (a list of _LineBinder): Data, a list (each item is an instance of _LineBinder)

•description (String): Description of the model., a unicode string

•title (String): Title of the model., a unicode string

Meshes

class steno3d.line.Mesh1D(**metadata)
Contains spatial information of a 1D line set

Required Properties:

•opts (_Mesh1DOptions): Options, an instance of _Mesh1DOptions, Default: new instance of
_Mesh1DOptions

•segments (Array): Segment endpoint indices, a list or numpy array of <type ‘int’> with shape (*, 2)

•vertices (Array): Mesh vertices, a list or numpy array of <type ‘float’> with shape (*, 3)

Optional Properties:

•description (String): Description of the model., a unicode string

•title (String): Title of the model., a unicode string

Data

The intended method of binding data to lines is simply using a dictionary containing location (either nodes/vertices,
‘N’, or cell centers/segments, ‘CC’) and data, a DataArray.

>> ...
>> my_line = steno3d.Line(...)
>> ...
>> my_data = steno3d.DataArray(

title='Six Numbers',
array=[0.0, 1.0, 2.0, 3.0, 4.0, 5.0]

)
>> my_line.data = [dict(

location='N',
data=my_data

)]

2.1. Contents 15

https://github.com/3ptscience/steno3d-notebooks
http://propertiespy.readthedocs.io/en/latest/content/primitive.html#properties.String
http://propertiespy.readthedocs.io/en/latest/content/primitive.html#properties.String
http://propertiespy.readthedocs.io/en/latest/content/math.html#properties.Array
http://propertiespy.readthedocs.io/en/latest/content/math.html#properties.Array
http://propertiespy.readthedocs.io/en/latest/content/primitive.html#properties.String
http://propertiespy.readthedocs.io/en/latest/content/primitive.html#properties.String

steno3d Documentation, Release 0.3.2

Under the surface, this dictionary becomes a _LineBinder.

Binding data to Lines requires the data array to correspond to mesh vertices or mesh segments, for node and cell-center
data, respectively.

class steno3d.line._LineBinder(**metadata)
Contains the data on a 1D line set with location information

Required Properties:

•data (DataArray): Data, an instance of DataArray, Default: new instance of DataArray

•location (StringChoice): Location of the data on mesh, either “CC” or “N”

Options

Similar to data, options are intended to be constructed simply as a dictionary.

>> ...
>> my_line = steno3d.Line(...)
>> ...
>> my_line.opts = dict(

color='red',
opacity=0.75

)

This dictionary then becomes _LineOptions.

class steno3d.line._LineOptions(**metadata)
Optional Properties:

•color (Color): Solid color, a color, Default: random

•opacity (Float): Opacity, a float in range [0.0, 1.0], Default: 1.0

class steno3d.line._Mesh1DOptions(**metadata)
Optional Properties:

•view_type (StringChoice): Display 1D lines or tubes/boreholes/extruded lines, either “line” or “tube”,
Default: line

16 Chapter 2. Quickstart

http://propertiespy.readthedocs.io/en/latest/content/other.html#properties.StringChoice
http://propertiespy.readthedocs.io/en/latest/content/other.html#properties.Color
http://propertiespy.readthedocs.io/en/latest/content/primitive.html#properties.Float
http://propertiespy.readthedocs.io/en/latest/content/other.html#properties.StringChoice

steno3d Documentation, Release 0.3.2

Surface

Steno3D Surfaces are 2D resources. The steps to construct the surface resource pictured above can be found online in
the example notebooks.

class steno3d.surface.Surface(project=None, **kwargs)
Contains all the information about a 2D surface

Required Properties:

•mesh (Mesh2D, Mesh2DGrid): Mesh, an instance of Mesh2D or an instance of Mesh2DGrid, Default:
new instance of Mesh2D

•opts (_SurfaceOptions): Options, an instance of _SurfaceOptions, Default: new instance of _Sur-
faceOptions

•project (a list of Project): Project containing the resource, a list (each item is an instance of
Project)

Optional Properties:

•data (a list of _SurfaceBinder): Data, a list (each item is an instance of _SurfaceBinder)

•description (String): Description of the model., a unicode string

•textures (a list of Texture2DImage): Textures, a list (each item is an instance of Tex-
ture2DImage)

•title (String): Title of the model., a unicode string

Meshes

class steno3d.surface.Mesh2D(**metadata)
class steno3d.Mesh2D

Contains spatial information about a 2D surface defined by triangular faces.

Required Properties:

•opts (_Mesh2DOptions): Mesh2D Options, an instance of _Mesh2DOptions, Default: new instance of
_Mesh2DOptions

2.1. Contents 17

https://github.com/3ptscience/steno3d-notebooks
http://propertiespy.readthedocs.io/en/latest/content/primitive.html#properties.String
http://propertiespy.readthedocs.io/en/latest/content/primitive.html#properties.String

steno3d Documentation, Release 0.3.2

•triangles (Array): Mesh triangle vertex indices, a list or numpy array of <type ‘int’> with shape (*, 3)

•vertices (Array): Mesh vertices, a list or numpy array of <type ‘float’> with shape (*, 3)

Optional Properties:

•description (String): Description of the model., a unicode string

•title (String): Title of the model., a unicode string

class steno3d.surface.Mesh2DGrid(**metadata)
Contains spatial information of a 2D grid.

Required Properties:

•O (Vector3): Origin vector, a 3D Vector of <type ‘float’> with shape (3), Default: [0.0, 0.0, 0.0]

•U (Vector3): Orientation of h1 axis, a 3D Vector of <type ‘float’> with shape (3), Default: X

•V (Vector3): Orientation of h2 axis, a 3D Vector of <type ‘float’> with shape (3), Default: Y

•h1 (Array): Grid cell widths, U-direction, a list or numpy array of <type ‘float’>, <type ‘int’> with shape
(*)

•h2 (Array): Grid cell widths, V-direction, a list or numpy array of <type ‘float’>, <type ‘int’> with shape
(*)

•opts (_Mesh2DOptions): Mesh2D Options, an instance of _Mesh2DOptions, Default: new instance of
_Mesh2DOptions

Optional Properties:

•Z (Array): Node topography, a list or numpy array of <type ‘float’> with shape (*)

•description (String): Description of the model., a unicode string

•title (String): Title of the model., a unicode string

Other Properties:

•x0: This property has been renamed ‘O’ and may be removed in the future.

Data

The intended method of binding data to surfaces is simply using a dictionary containing location (either nodes/vertices,
‘N’, or cell centers/faces, ‘CC’) and data, a DataArray.

>> ...
>> my_surf = steno3d.Surface(...)
>> ...
>> my_data = steno3d.DataArray(

title='Six Numbers',
array=[0.0, 1.0, 2.0, 3.0, 4.0, 5.0]

)
>> my_surf.data = [dict(

location='N',
data=my_data

)]

Under the surface, this dictionary becomes a _SurfaceBinder.

Binding data to a Surface using Mesh2D requires the data array to correspond to mesh vertices or mesh triangles, for
node and cell-center data, respectively. When binding data to a Surface using Mesh2DGrid, you may specify data

18 Chapter 2. Quickstart

http://propertiespy.readthedocs.io/en/latest/content/math.html#properties.Array
http://propertiespy.readthedocs.io/en/latest/content/math.html#properties.Array
http://propertiespy.readthedocs.io/en/latest/content/primitive.html#properties.String
http://propertiespy.readthedocs.io/en/latest/content/primitive.html#properties.String
http://propertiespy.readthedocs.io/en/latest/content/math.html#properties.Vector3
http://propertiespy.readthedocs.io/en/latest/content/math.html#properties.Vector3
http://propertiespy.readthedocs.io/en/latest/content/math.html#properties.Vector3
http://propertiespy.readthedocs.io/en/latest/content/math.html#properties.Array
http://propertiespy.readthedocs.io/en/latest/content/math.html#properties.Array
http://propertiespy.readthedocs.io/en/latest/content/math.html#properties.Array
http://propertiespy.readthedocs.io/en/latest/content/primitive.html#properties.String
http://propertiespy.readthedocs.io/en/latest/content/primitive.html#properties.String

steno3d Documentation, Release 0.3.2

order; the default is C-style, row-major ordering, but Fortran-style, column-major ordering is also available. For more
details see the DataArray documentation.

class steno3d.surface._SurfaceBinder(**metadata)
Contains the data on a 2D surface with location information

Required Properties:

•data (DataArray): Data, an instance of DataArray, Default: new instance of DataArray

•location (StringChoice): Location of the data on mesh, either “CC” or “N”

Options

Similar to data, options are intended to be constructed simply as a dictionary.

>> ...
>> my_surf = steno3d.Surface(...)
>> ...
>> my_surf.opts = dict(

color='red',
opacity=0.75

)

This dictionary then becomes _SurfaceOptions.

class steno3d.surface._SurfaceOptions(**metadata)
Optional Properties:

•color (Color): Solid color, a color, Default: random

•opacity (Float): Opacity, a float in range [0.0, 1.0], Default: 1.0

class steno3d.surface._Mesh2DOptions(**metadata)
Optional Properties:

•wireframe (Bool): Wireframe, a boolean, Default: False

2.1. Contents 19

http://propertiespy.readthedocs.io/en/latest/content/other.html#properties.StringChoice
http://propertiespy.readthedocs.io/en/latest/content/other.html#properties.Color
http://propertiespy.readthedocs.io/en/latest/content/primitive.html#properties.Float
http://propertiespy.readthedocs.io/en/latest/content/primitive.html#properties.Bool

steno3d Documentation, Release 0.3.2

Volume

Steno3D Volumes are 3D resources. The steps to construct the volume resource pictured above can be found online in
the example notebooks.

class steno3d.volume.Volume(project=None, **kwargs)
Contains all the information about a 3D volume

Required Properties:

•mesh (Mesh3DGrid): Mesh, an instance of Mesh3DGrid, Default: new instance of Mesh3DGrid

•opts (_VolumeOptions): Options, an instance of _VolumeOptions, Default: new instance of _Vol-
umeOptions

•project (a list of Project): Project containing the resource, a list (each item is an instance of
Project)

Optional Properties:

•data (a list of _VolumeBinder): Data, a list (each item is an instance of _VolumeBinder)

•description (String): Description of the model., a unicode string

•title (String): Title of the model., a unicode string

Meshes

class steno3d.volume.Mesh3DGrid(**metadata)
Contains spatial information of a 3D grid volume.

Required Properties:

•O (Vector3): Origin vector, a 3D Vector of <type ‘float’> with shape (3), Default: [0.0, 0.0, 0.0]

•U (Vector3): Orientation of h1 axis, a 3D Vector of <type ‘float’> with shape (3), Default: X

20 Chapter 2. Quickstart

https://github.com/3ptscience/steno3d-notebooks
http://propertiespy.readthedocs.io/en/latest/content/primitive.html#properties.String
http://propertiespy.readthedocs.io/en/latest/content/primitive.html#properties.String
http://propertiespy.readthedocs.io/en/latest/content/math.html#properties.Vector3
http://propertiespy.readthedocs.io/en/latest/content/math.html#properties.Vector3

steno3d Documentation, Release 0.3.2

•V (Vector3): Orientation of h2 axis, a 3D Vector of <type ‘float’> with shape (3), Default: Y

•W (Vector3): Orientation of h3 axis, a 3D Vector of <type ‘float’> with shape (3), Default: Z

•h1 (Array): Tensor cell widths, x-direction, a list or numpy array of <type ‘float’>, <type ‘int’> with
shape (*)

•h2 (Array): Tensor cell widths, y-direction, a list or numpy array of <type ‘float’>, <type ‘int’> with
shape (*)

•h3 (Array): Tensor cell widths, z-direction, a list or numpy array of <type ‘float’>, <type ‘int’> with
shape (*)

•opts (_Mesh3DOptions): Mesh3D Options, an instance of _Mesh3DOptions, Default: new instance of
_Mesh3DOptions

Optional Properties:

•description (String): Description of the model., a unicode string

•title (String): Title of the model., a unicode string

Other Properties:

•x0: This property has been renamed ‘O’ and may be removed in the future.

Data

The intended method of binding data to volumes is simply using a dictionary containing location (cell centers, ‘CC’,
is the only available location for volumes) and data, a DataArray.

>> ...
>> my_volume = steno3d.Volume(...)
>> ...
>> my_data = steno3d.DataArray(

title='Six Numbers',
array=[0.0, 1.0, 2.0, 3.0, 4.0, 5.0]

)
>> my_volume.data = [dict(

location='N',
data=my_data

)]

Under the surface, this dictionary becomes a _VolumeBinder.

When binding data to a Volume, you may specify data order; the default is C-style, row-major ordering, but Fortran-
style, column-major ordering is also available. For more details see the DataArray documentation.

class steno3d.volume._VolumeBinder(**metadata)
Contains the data on a 3D volume with location information

Required Properties:

•data (DataArray): Data, an instance of DataArray, Default: new instance of DataArray

•location (StringChoice): Location of the data on mesh, any of “CC”, Default: CC

Options

Similar to data, options are intended to be constructed simply as a dictionary.

2.1. Contents 21

http://propertiespy.readthedocs.io/en/latest/content/math.html#properties.Vector3
http://propertiespy.readthedocs.io/en/latest/content/math.html#properties.Vector3
http://propertiespy.readthedocs.io/en/latest/content/math.html#properties.Array
http://propertiespy.readthedocs.io/en/latest/content/math.html#properties.Array
http://propertiespy.readthedocs.io/en/latest/content/math.html#properties.Array
http://propertiespy.readthedocs.io/en/latest/content/primitive.html#properties.String
http://propertiespy.readthedocs.io/en/latest/content/primitive.html#properties.String
http://propertiespy.readthedocs.io/en/latest/content/other.html#properties.StringChoice

steno3d Documentation, Release 0.3.2

>> ...
>> my_volume = steno3d.Volume(...)
>> ...
>> my_volume.opts = dict(

color='red',
opacity=0.75

)

This dictionary then becomes _VolumeOptions.

class steno3d.volume._VolumeOptions(**metadata)
Optional Properties:

•color (Color): Solid color, a color, Default: random

•opacity (Float): Opacity, a float in range [0.0, 1.0], Default: 1.0

class steno3d.volume._Mesh3DOptions(**metadata)
Optional Properties:

•wireframe (Bool): Wireframe, a boolean, Default: False

Vector

Steno3D Vectors are points in space with an associated direction. Currently, vector magnitude is unsupported, only
direction.

class steno3d.vector.Vector(project=None, **kwargs)
Contains all the information about a vector field

Required Properties:

•mesh (Mesh0D): Mesh, an instance of Mesh0D, Default: new instance of Mesh0D

•opts (_VectorOptions): Options, an instance of _VectorOptions, Default: new instance of _VectorOp-
tions

•project (a list of Project): Project containing the resource, a list (each item is an instance of
Project)

•vectors (Array): Vector, a list or numpy array of <type ‘float’> with shape (*, 3)

Optional Properties:

•data (a list of _PointBinder): Data, a list (each item is an instance of _PointBinder)

•description (String): Description of the model., a unicode string

•title (String): Title of the model., a unicode string

Meshes

Vectors use the same mesh as Points.

class steno3d.point.Mesh0D(**metadata)
Contains spatial information of a 0D point cloud.

Required Properties:

•opts (_Mesh0DOptions): Mesh0D Options, an instance of _Mesh0DOptions, Default: new instance of
_Mesh0DOptions

22 Chapter 2. Quickstart

http://propertiespy.readthedocs.io/en/latest/content/other.html#properties.Color
http://propertiespy.readthedocs.io/en/latest/content/primitive.html#properties.Float
http://propertiespy.readthedocs.io/en/latest/content/primitive.html#properties.Bool
http://propertiespy.readthedocs.io/en/latest/content/math.html#properties.Array
http://propertiespy.readthedocs.io/en/latest/content/primitive.html#properties.String
http://propertiespy.readthedocs.io/en/latest/content/primitive.html#properties.String

steno3d Documentation, Release 0.3.2

•vertices (Array): Point locations, a list or numpy array of <type ‘float’> with shape (*, 3)

Optional Properties:

•description (String): Description of the model., a unicode string

•title (String): Title of the model., a unicode string

Data

The intended method of binding data to points is simply using a dictionary containing location (nodes/vertices, ‘N’, is
the only available location for vectors) and data, a DataArray.

>> ...
>> my_vector = steno3d.Vector(...)
>> ...
>> my_data = steno3d.DataArray(

title='Six Numbers',
array=[0.0, 1.0, 2.0, 3.0, 4.0, 5.0]

)
>> my_vector.data = [dict(

location='N',
data=my_data

)]

Under the surface, this dictionary becomes a _PointBinder since Vectors use the same mesh as Points.

Binding data to Vectors requires the data array to correspond to mesh vertices.

class steno3d.point._PointBinder(**metadata)
Contains the data on a 0D point cloud

Required Properties:

•data (DataArray): Data, an instance of DataArray, Default: new instance of DataArray

•location (StringChoice): Location of the data on mesh, any of “N”, Default: N

Options

Similar to data, options are intended to be constructed simply as a dictionary.

>> ...
>> my_vector = steno3d.Vector(...)
>> ...
>> my_vector.opts = dict(

color='red',
opacity=0.75

)

This dictionary then becomes _VectorOptions.

class steno3d.vector._VectorOptions(**metadata)
Optional Properties:

•color (Color): Solid color, a color, Default: random

•opacity (Float): Opacity, a float in range [0.0, 1.0], Default: 1.0

class steno3d.point._Mesh0DOptions(**metadata)

2.1. Contents 23

http://propertiespy.readthedocs.io/en/latest/content/math.html#properties.Array
http://propertiespy.readthedocs.io/en/latest/content/primitive.html#properties.String
http://propertiespy.readthedocs.io/en/latest/content/primitive.html#properties.String
http://propertiespy.readthedocs.io/en/latest/content/other.html#properties.StringChoice
http://propertiespy.readthedocs.io/en/latest/content/other.html#properties.Color
http://propertiespy.readthedocs.io/en/latest/content/primitive.html#properties.Float

steno3d Documentation, Release 0.3.2

Data

In Steno3D, binding data to resources requires both a DataArray and a data binder. These binders are documented
within each composite resource. The binders provide information about where the data maps to the mesh. In most
cases the available mesh locations are ‘N’, nodes, and ‘CC’, cell centers. The easiest way to do this binding is to use
a dictionary with entries ‘location’ (either ‘N’ or ‘CC’) and ‘data’ (the DataArray).

Additionally, a resource can have any number of associated data arrays; simply provide a list of these data binder
dictionaries. Here is a code snippet to show data binding in action; this assumes the surface contains a mesh with 9
vertices and 4 faces (ie a 2x2 square grid).

>> ...
>> my_surface = steno3d.Surface(...)
>> ...
>> my_node_data = steno3d.DataArray(

title='Nine Numbers',
array=[0.0, 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0]

)
>> my_face_data = steno3d.DataArray(

title='Four Numbers',
array=[0.0, 1.0, 2.0, 3.0]

)
>> my_surface.data = [

dict(
location='N',
data=my_node_data

),
dict(

location='CC',
data=my_face_data

)
]

Mapping data to a mesh is staightforward for unstructured meshes (those defined by vertices, segments, triangles,
etc); the order of the data array simply corresponds to the order of the associated mesh parameter. For grid meshes,
however, mapping 1D data array to the 2D or 3D grid requires correctly ordered unwrapping. The default is C-style,
row-major ordering, order='c'. To align data this way, you may start with a numpy array that is size (x, y) for
2D data or size (x, y, z) for 3D data then use numpy’s flatten() function with default order ‘C’. Alternatively,
if your data uses Fortran- or Matlab-style, column-major ordering, you may specify data order='f'. For in-depth
examples of binding data to resources please refer to the example notebooks.

class steno3d.data.DataArray(array=None, **kwargs)
Data array with unique values at every point in the mesh

Required Properties:

•array (Array): Data, unique values at every point in the mesh, a list or numpy array of <type ‘float’>,
<type ‘int’> with shape (*)

•order (StringChoice): Data array order, for data on grid meshes, either “c” or “f”, Default: c

Optional Properties:

•colormap (a list of Color): Colormap applied to data range or categories, a list (each item is a
color) with length between 1 and 256

•description (String): Description of the model., a unicode string

•title (String): Title of the model., a unicode string

24 Chapter 2. Quickstart

https://github.com/3ptscience/steno3d-notebooks
http://propertiespy.readthedocs.io/en/latest/content/math.html#properties.Array
http://propertiespy.readthedocs.io/en/latest/content/other.html#properties.StringChoice
http://propertiespy.readthedocs.io/en/latest/content/other.html#properties.Color
http://propertiespy.readthedocs.io/en/latest/content/primitive.html#properties.String
http://propertiespy.readthedocs.io/en/latest/content/primitive.html#properties.String

steno3d Documentation, Release 0.3.2

class steno3d.data.DataCategory(array=None, **kwargs)
Data array with indices and corresponding string categories

For locations with no data, use -1 for index. If colormap is unspecified, colors will be randomized.

Required Properties:

•array (Array): Category index values at every point in the mesh, a list or numpy array of <type ‘int’>
with shape (*)

•order (StringChoice): Data array order, for data on grid meshes, either “c” or “f”, Default: c

Optional Properties:

•categories (a list of String): List of string categories, a list (each item is a unicode string) with
length between 1 and 256

•colormap (a list of Color): Colormap applied to data range or categories, a list (each item is a
color) with length between 1 and 256

•description (String): Description of the model., a unicode string

•title (String): Title of the model., a unicode string

Texture

In Steno3D, textures are data that exist in space and are mapped to their corresponding resources. Unlike data, they do
not need to correspond to mesh nodes or cell centers. This image shows how textures are mapped to a surface. Their
position is defined by an origin, O, and axis vectors, U and V, then they are mapped laterally to the resource position.

2.1. Contents 25

http://propertiespy.readthedocs.io/en/latest/content/math.html#properties.Array
http://propertiespy.readthedocs.io/en/latest/content/other.html#properties.StringChoice
http://propertiespy.readthedocs.io/en/latest/content/primitive.html#properties.String
http://propertiespy.readthedocs.io/en/latest/content/other.html#properties.Color
http://propertiespy.readthedocs.io/en/latest/content/primitive.html#properties.String
http://propertiespy.readthedocs.io/en/latest/content/primitive.html#properties.String

steno3d Documentation, Release 0.3.2

Like data, multiple textures can be applied to a resource. Simply provide a list of textures.

>> ...
>> my_surface = steno3d.Surface(...)
>> ...
>> my_tex_1 = steno3d.Texture2DImage(

O=[0.0, 0.0, 0.0],
U=[1.0, 0.0, 0.0],
V=[0.0, 1.0, 0.0],
image='image1.png'

)
>> my_tex_2 = steno3d.Texture2DImage(

O=[0.0, 0.0, 0.0],
U=[1.0, 0.0, 0.0],
V=[0.0, 0.0, 1.0],
image='image2.png'

)
>> my_surface.textures = [

my_tex_1,
my_tex_2

]

class steno3d.texture.Texture2DImage(**metadata)
Contains an image that can be mapped to a 2D surface

26 Chapter 2. Quickstart

steno3d Documentation, Release 0.3.2

Required Properties:

•O (Vector3): Origin of the texture, a 3D Vector of <type ‘float’> with shape (3)

•U (Vector3): U axis of the texture, a 3D Vector of <type ‘float’> with shape (3)

•V (Vector3): V axis of the texture, a 3D Vector of <type ‘float’> with shape (3)

•image (ImagePNG): Image file, a PNG image file, valid modes include (u’ab+’, u’rb+’, u’wb+’, u’rb’)

Optional Properties:

•description (String): Description of the model., a unicode string

•title (String): Title of the model., a unicode string

Base Resource

class steno3d.base.UserContent(**metadata)
Base class for everything user creates and uploads in steno3d

Optional Properties:

•description (String): Description of the model., a unicode string

•title (String): Title of the model., a unicode string

class steno3d.base.CompositeResource(project=None, **kwargs)
A composite resource that stores references to lower-level objects.

Required Properties:

•project (a list of UserContent): Project containing the resource, a list (each item is an instance
of UserContent)

Optional Properties:

•description (String): Description of the model., a unicode string

•title (String): Title of the model., a unicode string

2.1. Contents 27

http://propertiespy.readthedocs.io/en/latest/content/math.html#properties.Vector3
http://propertiespy.readthedocs.io/en/latest/content/math.html#properties.Vector3
http://propertiespy.readthedocs.io/en/latest/content/math.html#properties.Vector3
http://propertiespy.readthedocs.io/en/latest/content/image.html#properties.ImagePNG
http://propertiespy.readthedocs.io/en/latest/content/primitive.html#properties.String
http://propertiespy.readthedocs.io/en/latest/content/primitive.html#properties.String
http://propertiespy.readthedocs.io/en/latest/content/primitive.html#properties.String
http://propertiespy.readthedocs.io/en/latest/content/primitive.html#properties.String
http://propertiespy.readthedocs.io/en/latest/content/primitive.html#properties.String
http://propertiespy.readthedocs.io/en/latest/content/primitive.html#properties.String

steno3d Documentation, Release 0.3.2

Parsers

The Steno3D Python client is designed to support developers by providing an object-oriented, file-type agnostic en-
vironment to work with. However, it contains the infrastructure for parsers as plugin modules to suppport file-heavy
workflows.

• Installing and Using Parsers

• Links to Parsers

• Contributing

Installing and Using Parsers

An example parser for Wavefront .obj files is available on pip:

pip install steno3d_obj

or install from source:

git clone https://github.com/3ptscience/steno3d-obj.git
python setup.py install

28 Chapter 2. Quickstart

https://pypi.python.org/pypi/steno3d_obj
https://github.com/3ptscience/steno3d-obj

steno3d Documentation, Release 0.3.2

Usage of all parsers should be the same as the obj parser. Upon import, the parser is added to the Steno3D namespace
and may be instantiated with the name of the input file.

>> import steno3d
>> import steno3d_obj
>> obj_parser = steno3d.parsers.obj('/path/to/input/file.obj')

If you have many different parsers imported, you may also let Steno3D select the appropriate parser based on file
extension using:

>> obj_parser = steno3d.parsers.AllParsers('/path/to/input/file.obj')

Then, to parse the file into a new Steno3D project:

>> (obj_proj,) = obj_parser.parse()

You may also parse the file objects directly into an existing Steno3d project.

>> my_proj = steno3d.Project(
title='OBJ File Project'

)
>> obj_parser.parse(my_proj)

Links to Parsers

• obj parser for Wavefront .obj files (github, pip)

• stl parser for binary and ASCII stereolithography .stl files (github, pip)

• Surfer grd file parser for Surfer 6 & 7 binary and ASCII .grd files (github, pip)

Contributing

If there is a 3D file type you would like to see supported or an existing parser you would like expanded, please
contribute! The basic guidelines for our parsers are

1. Easy to use by following the steps described above

2. Well-documented coverage of the file type (not necessarily supporting every feature, but describing what is
supported and raising non-cryptic warnings or errors for unsupported features)

3. Open source, under the MIT license if possible

4. PEP 8 compliant (aside from parser class names) and Python 2/3 compatible

Additional details for writing a parser follow below. If you are interested in a new parser parser or have feedback
about an existing parser but are unable to contribute, please at least submit an issue to steno3d or the specific parser’s
github page.

Implementation

The following steps describe how to implement a Steno3D parser. Please refer to the obj parser source code as an
example.

2.1. Contents 29

https://github.com/3ptscience/steno3d-obj
https://pypi.python.org/pypi/steno3d_obj
https://github.com/3ptscience/steno3d-stl
https://pypi.python.org/pypi/steno3d_stl
https://github.com/3ptscience/steno3d-surfer
https://pypi.python.org/pypi/steno3d_surfer
https://www.python.org/dev/peps/pep-0008/
http://python-future.org/compatible_idioms.html
https://github.com/3ptscience/steno3dpy/issues
https://github.com/3ptscience/steno3d-obj

steno3d Documentation, Release 0.3.2

Class Definition

Parser classes must inherit BaseParser and they must have a tuple of supported extensions:

...
import steno3d

class obj(steno3d.parsers.BaseParser):
"""class obj

Parser class for Wavefront .obj ASCII object files
"""

extensions = ('obj',)
...

Doing this adds the parser to the steno3d.parsers namespace, adds the extension to the steno3d supported
extensions, and ensures that files have the appropriate extension.

In this example, the lowercase class names deviates from PEP 8 style. However, we break this rule to allow for
symmetry between class names and file extensions.

Initialization

Initialization is handled by the BaseParser __init__ function. The only required parameter is the file name.
Therefore, self.file_name is available to any function defined in your parser. There are two initialization hooks:

def _validate_file(self, file_name):
"""function _validate_file

Input:
file_name - The file to be validated

Output:
validated file_name

_validate_file verifies the file exists and the extension matches
the parser extension(s) before proceeding. This hook can be
overwritten to perform different file checks or remove the checks
entirely as long as it returns the file_name.
"""

and

def _initialize(self):
"""function _initialize

_initialize is a hook that is called during parser __init__
after _validate_file. It can be overwritten to perform any
additional startup tasks
"""

30 Chapter 2. Quickstart

steno3d Documentation, Release 0.3.2

parse()

This function is what the user will call to parse their file, self.file_name. The output should be a tuple of Steno3D
Projects. It is recommended to allow a Steno3d Project as input so files can be parsed directly into an existing Project.
However this behavior is not required if it does not make sense for a certain file type.

Any errors encountered during parsing should raise a steno3d.parsers.ParseError with a descriptive error
message. This may include unsupported features, unrecognized features, incorrect syntax in the input file, invalid
geometry extracted from the file, etc.

Beyond that, the parse function may use anything else necessary to read the file such as helper functions, additional
classes you define, or other imported modules.

AllParsers

If a parser class is defined correctly, it will automatically become available to steno3d.parsers.AllParsers
with its corresponding extension. However, if you are making a large library of related parsers, you may wish to
define your own class similar to AllParsers internal to your library. To do this, simply define a class that that inherits
AllParsers and contains a dictionary of extensions and appropriate parser:

class ex1(steno3d.parsers.BaseParser):
extensions = ('ex1',)
...

class ex2(steno3d.parsers.BaseParser):
extensions = ('ex2',)
...

class ex3(steno3d.parsers.BaseParser):
extensions = ('ex3',)
...

class exN(steno3d.parsers.AllParsers):
extensions = {

'ex1': ex1,
'ex2': ex2,
'ex3': ex3

}

You can then use this as:

>> ex1_parser = steno3d.parsers.exN('file.ex1')
>> ex2_parser = steno3d.parsers.exN('file.ex2')
>> ex3_parser = steno3d.parsers.exN('file.ex3')

If you run into issues, report them on github.

Release Notes

The latest version of Steno3D is 0.3.2. Detailed release notes are available on github.

2.1. Contents 31

https://github.com/3ptscience/steno3dpy/issues/new
https://github.com/3ptscience/steno3dpy/releases

steno3d Documentation, Release 0.3.2

Index

• genindex

32 Chapter 2. Quickstart

Index

Symbols
_LineBinder (class in steno3d.line), 16
_LineOptions (class in steno3d.line), 16
_Mesh0DOptions (class in steno3d.point), 14
_Mesh1DOptions (class in steno3d.line), 16
_Mesh2DOptions (class in steno3d.surface), 19
_Mesh3DOptions (class in steno3d.volume), 22
_PointBinder (class in steno3d.point), 13
_PointOptions (class in steno3d.point), 14
_SurfaceBinder (class in steno3d.surface), 19
_SurfaceOptions (class in steno3d.surface), 19
_VectorOptions (class in steno3d.vector), 23
_VolumeBinder (class in steno3d.volume), 21
_VolumeOptions (class in steno3d.volume), 22

C
CompositeResource (class in steno3d.base), 27

D
DataArray (class in steno3d.data), 24
DataCategory (class in steno3d.data), 25

L
Line (class in steno3d.line), 15

M
Mesh0D (class in steno3d.point), 13
Mesh1D (class in steno3d.line), 15
Mesh2D (class in steno3d.surface), 17
Mesh2DGrid (class in steno3d.surface), 18
Mesh3DGrid (class in steno3d.volume), 20

P
Point (class in steno3d.point), 12
Project (class in steno3d.project), 11

S
Surface (class in steno3d.surface), 17

T
Texture2DImage (class in steno3d.texture), 26

U
UserContent (class in steno3d.base), 27

V
Volume (class in steno3d.volume), 20

33

	Demo Video
	Quickstart
	Contents
	Index

