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CHAPTER 1

Tensor Overview

Synopsis

First, we will define a convenience alias:

typealias NativeStorage<Double> D

Next, we can create two vectors:

// construct vector with values
let v1 = Tensor<D>([1, 2, 3])

// construct Tensor with a specific size
let v2 = Tensor<D>(Extent(5, 3))

// construct a matrix with values
let v3 = Tensor<D>([[1, 2, 3], [4, 5, 6]])

STEM supports standard linear algebra operators:

// take the dot product (result is a scalar)
let s1 = v1v2

// take the outer product (result is a matrix)
let m1 = v1v2

// add two vectors together
let v4 = v1+v3

// multiply by a scalar
let v5 = 0.5*v1

STEM also supports advanced indexing (similar to Numpy and Matlab):
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let v6 = v2[1..<4]
let m2 = m1[1..<4, 0..<2]

As STEM‘s name implies N-dimensional Tensors are supported. Both the Vector and Matrix classes are spe-
cializations of the Tensor class. These specializations allow for simpler construction methods as well as the use of
accelerated libraries such as CBLAS and CUDA or OpenCL through function overloading.

Storage

All Tensor s have an associated Storage class that is responsible for the allocated memory. The two built-in
Storage types are: NativeStorage and CBlasStorage. Other storage types (e.g. CUDA or OpenCL) can
be added without requiring any rewrite of the main library. Because the Storage type determines which functions
get called. If no methods have been specified for the Storage class, NativeStorage will be called by default.

The Storage protocol is defined as:

public protocol Storage {
associatedtype ElementType:NumericType

var size:Int { get }
var order:DimensionOrder { get }

init(size:Int)
init(array:[ElementType])
init(storage:Self)
init(storage:Self, copy:Bool)

subscript(index:Int) -> ElementType {get set}

// returns the order of dimensions to traverse
func calculateOrder(dims:Int) -> [Int]

// re-order list in order of dimensions to traverse
func calculateOrder(values:[Int]) -> [Int]

}

An implementation of Storage determines the allocation through the init methods, subscript determines how
the storage gets indexed, and calculateStride allows the Storage to be iterated through in a sequential fashion.

The Tensor class frequently makes use of the generator IndexGenerator to iterate through the Storage class.
This provides a convenient way to access all the elements without knowing the underyling memory allocation.

To do so, the Tensor class defined the method:

public func indices(order:DimensionOrder?=nil) -> GeneratorSequence<IndexGenerator> {
if let o = order {

return GeneratorSequence<IndexGenerator>(IndexGenerator(shape, order: o))
} else {

return GeneratorSequence<IndexGenerator>(IndexGenerator(shape, order: storage.
→˓order))
}

}

which can be used like:

4 Chapter 1. Tensor Overview
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func fill<StorageType:Storage>(tensor:Tensor<StorageType>, value:StorageType.
→˓ElementType) {

for i in tensor.indices() {
tensor.storage[i] = value

}
}

However, as mentioned previously, if an optimized version for a particular Tensor operation exists, you can write:

// This will be used if the Tensor's storage type is CBlasStorage for doubles,
// an alternative can be specified for Floats separately.
func fill(tensor:Tensor<CBlasStorage<Double>>, value:StorageType.ElementType) {

// call custom library
}

Table 1.1: Storage Types

Type Description
NativeStorage Unaccelerated using row-major memory storage
CBlasStorage CBLAS acceleration using column-major storage
GPUStorage (Not Implemented) GPU acceleration using row-memory storage

Tensor Class

The Tensor class is parameterized by the Storage type, allowing instances of the class to maintain a pointer to the
underlying memory. The Tensor class also has an instance of ViewType, which allows different views of the same
memory to be constructed, and the array dimIndex, which determines the order that the dimensions in the Tensor
are traversed. These features allow for multiple Tensor s to provide a different view to the same memory (e.g. a
slice of a Tensor can be created by changing the ViewType instance, or a Tensor can be transposed by shuffling
dimIndex).

Note: Throughout the documentation Tensor<S> indicates the parameterization of the Tensor class by Storage
type S, and NumericType refers to S.NumericType (see section on Storage for details).

Tensor Construction

Tensor<S>(_ shape:Extent)
Constructs a tensor with the given shape.

Tensor<S>([NumericType], axis:Int)
Constructs a vector along the given axis

Tensor<S>(colvector:[NumericType])
Constructs a column vector (equivalent to Tensor<S>([NumericType], axis:0))

Tensor<S>(rowvector:[NumericType])
Constructs a row vector (equivalent to Tensor<S>([NumericType], axis:1))

Tensor<S>([[NumericType]])
Constructs a matrix

1.3. Tensor Class 5
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Indexing

STEM supports single indexing as well as slice indexing. Given a Tensor T:

To index element (i, j, k):

let value = T[i, j, k]
T[i, j, k] = value

To index the slices (if:il, jf:jl, kf:kl):

let T2 = T[if...il, jf...jl, kf...kl]
T[if...il, jf...jl, kf...kl] = T2

Views

Views in STEM are instances of Tensor that point to the same Storage as another Tensor but with different
bounds and/or ordering of dimensions. Views are most commonly created whenever a slice indexing is used.

A copy of a view can be made by using the copy function.

6 Chapter 1. Tensor Overview



CHAPTER 2

Tensor Functions

Basic Math

add(lhs:Tensor<S>, rhs:Tensor<S>, result:Tensor<S>)
add(lhs:Tensor<S>, rhs:NumericType, result:Tensor<S>)
add(lhs:NumericType, rhs:Tensor<S>, result:Tensor<S>)
+(lhs:Tensor<S>, rhs:Tensor<S>) -> Tensor<S>
+(lhs:Tensor<S>, rhs:NumericType) -> Tensor<S>
+(lhs:NumericType, rhs:Tensor<S>) -> Tensor<S>

Adds lhs and rhs together, either place results in result or returning its value. If the shape of lhs and
rhs do not match, will either use broadcast to match their size, or use optimized methods to accomplish the
same purpose.

sub(lhs:Tensor<S>, rhs:Tensor<S>, result:Tensor<S>)
sub(lhs:Tensor<S>, rhs:NumericType, result:Tensor<S>)
sub(lhs:NumericType, rhs:Tensor<S>, result:Tensor<S>)
-(lhs:Tensor<S>, rhs:Tensor<S>) -> Tensor<S>
-(lhs:Tensor<S>, rhs:NumericType) -> Tensor<S>
-(lhs:NumericType, rhs:Tensor<S>) -> Tensor<S>

Subtracts lhs from rhs, either place results in result or returning its value. If the shape of lhs and rhs do
not match, will either use broadcast to match their size, or use optimized methods to accomplish the same
purpose.

mul(lhs:Tensor<S>, rhs:Tensor<S>, result:Tensor<S>)
mul(lhs:Tensor<S>, rhs:NumericType, result:Tensor<S>)
mul(lhs:NumericType, rhs:Tensor<S>, result:Tensor<S>)
*(lhs:Tensor<S>, rhs:Tensor<S>) -> Tensor<S>
*(lhs:Tensor<S>, rhs:NumericType) -> Tensor<S>
*(lhs:NumericType, rhs:Tensor<S>) -> Tensor<S>

Performs element-wise multiplication between lhs and rhs, either place results in result or returning its
value. If the shape of lhs and rhs do not match, will either use broadcast to match their size, or use
optimized methods to accomplish the same purpose.

div(lhs:Tensor<S>, rhs:Tensor<S>, result:Tensor<S>)

7
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div(lhs:Tensor<S>, rhs:NumericType, result:Tensor<S>)
div(lhs:NumericType, rhs:Tensor<S>, result:Tensor<S>)
/(lhs:Tensor<S>, rhs:Tensor<S>) -> Tensor<S>
/(lhs:Tensor<S>, rhs:NumericType) -> Tensor<S>
/(lhs:NumericType, rhs:Tensor<S>) -> Tensor<S>

Performs element-wise division between lhs and rhs, either place results in result or returning its value.
If the shape of lhs and rhs do not match, will either use broadcast to match their size, or use optimized
methods to accomplish the same purpose.

iadd(lhs:Tensor<S>, rhs:Tensor<S>)
iadd(lhs:Tensor<S>, rhs:NumericType)
iadd(lhs:NumericType, rhs:Tensor<S>)
+=(lhs:Tensor<S>, rhs:Tensor<S>)
+=(lhs:Tensor<S>, rhs:NumericType)
+=(lhs:NumericType, rhs:Tensor<S>)

Adds lhs to rhs and stores result in lhs, either place results in result or returning its value. If the shape
of lhs and rhs do not match, will either use broadcast to match their size, or use optimized methods to
accomplish the same purpose.

isub(lhs:Tensor<S>, rhs:Tensor<S>)
isub(lhs:Tensor<S>, rhs:NumericType)
isub(lhs:NumericType, rhs:Tensor<S>)
-=(lhs:Tensor<S>, rhs:Tensor<S>)
-=(lhs:Tensor<S>, rhs:NumericType)
-=(lhs:NumericType, rhs:Tensor<S>)

Subtracts rhs from lhs and stores result in lhs, either place results in result or returning its value. If the
shape of lhs and rhs do not match, will either use broadcast to match their size, or use optimized methods
to accomplish the same purpose.

imul(lhs:Tensor<S>, rhs:Tensor<S>)
imul(lhs:Tensor<S>, rhs:NumericType)
imul(lhs:NumericType, rhs:Tensor<S>)
*=(lhs:Tensor<S>, rhs:Tensor<S>)
*=(lhs:Tensor<S>, rhs:NumericType)
*=(lhs:NumericType, rhs:Tensor<S>)

Multiplies lhs by rhs and stores result in lhs, either place results in result or returning its value. If the
shape of lhs and rhs do not match, will either use broadcast to match their size, or use optimized methods
to accomplish the same purpose.

idiv(lhs:Tensor<S>, rhs:Tensor<S>)
idiv(lhs:Tensor<S>, rhs:NumericType)
idiv(lhs:NumericType, rhs:Tensor<S>)
/=(lhs:Tensor<S>, rhs:Tensor<S>)
/=(lhs:Tensor<S>, rhs:NumericType)
/=(lhs:NumericType, rhs:Tensor<S>)

Divides lhs by rhs and stores results in lhs, either place results in result or returning its value. If the
shape of lhs and rhs do not match, will either use broadcast to match their size, or use optimized methods
to accomplish the same purpose.

pow(lhs:Tensor<S>, exp:NumericType)→ Tensor<S>
**(lhs:Tensor<S>, exp:NumericType) -> Tensor<S>

Raises every element of lhs by exp.

exp(op::Tensor<S>)→ Tensor<S>
Returns an element-wise exponentiation of op.

abs(op:Tensor<S>)→ Tensor<S>

8 Chapter 2. Tensor Functions
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Performs an elementwise abs on Tensor.

sum(op:Tensor<S>, axis:Int)→ Tensor<S>
sum(op:Tensor<S>)→ NumericType

When axis is specified, sums op along axis and returns resulting Tensor. When no axis is specified, returns
entire Tensor summed.

max(op:Tensor<S>, axis:Int)→ Tensor<S>
max(op:Tensor<S>)→ NumericType

When axis is specified, find the maximum value op across axis and returns resulting Tensor. When no axis
is specified, returns maximum value of entire Tensor.

min(op:Tensor<S>, axis:Int)→ Tensor<S>
min(op:Tensor<S>)→ NumericType

When axis is specified, find the minimum value op across axis and returns resulting Tensor. When no axis
is specified, returns minimum value of entire Tensor.

Linear Algerbra

dot(lhs:Tensor<S>, rhs:Tensor<S>)→ NumericType
(lhs:Tensor<S>, rhs:Tensor<S>) -> NumericType

Returns the dot product between two vectors. Both lhs and rhs must be vectors.

outer(lhs:Tensor<S>, rhs:Tensor<S>)→ NumericType
(lhs:Tensor<S>, rhs:Tensor<S>) -> NumericType

Returns the outer product between two vectors. Both lhs and rhs must be vectors.

Tensor Manipulation

fill(op:Tensor<S>, value:NumericType)
Sets all elements of op to value.

copy(op:Tensor<S>)→ Tensor<S>
copy(from:Tensor<S>, to:Tensor<S>)

First form creates a new Tensor and copies op into it. The second form copies op into an already existing
Tensor.

map(op:Tensor<S>, fn:(NumericType) -> NumericType)→ Tensor<S>
Applies fn to each element of Tensor and returns resulting Tensor.

reduce(op:Tensor<S>, fn:(Tensor<S>, Tensor<S>) -> NumericType)→ NumericType
Applies fn to elements of Tensor, returns a scalar.

concat(op1:Tensor<S>, op2:Tensor<S>, ..., opN:Tensor<S>, axis:Int)
Concats N Tensors along axis.

vstack(op1:Tensor<S>, op2:Tensor<S>)→ Tensor<S>
Returns a new Tensor that is a composite of op1 and op2 vertically stacked.

hstack(op1:Tensor<S>, op2:Tensor<S>)→ Tensor<S>
Returns a new Tensor that is a composite of op1 and op2 horizontally stacked.

broadcast(op1:Tensor<S>, op2:Tensor<S>) -> (Tensor<S>, Tensor<S>)
Returns two Tensors of the same shape broadcasted from op1 and op2. Need to go into much more detail about
broadcasting.

2.2. Linear Algerbra 9
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Statistics

norm(op:Tensor, axis:Int)→ Tensor<S>
Calculates the norm along specified axis.

hist(op:Tensor, bins:[Int])→ Tensor<S>
Returns a vector with size of bins with the resulting histogram of op.

Other

isClose(lhs:Tensor<S>, rhs:Tensor<S>, eps:NumericType)→ Bool
Returns if lhs is within the range of (rhs + eps, rhs - eps)

10 Chapter 2. Tensor Functions



CHAPTER 3

Random library

To generate a random number you first need to create a RandomNumberGenerator:

let rng = RandomNumberGenerator(seed)

The seed variable is optional, and if left out will be set the system’s clock.

The random library can be used in two ways:

1. Fill an already existing Tensor with random values

2. Create a new Tensor that is filled with random values

11
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CHAPTER 4

Neural Network library

Overview

The basic building block is an Op, which is parameterized by the underyling storage type (see the Tensor documen-
tation for more details). Every Op as the function apply, which performs a transform on the Op s input updating the
output variable. Op s may have a variable number of inputs and outputs.

Fig. 4.1: Figure 1: A computation graph is formed by connecting multiple Op s together. The inputs are a collection
of Op s, and the outputs, the result of the operation applied to the input, are a collection of Tensor s.

The design of the Op class is keep the details of how the optimization is performed separate from the transform
itself. For example, the protocol Differentiable provides a method to extend the Op class with the gradient
method for stochastic gradient descent optimization. The gradient methods returns a new Op whose transform is
the derivative of the target Op. This allows a secondary computation graph to easily be constructed:

13
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let linear = Linear<D>(inputSize: 5, outputSize: 3)
let linearGrad = linear.gradient()

Some Op s, like Sequence are collections of other Op s, and will invoke (via apply) each of the contained Op s in
a pre-determined order. For example, a standard neural network can be created with:

let net = Sequence<D>(
VariableOp<D>(zeros(Extent(5))),
Linear<D>(inputSize: 5, outputSize: 3),
Sigmoid<D>(size: 3),
L2Loss<D>(size: 3))

net.apply()

There are a few important items of note in this example:

1. The apply method takes no parameters and has no return value

2. The input to the first layer of the network is of the type Variable, which is also an Op

3. The loss function L2Loss is also an Op

The design decision to make everything an Op allows the creation of the computational graph. In this case, all of the
Op s are also Differentiable, and thus you can do:

let netGrad = net.gradient()

Optimization can be performed with the following code:

params = net.params()
gradParams = netGrad.params()

for i in 0..<iterations {
netGrad.reset()

net.apply()
netGrad.apply()

for (param, gradParam) in Zip2Sequences(params, gradParams) {
param += 0.01*gradParam

}
}

However, this code can be simplified using an Optimizer:

let alpha = VariableOp<D>(0.01)
let opt = GradientDescentOptimizer(net, alpha: alpha)

for i in 0..<iterations {
opt.apply()

}

where GradientDescentOptimizer automatically constructs the gradient network and collects the parmaeters
for both the forward and backward sequences.

One of the advantages to having everything be an operation in the computation graph is that the alpha variable can
be set dynamically. For example, if a momentum optimization is desired, the alpha variable can be computed from
the current error.

14 Chapter 4. Neural Network library
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The Op class

The Op class has the following properties:

• id: unique ID for instance of Op

• inputs: collection of Op s

• output: collection Tensor s that are a result of the transform

and has the following methods defined:

• apply(): performs transform on inputs and stores results in output

• params(): returns all the parameters of the transform (e.g. if its a Linear Op, then the parameters are weight
and bias).

OrderedDictionary

One important detail about the inputs and outputs of an Op is that it is maintained by the
OrderedDictionary class. An instance of the OrderedDictionary class maintains a dictionary of (String:
[T]), but also provides a method to traverse the items in the order that they were added. This provides a guarantee in
the order of traversal as well as provide a method for efficient access (e.g. if an Op has a specific ordering of inputs,
an integer index may be used instead of a String).

By maintaining an array of T means that a single entry in the OrderedDictionary may be a collection of items.
This provides an easy way to create Op s that have a variable number of inputs and/or outputs. For example, the
AddOp can take in N inputs and will provide a single output.

Op library

Linear()
Performs a linear transformation on input.

Sigmoid()
Applies the sigmoid function to each element of the input.

Tanh()
Applies the Tanh function to each element of the input

AddOp()
Adds a collection of inputs together

MulOp()
Multiplies a collection of inputs together

Concat()
Concatenates a series of inputs together

L2Loss()
Takes two inputs: value and target. Calculates the square distance between the two.

Creating a new Op

Suppose you wanted to create an Op that takes the log of the input. The Log op can be defined as:

4.2. The Op class 15
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public class Log<S:Storage where S.ElementType:FloatNumericType>: Op<S> {
public init(size:Int) {
super.init( inputs: [NoOp<S>()],

output: Tensor<S>(Extent(size)),
labels: ["input"])

}

public override func apply() {
if output == nil || output!.shape != inputs[0].output!.shape {

output = Tensor<S>(Extent(inputs[0].output!.shape))
}

log(inputs[0].output!, result: output!)
}

}

where the initialization defines a single input (input) that is currently not defined (the NoOp) and the output is
allocated as the size specified by the parameter. The apply function finds the maximum value in the input, divides
each element of the input by that value, and stores in the result in output.

The gradient of Log can be defined as:

The Log gradient takes two additional inputs: the instance of the Log op its the gradient of, and gradOutput,
which is the gradient of the op’s output.

Finally, to allow the gradient to be taken of Log, the class must be extended to Differentiable:

extension Log:Differentiable {
public func gradient() -> GradientType {
return LogGrad<S>(op: self)

}
}

We can change the construction of our network by adding Log into the sequence:

let net = Sequence<D>(
VariableOp<D>(zeros(Extent(5))),
Log<D>(size: 5)
Linear<D>(inputSize: 5, outputSize: 3),
Sigmoid<D>(size: 3),
L2Loss<D>(size: 3))

and have the optimization correctly calculate the derivative as before:

let opt = GradientDescentOptimizer(net, alpha: alpha)

because GradientDescentOptimizer will automatically call gradient on each Op, an instance of
LogGradient will be created for each instance of Log.

Testing your Op

It is always a good idea to do a gradient check on a newly created Op. You can create a new unit test to do so:

func testLogOpGradient() {
let eps = 10e-6
let input = VariableOp<S>(uniform(Extent(10)))
let gradOutput = VariableOp<S>(zeros(Extent(10)))

16 Chapter 4. Neural Network library
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let log = Log<S>(size: 10)
log.setInput("input", to: input)

let logGrad = log.gradient() as! LogGrad<S>
logGrad.setInput("gradOutput", to: gradOutput)

// test gradient wrt to the input
let inputError = checkGradient(log, grad: logGrad, params: input.output,

→˓gradParams: logGrad.output, eps: eps)
XCTAssertLessThan(inputError, eps)

}

4.2. The Op class 17
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CHAPTER 5

Indices and tables

• genindex

• modindex

• search
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CHAPTER 6

Status

STEM is very much a work in progress. It should not be considered stable yet. The status will be kept updated for
when the design of STEM has settled down.

If a Tensor library for Swift interests you, please help by contributing code.

21
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