

 Navigation

 	
 index

 	
 next |

 	Steamodd 4.22 documentation

Welcome to Steamodd’s documentation!

Contents:

	History
	Origin

	The name

	Installation

	Quick start
	Steam API key

	Components

	Steam API wrappers
	Low level methods

	High level methods
	Apps

	Items

	Localization

	Remote storage

	User

	Steam Inventory Manager

	VDF serializer

 Copyright 2015, Anthony Garcia & Ondrej Slinták (initial docs).
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Steamodd 4.22 documentation

History

Origin

Steamodd originated with an early version of OPTF2 which itself
grew out of a 200 line script I wrote in the early days of the
Steam API to find things I could complain about. Since then it
has grown into a more and more capable and fully featured module
with every version.

It is still a work in progress and the API is subject to change
in breaking ways, however as of the 3.0 release I have began using
a simple and meaningful versioning system that should make moving
to new versions much easier. Major version numbers are incremented
when the release makes breaking changes, minor version numbers
are incremented when they are not. Meaning that it is safe to
upgrade without having to change existing code.

The name

If there’s one thing I’ve learned over the years and most recently
from OPTF2 it’s a good idea to record the meaning behind your project
names if they aren’t explicitly indicative of function or you will
forget.

Steamodd quite simply stands for “Steam odds and ends”. Even though
it’s starting to become more of a robust module it started out as a small
and probably not very well designed script meant to be run as a tool instead
of a reusable lib.

That’s not to say that the name doesn’t fit, since in
addition to the strong implementation of the API it has the recent
VDF [http://wiki.teamfortress.com/wiki/WebAPI/VDF] support and the SIM layer to boast as useful but not exactly
unrelated utilities.

 Copyright 2015, Anthony Garcia & Ondrej Slinták (initial docs).
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Steamodd 4.22 documentation

Installation

From command line:

$ pip install steamodd

If you wish to install it manually, Steamodd uses the standard distutils
module. To install it run:

$ python setup.py install

For further instructions and commands run:

$ python setup.py --help

 Copyright 2015, Anthony Garcia & Ondrej Slinták (initial docs).
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Steamodd 4.22 documentation

Quick start

Steam API key

If you are going to use Steam API, you’ll need to set Steam API key either from
code:

>>> import steam
>>> steam.api.key.set(API_KEY)

Or set environmental variable:

$ export STEAMODD_API_KEY="your_key"

Most methods will not complete successfully without it. If you don’t have an
API key you can register for one on Steam [http://steamcommunity.com/dev/apikey].

Components

This library consists of three major components, which are documented separately:

	Steam API wrappers

	Steam Inventory Manager

	VDF serializer

 Copyright 2015, Anthony Garcia & Ondrej Slinták (initial docs).
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Steamodd 4.22 documentation

Steam API wrappers

Low level methods

You can call any method from any of Steam API interfaces [https://wiki.teamfortress.com/wiki/WebAPI#Methods] using
steam.api.interface class. Let’s start with a quick example where we
fetch user’s game library.

Start by importing interface class:

>>> from steam.api import interface

Call method GetOwnedGames of interface IPlayerService. We are
going to fetch games of user with id 76561198017493014 and include all
application information:

>>> games = interface('IPlayerService').GetOwnedGames(steamid=76561198017493014, include_appinfo=1)

Since all method calls are lazy by default, this doesn’t do anything at all.
We’ll need to either iterate over games, print it or access any
of its dictionary keys:

>>> print(games['response']['game_count']) # Fetches resource
249

Don’t worry, resource isn’t fetched each time you access results.

>>> print(games) # Uses cached resource
{'response': {'games': [{'name': 'Counter-Strike', 'playtime_forever': 1570,...

You can disable laziness of interface by passing aggressive=True
to its method:

>>> games = interface('IPlayerService').GetOwnedGames(steamid=76561198017493014, include_appinfo=1, aggressive=True)

You can also pass since (which translates to HTTP header If-Modified-Since)
and timeout to method. By default, version is set to 1.
data can be passed to send POST data with requests. By default no data is assumed and request types
are GET. Any number of additional keyword arguments are supported depending on the given method (see documentation [https://wiki.teamfortress.com/wiki/WebAPI#Methods]).

High level methods

Following classes are convenience wrappers around Low level methods. kwargs
are always passed to appropriate interface methods, so you can use all arguments
from previous section.

Apps

	
class steam.apps.app_list(**kwargs)

	Retrieves a list of all Steam apps with their ID and localized name.

>>> from steam.apps import app_list
>>> app_list = app_list()
>>> 'Dota 2' in app_list
True
>>> 'Half-Life 3' in app_list
False
>>> len(app_list)
16762
>>> app_list['Counter-Strike']
(10, u'Counter-Strike')

Items

	
class steam.items.schema(app, lang=None, version=1, **kwargs)

	Wrapper for item schema of certain games from Valve. Those are currently
available (along with their ids):

	260 - Counter Strike: Source Beta

	440 - Team Fortress 2

	520 - Team Fortress 2 Public Beta

	570 - Dota 2

	620 - Portal 2

	710 - Counter-Strike: Global Offensive Beta Dev

	816 - Dota 2 internal test

	841 - Portal 2 Beta

	205790 - Dota 2 (beta) test

Fetching schema of Team Fortress 2 (id 440) would look like:

>>> schema = steam.items.schema(440)
>>> schema[340].name
u'Defiant Spartan'

Schema class is an iterator of steam.items.item() objects. There are
also other properties available:

	
client_url

	Client schema URL

	
language

	The ISO code of the language the instance
is localized to

	
attributes

	Returns all attributes in the schema

	
origins

	Returns a map of all origins

	
qualities

	Returns a dict of all possible qualities. The key(s) will be the ID,
values are a tuple containing ID, name, localized name. To resolve
a quality to a name intelligently use ‘_quality_definition’

	
particle_systems

	Returns a dictionary of particle system dicts keyed by ID

	
kill_ranks

	Returns a list of ranks for weapons with kill tracking

	
kill_types

	Returns a dict with keys that are the value of
the kill eater type attribute and values that are the name
string

	
class steam.items.item(item, schema=None)

	Stores a single inventory item.

This is a simple wrapper around JSON representation of both schema and
inventory items. It is composed mostly from item properties:

>>> item = schema[340]
>>> item.name
u'Defiant Spartan'
>>> item.type
u'Hat'
>>> item.attributes
[<steam.items.item_attribute object at 0x10c8b3290>, <steam.items.item_attribute object at 0x10c8b3210>]

As convenience, item acts also as iterator of its attributes:

>>> for attribute in item.attributes:
... attribute.name
...
u'kill eater score type'
u'kill eater kill type'

Following properties are available:

	
attributes

	Returns a list of attributes

	
quality

	Returns a tuple containing ID, name, and localized name of the quality

	
inventory_token

	Returns the item’s inventory token (a bitfield),
deprecated.

	
position

	Returns a position in the inventory or -1 if there’s no position
available (i.e. an item hasn’t dropped yet or got displaced)

	
equipped

	Returns a dict of classes that have the item equipped and in what slot

	
equipable_classes

	Returns a list of classes that _can_ use the item.

	
schema_id

	Returns the item’s ID in the schema.

	
name

	Returns the item’s undecorated name

	
type

	Returns the item’s type. e.g. “Kukri” for the Tribalman’s Shiv.
If Valve failed to provide a translation the type will be the token without
the hash prefix.

	
icon

	URL to a small thumbnail sized image of the item, suitable for display in groups

	
image

	URL to a full sized image of the item, for displaying ‘zoomed-in’ previews

	
id

	Returns the item’s unique serial number if it has one

	
original_id

	Returns the item’s original ID if it has one. This is the last “version”
of the item before it was customized or otherwise changed

	
level

	Returns the item’s level (e.g. 10 for The Axtinguisher) if it has one

	
slot_name

	Returns the item’s slot as a string, this includes “primary”,
“secondary”, “melee”, and “head”. Note that this is the slot
of the item as it appears in the schema, and not necessarily
the actual equipable slot. (see ‘equipped’)

	
cvar_class

	Returns the item’s class
(what you use in the game to equip it, not the craft class)

	
craft_class

	Returns the item’s class in the crafting system if it has one.
This includes hat, craft_bar, or craft_token.

	
craft_material_type

	

	
custom_name

	Returns the item’s custom name if it has one.

	
custom_description

	Returns the item’s custom description if it has one.

	
quantity

	Returns the number of uses the item has,
for example, a dueling mini-game has 5 uses by default

	
description

	Returns the item’s default description if it has one

	
min_level

	Returns the item’s minimum level
(non-random levels will have the same min and max level)

	
contents

	Returns the item in the container, if there is one.
This will be a standard item object.

	
tradable

	Somewhat of a WORKAROUND since this flag is there
sometimes, “cannot trade” is there sometimes
and then there’s “always tradable”. Opposed to
only occasionally tradable when it feels like it.
Attr 153 = cannot trade

	
craftable

	Returns not craftable if the cannot craft flag exists. True, otherwise.

	
full_name

	The full name of the item, generated depending
on things such as its quality, rank, the schema language,
and so on.

	
kill_eaters

	Returns a list of tuples containing the proper localized kill eater type strings and their values
according to set/type/value “order”

	
rank

	Returns the item’s rank (if it has one)
as a dict that includes required score, name, and level.

	
available_styles

	Returns a list of all styles defined for the item

	
style

	The current style the item is set to or None if the item has no styles

	
capabilities

	Returns a list of capabilities, these are flags for what the item can do or be done with

	
tool_metadata

	A dict containing item dependant metadata such as holiday restrictions, types, and properties used by the client. Do not assume a stable syntax.

	
origin

	Returns the item’s localized origin name

	
class steam.items.item_attribute(attribute)

	Wrapper around item attributes.

>>> for attribute in item.attributes:
... print('%s: %s' % (attribute.name, attribute.formatted_value))
...
kill eater score type: 64.0
kill eater kill type: 64.0

Following properties are available:

	
formatted_value

	Returns a formatted value as a string

	
formatted_description

	Returns a formatted description string (%s* tokens replaced) or None if unavailable

	
name

	The attribute’s name

	
cvar_class

	The attribute class, mostly non-useful except for console usage in some cases

	
id

	The attribute ID, used for indexing the description blocks in the schema

	
type

	Returns the attribute effect type (positive, negative, or neutral). This is not the same as the value type, see ‘value_type’

	
value

	Tries to intelligently return the raw value based on schema data.
See also: ‘value_int’ and ‘value_float’

	
value_int

	

	
value_float

	

	
description

	Returns the attribute’s description string, if
it is intended to be printed with the value there will
be a “%s1” token somewhere in the string. Use
‘formatted_description’ to build one automatically.

	
value_type

	The attribute’s type, note that this is the type of the attribute’s
value and not its affect on the item (i.e. negative or positive). See
‘type’ for that.

	
hidden

	True if the attribute is “hidden”
(not intended to be shown to the end user). Note
that hidden attributes also usually have no description string

	
account_info

	Certain attributes have a user’s account information
associated with it such as a gifted or crafted item.

A dict with two keys: ‘persona’ and ‘id64’.
None if the attribute has no account information attached to it.

	
class steam.items.inventory(app, profile, schema=None, **kwargs)

	Wrapper around player inventory.

Fetches inventory of player for given app id:

>>> inventory = steam.items.inventory(570, 76561198017493014)
>>> for item in inventory:
... item.name
...
'226749283'
'226749284'

Since inventory endpoint returns just very basic structure, we have to
provide also schema if we want to work with fully populated steam.items.item()
objects:

>>> schema = steam.items.schema(440)
>>> inventory = steam.items.inventory(440, 76561198017493014, schema)
>>> for item in inventory:
... item.name
...
u'Mercenary'
u'Noise Maker - Winter Holiday'

There is also single property:

	
cells_total

	The total number of cells in the inventory.
This can be used to determine if the user has bought an
expander. This is NOT the number of items in the inventory, but
how many items CAN be stored in it. The actual current inventory size
can be obtained by calling len on an inventory object

	
class steam.items.assets(app, lang=None, **kwargs)

	Class for building asset catalogs

Fetches store assets for app id. Assets class acts as an iterator of
steam.items.asset_item() objects.

>>> assets = steam.items.assets(440)
>>> for asset in assets:
... asset.price
...
{u'MXN': 74.0, u'EUR': 4.59, u'VND': 109000.0, u'AUD': 6.5, ...}
{u'MXN': 112.0, u'EUR': 6.99, u'VND': 159000.0, u'AUD': 9.8, ...}

If you care only about single currency, currency keyword argument in
ISO 4217 [http://en.wikipedia.org/wiki/ISO_4217] format is also accepted.

>>> assets = steam.items.assets(440, currency="RUB")
>>> for asset in assets:
... asset.price
...
{u'RUB': 290.0}
{u'RUB': 435.0}

All available tags of assets are available in following property:

	
tags

	Returns a dict that is a map of the internal tag names
for this catalog to the localized labels.

	
class steam.items.asset_item(asset, catalog)

	Stores a single item from a steam asset catalog

	
tags

	Returns a dict containing tags and their localized labels as values

	
base_price

	The price the item normally goes for, not including discounts.

	
price

	Returns the most current price available, which may include sales/discounts

	
name

	The asset “name” which is in fact a schema id of item.

Localization

	
class steam.loc.language(code=None)

	Steam API localization tools and reference

>>> language = steam.loc.language('nl_NL')
>>> language.name
'Dutch'
>>> language.code
'nl_NL'

If language is not specified, it defaults to English:

>>> language = steam.loc.language()
>>> language.name
'English'
>>> language.code
'en_US'

If language isn’t supported, __init__ raises steam.loc.LanguageUnsupportedError()

>>> language = steam.loc.language('sk_SK')
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
File "steam/loc.py", line 68, in __init__
 raise LanguageUnsupportedError(code)
steam.loc.LanguageUnsupportedError: sk_sk

Properties:

	
code

	

	
name

	

	
class steam.loc.LanguageUnsupportedError

	

Remote storage

Tools for probing Steam’s UGC file storage system. UGC itself means User
Generated Content but in this context assume that such terms as “UGC ID” are
specific to Valve’s system. UGC IDs are found in various places in the API and
Steam including decal attributes on TF2 items.

Practically speaking the purpose of ugc_file is similar to that of
steam.user.vanity_url. Namely to convert an arbitrary ID into
something useful like a direct URL.

	
class steam.remote_storage.ugc_file(appid, ugcid64, **kwargs)

	Resolves a UGC file ID into usable metadata.

Fetches UGC file metadata for the given UGC and app ID.

>>> ugc = steam.remote_storage.ugc_file(440, 650994986817657344)
>>> ugc.url
u'http://images.akamai.steamusercontent.com/ugc/650994986817657344/D2ADAD7F19BFA9A99BD2B8850CC317DC6BA01BA9/'

Properties:

	
size

	Size in bytes

	
filename

	Local filename is what the user named it, not the URL

	
url

	UGC link

	
class steam.remote_storage.FileNotFoundError

	

User

	
class steam.user.vanity_url(vanity, **kwargs)

	Class for holding a vanity URL and its id64

>>> vanity_url = steam.user.vanity_url('http://steamcommunity.com/id/ondrowan')
>>> vanity_url.id64
76561198017493014

	
class steam.user.profile(sid, **kwargs)

	Functions for reading user account data

>>> profile = steam.user.profile('76561198017493014')
>>> profile.persona
u'Lich Buchannon'
>>> profile.level
37

	
id64

	Returns the 64 bit steam ID (use with other API requests)

	
id32

	Returns the 32 bit steam ID

	
persona

	Returns the user’s persona (what you usually see in-game)

	
profile_url

	Returns a URL to the user’s Community profile page

	
vanity

	Returns the user’s vanity url if it exists, None otherwise

	
avatar_small

	

	
avatar_medium

	

	
avatar_large

	

	
status

	Returns the user’s status.
0: offline
1: online
2: busy
3: away
4: snooze
5: looking to trade
6: looking to play
If player’s profile is private, this will always be 0.

	
visibility

	Returns the visibility setting of the profile.
1: private
2: friends only
3: public

	
configured

	Returns true if the user has created a Community profile

	
last_online

	Returns the last time the user was online as a localtime
time.struct_time struct

	
comments_enabled

	Returns true if the profile allows public comments

	
real_name

	Returns the user’s real name if it’s set and public

	
primary_group

	Returns the user’s primary group ID if set.

	
creation_date

	Returns the account creation date as a localtime time.struct_time
struct if public

	
current_game

	Returns a tuple of 3 elements (each of which may be None if not available):
Current game app ID, server ip:port, misc. extra info (eg. game title)

	
location

	Returns a tuple of 2 elements (each of which may be None if not available):
State ISO code, country ISO code

	
lobbysteamid

	Returns a lobbynumber as int from few Source games or 0 if not in lobby.

	
level

	Returns the the user’s profile level, note that this runs a separate
request because the profile level data isn’t in the standard player summary
output even though it should be. Which is also why it’s not implemented
as a separate class. You won’t need this output and not the profile output

	
classmethod from_def(obj)

	Builds a profile object from a raw player summary object

	
current_game

	Returns a tuple of 3 elements (each of which may be None if not available):
Current game app ID, server ip:port, misc. extra info (eg. game title)

	
class steam.user.profile_batch(sids)

	>>> profiles = steam.user.profile_batch(['76561198014028523', '76561198017493014'])
>>> for profile in profiles:
... profile.persona
...
u'Lagg'
u'Lich Buchannon'

	
class steam.user.bans(sid, **kwargs)

	>>> bans = steam.user.bans('76561197962899758')
>>> bans.vac
True
>>> bans.vac_count
1
>>> bans.days_unbanned
2708

	
id64

	

	
community

	Community banned

	
vac

	User is currently VAC banned

	
vac_count

	Number of VAC bans on record

	
days_unbanned

	Number of days since the last ban.
Note that users without a ban on record will have
this set to 0 so make sure to test bans.vac

	
economy

	Economy ban status which is a string for whatever reason

	
game_count

	Number of bans in games, this includes CS:GO Overwatch bans

	
classmethod from_def(obj)

	

	
class steam.user.bans_batch(sids)

	>>> bans_batch = steam.user.bans_batch(['76561197962899758', '76561198017493014'])
>>> for bans in bans_batch:
... '%s: %s' % (bans.id64, bans.vac)
...
'76561197962899758: True'
'76561198017493014: False'

	
class steam.user.friend(friend_dict)

	Class used to store friend obtained from GetFriendList.

	
steamid

	Returns the 64 bit Steam ID

	
relationship

	Returns relationship qualifier

	
since

	Returns date when relationship was created as a localtime time.struct_time

	
class steam.user.friend_list(sid, relationship='all', **kwargs)

	Creates an iterator of friend objects fetched from given user’s Steam ID.
Allows for filtering by specyfing relationship argument in constructor,
but API seems to always return items with friend relationship.
Possible filter values: all, friend.

>>> friend_list = steam.user.friend_list('76561198014028523')
>>> friend_list.count
146
>>> for friend in friend_list:
... friend.steamid
...
76561197960299337
76561197960339433
(... and 144 more)

	
count

	Returns number of friends

 Copyright 2015, Anthony Garcia & Ondrej Slinták (initial docs).
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Steamodd 4.22 documentation

Steam Inventory Manager

High level item manager which scrapes data from http://steamcommunity.com instead
of Steam API.

	
class steam.sim.inventory_context(user, **kwargs)

	Builds context data that is fetched from a user’s inventory page

Fetches metadata of inventories for different games of given user:

>>> inventory_context = steam.sim.inventory_context('76561198017493014')
>>> inventory_context.apps
[u'570', u'753', u'251970', u'440', u'620']
>>> inventory_context.get(570)
{u'name': u'Dota 2', u'trade_permissions': u'FULL', u'rgContexts': ...}

This class also acts as an iterator of inventories:

>>> for game_inventory_ctx in inventory_context:
... game_inventory_ctx['name']
...
u'Team Fortress 2'
u'Dota 2'
u'Portal 2'
u'Steam'
u'Sins of a Dark Age'

Properties:

	
ctx

	

	
apps

	Returns a list of valid app IDs

	
get(key)

	Returns context data for a given app, can be an ID or a case insensitive name

	
class steam.sim.inventory(app, profile, schema=None, section=None, timeout=None, lang=None)

	Takes steam.sim.inventory_context and user id, and fetches data
from given inventory:

>>> inventory = steam.sim.inventory(inventory_context.get(570), '76561198017493014')
>>> inventory.cells_total
650

This class also acts as an iterator yielding steam.sim.item objects:

>>> for item in inventory:
... item.full_name
...
u'Rattlebite'
u'Heavenly Guardian Skirt'
u'Gloried Horn of Druud'
...

Properties:

	
cells_total

	Returns the total amount of “cells” which in this case is just an amount of items

	
class steam.sim.item(theitem, context)

	Subclass of steam.items.item. It is used as output from
steam.sim.inventory.

On top of properties inherited from steam.items.item, these are
available:

	
attributes

	Returns a list of attributes

	
category

	Returns the category name that the item is a member of

	
background_color

	Returns the color associated with the item as a hex RGB tuple

	
name

	

	
custom_name

	

	
name_color

	Returns the name color as an RGB tuple

	
full_name

	

	
hash_name

	The URL-friendly identifier for the item. Generates its own approximation if one isn’t available

	
tool_metadata

	

	
tags

	A list of tags attached to the item if applicable, format is subject to change

	
tradable

	

	
craftable

	

	
quality

	Can’t really trust presence of a schema here, but there is an ID sometimes

	
quantity

	

	
attributes

	

	
position

	

	
schema_id

	This will return none if there is no schema ID, since it’s a
valve specific concept for the most part

	
type

	

	
icon

	

	
image

	

	
id

	

	
slot_name

	

	
appid

	Return the app ID that this item belongs to

	
class steam.sim.item_attribute(attribute)

	Subclass of steam.items.item_attribute. It is used as output from
steam.sim.item.attributes().

On top of properties inherited from steam.items.item_attribute(),
these are available:

	
value_type

	

	
description

	

	
description_color

	Returns description color as an RGB tuple

	
type

	

	
value

	

 Copyright 2015, Anthony Garcia & Ondrej Slinták (initial docs).
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 previous |

 	Steamodd 4.22 documentation

VDF serializer

VDF [https://wiki.teamfortress.com/wiki/WebAPI/VDF] is format similar to JSON or YAML, used by Valve to store data. This
module mimics built-in json module and provides functions for
serialization and deserialization of VDF files.

	
steam.vdf.dump(obj, stream)

	Serializes obj as VDF formatted stream to stream object, encoded as
UTF-16 by default.

>>> with open('dump.vdf', 'w') as file:
... vdf.dump({u"key": u"value", u"list": [1, 2, 3]}, file)

→ cat dump.vdf
"list"
{
"1" "1"
"2" "1"
"3" "1"
}

"key" "value"

	
steam.vdf.dumps(obj)

	Serializes obj as VDF formatted string, encoded as UTF-16 by default.

>>> vdf_obj = vdf.dumps({"key": "value", "list": [1, 2, 3]})
>>> vdf_obj.decode('utf-16')
u'\n "list"\n {\n "1" "1"\n "2" "1"\n "3" "1"\n }\n\n "key" "value"\n'

	
steam.vdf.load(stream)

	Deserializes stream containing VDF document to Python object.

>>> with open('dump.vdf', 'r') as file:
... vdf.load(file)
...
{u'list': {u'1': u'1', u'3': u'1', u'2': u'1'}, u'key': u'value'}

	
steam.vdf.loads(string)

	Deserializes string containing VDF document to Python object.

>>> vdf.loads('"list" { "a" "1" "b" "2" "c" "3" }')
{u'list': {u'a': u'1', u'c': u'3', u'b': u'2'}}

 Copyright 2015, Anthony Garcia & Ondrej Slinták (initial docs).
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	Steamodd 4.22 documentation

Index

 A
 | B
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | K
 | L
 | M
 | N
 | O
 | P
 | Q
 | R
 | S
 | T
 | U
 | V

A

 	

 	account_info (steam.items.item_attribute attribute)

 	app_list (class in steam.apps)

 	appid (steam.sim.item attribute)

 	apps (steam.sim.inventory_context attribute)

 	asset_item (class in steam.items)

 	assets (class in steam.items)

 	

 	attributes (steam.items.item attribute), [1]

 	

 	(steam.items.schema attribute)

 	(steam.sim.item attribute)

 	available_styles (steam.items.item attribute)

 	avatar_large (steam.user.profile attribute)

 	avatar_medium (steam.user.profile attribute)

 	avatar_small (steam.user.profile attribute)

B

 	

 	background_color (steam.sim.item attribute)

 	bans (class in steam.user)

 	

 	bans_batch (class in steam.user)

 	base_price (steam.items.asset_item attribute)

C

 	

 	capabilities (steam.items.item attribute)

 	category (steam.sim.item attribute)

 	cells_total (steam.items.inventory attribute)

 	

 	(steam.sim.inventory attribute)

 	client_url (steam.items.schema attribute)

 	code (steam.loc.language attribute)

 	comments_enabled (steam.user.profile attribute)

 	community (steam.user.bans attribute)

 	configured (steam.user.profile attribute)

 	contents (steam.items.item attribute)

 	count (steam.user.friend_list attribute)

 	

 	craft_class (steam.items.item attribute)

 	craft_material_type (steam.items.item attribute)

 	craftable (steam.items.item attribute)

 	

 	(steam.sim.item attribute)

 	creation_date (steam.user.profile attribute)

 	ctx (steam.sim.inventory_context attribute)

 	current_game (steam.user.profile attribute), [1]

 	custom_description (steam.items.item attribute)

 	custom_name (steam.items.item attribute)

 	

 	(steam.sim.item attribute)

 	cvar_class (steam.items.item attribute)

 	

 	(steam.items.item_attribute attribute)

D

 	

 	days_unbanned (steam.user.bans attribute)

 	description (steam.items.item attribute)

 	

 	(steam.items.item_attribute attribute)

 	(steam.sim.item_attribute attribute)

 	description_color (steam.sim.item_attribute attribute)

 	

 	dump() (in module steam.vdf)

 	dumps() (in module steam.vdf)

E

 	

 	economy (steam.user.bans attribute)

 	equipable_classes (steam.items.item attribute)

 	

 	equipped (steam.items.item attribute)

F

 	

 	filename (steam.remote_storage.ugc_file attribute)

 	FileNotFoundError (class in steam.remote_storage)

 	formatted_description (steam.items.item_attribute attribute)

 	formatted_value (steam.items.item_attribute attribute)

 	

 	friend (class in steam.user)

 	friend_list (class in steam.user)

 	from_def() (steam.user.bans class method)

 	

 	(steam.user.profile class method)

 	full_name (steam.items.item attribute)

 	

 	(steam.sim.item attribute)

G

 	

 	game_count (steam.user.bans attribute)

 	

 	get() (steam.sim.inventory_context method)

H

 	

 	hash_name (steam.sim.item attribute)

 	

 	hidden (steam.items.item_attribute attribute)

I

 	

 	icon (steam.items.item attribute)

 	

 	(steam.sim.item attribute)

 	id (steam.items.item attribute)

 	

 	(steam.items.item_attribute attribute)

 	(steam.sim.item attribute)

 	id32 (steam.user.profile attribute)

 	id64 (steam.user.bans attribute)

 	

 	(steam.user.profile attribute)

 	image (steam.items.item attribute)

 	

 	(steam.sim.item attribute)

 	

 	inventory (class in steam.items)

 	

 	(class in steam.sim)

 	inventory_context (class in steam.sim)

 	inventory_token (steam.items.item attribute)

 	item (class in steam.items)

 	

 	(class in steam.sim)

 	item_attribute (class in steam.items)

 	

 	(class in steam.sim)

K

 	

 	kill_eaters (steam.items.item attribute)

 	kill_ranks (steam.items.schema attribute)

 	

 	kill_types (steam.items.schema attribute)

L

 	

 	language (class in steam.loc)

 	

 	(steam.items.schema attribute)

 	LanguageUnsupportedError (class in steam.loc)

 	last_online (steam.user.profile attribute)

 	level (steam.items.item attribute)

 	

 	(steam.user.profile attribute)

 	

 	load() (in module steam.vdf)

 	loads() (in module steam.vdf)

 	lobbysteamid (steam.user.profile attribute)

 	location (steam.user.profile attribute)

M

 	

 	min_level (steam.items.item attribute)

N

 	

 	name (steam.items.asset_item attribute)

 	

 	(steam.items.item attribute)

 	(steam.items.item_attribute attribute)

 	(steam.loc.language attribute)

 	(steam.sim.item attribute)

 	

 	name_color (steam.sim.item attribute)

O

 	

 	origin (steam.items.item attribute)

 	original_id (steam.items.item attribute)

 	

 	origins (steam.items.schema attribute)

P

 	

 	particle_systems (steam.items.schema attribute)

 	persona (steam.user.profile attribute)

 	position (steam.items.item attribute)

 	

 	(steam.sim.item attribute)

 	price (steam.items.asset_item attribute)

 	

 	primary_group (steam.user.profile attribute)

 	profile (class in steam.user)

 	profile_batch (class in steam.user)

 	profile_url (steam.user.profile attribute)

Q

 	

 	qualities (steam.items.schema attribute)

 	quality (steam.items.item attribute)

 	

 	(steam.sim.item attribute)

 	

 	quantity (steam.items.item attribute)

 	

 	(steam.sim.item attribute)

R

 	

 	rank (steam.items.item attribute)

 	real_name (steam.user.profile attribute)

 	

 	relationship (steam.user.friend attribute)

S

 	

 	schema (class in steam.items)

 	schema_id (steam.items.item attribute)

 	

 	(steam.sim.item attribute)

 	since (steam.user.friend attribute)

 	size (steam.remote_storage.ugc_file attribute)

 	

 	slot_name (steam.items.item attribute)

 	

 	(steam.sim.item attribute)

 	status (steam.user.profile attribute)

 	steamid (steam.user.friend attribute)

 	style (steam.items.item attribute)

T

 	

 	tags (steam.items.asset_item attribute)

 	

 	(steam.items.assets attribute)

 	(steam.sim.item attribute)

 	tool_metadata (steam.items.item attribute)

 	

 	(steam.sim.item attribute)

 	

 	tradable (steam.items.item attribute)

 	

 	(steam.sim.item attribute)

 	type (steam.items.item attribute)

 	

 	(steam.items.item_attribute attribute)

 	(steam.sim.item attribute)

 	(steam.sim.item_attribute attribute)

U

 	

 	ugc_file (class in steam.remote_storage)

 	

 	url (steam.remote_storage.ugc_file attribute)

V

 	

 	vac (steam.user.bans attribute)

 	vac_count (steam.user.bans attribute)

 	value (steam.items.item_attribute attribute)

 	

 	(steam.sim.item_attribute attribute)

 	value_float (steam.items.item_attribute attribute)

 	value_int (steam.items.item_attribute attribute)

 	

 	value_type (steam.items.item_attribute attribute)

 	

 	(steam.sim.item_attribute attribute)

 	vanity (steam.user.profile attribute)

 	vanity_url (class in steam.user)

 	visibility (steam.user.profile attribute)

 Copyright 2015, Anthony Garcia & Ondrej Slinták (initial docs).
 Created using Sphinx 1.3.1.

 _static/minus.png

_static/comment-close.png

_static/comment.png

_static/up.png

_static/down.png

_static/file.png

_static/plus.png

_static/down-pressed.png

_static/ajax-loader.gif

_static/comment-bright.png

_static/up-pressed.png

search.html

 Navigation

 		
 index

 		Steamodd 4.22 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2015, Anthony Garcia & Ondrej Slinták (initial docs).
 Created using Sphinx 1.3.1.

