

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	starman 0.0.1 documentation

starman: a state estimation library

Welcome to the starman documentation. Starman is a library which implements
algorithms useful if you are estimating the state of a system over time given
noisy measurements of it.

Contents

	Introduction
	Features

	Why “starman”?

	State estimation
	The Kalman filter

	Feature Association
	Scott and Longuet-Higgins association

	Programmer’s Reference
	State estimation

	Feature association

	Representation of state estimates

	Helper functions for linear systems

 Copyright 2016, Rich Wareham.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	starman 0.0.1 documentation

Introduction

The starman library provides implementation of algorithms commonly used to
estimate state and to track targets over time in the presence of noisy
measurements.

Those wanting to dive in and see what is supported may take a look at the
Programmer’s Reference for all the gory details.

Features

Starman provides a Kalman filter implementation which can be used to track the
hidden true state of a linear system over time given zero or more noisy
measurements for each time step.

A Rauch-Tung-Striebel smoother (RTS) implementation is provided which, when
combined with the Kalman filter, can produce very smooth estimates of state.
Unlike the Kalman filter which provides an estimate of state for each time step
based only on measurements up until that time step, the RTS smoother requires
all measurements to have been recorded.

For associating multiple measurements per frame to multiple targets, an
implementation of the Scott and Longuet-Higgins feature association algorithm is
provided. This algorithm can be used to “join the dots” when tracking multiple
targets.

Why “starman”?

Starman implements the Kalman filter. The Kalman filter was used for trajectory
estimation in the Apollo spaceflight programme. Starman is thus a blend of
“star”, signifying space, and “Kalman”. That and “kalman” was already taken as a
package name on the PyPI.

 Copyright 2016, Rich Wareham.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	starman 0.0.1 documentation

State estimation

It is often easy enough to write down equations determining the dynamics of a
system: how its state varies over time. Given a system at time k we can
predict what state it will be in at time k+1. We can also take measurements on
the system at time k+1. The process of fusing zero or measurements of a system
with predictions of its state is called state estimation.

The Kalman filter

A very popular state estimation algorithm is the Kalman filter [https://en.wikipedia.org/wiki/Kalman_filter]. The Kalman filter can be used
when the dynamics of a system are linear and measurements are some linear
function of state.

Problem formulation

Let’s first refresh the goal of the Kalman filter and its formulation. The
Kalman filter attempts to update an estimate of the “true” state of a system
given noisy measurements of the state. The state is assumed to evolve in a
linear way and measurements are assumed to be linear functions of the state.
Specifically, it is assumed that the “true” state at time \(k+1\) is a function of
the “true” state at time \(k\):

\[x_{k+1} = F_k x_k + B_k u_k + w_k\]

where \(w_k\) is a sample from a zero-mean Gaussian process with covariance \(Q_k\).
We term \(Q_k\) the process covariance. The matrix \(F_k\) is termed the
state-transition matrix and determines how the state evolves. The matrix \(B_k\)
is the control matrix and determines the contribution to the state of the
control input, \(u_k\).

At time instant \(k\) we may have zero or more measurements of the state. Each
measurement, \(z_k\) is assumed to be a linear function of the state:

\[z_k = H_k x_k + v_k\]

where \(H_k\) is termed the measurement matrix and \(v_k\) is a sample from a
zero-mean Gaussian process with covariance \(R_k\). We term \(R_k\) the measurement
covariance.

The Kalman filter maintains for time instant, \(k\), an a priori estimate of
state, \(\hat{x}_{k|k-1}\) covariance of this estimate, \(P_{k|k-1}\). The initial
values of these parameters are given when the Kalman filter is created. The
filter also maintains an a posteriori estimate of state, \(\hat{x}_{k|k}\), and
covariance, \(P_{k|k}\). This is updated for each measurement, \(z_k\).

Example: the constant velocity model

The Kalman filter is implemented in Starman in the
starman.KalmanFilter class. This section provides an example of use.

Generating the true states

We will implement a simple 2D state estimation problem using the constant
velocity model. The state transition matrix is constant throughout the model:

(Source code)

Import numpy and matplotlib functions into global namespace
from matplotlib.pylab import *

Our state is x-position, y-position, x-velocity and y-velocity.
The state evolves by adding the corresponding velocities to the
x- and y-positions.
F = array([
 [1, 0, 1, 0], # x <- x + vx
 [0, 1, 0, 1], # y <- y + vy
 [0, 0, 1, 0], # vx is constant
 [0, 0, 0, 1], # vy is constant
])

Specify the length of the state vector
STATE_DIM = F.shape[0]

(Source code)

(Source code)

Let’s generate some sample data by determining the process noise covariance:

Specify the process noise covariance
Q = diag([1e-2, 1e-2, 1e-1, 1e-1]) ** 2

How many states should we generate?
N = 100

Generate some "true" states
from starman.linearsystem import generate_states
true_states = generate_states(N, process_matrix=F, process_covariance=Q)
assert true_states.shape == (N, STATE_DIM)

(Source code)

We can plot the true states we’ve just generated:

(Source code)

(Source code, png, hires.png, pdf)

[image: _images/stateest-5.png]

(Source code)

Generating measurements

We will use a measurement model where the velocity is a “hidden” state and we
can only directly measure position. We’ll also specify a measurement error
covariance.

We only measure position
H = array([
 [1, 0, 0, 0],
 [0, 1, 0, 0],
])

And we measure with some error. Note that we have difference
variances for x and y.
R = diag([1.0, 2.0]) ** 2

Specify the measurement vector length
MEAS_DIM = H.shape[0]

(Source code)

From the measurement matrix and measurement error we can generate noisy
measurements from the true states.

Measure the states
from starman.linearsystem import measure_states
measurements = measure_states(true_states, measurement_matrix=H,
 measurement_covariance=R)

(Source code)

Let’s plot the measurements overlaid on the true states.

(Source code, png, hires.png, pdf)

[image: _images/stateest-9.png]

(Source code)

Using the Kalman filter

We can create an instance of the starman.KalmanFilter to filter our
noisy measurements.

from starman import KalmanFilter, MultivariateNormal

Create a kalman filter with constant process matrix and covariances.
kf = KalmanFilter(state_length=STATE_DIM,
 process_matrix=F, process_covariance=Q)

For each time step
for k, z in enumerate(measurements):
 # Predict state for this timestep
 kf.predict()

 # Update filter with measurement
 kf.update(measurement=MultivariateNormal(mean=z, cov=R),
 measurement_matrix=H)

(Source code)

The starman.KalmanFilter class has a number of attributes which
give useful information on the filter:

Check that filter length is as expected
assert kf.state_count == N

Check that the filter state dimension is as expected
assert kf.state_length == STATE_DIM

(Source code)

Now we’ve run the filter, we can see how it has performed. We also shade the
three sigma regions for the estimates.

(Source code, png, hires.png, pdf)

[image: _images/stateest-13.png]

(Source code)

We see that the estimates of position and velocity improve over time.

Rauch-Tung-Striebel smoothing

The Rauch-Tung-Striebel [https://en.wikipedia.org/wiki/Kalman_filter#Rauch.E2.80.93Tung.E2.80.93Striebel]
(RTS) smoother provides a method of computing the “all data” a posteriori
estimate of states (as opposed to the “all previous data” estimate). Assuming
there are \(n\) time points in the filter, then the RTS computes the a
posteriori state estimate at time \(k\) after all the data for \(n\) time steps are
known, \(\hat{x}_{k|n}\), and corresponding covariance, \(P_{k|n}\), recursively:

\[\hat{x}_{k|n} = \hat{x}_{k|k} + C_k (\hat{x}_{k+1|n} - \hat{x}_{k+1|k}),
\quad P_{k|n} = P_{k|k} + C_k (P_{k+1|n} - P_{k+1|k}) C_k^T\]

with \(C_k = P_{k|k} F^T_{k+1} P_{k+1|k}^{-1}\).

The RTS smoother is an example of an “offline” algorithm in that the estimated
state for time step \(k\) depends on having seen all of the measurements rather
than just the measurements up until time \(k\).

Using RTS smoothing

We’ll start by assuming that the steps in Example: the constant velocity model have been
performed. Namely that we have some true states in true_states, measurements
in measurements and a starman.KalmanFilter instance in kf.

Following on from that example, we can use the starman.rts_smooth()
function to compute the smoothed state estimates given all of the data.

from starman import rts_smooth

Compute the smoothed states given all of the data
rts_estimates = rts_smooth(kf)

(Source code)

Again, we can plot the estimates and shade the three sigma region.

(Source code, png, hires.png, pdf)

[image: _images/stateest-16.png]

(Source code)

We can see how the RTS smoothed states are far smoother than the forward
estimated states. But that the true state values are still very likely to be
within our three sigma band.

Mathematical overview

The Kalman filter alternates between a predict step for each time step and
zero or more update steps. The predict step forms an a priori estimate of
the state given the dynamics of the system and the update step refines an a
posteriori estimate given the measurement.

A Priori Prediction

At time \(k\) we are given a state transition matrix, \(F_k\), and estimate of the
process noise, \(Q_k\). Our a priori estimates are then given by:

\[\hat{x}_{k|k-1} = F_k \hat{x}_{k-1|k-1} + B_k u_k,
\quad
P_{k|k-1} = F_k P_{k-1|k-1} F_k^T + Q_k.\]

Innovation

At time \(k\) we are given a matrix, \(H_k\), which specifies how a given
measurement is derived from the state and some estimate of the measurement noise
covariance, \(R_k\). We may now compute the innovation, \(y_k\), of the measurement
from the predicted measurement and our expected innovation covariance, \(S_k\):

\[y_k = z_k - H_k \hat{x}_{k|k-1}, \quad S_k = H_k P_{k|k-1} H_k^T + R_k.\]

Update

We now update the state estimate with the measurement via the so-called Kalman
gain, \(K_k\):

\[K_k = P_{k|k-1} H_k^T S_k^{-1}.\]

Merging is straightforward. Note that if we have no measurement, our a
posteriori estimate reduces to the a priori one:

\[\hat{x}_{k|k} = \hat{x}_{k|k-1} + K_k y_k, \quad P_{k|k} = P_{k|k-1} - K_k
H_k P_{k|k-1}.\]

 Copyright 2016, Rich Wareham.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	starman 0.0.1 documentation

Feature Association

When estimating the state of a single system, techniques such as Kalman
filtering can be extremely useful. Real situations often have several systems
acting independently each of which can generate a measurement. Sometimes it is
clear which measurement has arisen from which system. Sometimes it is not.
Feature association is the process of associating actual measurements with
predicted measurements from a set of tracked systems.

Scott and Longuet-Higgins association

The Scott and Longuet-Higgins algorithm [SLH] is an elegant algorithm for
associating two sets of features by considering the Gaussian weighted distances
between each pair of features. Since it considers pair-wise distances, and then
uses an SVD, its computational complexity is approximately \(O(n^2)\).

In tracking problems we can use the SLH algorithm when we have good estimates of
the predicted measurement estimate covariance and actual measurement covariance.

Example: 2D tracking

Let’s first of all create a list of “true” 2D locations of some set of targets.
We’ll simply sample their location uniformly from the interval \((0, 10] \times
(0, 10]\):

(Source code)

(Source code)

Import plotting and numpy functions
from matplotlib.pylab import *

How many targets?
n_targets = 25

Sample the ground truth (gt) positions
gt_positions = 10 * np.random.rand(n_targets, 2)

(Source code)

We will simulate some tracking problem by assuming we’ve been tracking the
targets and creating some estimates of state. We’ll let a certain proportion of
the ground truth states be “new” states.

from numpy.random import multivariate_normal as sample_mvn
from starman import MultivariateNormal

def simulate_tracking_state(ground_truth):
 """Given a ground truth location, return a MultivariateNormal
 representing a simulated tracking state."""

 # Sample estimate covariance.
 cov = 1e-1 * np.diag(5e-1 + np.random.rand(2))
 cov[1, 0] = cov[0, 1] = 1e-1 * (np.random.rand() - 0.5)

 # Sample mean of estimate based on covariance
 mean = sample_mvn(mean=ground_truth, cov=cov)

 return MultivariateNormal(mean, cov)

Sample our simulated state estimates. There's a probability of 0.1 that
the ground truth state is a new one for this time step.
estimates = [simulate_tracking_state(s)
 for s in gt_positions if np.random.rand() < 0.9]

(Source code)

Now we’ll simulate measurements on the ground truth states. Again there is a
proportion of states which we do not measure but each measurement has the same
covariance.

from starman.linearsystem import measure_states

Set measurement covariance
measurement_covariance = np.diag([1e-1, 1e-1]) ** 2

Get list of MultivariateNormal instances for each measurement. We have
a probability of 0.1 of missing a state.
gt_measurements = measure_states(gt_positions, np.eye(2),
 measurement_covariance)
measurements = [
 MultivariateNormal(mean=measurement, cov=measurement_covariance)
 for measurement in gt_measurements if np.random.rand() < 0.9
]

(Source code)

Let’s take a look at out ground truth positions and current tracking state
estimates. We’ll plot a 2-sigma ellipse around each state estimate and each
measurement.

(Source code, png, hires.png, pdf)

[image: _images/association-5.png]

(Source code)

The SLH algorithm is implemented in the slh_associate() function. It
takes as non-optional arguments two lists of MultivariateNormal
instances which should be associated. It also takes an optional parameter
giving the maximum number of standard deviations two features can be separated
before they are considered to be impossible to associate. In this example we’ll
use the default 5-sigma separation threshold.

from starman import slh_associate

Use slh_associate to associate state estimates with measurements.
associations = slh_associate(estimates, measurements)

Associations are represented by an Nx2 array of indices into the two
lists.
assert associations[:, 0].max() < len(estimates)
assert associations[:, 1].max() < len(measurements)

(Source code)

The associations are returned as a two-column array. The first column contains
indices into the first list of features and the second column contains indices
into the second list. For example we could turn the associations into a list of
state estimate mean, measurement pairs:

associated_positions = []
for est_idx, meas_idx in associations:
 associated_positions.append([
 estimates[est_idx].mean, measurements[meas_idx].mean
])

(Source code)

(Source code, png, hires.png, pdf)

[image: _images/association-9.png]

(Source code)

Mathematical overview

The SLH algorithm starts by assuming that there are two sets of features. Each
feature is parametrised by a mean and covariance. We shall notate the \(i\)-th
mean of group \(k\) as \(\mu_i^{(k)}\) and the \(i\)-th covariance of group \(k\) as
\(\Sigma_i^{(k)}\). We then form a Gaussian weighted proximity matrix, \(G\), where

\[G_{ij} = \exp \left(
 -\frac{1}{2}
 \left(\mu_i^{(1)} - \mu_j^{(2)}\right)^T
 \left(\Sigma_i^{(1)} + \Sigma_j^{(2)}\right)^{-1}
 \left(\mu_i^{(1)} - \mu_j^{(2)}\right)
\right).\]

Our intution is that “true” associations are represented by a) a value close to
1 in \(G\) and b) that value being the largest in both its row and column. The
“ideal” \(G\) is one where there is at most a single 1 in each row an column and
every other element is zero. (This ideal matrix being orthogonal.) The SLH
algorithm attempts to magnify the orthogonality of \(G\) by way of the singular
value decomposition (SVD).

One firstly takes the SVD of \(G\) which finds \(U, S\) and \(V\) such that

\[U \, S \, V^T = G.\]

The matrix of singular values \(S\) only has non-zero elements on its diagonal.
Form a new matrix \(\Lambda\) from \(S\) by setting all non-zero elements to 1.
Then form \(P\) as

\[P = U \, \Lambda \, V^T.\]

Associate feature \(i\) in list 1 with feature \(j\) in list 2 if and only if:

	Element \(P_{ij}\) is the maximum in its row and column.

	\(G_{ij}\) is greater than some association threshold, \(\alpha\).

In practice the association threshold is set with reference to some number of
standard deviations, \(\sigma\). So, \(\alpha = \exp(- \sigma^2 / 2)\).

The SLH algorithm can be interpreted as minimising the sum of squared distances
between features where those distances are normalised by the covariance matrices
of the features.

	[SLH]	Scott, Guy L., and H. Christopher Longuet-Higgins. “An algorithm for
associating the features of two images.” Proceedings of the Royal Society of
London B: Biological Sciences 244.1309 (1991): 21-26.

 Copyright 2016, Rich Wareham.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 previous |

 	starman 0.0.1 documentation

Programmer’s Reference

Below is a description of the public API of starman separated by functionality.
In-depth discussion how to use the API can be found in the appropriate sections
of the documentation.

State estimation

	
class starman.KalmanFilter(initial_state_estimate=None, process_matrix=None, process_covariance=None, control_matrix=None, state_length=None)

	A KalmanFilter maintains an estimate of true state given noisy measurements.

The filter is initialised to have no state estimates. (Time step “-1” if you
will.) Before calling update(), predict() must be called
at least once.

The filter represents its state estimates as frozen
MultivariateNormal instances.

	Parameters:	
	initial_state_estimate (None or MultivariateNormal) – The
initial estimate of the true state used for the first
predict() step. If None, state_length must be
specified and the initial state estimate is initialised to zero mean
and a covariance of the identity matrix muiltiplied by a large
value. (Specifically the value of
KalmanFilter.LARGE_COVARIANCE.)

	process_matrix (array or None) – The process matrix
to use if none is passed to predict().

	process_covariance (array or None) – The process noise covariance
to use if none is passed to predict().

	control_matrix – (array or None): The control matrix to use if none
is passed to predict().

	state_length (None or int) – Must only be specified if
initial_state_estimate is None. In which case, this is used as the
length of the state vector.

	Raises:	ValueError –
The passed matrices have inconsistent or invalid shapes.

	
prior_state_estimates

	list of MultivariateNormal

Element k is the the a priori state estimate for time step k.

	
posterior_state_estimates

	list of MultivariateNormal

Element k is the the a posteriori state estimate for time step
k.

	
measurements

	list of list of MultivariateNormal

Element k is a list of MultivariateNormal
instances. These are the instances passed to update() for
time step k.

	
process_matrices

	list of array

Element k is the process matrix used
by predict() at time step k.

	
process_covariances

	list of array

Element k is the process
covariance used by predict() at time step k.

	
measurement_matrices

	list of list of array

Element k is a list of the measurement matrices passed to each
call to update() for that time step.

	
state_length

	int

Number of elements in the state vector.

	
clone()

	Return a new KalmanFilter instance which is a shallow
clone of this one. By “shallow”, although the lists of measurements,
etc, are cloned, the MultivariateNormal instances within
them are not. Since predict() and update() do not
modify the elements of these lists, it is safe to run two cloned filters
in parallel as long as one does not directly modify the states.

	Returns:	(KalmanFilter) –
A new KalmanFilter instance.

	
measurement_count

	Property returning the total number of measurements which have been
passed to this filter.

	
predict(control=None, control_matrix=None, process_matrix=None, process_covariance=None)

	Predict the next a priori state mean and covariance given the last
posterior. As a special case the first call to this method will
initialise the posterior and prior estimates from the
initial_state_estimate and initial_covariance arguments passed when
this object was created. In this case the process_matrix and
process_covariance arguments are unused but are still recorded in the
process_matrices and process_covariances
attributes.

	Parameters:	
	control (array or None) – If specified, the control input for this
predict step.

	control_matrix (array or None) – If specified, the control matrix to
use for this time step.

	process_matrix (array or None) – If specified, the process matrix to
use for this time step.

	process_covariance (array or None) – If specified, the process
covariance to use for this time step.

	
state_count

	Property returning the number of states/time steps this filter has
processed. Since the first time step is always 0, the final index will
always be state_count - 1.

	
truncate(new_count)

	Truncate the filter as if only new_count predict(),
update() steps had been performed. If new_count is greater
than state_count then this function is a no-op.

Measurements, state estimates, process matrices and process noises which
are truncated are discarded.

	Parameters:	new_count (int) – Number of states to retain.

	
update(measurement, measurement_matrix)

	After each predict(), this method may be called repeatedly to
provide additional measurements for each time step.

	Parameters:	
	measurement (MultivariateNormal) – Measurement for this
time step with specified mean and covariance.

	measurement_matrix (array) – Measurement matrix for this measurement.

	
starman.rts_smooth(kalman_filter, state_count=None)

	Compute the Rauch-Tung-Striebel smoothed state estimates and estimate
covariances for a Kalman filter.

	Parameters:	
	kalman_filter (KalmanFilter) – Filter whose smoothed states should be
returned

	state_count (int or None) – Number of smoothed states to return.
If None, use kalman_filter.state_count.

	Returns:	(list of MultivariateNormal) –
List of multivariate normal distributions.
The mean of the distribution is the estimated state and the covariance
is the covariance of the estimate.

Feature association

	
starman.slh_associate(a_features, b_features, max_sigma=5)

	An implementation of the Scott and Longuet-Higgins algorithm for feature
association.

This function takes two lists of features. Each feature is a
MultivariateNormal instance representing a feature
location and its associated uncertainty.

	Parameters:	
	a_features (list of MultivariateNormal) –

	b_features (list of MultivariateNormal) –

	max_sigma (float or int) – maximum number of standard deviations two
features can be separated and still considered “associated”.

	Returns:	(array) –
A Nx2 array of feature associations. Column 0 is the index into
the a_features list, column 1 is the index into the b_features list.

Representation of state estimates

	
class starman.MultivariateNormal(mean=None, cov=None)

	MultivariateNormal represents a multivariate normal (or “Gaussian”)
distribution parametrised in terms of a mean and covariance. The mean is a
length-N vector and the covariance is a NxN matrix.

If mean is unspecified, it defaults to a zero-filled vector whose dimension
matches the covariance.

If the covariance is unspecified, it defaults to an identity matrix whose
shape matches the dimension of the mean.

If neither mean or covariance are specified, default values of 0 and 1 are
used.

	Parameters:	
	mean (None or array) – Distribution mean.

	cov (None or array) – Distribution covariance.

	
rvs(size=1)

	Convenience method to sample from this distribution.

	Parameters:	size (int or tuple) – Shape of return value. Each element is drawn
independently from this distribution.

Helper functions for linear systems

The starman.linearsystem module contains some helper functions for
systems with linear dynamics and a linear measurement model.

	
starman.linearsystem.generate_states(state_count, process_matrix, process_covariance, initial_state=None)

	Generate states by simulating a linear system with constant process matrix
and process noise covariance.

	Parameters:	
	state_count (int) – Number of states to generate.

	process_matrix (array) – Square array

	process_covariance (array) – Square array specifying process noise
covariance.

	initial_state (array or None) – If omitted, use zero-filled vector as
initial state.

	
starman.linearsystem.measure_states(states, measurement_matrix, measurement_covariance)

	Measure a list of states with a measurement matrix in the presence of
measurement noise.

	Parameters:	
	states (array) – states to measure. Shape is NxSTATE_DIM.

	measurement_matrix (array) – Each state in states is measured with this
matrix. Should be MEAS_DIMxSTATE_DIM in shape.

	measurement_covariance (array) – Measurement noise covariance. Should be
MEAS_DIMxMEAS_DIM.

	Returns:	(array) –
NxMEAS_DIM array of measurements.

 Copyright 2016, Rich Wareham.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	starman 0.0.1 documentation

 Python Module Index

 s

 			

 		
 s	

 	[image: -]
 	
 starman	

 	
 	
 starman.linearsystem	

 Copyright 2016, Rich Wareham.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	starman 0.0.1 documentation

Index

 C
 | G
 | K
 | M
 | P
 | R
 | S
 | T
 | U

C

 	

 	clone() (starman.KalmanFilter method)

G

 	

 	generate_states() (in module starman.linearsystem)

K

 	

 	KalmanFilter (class in starman)

M

 	

 	measure_states() (in module starman.linearsystem)

 	measurement_count (starman.KalmanFilter attribute)

 	measurement_matrices (KalmanFilter attribute)

 	

 	measurements (KalmanFilter attribute)

 	MultivariateNormal (class in starman)

P

 	

 	posterior_state_estimates (KalmanFilter attribute)

 	predict() (starman.KalmanFilter method)

 	prior_state_estimates (KalmanFilter attribute)

 	

 	process_covariances (KalmanFilter attribute)

 	process_matrices (KalmanFilter attribute)

R

 	

 	rts_smooth() (in module starman)

 	

 	rvs() (starman.MultivariateNormal method)

S

 	

 	slh_associate() (in module starman)

 	starman.linearsystem (module)

 	

 	state_count (starman.KalmanFilter attribute)

 	state_length (KalmanFilter attribute)

T

 	

 	truncate() (starman.KalmanFilter method)

U

 	

 	update() (starman.KalmanFilter method)

 Copyright 2016, Rich Wareham.
 Created using Sphinx 1.3.5.

 _static/ajax-loader.gif

_static/up.png

stateest-13.png
X co-ordinate

X velocity

15

10

05

0.0

-0.5

-1.0

-15

True
Measured
Estimated

¥ co-ordinate

20

40 60
Time step

100

0 20 40 60 8 100
Time step

¥ velocity

10

05

0.0

-0.5

-1.0

-15

-2.0

20

40 60
Time step

100

=20

0 20 40 60 8 100
Time step

stateest-16.png
X co-ordinate

X velocity

15

10

05

0.0

-0.5

-1.0

-15

— True

Measured
— Kalman
— RTS

¥ co-ordinate

20

40 60 80
Time step

100

0 20 40 60 8 100
Time step

¥ velocity

10

05

0.0

-0.5

-1.0

-15

-2.0

20

40 60 80
Time step

100

=20

0 20 40 60 8 100
Time step

_static/comment-close.png

stateest-5.png
X co-ordinate

X velocity

58888

-10

°

°

I
S

g

¥ co-ordinate

5888

20

40 60
Time step

100

15

20

40 60
Time step

¥ velocity

10

05

0.0

o

20

40 60
Time step

100

20

40 60
Time step

100

_static/down.png

_static/plus.png

stateest-16.hires.png
X co-ordinate

X velocity

50
40 -
30+
20+
10}

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, — True |

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, < Measured ||

7777777777777777777777777777777777777 — Kalman ||
— RTS

Y co-ordinate

1.5

-2.0

Time step

40
Time step

60

80

100

_static/down-pressed.png

association-5.png
¥ co-ordinate

s

round truth locations, state estimates and measurements

10

« Ground truth
+ State estimates
» Measurements

X co-ordinate

12

_static/comment.png

stateest-9.png
X position

¥ position

Measurements of true state

— True
Measured

-10
0

20 40 60 80 100
Time step

association-9.hires.png
Y co-ordinate

12

10

SLH associations

e e Ground truth

|+ + State estimates|: ~
x x Measurements | Q

X co-ordinate

stateest-13.hires.png
X co-ordinate

X velocity

50
40
30
20
10

| | |
w N =
o O o

1.5

-15

-2.0

Xo X

True

Measured ||

Estimated

Time step

Y co-ordinate

Y velocity

[

= o o

o w» o
T

Time step

association-5.hires.png
Y co-ordinate

1

10

ground truth locations, state estimates and measurements

¢ * Ground truth
||+ + State estimates |: ~_
x x Measurements | °

X co-ordinate

search.html

 Navigation

 		
 index

 		
 modules |

 		starman 0.0.1 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2016, Rich Wareham.
 Created using Sphinx 1.3.5.

stateest-5.hires.png
o
Te]

o
Te]

I I I I I I
O O O O O o o o
< m o — — o m
I
31eUIpJo-0d A
I I I I I I
O O O O O o o o
< m o — — o m
I

33jeuIplo-0d X

40 60 80 100

20

40 60 80 100

20

Time step

Time step

i
G
o —

| |

1.5

i
G
o —

| |

A31D0JaN X

40 60 80 100

20

40 60 80 100

20

Time step

Time step

_images/association-9.png
¥ co-ordinate

12

10

SLH associations

« Ground truth
+ State estimates
» Measurements

X co-ordinate

10

12

_modules/index.html

 Navigation

 		
 index

 		
 modules |

 		starman 0.0.1 documentation »

 All modules for which code is available

		starman.kalman

		starman.linearsystem

		starman.rts

		starman.slh

		starman.stats

 © Copyright 2016, Rich Wareham.
 Created using Sphinx 1.3.5.

stateest-9.hires.png
=5
C
e
'g -10
o
<

Y position

Measurements of true state

| — True
| <~ Measured

Time step

100

_images/stateest-16.png
X co-ordinate

X velocity

15

10

05

0.0

-0.5

-1.0

-15

— True

Measured
— Kalman
— RTS

¥ co-ordinate

20

40 60 80
Time step

100

0 20 40 60 8 100
Time step

¥ velocity

10

05

0.0

-0.5

-1.0

-15

-2.0

20

40 60 80
Time step

100

=20

0 20 40 60 8 100
Time step

_images/association-5.png
¥ co-ordinate

s

round truth locations, state estimates and measurements

10

« Ground truth
+ State estimates
» Measurements

X co-ordinate

12

_images/stateest-5.png
X co-ordinate

X velocity

58888

-10

°

°

I
S

g

¥ co-ordinate

5888

20

40 60
Time step

100

15

20

40 60
Time step

¥ velocity

10

05

0.0

o

20

40 60
Time step

100

20

40 60
Time step

100

association-9.png
¥ co-ordinate

12

10

SLH associations

« Ground truth
+ State estimates
» Measurements

X co-ordinate

10

12

_images/stateest-13.png
X co-ordinate

X velocity

15

10

05

0.0

-0.5

-1.0

-15

True
Measured
Estimated

¥ co-ordinate

20

40 60
Time step

100

0 20 40 60 8 100
Time step

¥ velocity

10

05

0.0

-0.5

-1.0

-15

-2.0

20

40 60
Time step

100

=20

0 20 40 60 8 100
Time step

_static/up-pressed.png

_static/comment-bright.png

_images/stateest-9.png
X position

¥ position

Measurements of true state

— True
Measured

-10
0

20 40 60 80 100
Time step

_static/minus.png

_static/file.png

