

    
      Navigation

      
        	
          index

        	
          next |

        	Stac 1.1.0 documentation 
 
      

    


    
      
          
            
  
Stac - Smarter Travel Artifactory Client

Stac is a tiny Artifactory client designed for getting the most recent version (or versions)
of a project from an Artifactory server. The target use case is downloading project artifacts
as part of a deploy process.

Given a few pieces of information, it can generate URLs to the most recent version of an
artifact to be downloaded as part of your deploy process. Currently, only Maven repository
layouts (in Artifactory parlance) are supported.


Installation

To install Stac, simply run:

$ pip install stac








Dependencies


	requests [https://github.com/kennethreitz/requests]  by Kenneth Reitz






Usage

Using Stac is easy!

>>> from stac.api import new_maven_client
>>> client = new_maven_client('https://www.example.com/artifactory', 'libs-release')
>>> version = client.get_latest_version('com.example.services.authentication')
>>> version
'1.2.3'
>>> url = client.get_version_url('com.example.services.authentication', 'jar', version)
>>> url
'https://www.example.com/artifactory/libs-release/com/example/services/authentication/1.2.3/authentication-1.2.3.jar'








Contents



	Quickstart
	Get a Specific Version

	Get the Latest Release Version

	Get the Latest Snapshot Version

	Get the Latest N Release Versions

	Get the Latest N Snapshot Versions





	Advanced Usage
	Search Remote Repositories

	Use HTTP Authentication

	Use a Custom HTTP Session

	Get Custom Assemblies





	API
	Clients

	HTTP Dao

	Exceptions





	Changelog
	1.1.0 - 2016-04-04

	1.0.1 - 2016-03-09

	1.0.0 - 2016-02-09

	0.3.1 - 2016-01-25

	0.3.0 - 2015-12-24

	0.2.0 - 2015-12-23

	0.1.1 - 2015-12-22

	0.1.0 - 2015-12-21















          

      

      

    


    
         Copyright 2016, Smarter Travel.
      Created using Sphinx 1.3.5.
    

  

    
      Navigation

      
        	
          index

        	
          next |

        	
          previous |

        	Stac 1.1.0 documentation 
 
      

    


    
      
          
            
  
Quickstart

The following examples will walk through some simple uses of the stac.client.ArtifactoryClient
implementation for Maven repository layouts (stac.client.GenericArtifactoryClient paired with
stac.client.MavenArtifactUrlGenerator). Since this client is focused on deploy related use cases,
the examples below will as well.


Get a Specific Version

If you already know what version you want to download / deploy, Stac can turn that version number
into a URL for you based on the name of your project and repository.

import stac.api

client = stac.api.new_maven_client('https://www.example.com/artifactory', 'libs-release')
war = client.get_version('com.example.services.users', 'war', '1.2.4')
print(war) # 'https://www.example.com/artifactory/libs-release/com/example/services/users/1.2.4/users-1.2.4.war'





In the example above, the war variable will be the full URL to download version 1.2.4 of some
hypothetical users service.




Get the Latest Release Version

If you want to get the most recent release version of a project, Stac can determine that based on the
name of your project and repository.

import stac.api

client = stac.api.new_maven_client('https://www.example.com/artifactory', 'libs-release')

version = client.get_latest_version('com.example.services.auth')
print(version) # '1.3.0'

jar = client.get_version_url('com.example.services.auth', 'jar', version)
print(jar) # 'https://www.example.com/artifactory/libs-release/com/example/services/auth/1.3.0/auth-1.3.0.jar'





In the example above, version will be the string 1.3.0 and the jar variable will be the full
URL to download version 1.3.0 (the most recent release) of some hypothetical authentication service. If
there haven’t been any releases of this service an exception will be raised.




Get the Latest Snapshot Version

Maybe you want to determine the most recent snapshot version of your project (potentially to deploy it to your
continuous integration server). Stac can also help you out with this. However, you need to explicitly tell
the client that you are looking for snapshot, or integration, versions.

import stac.api

client = stac.api.new_maven_client('https://www.example.com/artifactory', 'libs-snapshot', is_snapshot=True)

version = client.get_latest_version('com.example.services.locations')
print(version) # '4.1.0-SNAPSHOT'

jar = client.get_version_url('com.example.services.locations', 'jar', version)
print(jar) # 'https://www.example.com/artifactory/libs-snapshot/com/example/services/locations/4.1.0-SNAPSHOT/locations-4.1.0-SNAPSHOT.jar'





In the example above, version will be the string 4.1.0-SNAPSHOT and the jar variable will be
the full URL to download version 4.1.0 (the most recent snapshot / integration version) of some hypothetical
location service. If there haven’t been any snapshot versions of this service created, an exception will be
raised.




Get the Latest N Release Versions

If you need to get more than a single most recent release version, the process is outlined below (spoiler:
it’s pretty much the same as getting the single most recent release version).

import stac.api

client = stac.api.new_maven_client('https://www.example.com/artifactory', 'libs-release')

versions = client.get_latest_versions('com.example.services.auth', limit=3)
print(versions)
# [
#   '1.3.0',
#   '1.2.8',
#   '1.2.3'
# ]

jars = [client.get_version_url('com.example.services.auth', 'jar', version) for version in versions]
print(jars)
# [
#   'https://www.example.com/artifactory/libs-release/com/example/services/auth/1.3.0/auth-1.3.0.jar',
#   'https://www.example.com/artifactory/libs-release/com/example/services/auth/1.2.8/auth-1.2.8.jar',
#   'https://www.example.com/artifactory/libs-release/com/example/services/auth/1.2.3/auth-1.2.3.jar'
# ]





As you can see, the versions variable will contain the version numbers of the three most recent releases
and the jars variable is the the full URL to each of the respective releases, ordered with the most recent
version first.




Get the Latest N Snapshot Versions

If you need to get more than a single most recent snapshot version, the process is outlined below (you might
have guessed: it’s pretty much the same as getting the single most recent snapshot version). This differs
from getting the most recent N release versions because you must tell the client you are explicitly looking
for snapshot versions.

import stac.api

client = stac.api.new_maven_client('https://www.example.com/artifactory', 'libs-snapshot', is_snapshot=True)

versions = client.get_latest_versions('com.example.services.locations', limit=3)
print(versions)
# [
#   '4.1.0-SNAPSHOT',
#   '4.0.0-SNAPSHOT',
#   '3.12.0-SNAPSHOT'
# ]

jars = [client.get_version_url('com.example.services.locations', 'jar', version) for version in versions]
print(jars)
# [
#   'https://www.example.com/artifactory/libs-snapshot/com/example/services/locations/4.1.0-SNAPSHOT/locations-4.1.0-SNAPSHOT.jar',
#   'https://www.example.com/artifactory/libs-snapshot/com/example/services/locations/4.0.0-SNAPSHOT/locations-4.0.0-SNAPSHOT.jar',
#   'https://www.example.com/artifactory/libs-snapshot/com/example/services/locations/3.12.0-SNAPSHOT/locations-3.12.0-SNAPSHOT.jar'
# ]





As you can see, the  versions variable will contain the versions numbers of the three most recent snapshots and
the jars variable is the to each of the respective releases, ordered with the most recent version.







          

      

      

    


    
         Copyright 2016, Smarter Travel.
      Created using Sphinx 1.3.5.
    

  

    
      Navigation

      
        	
          index

        	
          next |

        	
          previous |

        	Stac 1.1.0 documentation 
 
      

    


    
      
          
            
  
Advanced Usage

Some more advanced or non-typical usages of Stac will be outlined below.


Search Remote Repositories

If the repository you’re using is a virtual repository and you want to find the latest version of an
artifact in one of the repositories being mirrored by it, you’ll need to tell the Stac client that it
should be searching them. Luckily, this is pretty easy.

import stac.api

client = stac.api.new_maven_client('https://internal.example.com/artifactory', 'libs-release')
version = client.get_latest_version('com.example.services.locations', remote=True)
print(version) # '4.0.5'








Use HTTP Authentication

You might have noticed we aren’t using authentication to access the Artifactory API anywhere in the
Quickstart section. If you’ve set up your Artifactory API (and the artifacts contained within
it) to require authentication, this is fairly easy to work with in Stac.

import stac.api

client = stac.api.new_maven_client(
    'https://internal.example.com/artifactory', 'libs-release', username="deploy", password="authIs4wesom3!")
version = client.get_latest_version('com.example.services.ads')
print(version) # '5.4.1'








Use a Custom HTTP Session

Stac uses the Requests [http://docs.python-requests.org/en/latest/] library for making HTTP requests (if you
aren’t familiar with Requests, check it out, it’s awesome). In most cases, Stac will create a new requests.Session
object when a client is created and you really shouldn’t need to worry about this detail. However, if you’ve got
special requirements (maybe you need to disable certificate validation or something) you can supply your own
requests.Session object to the client.

Doing this is a little more involved than just creating a standard client but it’s still not that bad.

import requests
import stac.api

# Create a custom session object...
session = requests.Session()
# And configure it
session.verify = False

# Construct the configuration for the client
client_config = stac.api.GenericArtifactoryClientConfig()
client_config.http_dao = stac.api.VersionApiDao(session, 'https://repo.example.com/artifactory', 'libs-release')
client_config.url_generator = stac.api.MavenArtifactUrlGenerator('https://repo.example.com/artifactory', 'libs-release')

# Create the client instance
client = stac.api.GenericArtifactoryClient(client_config)

# Use it as normal
version = client.get_latest_version('com.example.services.locations')
print(version) # '4.0.5'








Get Custom Assemblies

At Smarter Travel, when we build and release an application jar to Artifactory, we also release a few
associated jars at the same time. Source code, documentation, and runtime configuration are typically
built and released at the same time. In Maven terms, these are known as “assemblies”. Stac has support
for finding these assemblies by passing the descriptor='blah' argument to the desired method. An example
is given below.

import stac.api

client = stac.api.new_maven_client('https://www.example.com/artifactory', 'libs-release')

version = client.get_latest_version('com.example.services.mail')
print(version) # '9.2.1'

source_jar = client.get_version_url('com.example.services.mail', 'jar', version, descriptor='sources')
print(source_jar) # 'https://www.example.com/artifactory/libs-release/com/example/services/mail/9.2.1/mail-9.2.1-sources.jar'

config_jar = client.get_version_url('com.example.services.mail', 'jar', version, descriptor='config')
print(config_jar) # 'https://www.example.com/artifactory/libs-release/com/example/services/mail/9.2.1/mail-9.2.1-config.jar'





As you can see, we were able to find the most recent version of the source code and configuration associated
with a hypothetical mail service.







          

      

      

    


    
         Copyright 2016, Smarter Travel.
      Created using Sphinx 1.3.5.
    

  

    
      Navigation

      
        	
          index

        	
          next |

        	
          previous |

        	Stac 1.1.0 documentation 
 
      

    


    
      
          
            
  
API

This section of the documentation covers the public interfaces of Stac.


Note

When using the library, always make sure to access classes and functions through
the stac.api module, not each individual module.




Clients

The classes and functions in the stac.client module make up the main interface to
the Stac library. Unless you’re doing something non-typical, this is probably all you need
to worry about.


	
class stac.client.ArtifactoryClient[source]

	Interface for getting URLs and versions of artifacts.

How artifact names, packaging, and descriptors are interpreted is implementation
specific and typically based on a particular repository layout. For example
a Maven layout based client would use full_name for the full group and
artifact (e.g. ‘com.example.project.service’). While a Python layout based
client would use full_name as unique name in a flat namespace (e.g
‘my-project’).






	
class stac.client.GenericArtifactoryClient(config)[source]

	Artifactory client for use with multiple different repository layouts.

Different ArtifactUrlGenerator implementations can be used with this
client to support different repository layouts. The logic within this client
should be relatively layout agnostic.

This class is thread safe.


	
__init__(config)[source]

	Create a new generic client instance based on the supplied configuration.





	Parameters:	config (GenericArtifactoryClientConfig) – Required configuration for this client










	
get_latest_version(full_name, remote=False)[source]

	Get the most recent version of the given project.

The name of the artifact should be composed of the group ID and artifact ID
(if available). E.g. “com.example.project.service”. Depending on the repository
layout, the full_name might only be the artifact name.

Example usage:

>>> client = new_maven_client('https://www.example.com/artifactory', 'libs-release')
>>> client.get_latest_version('com.example.users.service')
'1.5.0'





The example above returns the latest version of a hypothetical user service, 1.5.0.

This method makes a single network request.





	Parameters:	
	full_name (str [https://docs.python.org/library/functions.html#str]) – Fully qualified name of the artifact to get the version of.

	remote (bool [https://docs.python.org/library/functions.html#bool]) – Should remote repositories be searched to find the latest version
(for example if the repository being checked is a virtual repository)? Note that
this can make the search much slower. The default is not to check remote repositories.






	Returns:	Version number of the latest version of the artifact




	Return type:	str [https://docs.python.org/library/functions.html#str]




	Raises:	stac.exceptions.NoMatchingVersionsError – If no matching artifact could
be found












	
get_latest_versions(full_name, remote=False, limit=5)[source]

	Get the most recent versions of the given project, ordered most recent to least
recent.

The name of the artifact should be composed of the group ID and artifact ID
(if available). E.g. “com.example.project.service”. Depending on the repository
layout, the full_name might only be the artifact name.

Example usage:

>>> client = new_maven_client('https://www.example.com/artifactory', 'libs-release')
>>> client.get_latest_versions('com.example.auth.service', limit=3)
['1.6.0', '1.5.4', '1.5.3']





The example above would return a list of the three most recent versions of some hypothetical
authentication service.

This method makes a single network request.





	Parameters:	
	full_name (str [https://docs.python.org/library/functions.html#str]) – Full qualified name of the artifacts to get the versions of.

	remote (bool [https://docs.python.org/library/functions.html#bool]) – Should remote repositories be searched to find the latest versions
(for example if the repository being checked is a virtual repository)? Note that
this can make the search much slower. The default is not to check remote repositories.

	limit (int [https://docs.python.org/library/functions.html#int]) – Only get the limit most recent versions.






	Returns:	Most recent versions of the artifact with the given name, ordered with most
recent first.




	Return type:	list [https://docs.python.org/library/functions.html#list]




	Raises:	
	ValueError – If limit is negative or zero

	stac.exceptions.NoMatchingVersionsError – If no matching artifact could be
found














	
get_version_url(full_name, packaging, version, descriptor=None)[source]

	Get the URL to a specific version of the given project, optionally using
a descriptor to get a particular variant of the version (sources, javadocs, etc.).

The name of the artifact should be composed of the group ID and artifact ID
(if available). E.g. “com.example.project.service”. Depending on the repository
layout, the full_name might only be the artifact name.

Packaging should be the type of file used for the artifact, e.g. ‘war’, ‘jar’, ‘pom’,
etc.

The descriptor may be used to select javadoc jars, sources jars, or any other
assemblies created as part of the version of the artifact.

Example usage:

>>> client = new_maven_client('https://www.example.com/artifactory', 'libs-release')
>>> client.get_version_url('com.example.users.service', '1.4.5', 'jar', descriptor='sources')
'https://www.example.com/artifactory/libs-release/com/example/users/service/1.4.5/service-1.4.5-sources.jar'





The example above would return a path object for the sources jar of version 1.4.5
of some hypothetical user service.

This method does not make any network requests.





	Parameters:	
	full_name (str [https://docs.python.org/library/functions.html#str]) – Fully qualified name of the artifact to get the path of.

	packaging (str [https://docs.python.org/library/functions.html#str]) – Type of packaging / file format used for the artifact

	version (str [https://docs.python.org/library/functions.html#str]) – Version of the artifact to get the path of.

	descriptor (str [https://docs.python.org/library/functions.html#str]) – Tag to get a particular variant of a release.






	Returns:	URL to the artifact with given name and version




	Return type:	str [https://docs.python.org/library/functions.html#str]
















	
class stac.client.GenericArtifactoryClientConfig[source]

	Configuration for construction of a new GenericArtifactoryClient instance.


	
http_dao = None

	DAO for interacting with the Artifactory HTTP API.






	
is_integration = None

	Does the repository we are searching against contain SNAPSHOT (a.k.a. integration)
versions and thus require alternate API calls to determine the latest version? Default
is false.






	
url_generator = None

	URL generator for determining the URL to download an artifact.










	
class stac.client.ArtifactUrlGenerator[source]

	Interface for generating the URL to download a particular version of an
artifact.

Implementations will typically be specific to a particular repository layout
in Artifactory. I.e. there may be one URL generator for Maven repositories,
another one for Python packages, and another for NPM modules.






	
class stac.client.MavenArtifactUrlGenerator(base, repo)[source]

	URL generator for use with Maven repositories.






	
stac.client.new_maven_client(base_url, repo, is_snapshot=False, username=None, password=None)[source]

	Get a new implementation of ArtifactoryClient for use with Maven repository
layouts, optionally using the provided authentication.

Most users will simply call this method to get a new Maven client instance. For example:

>>> client = new_maven_client('https://www.example.com/artifactory', 'libs-release')
>>> latest = client.get_latest_version('com.example.users.service', 'war')
'1.6.0'









	Parameters:	
	base_url (str [https://docs.python.org/library/functions.html#str]) – URL to root of the Artifactory installation. Example,
“https://artifactory.example.com/artifactory”.

	repo (str [https://docs.python.org/library/functions.html#str]) – Which repository should searches be done against. Example, “libs-release-local”
or “libs-snapshot-local”.

	is_snapshot (bool [https://docs.python.org/library/functions.html#bool]) – Does the repository to perform searches against contain SNAPSHOT
(a.k.a. integration) versions? Default is False

	username (str [https://docs.python.org/library/functions.html#str]) – Optional username for authentication when making API calls and
downloading artifacts.

	password (str [https://docs.python.org/library/functions.html#str]) – Optional password for authentication when making API calls and
downloading artifacts.






	Returns:	New Artifactory client for use with Maven repositories




	Return type:	GenericArtifactoryClient














HTTP Dao

If you need to customize how the Stac library interacts with Artifactory over HTTP, the
stac.http module probably has what you’re looking for.


	
class stac.http.VersionApiDao(session, base_url, repo)[source]

	HTTP DAO to get one or multiple versions of a particular artifact.

This DAO interacts with the Artifactory API over HTTP or HTTPS.

This class is thread safe.


	
__init__(session, base_url, repo)[source]

	Set the factory for requests session and factory for API urls.





	Parameters:	
	session (requests.Session) – Session for making HTTP requests to
the Artifactory API. This session should be configured with any required
credentials for accessing the API.

	base_url (str|unicode) – Base URL to the Artifactory installation

	repo (str|unicode) – Name of repository to search against.














	
get_most_recent_release(group, artifact, remote=False)[source]

	Get the version number of the most recent release (non-integration version)
of a particular group and artifact combination.





	Parameters:	
	group (str [https://docs.python.org/library/functions.html#str]) – Group of the artifact to get the version of

	artifact (str [https://docs.python.org/library/functions.html#str]) – Name of the artifact to get the version of

	remote (bool [https://docs.python.org/library/functions.html#bool]) – Should remote repositories be searched to find the latest
version? Note this can make the request much slower. Default is false.






	Returns:	Version number of the most recent release




	Return type:	str [https://docs.python.org/library/functions.html#str]




	Raises:	requests.exceptions.HTTPError – For any non-success HTTP responses
from the Artifactory API.












	
get_most_recent_versions(group, artifact, limit, remote=False, integration=False)[source]

	Get a list of the version numbers of the most recent artifacts (integration
or non-integration), ordered by the version number, for a particular group and
artifact combination.





	Parameters:	
	group (str [https://docs.python.org/library/functions.html#str]) – Group of the artifact to get versions of

	artifact (str [https://docs.python.org/library/functions.html#str]) – Name of the artifact to get versions of

	limit (int [https://docs.python.org/library/functions.html#int]) – Fetch only this many of the most recent releases

	remote (bool [https://docs.python.org/library/functions.html#bool]) – Should remote repositories be searched to find the latest
versions? Note this can make the request much slower. Default is false.

	integration (bool [https://docs.python.org/library/functions.html#bool]) – If true, fetch only “integration versions”, otherwise
fetch only non-integration versions.






	Returns:	Version numbers of the most recent artifacts




	Return type:	list [https://docs.python.org/library/functions.html#list]




	Raises:	
	requests.exceptions.HTTPError – For any non-success HTTP responses
from the Artifactory API.

	ValueError – If limit is 0 or negative.




















Exceptions


	
class stac.exceptions.StacError[source]

	Base for exceptions raised by the Stac library






	
class stac.exceptions.NoMatchingVersionsError(*args, **kwargs)[source]

	Raised when there is no version or versions matching given criteria











          

      

      

    


    
         Copyright 2016, Smarter Travel.
      Created using Sphinx 1.3.5.
    

  

    
      Navigation

      
        	
          index

        	
          previous |

        	Stac 1.1.0 documentation 
 
      

    


    
      
          
            
  
Changelog


1.1.0 - 2016-04-04


	Add optional parameter to stac.client.ArtifactoryClient and implementations to
allow remote repositories to be searched for the latest version of an artifact.






1.0.1 - 2016-03-09


	Change stac.exceptions.NoMatchingVersionsError to be a subclass of the base
stac.exceptions.StacError exception.

	Change stac.util.get_logger() to get the stac named logger.






1.0.0 - 2016-02-09


	This is the first stable release of Stac. From this point on, all breaking changes will only
be made in major version releases. This release is functionally the same as the 0.3.1 release.






0.3.1 - 2016-01-25


	Fix instance where GenericArtifactoryClient would not correctly handle artifacts without a . in
the name.






0.3.0 - 2015-12-24


	Breaking change - Rename MavenArtifactoryClient to GenericArtifactoryClient and move all Maven-
specific logic to a URL generator class that can be injected into it. Users creating the client via
new_maven_client shouldn’t notice any changes.






0.2.0 - 2015-12-23


	Breaking change - get_latest_version and get_latest_versions methods in the client now return
version numbers only. Callers can use the get_version_url method to construct artifact URLs if desired.






0.1.1 - 2015-12-22


	Gracefully handle the case when we are looking for the latest SNAPSHOT version but
there have not been any integration deploys to a repository. Fixes
#1 [https://github.com/smarter-travel-media/stac/issues/1].






0.1.0 - 2015-12-21


	Initial release









          

      

      

    


    
         Copyright 2016, Smarter Travel.
      Created using Sphinx 1.3.5.
    

  

    
      Navigation

      
        	
          index

        	Stac 1.1.0 documentation 
 
      

    


    
      
          
            

Index



 _
 | A
 | G
 | H
 | I
 | M
 | N
 | S
 | U
 | V
 


_


  	
      
  	__init__() (stac.client.GenericArtifactoryClient method)
  


      	
        
  	(stac.http.VersionApiDao method)
  


      


  





A


  	
      
  	ArtifactoryClient (class in stac.client)
  


  

  	
      
  	ArtifactUrlGenerator (class in stac.client)
  


  





G


  	
      
  	GenericArtifactoryClient (class in stac.client)
  


      
  	GenericArtifactoryClientConfig (class in stac.client)
  


      
  	get_latest_version() (stac.client.GenericArtifactoryClient method)
  


      
  	get_latest_versions() (stac.client.GenericArtifactoryClient method)
  


  

  	
      
  	get_most_recent_release() (stac.http.VersionApiDao method)
  


      
  	get_most_recent_versions() (stac.http.VersionApiDao method)
  


      
  	get_version_url() (stac.client.GenericArtifactoryClient method)
  


  





H


  	
      
  	http_dao (stac.client.GenericArtifactoryClientConfig attribute)
  


  





I


  	
      
  	is_integration (stac.client.GenericArtifactoryClientConfig attribute)
  


  





M


  	
      
  	MavenArtifactUrlGenerator (class in stac.client)
  


  





N


  	
      
  	new_maven_client() (in module stac.client)
  


  

  	
      
  	NoMatchingVersionsError (class in stac.exceptions)
  


  





S


  	
      
  	StacError (class in stac.exceptions)
  


  





U


  	
      
  	url_generator (stac.client.GenericArtifactoryClientConfig attribute)
  


  





V


  	
      
  	VersionApiDao (class in stac.http)
  


  







          

      

      

    


    
         Copyright 2016, Smarter Travel.
      Created using Sphinx 1.3.5.
    

  _static/down-pressed.png





_static/ajax-loader.gif





_static/minus.png





_static/comment-bright.png





_static/up-pressed.png





_static/file.png





_static/plus.png





_static/comment.png





_static/comment-close.png





_static/up.png





_static/down.png





_modules/stac/http.html


    
      Navigation


      
        		
          index


        		Stac 1.1.0 documentation »


          		Module code »

 
      


    


    
      
          
            
  Source code for stac.http

# -*- coding: utf-8 -*-
#
# Stac - Smarter Travel Artifactory Client
#
# Copyright 2015-2016 Smarter Travel
#
# Available under the MIT license. See LICENSE for details.
#

"""
stac.http
~~~~~~~~~

Clients and functionality for interacting with portions of the Artifactory JSON
API. It is typically not required for users of the Stac library to interact
with this module directly.
"""

from __future__ import absolute_import
# pylint: disable=import-error,no-name-in-module
import distutils.version
import stac.exceptions
import stac.util


[docs]class VersionApiDao(object):
    """HTTP DAO to get one or multiple versions of a particular artifact.

    This DAO interacts with the Artifactory API over HTTP or HTTPS.

    This class is thread safe.
    """
    _logger = stac.util.get_log()

[docs]    def __init__(self, session, base_url, repo):
        """Set the factory for requests session and factory for API urls.

        :param requests.Session session: Session for making HTTP requests to
            the Artifactory API. This session should be configured with any required
            credentials for accessing the API.
        :param str|unicode base_url: Base URL to the Artifactory installation
        :param str|unicode repo: Name of repository to search against.
        """
        self._session = session
        self._base_url = base_url
        self._repo = repo


[docs]    def get_most_recent_release(self, group, artifact, remote=False):
        """Get the version number of the most recent release (non-integration version)
        of a particular group and artifact combination.

        :param str group: Group of the artifact to get the version of
        :param str artifact: Name of the artifact to get the version of
        :param bool remote: Should remote repositories be searched to find the latest
            version? Note this can make the request much slower. Default is false.
        :return: Version number of the most recent release
        :rtype: str
        :raises requests.exceptions.HTTPError: For any non-success HTTP responses
            from the Artifactory API.
        """
        url = self._base_url + '/api/search/latestVersion'
        params = {'g': group, 'a': artifact, 'repos': self._repo, 'remote': int(remote)}
        self._logger.debug("Using latest version API at %s - params %s", url, params)

        response = self._session.get(url, params=params)
        response.raise_for_status()
        return response.text.strip()


[docs]    def get_most_recent_versions(self, group, artifact, limit, remote=False, integration=False):
        """Get a list of the version numbers of the most recent artifacts (integration
        or non-integration), ordered by the version number, for a particular group and
        artifact combination.

        :param str group: Group of the artifact to get versions of
        :param str artifact: Name of the artifact to get versions of
        :param int limit: Fetch only this many of the most recent releases
        :param bool remote: Should remote repositories be searched to find the latest
            versions? Note this can make the request much slower. Default is false.
        :param bool integration: If true, fetch only "integration versions", otherwise
            fetch only non-integration versions.
        :return: Version numbers of the most recent artifacts
        :rtype: list
        :raises requests.exceptions.HTTPError: For any non-success HTTP responses
            from the Artifactory API.
        :raises ValueError: If limit is 0 or negative.
        """
        if limit < 1:
            raise ValueError("Releases limit must be positive")

        url = self._base_url + '/api/search/versions'
        params = {'g': group, 'a': artifact, 'repos': self._repo, 'remote': int(remote)}
        self._logger.debug("Using all version API at %s - params %s", url, params)

        response = self._session.get(url, params=params)
        response.raise_for_status()

        json = response.json()
        versions = [
            item['version'] for item in json['results'] if item['integration'] is integration]
        # pylint: disable=no-member
        versions.sort(key=distutils.version.LooseVersion, reverse=True)
        return versions[:limit]







          

      

      

    


    
        © Copyright 2016, Smarter Travel.
      Created using Sphinx 1.3.5.
    

  

_modules/stac/exceptions.html


    
      Navigation


      
        		
          index


        		Stac 1.1.0 documentation »


          		Module code »

 
      


    


    
      
          
            
  Source code for stac.exceptions

# -*- coding: utf-8 -*-
#
# Stac - Smarter Travel Artifactory Client
#
# Copyright 2015-2016 Smarter Travel
#
# Available under the MIT license. See LICENSE for details.
#

"""
stac.exceptions
~~~~~~~~~~~~~~~

Exceptions raised by the Stac library.
"""

from __future__ import print_function, division

__all__ = [
    'StacError',
    'NoMatchingVersionsError'
]


[docs]class StacError(RuntimeError):
    """Base for exceptions raised by the Stac library"""



[docs]class NoMatchingVersionsError(StacError):
    """Raised when there is no version or versions matching given criteria"""

    def __init__(self, *args, **kwargs):
        #: Originating exception, likely coming from making a request to the Artifactory
        #: API using the requests library.
        self.cause = kwargs.pop("cause", None)
        super(NoMatchingVersionsError, self).__init__(*args, **kwargs)

    def __str__(self):
        if self.cause is not None:
            return "{0} {1}".format(super(NoMatchingVersionsError, self).__str__(), self.cause)
        return super(NoMatchingVersionsError, self).__str__()






          

      

      

    


    
        © Copyright 2016, Smarter Travel.
      Created using Sphinx 1.3.5.
    

  

_modules/index.html


    
      Navigation


      
        		
          index


        		Stac 1.1.0 documentation »

 
      


    


    
      
          
            
  All modules for which code is available


		stac.client


		stac.exceptions


		stac.http






          

      

      

    


    
        © Copyright 2016, Smarter Travel.
      Created using Sphinx 1.3.5.
    

  

search.html


    
      Navigation


      
        		
          index


        		Stac 1.1.0 documentation »

 
      


    


    
      
          
            
  Search


  
  
  
    Please activate JavaScript to enable the search
    functionality.
  


  

  
    From here you can search these documents. Enter your search
    words into the box below and click "search". Note that the search
    function will automatically search for all of the words. Pages
    containing fewer words won't appear in the result list.
  


  
    
    
    
  

  
  
  
  


          

      

      

    


    
        © Copyright 2016, Smarter Travel.
      Created using Sphinx 1.3.5.
    

  

_modules/stac/client.html


    
      Navigation


      
        		
          index


        		Stac 1.1.0 documentation »


          		Module code »

 
      


    


    
      
          
            
  Source code for stac.client

# -*- coding: utf-8 -*-
#
# Stac - Smarter Travel Artifactory Client
#
# Copyright 2015-2016 Smarter Travel
#
# Available under the MIT license. See LICENSE for details.
#

"""
stac.client
~~~~~~~~~~~

Interface for clients that interact with Artifactory and implementations of it
for various repository layouts. This module is the main entry point for users of
the Stac library.
"""

from __future__ import absolute_import
from abc import ABCMeta, abstractmethod
import requests
import stac.exceptions
import stac.http
import stac.util

DEFAULT_VERSION_LIMIT = 5


[docs]class ArtifactoryClient(object):
    """Interface for getting URLs and versions of artifacts.

    How artifact names, packaging, and descriptors are interpreted is implementation
    specific and typically based on a particular repository layout. For example
    a Maven layout based client would use ``full_name`` for the full group and
    artifact (e.g. 'com.example.project.service'). While a Python layout based
    client would use ``full_name`` as unique name in a flat namespace (e.g
    'my-project').
    """

    __metaclass__ = ABCMeta

    @abstractmethod
    def get_version_url(self, full_name, packaging, version, descriptor=None):
        pass

    @abstractmethod
    def get_latest_version(self, full_name, remote=False):
        pass

    @abstractmethod
    def get_latest_versions(self, full_name, remote=False, limit=DEFAULT_VERSION_LIMIT):
        pass



[docs]class ArtifactUrlGenerator(object):
    """Interface for generating the URL to download a particular version of an
    artifact.

    Implementations will typically be specific to a particular repository layout
    in Artifactory. I.e. there may be one URL generator for Maven repositories,
    another one for Python packages, and another for NPM modules.
    """

    __metaclass__ = ABCMeta

    @abstractmethod
    def get_url(self, group, artifact, packaging, version, descriptor):
        pass



[docs]def new_maven_client(base_url, repo, is_snapshot=False, username=None, password=None):
    """Get a new implementation of :class:`ArtifactoryClient` for use with Maven repository
    layouts, optionally using the provided authentication.

    Most users will simply call this method to get a new Maven client instance. For example:

    >>> client = new_maven_client('https://www.example.com/artifactory', 'libs-release')
    >>> latest = client.get_latest_version('com.example.users.service', 'war')
    '1.6.0'

    :param str base_url: URL to root of the Artifactory installation. Example,
        "https://artifactory.example.com/artifactory".
    :param str repo: Which repository should searches be done against. Example, "libs-release-local"
        or "libs-snapshot-local".
    :param bool is_snapshot: Does the repository to perform searches against contain SNAPSHOT
        (a.k.a. integration) versions? Default is ``False``
    :param str username: Optional username for authentication when making API calls and
        downloading artifacts.
    :param str password: Optional password for authentication when making API calls and
        downloading artifacts.
    :return: New Artifactory client for use with Maven repositories
    :rtype: GenericArtifactoryClient
    """

    session = requests.Session()
    if username is not None and password is not None:
        session.auth = (username, password)

    config = GenericArtifactoryClientConfig()
    config.is_integration = is_snapshot
    config.http_dao = stac.http.VersionApiDao(session, base_url, repo)
    config.url_generator = MavenArtifactUrlGenerator(base_url, repo)

    return GenericArtifactoryClient(config)



# pylint: disable=too-few-public-methods
[docs]class GenericArtifactoryClientConfig(object):
    """Configuration for construction of a new :class:`GenericArtifactoryClient` instance."""

    def __init__(self):
        #: Does the repository we are searching against contain SNAPSHOT (a.k.a. integration)
        #: versions and thus require alternate API calls to determine the latest version? Default
        #: is false.
        self.is_integration = False

        #: DAO for interacting with the Artifactory HTTP API.
        self.http_dao = None

        #: URL generator for determining the URL to download an artifact.
        self.url_generator = None



[docs]class GenericArtifactoryClient(ArtifactoryClient):
    """Artifactory client for use with multiple different repository layouts.

    Different :class:`ArtifactUrlGenerator` implementations can be used with this
    client to support different repository layouts. The logic within this client
    should be relatively layout agnostic.

    This class is thread safe.
    """

    _logger = stac.util.get_log()

[docs]    def __init__(self, config):
        """Create a new generic client instance based on the supplied configuration.

        :param GenericArtifactoryClientConfig config: Required configuration for this client
        """
        self._is_integration = config.is_integration
        self._dao = config.http_dao
        self._urls = config.url_generator


[docs]    def get_version_url(self, full_name, packaging, version, descriptor=None):
        """Get the URL to a specific version of the given project, optionally using
        a descriptor to get a particular variant of the version (sources, javadocs, etc.).

        The name of the artifact should be composed of the group ID and artifact ID
        (if available). E.g. "com.example.project.service". Depending on the repository
        layout, the ``full_name`` might only be the artifact name.

        Packaging should be the type of file used for the artifact, e.g. 'war', 'jar', 'pom',
        etc.

        The descriptor may be used to select javadoc jars, sources jars, or any other
        assemblies created as part of the version of the artifact.

        Example usage:

        >>> client = new_maven_client('https://www.example.com/artifactory', 'libs-release')
        >>> client.get_version_url('com.example.users.service', '1.4.5', 'jar', descriptor='sources')
        'https://www.example.com/artifactory/libs-release/com/example/users/service/1.4.5/service-1.4.5-sources.jar'

        The example above would return a path object for the sources jar of version 1.4.5
        of some hypothetical user service.

        This method does not make any network requests.

        :param str full_name: Fully qualified name of the artifact to get the path of.
        :param str packaging: Type of packaging / file format used for the artifact
        :param str version: Version of the artifact to get the path of.
        :param str descriptor: Tag to get a particular variant of a release.
        :return: URL to the artifact with given name and version
        :rtype: str
        """
        group, artifact = _parse_full_name(full_name)
        return self._urls.get_url(group, artifact, packaging, version, descriptor)


[docs]    def get_latest_version(self, full_name, remote=False):
        """Get the most recent version of the given project.

        The name of the artifact should be composed of the group ID and artifact ID
        (if available). E.g. "com.example.project.service". Depending on the repository
        layout, the ``full_name`` might only be the artifact name.

        Example usage:

        >>> client = new_maven_client('https://www.example.com/artifactory', 'libs-release')
        >>> client.get_latest_version('com.example.users.service')
        '1.5.0'

        The example above returns the latest version of a hypothetical user service, 1.5.0.

        This method makes a single network request.

        :param str full_name: Fully qualified name of the artifact to get the version of.
        :param bool remote: Should remote repositories be searched to find the latest version
            (for example if the repository being checked is a virtual repository)? Note that
            this can make the search much slower. The default is not to check remote repositories.
        :return: Version number of the latest version of the artifact
        :rtype: str
        :raises stac.exceptions.NoMatchingVersionsError: If no matching artifact could
            be found
        """
        group, artifact = _parse_full_name(full_name)
        try:
            if not self._is_integration:
                version = self._get_latest_release_version(group, artifact, remote)
            else:
                version = self._get_latest_snapshot_version(group, artifact, remote)
        except requests.HTTPError as e:
            # pylint: disable=no-member
            if e.response is not None and e.response.status_code == requests.codes.not_found:
                raise self._get_wrapped_exception(group, artifact, cause=e)
            raise
        return version


[docs]    def get_latest_versions(self, full_name, remote=False, limit=DEFAULT_VERSION_LIMIT):
        """Get the most recent versions of the given project, ordered most recent to least
        recent.

        The name of the artifact should be composed of the group ID and artifact ID
        (if available). E.g. "com.example.project.service". Depending on the repository
        layout, the ``full_name`` might only be the artifact name.

        Example usage:

        >>> client = new_maven_client('https://www.example.com/artifactory', 'libs-release')
        >>> client.get_latest_versions('com.example.auth.service', limit=3)
        ['1.6.0', '1.5.4', '1.5.3']

        The example above would return a list of the three most recent versions of some hypothetical
        authentication service.

        This method makes a single network request.

        :param str full_name: Full qualified name of the artifacts to get the versions of.
        :param bool remote: Should remote repositories be searched to find the latest versions
            (for example if the repository being checked is a virtual repository)? Note that
            this can make the search much slower. The default is not to check remote repositories.
        :param int limit: Only get the ``limit`` most recent versions.
        :return: Most recent versions of the artifact with the given name, ordered with most
            recent first.
        :rtype: list
        :raises ValueError: If limit is negative or zero
        :raises stac.exceptions.NoMatchingVersionsError: If no matching artifact could be
            found
        """
        if limit < 1:
            raise ValueError("Releases limit must be positive")

        group, artifact = _parse_full_name(full_name)

        try:
            versions = self._dao.get_most_recent_versions(
                group, artifact, remote=remote, limit=limit, integration=self._is_integration)
        except requests.HTTPError as e:
            # pylint: disable=no-member
            if e.response is not None and e.response.status_code == requests.codes.not_found:
                raise self._get_wrapped_exception(group, artifact, cause=e)
            raise

        if not versions:
            raise self._get_wrapped_exception(group, artifact)
        return versions


    def _get_latest_release_version(self, group, artifact, remote):
        return self._dao.get_most_recent_release(group, artifact, remote=remote)

    def _get_latest_snapshot_version(self, group, artifact, remote):
        snapshot_versions = self._dao.get_most_recent_versions(
            group, artifact, remote=remote, limit=1, integration=True)
        if not snapshot_versions:
            raise self._get_wrapped_exception(group, artifact)
        return snapshot_versions[0]

    def _get_wrapped_exception(self, group, artifact, cause=None):
        version_type = 'integration' if self._is_integration else 'non-integration'
        return stac.exceptions.NoMatchingVersionsError(
            "No {version_type} versions of {group}.{name} could be found. It might be the "
            "case that there have not been any {version_type} deployments done yet.".format(
                version_type=version_type,
                group=group,
                name=artifact
            ), cause=cause
        )



[docs]class MavenArtifactUrlGenerator(ArtifactUrlGenerator):
    """URL generator for use with Maven repositories."""

    def __init__(self, base, repo):
        """Create a new Maven URL generator, setting the Artifactory base URL and
        repository.

        :param str base: Base URL to the Artifactory installation.
        :param str repo: Name of the repository
        """
        self._base = base
        self._repo = repo

    # pylint: disable=missing-docstring,too-many-arguments
    def get_url(self, group, artifact, packaging, version, descriptor):
        group_path = group.replace('.', '/')

        if descriptor is not None:
            artifact_name = "{name}-{version}-{descriptor}.{ext}".format(
                name=artifact,
                version=version,
                descriptor=descriptor,
                ext=packaging
            )
        else:
            artifact_name = "{name}-{version}.{ext}".format(
                name=artifact,
                version=version,
                ext=packaging
            )

        return '/'.join([
            self._base,
            self._repo,
            group_path,
            artifact,
            version,
            artifact_name
        ])



def _parse_full_name(full_name):
    parts = full_name.rsplit('.', 1)
    if len(parts) == 1:
        group, artifact = '', parts[0]
    else:
        group, artifact = parts[0], parts[1]
    return group, artifact





          

      

      

    


    
        © Copyright 2016, Smarter Travel.
      Created using Sphinx 1.3.5.
    

  

