
Stability polygon Documentation
Release 1.0.0

Hervé Audren

Dec 11, 2017

Contents

1 Recursive Projection 3
1.1 Description of the algorithm . 3
1.2 How to use this class . 4
1.3 Class API . 4

2 Stability Polygon and contacts 7

3 Linear Projection 9
3.1 Principle . 9
3.2 Example of usage . 9
3.3 Class API . 10

4 Backends 11

5 Documentation for the various constraints available 13

6 Indices and tables 15

Python Module Index 17

i

ii

Stability polygon Documentation, Release 1.0.0

This package provides an easy interface to compute stability polygons.

One should create a StabilityPolygon by setting the robotMass, like so:

import stabilipy
poly = stabilipy.StabilityPolygon(57.5)

By default, a 3D robust static polyhedron is defined, see stability.StabilityPolygon for more information.

It is then necessary to create some contacts, and insert them in the polygon:

pos = [[[0., 0., 1.]], [[1., 0., 0.]]]
normals = [[[0., 0., 1.]], [[0.1, 0.1, 1.]]]
mu = 0.7

contacts = [stabilipy.Contact(mu, np.array(p).T,
stabilipy.utils.normalize(np.array(n).T))

for p, n in zip(pos, normals)]
poly.contacts = contacts

Note that the normals must be of norm 1. You can now launch the computation:

poly.compute(stability.Mode.best, epsilon=1e-3, maxIter=50)

Compute takes many arguments, see stability.StabilityPolygon.compute() but the most importants
are:

• Mode that determines if you want to reach a desired precision, iterate a number of times or best of both.

• epsilon sets the precision

• maxIter the number of iterations

• A number of plot_something keyword arguments are available.

Contents:

Contents 1

Stability polygon Documentation, Release 1.0.0

2 Contents

CHAPTER 1

Recursive Projection

1.1 Description of the algorithm

Recursive projection is an algorithm designed to compute the projection of a convex set. In general, it computes the
approximation of a smooth set 𝑃 . To do so, it generates converging polyhedral approximations of 𝑃 , 𝑃𝑖𝑛𝑛𝑒𝑟 and
𝑃𝑜𝑢𝑡𝑒𝑟. The algorithm only needs an “oracle”, i.e. an algorithm or optimization problem that yields the extremal point
of 𝑃 in a given direction 𝑑. As a generic optimization problem:

𝑚𝑎𝑥. 𝑑𝑇𝑥

𝑠.𝑡. 𝑥 ∈ 𝑃

The solution 𝑥* of this problem is an extremal point in the direction 𝑑. By solving repeatedly the above problem, we
obtain:

• The convex hull of all 𝑥* is 𝑃𝑖𝑛𝑛𝑒𝑟.

• The intersection of all halfspaces {𝑥 ∈ R𝑛|𝑑𝑇𝑥 ≤ 𝑑𝑇𝑥*} forms 𝑃𝑜𝑢𝑡𝑒𝑟

Now, the important point is how to choose the approriate sequence of directions 𝑑. To do so, we compute the un-
certainty volumes, i.e. the cuts of 𝑃𝑜𝑢𝑡𝑒𝑟 by the supporting hyperplanes of 𝑃𝑖𝑛𝑛𝑒𝑟. The direction 𝑑 is chosen to be
perpendicular to the supporting hyperplane that forms the largest uncertainty volume.

This is very useful to compute projections. Consider a convex body 𝑃 in R𝑛+𝑚. Computing the projection of this
body onto R𝑛 can be done by specifying the following optimization problem:

𝑚𝑎𝑥 𝑑𝑇𝑥

𝑠.𝑡. (𝑥, 𝑦) ∈ 𝑃

This is particularly interesting when 𝑚 >> 𝑛. In this case, computing the direct projection (see for example this page)
is prohibitively expensive as the complexity is exponential in 𝑚+ 𝑛. In our case, the complexity depends on the class
of optimization problem being solved, but is typically polynomial in the dimension.

For more information, please refer to this paper.

3

https://scaron.info/teaching/projecting-polytopes.html
https://hal-lirmm.ccsd.cnrs.fr/lirmm-01477362

Stability polygon Documentation, Release 1.0.0

1.2 How to use this class

This class is intended for developpers and researchers who wish to implement a new class of prob-
lems. If you are looking to compute stability or robust stability polygons and polyhedrons, please use
stabilipy.StabilityPolygon. If you wish to compute the projection of a set of linear inequalities,
please use stabilipy.LinearProjection. In general, one only needs to override the stabilipy.
RecursiveProjectionProblem.solve() method.

Let us have a look at an example (available in sphere.py):

import stabilipy as stab

class SphereProjection(stab.RecursiveProjectionProblem):
"""Try to approximate a sphere of radius r"""

def __init__(self, radius):
""":param radius: Radius of the sphere

:type radius: double"""
stab.RecursiveProjectionProblem.__init__(self, dimension=3)
self.radius = radius

def solve(self, d):
"""We are computing a sphere so the extremal point in direction d is just r*d"""
return self.radius*d

if __name__ == '__main__':
sphere = SphereProjection(1.0)
sphere.compute(solver='cdd', mode=stab.Mode.iteration, maxIter=50)

In this example we:

• Implement a class that extends RecursiveProjectionProblem

• Override solve to return the extremal point in the provided direction

• Instanciate that object and compute the approximation using cdd as our double-description package

• By default, this call will print the precision at each iteration and plot the result

See below for details of the API.

1.3 Class API

class stabilipy.RecursiveProjectionProblem(dimension, verbosity=<Verbosity.info: 2>)
Base class that encapsulates the recursive projection algorithm. To use it, you need to specify your problem by
implementing the solve method. Then, this class will actually perform the projection.

Construct a projection problem.

Parameters

• dimension (int) – Dimension of the space on which you project.

• verbosity (Verbosity) – Verbosity of the output. Default to info.

clearAlgo()
Resets internal state

4 Chapter 1. Recursive Projection

Stability polygon Documentation, Release 1.0.0

compute(mode, maxIter=100, epsilon=0.0001, solver=’cdd’, plot_error=False, plot_init=False,
plot_step=False, plot_direction=False, record_anim=False, plot_final=True,
fname_polys=None)

Compute the polygon/polyhedron at a given precision or for a number of iterations or at best.

Parameters

• mode (stabilipy.Mode) – Stopping criterion.

• maxIter (int) – Maximum number of iterations.

• epsilon – Precision target.

• solver (stabilipy.backends) – Backend that will be used.

• plot_error – Make a running plot of the error during computation.

• plot_init – Plot the initial state of the algorithm.

• plot_step – Plot the state of the algorithm at each iteration.

• plot_direction – Plot the direction found for the next iteration.

• record_anim – Record all steps as images in files.

• plot_final – Plot the final polygon/polyhedron.

• fname_polys – Record successive iterations as text files.

make_problem()
This method is called upon launching the computation. Use it to build the complete problem from user-
defined quantities. Does nothing by default.

outer_polyhedron()
Return the outer polyhedron as a set of vertices

plot()
Plot the current solution and polyhedrons

polyhedron()
Return the inner polyhedron as a set of vertices

save_outer(fname)
Save the outer polyhedron as a set of vertices :param fname: Filename to which the polyhedron is saved
:type fname: string

save_polyhedron(fname)
Save the inner polyhedron as a set of vertices :param fname: Filename to which the polyhedron is saved
:type fname: string

solve(d)
This method should return an extremal point in the given direction d, or None in case of error. You must
reimplement this function to perform a computation or use one of the pre-implemented instances

Parameters d (np.array((dim, 1))) – Search direction

class stabilipy.Mode
All polygon computations should select a mode of operation.

• precision: will try to reach desired precision, however many iterations are required.

• iteration: will iterate for a number of iterations and stop, regardless of accuracy.

• best: will try to reach desired precision under the given number of iterations.

1.3. Class API 5

Stability polygon Documentation, Release 1.0.0

6 Chapter 1. Recursive Projection

CHAPTER 2

Stability Polygon and contacts

class stabilipy.StabilityPolygon(robotMass, dimension=3, gravity=-9.81, radius=2.0,
force_lim=1.0, robust_sphere=-1, height=0.0)

Algorithm to compute stability polygon according to Bretl et al. “Testing static equilibrium of legged robots”.
You need to first set some contacts and a robot mass Then call compute with desired precision. In 2D, computes
a static stability polygon without discretizing cones. In 3D, computes a robust static stability polyhedron.

The default constructor to build a polygon/polyhedron.

Parameters

• robotMass – Mass of the robot

• dimension (2,3) – Number of dimensions.

• gravity (double) – Intensity of gravity given along upwards z-axis.

• radius (double) – Radius of the CoM limitation constraint.

• force_lim (double) – Maximum force, expressed as a factor of the robot’s weight.

• robust_sphere (double) – Robust radius to be used with spherical criterion. Negative
disables

• height (double) – Height to be used when doing 2D robust

addCubeConstraint(origin, length)
Limit the CoM to | CoM - origin | < length

addDistConstraint(origin, radius)
Limit the CoM to || CoM - origin || < radius

addForceConstraint(contacts, limit)
Limit the sum of forces applied on contacts

addTorqueConstraint(contacts, point, ub, lb=None)
Add a limit on torque at a point over a set of contacts

clearConstraints()
Remove all constraints

7

Stability polygon Documentation, Release 1.0.0

make_problem()
Compute all matrices necessary to solving the problems. Only needs to be called once, because the problem
shape never changes. This adds global dist constraint that should prevent CoM from going to infinity :
||com|| =< max. However, make sure you remove it between calls to compute or to set it to None when
creating the polygon.

reset()
Remove all contacts, constraints and resets inner state

sample(p, plot_final=True, plot_step=False)
Test if a point is stable by iteratively refining the approximations

single_test(p)
Test if a single point is robust / non-robust without refining the approximations

8 Chapter 2. Stability Polygon and contacts

CHAPTER 3

Linear Projection

3.1 Principle

Computing the projection of a convex set bounded by linear equalities and inequalities is a particular case of Recursive
Projection. Indeed, in this case 𝑥 ∈ 𝑃 can be directly written as:

𝐴𝑥 ≤ 𝑏

𝐶𝑥 = 𝑑

And thus, finding extremal points amounts to solving Linear Programs (LP). Denoting the affine projection onto a
smaller space by 𝑦 = 𝐸𝑥 + 𝑓 (same convention as Stéphane Caron), finding extremal points corresponding to a
direction 𝛿 is done by solving:

𝑚𝑎𝑥 𝛿𝑇 (𝐸𝑥+ 𝑓)

𝑠.𝑡. 𝐴𝑥 ≤ 𝑏

𝐶𝑥 = 𝑑

A specific class is shown below.

3.2 Example of usage

The following example (contained in hypercube.py) shows how to project a 6D hypercube in 3D, resulting in a cube:

import stabilipy as stab
import numpy as np

if __name__ == '__main__':

A = np.vstack((np.eye(6), -np.eye(6)))
b = np.ones(12,)

linear_proj = stab.LinearProjection(3, A, b, None, None)
linear_proj.compute(stab.Mode.precision, solver='cdd', epsilon=1e-3)

9

https://scaron.info/teaching/projecting-polytopes.html

Stability polygon Documentation, Release 1.0.0

Important notes:

• You need to specify the dimension you are projecting onto

• If you do not specify the projection operator 𝐸, 𝑓 , it will default to projecting on the first dimension dimensions.

3.3 Class API

class stabilipy.LinearProjection(dimension, A, b, C, d, E=None, f=None)
Recursively compute the projection of a linear set: 𝐴𝑥 ≤ 𝑏, 𝐶𝑥 = 𝑑 onto 𝑦 = 𝐸𝑥+ 𝑓

Create a linear projection problem.

Parameters

• dimension (int) – Dimension on which to project

• A (np.array(nrineq, dim)) – Linear inequality matrix

• b (np.array(nrineq,)) – Linear inequality RHS

• C (np.array(nreq, dim)) – Linear equality matrix

• d (np.array(nreq,)) – Linear equality RHS

• E (np.array(dimension, dim)) – Projection matrix

• f (np.array(dimension,)) – Projection offset

10 Chapter 3. Linear Projection

CHAPTER 4

Backends

These are the suitable backends for static stability polygon computation. Some backends are restricted to 2D/3D cases.

They all take as argument, a geometry engine. For now, only scipy is supported. Others are defined at least partially
in geomengines.py:

• scipy: default and the only one supported as of now. We use its bindings of qhull.

• CGAL: Was supported but the available python bindings are too slow.

• Shapely: Does not support 3D properly

• Qhull-Sch: Custom bindings to qhullcpp for sch, that are not really usable as of now.

class stabilipy.backends.CDDBackend(geomengine=’scipy’)
Using the CDD backend for polygon computation. This is the most polyvalent backend. Works on floating-point
numbers. Requires pycddlib

Default constructor.

Parameters geomengine – underlying geometry engine. Only scipy is supported

class stabilipy.backends.ParmaBackend(geomengine=’scipy’)
Backend using the Parma Polyhedra Library This is the most precise, and thus slow backend. Works on integer
(unlimited precision through the use of GMP). Requires pyparma.

Default constructor.

Parameters geomengine – underlying geometry engine. Only scipy is supported

class stabilipy.backends.PlainBackend(geomengine=’scipy’)
Plain Backend using the cdd backend for initialization. This is the simplest, fastest backend. However, only
works on 2D polygons.

Default constructor.

Parameters geomengine – underlying geometry engine. Only scipy is supported.

class stabilipy.backends.QhullBackend(geomengine=’scipy’)
Using the Qhull backend for polygon computation. This is an experimental backend that should yield better
performance. Works on floating-point numbers. Requires scipy.

11

Stability polygon Documentation, Release 1.0.0

Default constructor.

Parameters geomengine – underlying geometry engine. Only scipy is supported

12 Chapter 4. Backends

CHAPTER 5

Documentation for the various constraints available

class stabilipy.constraints.Constraint
Constraint types. Can only be inequality or conic.

class stabilipy.constraints.CubeConstraint(origin, length)
Constraint to limit position of the CoM to a cuboid centered at an origin

Default constructor. Origin will be clamped to the dimension of the polygon.

Parameters

• origin (np.array(n, 1)) – Origin of the cuboid.

• length – Length of the sides fo the box.

class stabilipy.constraints.DistConstraint(origin, radius)
Constraint to limit position of the CoM w.r. to an origin. The origin will be clamped to dimension of the
polygon.

Default constructor.

Parameters

• origin (np.array(n, 1)) – Origin of the circle/sphere.

• radius – Radius of the circle/sphere

class stabilipy.constraints.ForceConstraint(indexes, limit)
Constraint to limit force applied on certain contacts

Default constructor.

Parameters

• indexes – Indexes of the contacts on which the constraint applies

• limit – Maximum force, expressed as percentage of robot weight

class stabilipy.constraints.TorqueConstraint(indexes, point, ub, lb=None)
Constraint to limit torque applied on certain contacts

Default constructor.

13

Stability polygon Documentation, Release 1.0.0

Parameters

• indexes – Indexes of the contacts on which the constraint applies

• point – Point where the torques are computed (3,1) array

• ub – Upper bound (3,1) array

• lb – Lower bound, can be None (3,1) array

14 Chapter 5. Documentation for the various constraints available

CHAPTER 6

Indices and tables

• genindex

• modindex

• search

15

Stability polygon Documentation, Release 1.0.0

16 Chapter 6. Indices and tables

Python Module Index

s
stabilipy.backends, 11
stabilipy.constraints, 13

17

Stability polygon Documentation, Release 1.0.0

18 Python Module Index

Index

A
addCubeConstraint() (stabilipy.StabilityPolygon

method), 7
addDistConstraint() (stabilipy.StabilityPolygon method),

7
addForceConstraint() (stabilipy.StabilityPolygon

method), 7
addTorqueConstraint() (stabilipy.StabilityPolygon

method), 7

C
CDDBackend (class in stabilipy.backends), 11
clearAlgo() (stabilipy.RecursiveProjectionProblem

method), 4
clearConstraints() (stabilipy.StabilityPolygon method), 7
compute() (stabilipy.RecursiveProjectionProblem

method), 4
Constraint (class in stabilipy.constraints), 13
CubeConstraint (class in stabilipy.constraints), 13

D
DistConstraint (class in stabilipy.constraints), 13

F
ForceConstraint (class in stabilipy.constraints), 13

L
LinearProjection (class in stabilipy), 10

M
make_problem() (stabilipy.RecursiveProjectionProblem

method), 5
make_problem() (stabilipy.StabilityPolygon method), 7

O
outer_polyhedron() (sta-

bilipy.RecursiveProjectionProblem method),
5

P
ParmaBackend (class in stabilipy.backends), 11
PlainBackend (class in stabilipy.backends), 11
plot() (stabilipy.RecursiveProjectionProblem method), 5
polyhedron() (stabilipy.RecursiveProjectionProblem

method), 5

Q
QhullBackend (class in stabilipy.backends), 11

R
RecursiveProjectionProblem (class in stabilipy), 4
reset() (stabilipy.StabilityPolygon method), 8

S
sample() (stabilipy.StabilityPolygon method), 8
save_outer() (stabilipy.RecursiveProjectionProblem

method), 5
save_polyhedron() (sta-

bilipy.RecursiveProjectionProblem method),
5

single_test() (stabilipy.StabilityPolygon method), 8
solve() (stabilipy.RecursiveProjectionProblem method), 5
stabilipy.backends (module), 11
stabilipy.constraints (module), 13
stabilipy.Mode (built-in class), 5
StabilityPolygon (class in stabilipy), 7

T
TorqueConstraint (class in stabilipy.constraints), 13

19

	Recursive Projection
	Description of the algorithm
	How to use this class
	Class API

	Stability Polygon and contacts
	Linear Projection
	Principle
	Example of usage
	Class API

	Backends
	Documentation for the various constraints available
	Indices and tables
	Python Module Index

