
SoundScape Renderer
Release 0.6.1-24-ga5e05f7

SSR Team

2024-03-29

CONTENTS

1 General 3
1.1 Introduction . 3
1.2 Quick Start . 3
1.3 Audio Scenes . 4
1.4 Audio Scene Description Format (ASDF) . 5
1.5 IP Interface . 7
1.6 Bug Reports, Feature Requests and Comments . 7
1.7 Contributors . 7
1.8 Your Own Contributions . 7

2 Installation 9
2.1 Arch Linux . 9
2.2 Debian/Ubuntu . 9
2.3 macOS . 10
2.4 MS Windows . 10

3 Building the SSR from Source 11
3.1 Tarball . 11
3.2 Git Repository . 11
3.3 Dependencies . 12
3.4 Configuring . 14
3.5 Building . 14
3.6 Installing . 15
3.7 Uninstalling . 15

4 Running the SSR 17
4.1 Starting the JACK Audio Server . 17
4.2 SSR binaries . 17
4.3 Loading a Single Audio File . 17
4.4 Loading an Audio Scene File . 17
4.5 Command Line Options . 18
4.6 Configuration Files . 19
4.7 Keyboard Actions in Non-GUI Mode . 20
4.8 Recording the SSR Output . 20
4.9 Head Tracking . 20
4.10 Using the SSR with DAWs . 22
4.11 Using the SSR with different audio clients . 22

5 The Renderers 27
5.1 General . 27

i

5.2 Binaural Renderer . 32
5.3 Binaural Room Synthesis Renderer . 34
5.4 Vector Base Amplitude Panning Renderer . 35
5.5 Wave Field Synthesis Renderer . 35
5.6 Ambisonics Amplitude Panning Renderer . 37
5.7 Distance-coded Ambisonics Renderer . 38
5.8 Generic Renderer . 38
5.9 Summary . 39

6 Graphical User Interface 41
6.1 General Layout . 41
6.2 Mouse Actions . 43
6.3 Keyboard Actions . 45

7 Browser-based GUI 47

8 Network Interfaces 49
8.1 WebSocket-based Network Interface . 49
8.2 FUDI-based Network Interface (for Pure Data) . 50
8.3 Legacy XML-based Network Interface . 51

9 SSR as a Library 55

10 Use Cases 57
10.1 SSR in Pure Data . 57
10.2 Using SSR for Listening Experiments . 58
10.3 Using SSR for General Realtime Multichannel Signal Processing 58

11 Known Issues 61
11.1 Open Issues . 61
11.2 Resolved Issues . 65

Bibliography 67

ii

SoundScape Renderer, Release 0.6.1-24-ga5e05f7

The SoundScape Renderer (SSR) is a tool for real-time spatial audio reproduction providing a variety of rendering
algorithms, e.g. Wave Field Synthesis, Higher-Order Ambisonics and binaural techniques.

website
http://spatialaudio.net/ssr/

downloads
http://spatialaudio.net/ssr/download/

user manual
https://ssr.readthedocs.io/

mailing list
https://groups.google.com/forum/#!forum/SoundScapeRenderer

source code and issue tracker
https://github.com/SoundScapeRenderer/ssr

CONTENTS 1

http://spatialaudio.net/ssr/
http://spatialaudio.net/ssr/download/
https://ssr.readthedocs.io/
https://groups.google.com/forum/#!forum/SoundScapeRenderer
https://github.com/SoundScapeRenderer/ssr

SoundScape Renderer, Release 0.6.1-24-ga5e05f7

2 CONTENTS

CHAPTER

ONE

GENERAL

1.1 Introduction

The SoundScape Renderer (SSR) is a software framework for real-time spatial audio reproduction running under
GNU/Linux, macOS and possibly some other UNIX variants. The MS Windows standalone version is experimen-
tal. The SSR renderers are available as externals for Pure Data for all operating systems. Refer to SSR in Pure Data.

The current implementation provides:

• Binaural (HRTF-based) reproduction

• Binaural room (re-)synthesis (BRTF-based reproduction)

• Vector Base Amplitude Panning (VBAP)

• Wave Field Synthesis (WFS)

• Ambisonics Amplitude Panning (AAP)

There is also the slightly exotic Generic Renderer, which is essentially a MIMO convolution engine. For each rendering
algorithm, there is a separate executable file.

The SSR is intended as versatile framework for the state-of-the-art implementation of various spatial audio reproduction
techniques. You may use it for your own academic research, teaching or demonstration activities or whatever else
you like. However, it would be nice if you would mention the use of the SSR by e.g. referencing [Geier2008a] or
[Geier2012].

Note that so far, the SSR only supports two-dimensional reproduction for most renderers (the binaural renderer with
SOFA files being the laudable exception that already supports 3D). For WFS principally any convex loudspeaker setup
(e.g. circles, rectangles) can be used. The loudspeakers should be densely spaced. For VBAP circular setups are highly
recommended. APA does require circular setups. The binaural renderer can handle only one listener at a time.

1.2 Quick Start

After downloading the SSR package from http://spatialaudio.net/ssr/download/, open a shell and use following com-
mands:

tar xvzf ssr-x.y.z.tar.gz
cd ssr-x.y.z
./configure
make
sudo make install
qjackctl &
ssr-binaural my_audio_file.wav

3

https://puredata.info/
http://spatialaudio.net/ssr/download/

SoundScape Renderer, Release 0.6.1-24-ga5e05f7

You have to replace x.y.z with the current version number, e.g. 0.5.0. With above commands you are performing
the following steps:

• Unpack the downloaded tarball containing the source-code.

• Go to the extracted directory1.

• Configure the SSR.

• Build the SSR.

• Install the SSR.

• Open the graphical user interface for JACK (qjackctl). Please click “Start” to start the server. As alternative
you can start JACK with:

jackd -d alsa -r 44100

See section Running the SSR and man jackd for further options.

• Open the SSR with an audio file of your choice. This can be a multichannel file.

This will load the audio file my_audio_file.wav and create a virtual sound source for each channel in the audio file.
Please use headphones to listen to the output generated by the binaural renderer! If you want to use a different renderer,
use ssr-brs, ssr-wfs, ssr-vbap, ssr-aap, ssr-dca or ssr-generic instead of ssr-binaural.

If you don’t need a graphical user interface and you want to dedicate all your resources to audio processing, try:

ssr-binaural --no-gui my_audio_file.wav

For further options, see the section Running the SSR and ssr-binaural --help.

1.3 Audio Scenes

1.3.1 Format

The SSR can open .asd files – refer to the section Audio Scene Description Format (ASDF) – as well as normal audio
files. If an audio file is opened, SSR creates an individual virtual sound source for each channel which the audio file
contains. If a two-channel audio file is opened, the resulting virtual sound sources are positioned like a virtual stereo
loudspeaker setup with respect to the location of the reference point. For audio files with more (or less) channels, SSR
randomly arranges the resulting virtual sound sources. All types that ecasound and libsndfile can open can be used. In
particular this includes .wav, .aiff, .flac and .ogg files.

In the case of a scene being loaded from an .asd file, all audio files which are associated to virtual sound sources are
replayed in parallel and replaying starts at the beginning of the scene.

1 Note that most relative paths which are mentioned in this document are relative to this folder, which is the folder where the SSR tarball was
extracted. Therefore, e.g. the src/ directory could be something like $HOME/ssr-x.y.z/src/ where “x.y.z” stands for the version number.

4 Chapter 1. General

SoundScape Renderer, Release 0.6.1-24-ga5e05f7

1.3.2 Coordinate System

Fig. 1: The coordinate system used in the SSR. In ASDF 𝛼 and 𝛼′ are referred to as azimuth – refer to the section Audio
Scene Description Format (ASDF).

Fig. 1.1 (a) depicts the global coordinate system used in the SSR. Virtual sound sources as well as the reference are
positioned and orientated with respect to this coordinate system. For loudspeakers, positioning is a bit more tricky since
it is done with respect to a local coordinate system determined by the reference. Refer to Fig. 1.1 (b). The loudspeakers
are positioned with respect to the primed coordinates (𝑥′, 𝑦′, etc.).

The motivation to do it like this is to have a means to virtually move the entire loudspeaker setup inside a scene by
simply moving the reference. This enables arbitrary movement of the listener in a scene independent of the physical
setup of the reproduction system.

Please do not confuse the origin of the coordinate system with the reference. The coordinate system is static and
specifies absolute positions.

The reference is movable and is always taken with respect to the current reproduction setup. The loudspeaker-based
methods do not consider the orientation of the reference point but its location influences the way loudspeakers are
driven. E.g., the reference location corresponds to the sweet spot in VBAP. It is therefore advisable to put the refer-
ence point to your preferred listening position. In the binaural methods the reference point represents the listener and
indicates the position and orientation of the latter. It is therefore essential to set it properly in this case.

Note that the reference position and orientation can of course be updated in real-time. For the loudspeaker-based
methods this is only useful to a limited extent unless you want to move inside the scene. However, for the binaural
methods it is essential that both the reference position and orientation (i.e. the listener’s position and orientation) are
tracked and updated in real-time. Refer also to Sec. Head-Tracking.

1.4 Audio Scene Description Format (ASDF)

Besides pure audio files, SSR can also read the Audio Scene Description Format (ASDF) Currently, two versions of the
ASDF are supported.

There is a legacy version of the ASDF [Geier2008b], which has been supported since the beginning, but which can only
describe static scenes. Recently, support for a new version 0.4 of the format was added, which allows creating scenes
with moving sound sources. Detailed documentation is available at https://AudioSceneDescriptionFormat.readthedocs.
io/.

The XML syntax between the two versions is not compatible. The new version is only used when version 0.4 is
specified like this:

1.4. Audio Scene Description Format (ASDF) 5

https://AudioSceneDescriptionFormat.readthedocs.io/
https://AudioSceneDescriptionFormat.readthedocs.io/

SoundScape Renderer, Release 0.6.1-24-ga5e05f7

<asdf version="0.4">

The rest of this section describes the legacy version of the ASDF.

As you can see in the example audio scene below, an audio file can be assigned to each virtual sound source. The
replay of all involved audio files is synchronized to the replay of the entire scene. That means all audio files start at
the beginning of the sound scene. If you fast forward or rewind the scene, all audio files fast forward or rewind. Note
that it is significantly more efficient to read data from an interleaved multichannel file compared to reading all
channels from individual files.

1.4.1 Legacy Syntax

The format syntax is quite self-explanatory. See the examples below. Note that the paths to the audio files can be either
absolute (not recommended) or relative to the directory where the scene file is stored. The exact format description of
the ASDF can be found in the XML Schema file asdf.xsd.

Find below a sample scene description:

<?xml version="1.0"?>
<asdf version="0.1">
<header>
<name>Simple Example Scene</name>

</header>
<scene_setup>
<source name="Vocals" model="point">
<file>audio/demo.wav</file>
<position x="-2" y="2"/>

</source>
<source name="Ambience" model="plane">
<file channel="2">audio/demo.wav</file>
<position x="2" y="2"/>

</source>
</scene_setup>

</asdf>

The input channels of a soundcard can be used by specifying the channel number instead of an audio file, e.g.
<port>3</port> instead of <file>my_audio.wav</file>.

1.4.2 Examples

We provide an audio scene example in ASDF with this release. You find it in data/scenes/live_input.asd. If
you load this file into the SSR it will create 4 sound sources which will be connected to the first four channels of your
sound card. If your sound card happens to have less than four outputs, less sources will be created accordingly. More
examples for audio scenes can be downloaded from the SSR website http://spatialaudio.net/ssr/.

6 Chapter 1. General

https://github.com/SoundScapeRenderer/ssr/blob/master/data/scenes/live_input.asd
http://spatialaudio.net/ssr/

SoundScape Renderer, Release 0.6.1-24-ga5e05f7

1.5 IP Interface

One of the key features of the SSR is the ability to remotely control it via a network interface. This enables you to
straightforwardly connect any type of interaction tool from any type of operating system. There are multiple network
interfaces available, see Network Interfaces.

1.6 Bug Reports, Feature Requests and Comments

Please report any bugs, feature requests and comments at https://github.com/SoundScapeRenderer/ssr/issues or send
an e-mail to ssr@spatialaudio.net. We will keep track of them and will try to fix them in a reasonable time. The
more bugs you report the more we can fix. Of course, you are welcome to provide bug fixes.

1.7 Contributors

Written by:
Matthias Geier, Jens Ahrens

Scientific supervision:
Sascha Spors

Contributions by:
Peter Bartz, Hannes Helmholz, Florian Hinterleitner, Torben Hohn, Christoph Hohnerlein, Christoph Hold,
Lukas Kaser, André Möhl, Till Rettberg, David Runge, Fiete Winter, IOhannes m zmölnig

GUI design:
Katharina Bredies, Jonas Loh, Jens Ahrens

Logo design:
Fabian Hemmert

See also the Github repository https://github.com/soundscaperenderer/ssr for more contributors.

1.8 Your Own Contributions

The SSR is thought to provide a state of the art implementation of various spatial audio reproduction techniques. We
therefore would like to encourage you to contribute to this project since we can not assure to be at the state of the
art at all times ourselves. Everybody is welcome to contribute to the development of the SSR. However, if you are
planning to do so, we kindly ask you to contact us beforehand (e.g. via ssr@spatialaudio.net). The SSR is in a
rather temporary state and we might apply some changes to its architecture. We would like to ensure that your own
implementations stay compatible with future versions.

1.5. IP Interface 7

https://github.com/SoundScapeRenderer/ssr/issues
https://github.com/soundscaperenderer/ssr

SoundScape Renderer, Release 0.6.1-24-ga5e05f7

8 Chapter 1. General

CHAPTER

TWO

INSTALLATION

The SSR can be installed from packages that are available for GNU/Linux, macOS and (experimentally) MS Windows.

If none of those packages work for you, or if you want to use the latest development version, see Building the SSR from
Source for instructions.

2.1 Arch Linux

The SSR is available in the official Arch Linux repositories and can be installed using:

sudo pacman -S ssr

A package script (PKGBUILD) for the development version of the SSR, tracking the master branch, is available in the
Arch User Repository (AUR). This requires to be built manually, as is explained in the following subsection.

2.1.1 Building and installing with makepkg

The recommended way of building package scripts from the AUR and installing the resulting packages is to use
makepkg in a manual build process.

make sure to have the base-devel group installed
pacman -Sy base-devel
clone the sources of the package script
git clone https://aur.archlinux.org/ssr-git
go to the directory with the package script
cd ssr-git
make and install the package and all of its dependencies
makepkg -csi

2.2 Debian/Ubuntu

The SSR is available as Debian package and Ubuntu package. It is called soundscaperenderer and you can install
it using your favorite package manager/ package manager frontend (apt-get, aptitude, synaptic, . . .), all dependencies
should be installed automatically.

sudo aptitude update
sudo aptitude install soundscaperenderer

9

https://archlinux.org
https://aur.archlinux.org/packages/ssr-git/
https://wiki.archlinux.org/title/PKGBUILD
https://wiki.archlinux.org/title/Arch_User_Repository
https://aur.archlinux.org
https://aur.archlinux.org
https://wiki.archlinux.org/title/Makepkg
https://wiki.archlinux.org/title/Arch_User_Repository#Installing_and_upgrading_packages
https://packages.debian.org/search?keywords=soundscaperenderer
https://packages.ubuntu.com/search?keywords=soundscaperenderer

SoundScape Renderer, Release 0.6.1-24-ga5e05f7

If you don’t need the Graphical User Interface, there is also the GUI-less package soundscaperenderer-nox with
fewer dependencies.

2.3 macOS

The SSR can be installed with Homebrew, all dependencies including the JACK audio server will be installed auto-
matically:

brew install SoundScapeRenderer/ssr/ssr

We also recommed QJackCtl for convenient usage of JACK:

brew install qjackctl

Note: Binary packages (so-called “bottles”) of the SSR are only available for a few macOS versions. The list of
available bottles can be found on the package release page. If no bottle is available for your system, the installation
should still work, but the SSR will be compiled from source. This means that more dependencies will be downloaded
and the installation process may take significantly longer.

2.4 MS Windows

The MS Windows version of the standalone SSR is experimental at this stage. Find the pre-release of the executables
at https://github.com/chris-hld/ssr/releases. Note that this SSR version only works with live inputs currently (it cannot
play audio files). It has no limitation otherwise.

The Pd externals of the SSR renderers are confirmed to work.

10 Chapter 2. Installation

https://brew.sh/
https://github.com/SoundScapeRenderer/homebrew-ssr/releases
https://github.com/chris-hld/ssr/releases

CHAPTER

THREE

BUILDING THE SSR FROM SOURCE

3.1 Tarball

The so-called tarball – a file named like ssr-x.y.z.tar.gz – can be downloaded from http://spatialaudio.net/ssr/
download/.

After downloading the tarball, unpack it and change to the newly created directory:

tar xvzf ssr-*.tar.gz
cd ssr-*

The tarball has the advantage that it already contains a few auto-generated files and therefore needs fewer dependencies.
However, if you want to use the latest development version, you should get the code from the git repository:

3.2 Git Repository

The source code repository of the SSR is located at https://github.com/SoundScapeRenderer/ssr/.

You can clone it and change to the newly created directory like this:

git clone https://github.com/SoundScapeRenderer/ssr.git --recursive
cd ssr

Note: The SSR repository uses multiple Git submodules. If you use the --recursive flag as shown above, they will
be automatically downloaded. If you didn’t use the --recursive flag, you can get them by running the command:

git submodule update --init

When switching branches or when pulling changes from the server, the local submodules might get outdated. In such
a case they can be updated with:

git submodule update

To generate the configure script (which is already contained in the tarball), run the command:

./autogen.sh

For this step, you’ll need those extra dependencies (see below for how to install them for both Linux and macOS):

• libtool

11

http://spatialaudio.net/ssr/download/
http://spatialaudio.net/ssr/download/
https://github.com/SoundScapeRenderer/ssr/
https://git-scm.com/book/en/v2/Git-Tools-Submodules

SoundScape Renderer, Release 0.6.1-24-ga5e05f7

• automake

• autoconf

If you want to generate the man pages (which are also contained in the tarball), you’ll need:

• help2man

3.3 Dependencies

To enable support for the newest ASDF version 0.4, the C-bindings of the asdf-rust library have to be installed before
compiling the SSR.

3.3.1 Linux

The following list of packages needs to be installed on your system to be able to build the SSR. The recommended way
of installing those packages is to use your distribution’s package manager. On Debian/Ubuntu you can use apt-get,
aptitude, synaptic etc. However, if you prefer, you can of course also download everything as source code and
compile each program yourself.

Note: The package names may vary slightly depending on your distribution or might not be shipped in separate lib
or dev packages!

• make

• g++ or clang

• pkg-config

• libxml2-dev

• libfftw3-dev

• libsndfile1-dev

• libjack-jackd2-dev

• jackd2

For playing/recording audio files:

• ecasound

• libecasoundc-dev

For the GUI:

• libqt5-opengl-dev

For all network interfaces:

• libasio-dev

For the WebSocket interface:

• libwebsocketpp-dev

For the FUDI network interface:

• libfmt-dev

12 Chapter 3. Building the SSR from Source

https://AudioSceneDescriptionFormat.readthedocs.io/
https://github.com/AudioSceneDescriptionFormat/asdf-rust#building-the-c-api
https://en.wikipedia.org/wiki/List_of_software_package_management_systems

SoundScape Renderer, Release 0.6.1-24-ga5e05f7

For SOFA support:

• libmysofa-dev

For VRPN tracker support:

• vrpn on Homebrew (has to be compiled from source on Linux)

For support of the InterSense IntertiaCube3 head tracker:

• See the CI configuration file .github/workflows/main.yml for instructions.

For a concrete list of Ubuntu and Homebrew packages, see the CI configuration file .github/workflows/main.yml.

If the Qt5 library cannot be found during configuration, try using

export QT_SELECT=qt5

If there are problems with Qt5’s moc during the build, you might need to add the corresponding folder (like /usr/
local/opt/qt/bin) to your PATH. It might also help to install the package qt5-default to select Qt5 as default Qt
version.

On Linux, it may be necessary to run ldconfig after installing new libraries. Ensure that /etc/ld.so.conf or
LD_LIBRARY_PATH are set properly and run this after any changes:

sudo ldconfig

3.3.2 macOS

We recommend installing all dependencies from Homebrew:

brew install make automake libtool pkg-config help2man fftw asio fmt vrpn freeglut yarn␣
→˓node ecasound jack libsndfile websocketpp qt@5 SoundScapeRenderer/ssr/libmysofa llvm

You might be able to skip installing llvm if you have Xcode installed.

And then temporarily link the keg-only Qt5 according to homebrew info (this is neccesary if you already have a newer
version of Qt installed, for example if you installed the very useful package qjackctl):

export PATH="/usr/local/opt/qt@5/bin:$PATH"
export LDFLAGS="-L/usr/local/opt/qt@5/lib"
export CPPFLAGS="-I/usr/local/opt/qt@5/include"
export PKG_CONFIG_PATH="/usr/local/opt/qt@5/lib/pkgconfig"

If you want to use help2man on macOS, you have to install a Perl package:

cpan Locale::gettext

3.3. Dependencies 13

https://brew.sh

SoundScape Renderer, Release 0.6.1-24-ga5e05f7

3.4 Configuring

Once all dependencies are installed, the SSR can be configured by running:

./configure

This script will check your system for dependencies and prepare the Makefile required for compilation. If any of the
required software, mentioned in section Dependencies is missing, the configure script will signal that.

At successful termination of the configure script a summary will show up and you are ready to compile.

The configure script accepts many parameters and options, all of which can be listed with:

./configure --help

For example, certain feature can be disabled like this:

./configure --disable-ip-interface

./configure --disable-websocket-interface --disable-gui

The configure script also recognizes many environment variables. For example, to use a different compiler, you can
specify it with CXX:

./configure CXX=clang++

If a header is not installed in the standard paths of your system you can pass its location to the configure script using

./configure CPPFLAGS=-Iyourpath

If you are using an arm64 CPU (i.e. M1, M2 or newer) on macOS (without Rosetta emulation), you might have to
explicitly add some paths to be able to find the libraries installed with brew:

./configure CPPFLAGS=-I/opt/homebrew/include LDFLAGS=-L/opt/homebrew/lib

3.5 Building

If everything went smoothly so far, you can continue with the next step:

make

This will take some time (maybe a few minutes). If you have a multi-core or multi-processor computer you can speed
things up by specifying the number of processes you want to use with make -j8 (or any other number that you choose).

If there are errors, double-check whether all Dependencies are installed and whether the configuration options are
correct.

14 Chapter 3. Building the SSR from Source

SoundScape Renderer, Release 0.6.1-24-ga5e05f7

3.6 Installing

Until now, everything was happening in the source directory. To be able to use the SSR system-wide, it has to be
installed like this:

make install

Note: To execute this step, you might need superuser privileges. Depending on your system setup, these might be
acquired with the help of sudo.

Alternatively, you can give your own user account the right to install programs. For example, on Debian and Ubuntu
this can be done by adding your user to the staff group like this (assuming your user name is myuser):

sudo adduser myuser staff

For the change to take effect, you might have to log out and log in again.

3.7 Uninstalling

If the SSR didn’t meet your expectations, we are very sorry, but of course you can easily remove it from your system
again using:

make uninstall

3.6. Installing 15

https://en.wikipedia.org/wiki/Superuser

SoundScape Renderer, Release 0.6.1-24-ga5e05f7

16 Chapter 3. Building the SSR from Source

CHAPTER

FOUR

RUNNING THE SSR

4.1 Starting the JACK Audio Server

Before you start the SSR, start JACK, e.g. by typing jackd -d alsa -r 44100 in a shell or using the graphical user
interface qjackctl.

4.2 SSR binaries

After installing the SSR, each renderer (see The Renderers) is available as a separate binary: ssr-binaural, ssr-brs,
ssr-vbap, ssr-wfs, ssr-aap, ssr-dca (the renderer formerly known as ssr-nfc-hoa) and ssr-generic.

The following examples use ssr-binaural, but you can of course you any renderer you want!

Note that the SSR renderers are also available as externals for Pure Data. Refer to SSR in Pure Data.

4.3 Loading a Single Audio File

The easiest way to get a signal out of the SSR is by passing a sound-file directly:

ssr-binaural YOUR_AUDIO_FILE

Make sure that your amplifiers are not turned too loud. . .

To stop the SSR use either the options provided by the GUI (Section Graphical User Interface) or type Crtl+c in the
shell in which you started the SSR.

4.4 Loading an Audio Scene File

You can also load Audio Scenes:

ssr-binaural YOUR_AUDIO_SCENE_FILE.asd

17

https://puredata.info/

SoundScape Renderer, Release 0.6.1-24-ga5e05f7

4.5 Command Line Options

There are a lot of options that are available for all renderers and only a few that are only available for certain renderers.

Type ssr-binaural --help to get an overview of the command line options (the help text is the same for all render-
ers):

Usage: ssr-binaural [OPTIONS] <scene-file>

The SoundScape Renderer (SSR) is a tool for real-time spatial audio reproduction
providing a variety of rendering algorithms.

Options:

Renderer-specific options:
--hrirs=FILE Load HRIRs for binaural renderer from FILE
--hrir-size=N Truncate HRIRs to length N
--prefilter=FILE

Load WFS prefilter from FILE
-o, --ambisonics-order=VALUE

Ambisonics order to use for AAP (default: maximum)
--in-phase-rendering

Use in-phase rendering for AAP renderer

JACK options:
-n, --name=NAME Set JACK client name to NAME

--input-prefix=PREFIX
Input port prefix (default: "system:capture_")

--output-prefix=PREFIX
Output port prefix (default: "system:playback_")

-f, --freewheel Use JACK in freewheeling mode

General options:
-c, --config=FILE Read configuration from FILE
-s, --setup=FILE Load reproduction setup from FILE

--threads=N Number of audio threads (default: auto)
-r, --record=FILE Record the audio output of the renderer to FILE

--decay-exponent=VALUE
Exponent that determines the amplitude decay (default: 1)

--loop Loop all audio files
--master-volume-correction=VALUE

Correction of the master volume in dB (default: 0 dB)
--auto-rotation Auto-rotate sound sources' orientation toward the

reference
--no-auto-rotation

Don't auto-rotate sound sources' orientation toward the
reference

-i, --ip-server[=PORT]
Start IP server (default off),
a port number can be specified (default 4711)

-I, --no-ip-server Don't start IP server (default)
--end-of-message-character=VALUE

ASCII code for character to end messages with
(continues on next page)

18 Chapter 4. Running the SSR

SoundScape Renderer, Release 0.6.1-24-ga5e05f7

(continued from previous page)

(default 0 = binary zero)
--websocket-server[=PORT]

Start WebSocket server (default on),
a port number can be specified (default 9422)

--no-websocket-server
Don't start WebSocket server

--fudi-server[=PORT]
Start FUDI server (default off),
a port number can be specified (default 1174)

--no-fudi-server
Don't start FUDI server (default)

--follow Wait for another SSR instance to connect
--no-follow Don't follow another SSR instance (default)

-g, --gui Start GUI (default)
-G, --no-gui Don't start GUI
-t, --tracker=TYPE Select head tracker, possible value(s):

fastrak patriot vrpn intersense razor
--tracker-port=PORT

Port name/number of head tracker, e.g. /dev/ttyS1
-T, --no-tracker Don't use a head tracker (default)

-h, --help Show help and exit
-v, --verbose Increase verbosity level (up to -vvv)
-V, --version Show version information and exit

Use $HOME to refer to your home directory in the case that SSR does not resolve the tilde ~.

4.6 Configuration Files

The general configuration of the SSR (whether GUI is enabled, which tracker to use, and most other command line
arguments) can be specified in a configuration file (e.g. ssr.conf). By specifying your settings in such a file, you
avoid having to give explicit command line options every time you start the SSR. We have added the example data/
ssr.conf.example, which mentions all possible parameters. Take a look inside, it is rather self-explanatory.

Configuration files are loaded in the following order, if certain options are specified more than once, the last occurrence
counts. This means that it is not the last file that is loaded that counts but rather the last occurrence at which a given
setting is specified.

1. /Library/SoundScapeRenderer/ssr.conf

2. /etc/ssr.conf

3. $HOME/Library/SoundScapeRenderer/ssr.conf

4. $HOME/.ssr/ssr.conf

5. the path(s) specified with the --config/-c option(s) (e.g., ssr-binaural -c my_config.file)

We explicitly mention one parameter here that might be of immediate interest for you: MASTER_VOLUME_CORRECTION.
This a correction in dB (!) that is applied – as you might guess – to the master volume. The motivation is to have
means to adopt the general perceived loudness of the reproduction of a given system. Factors like the distance of the
loudspeakers to the listener or the typical distance of virtual sound sources influence the resulting loudness, which can
be adjusted to the desired level by means of the MASTER_VOLUME_CORRECTION. Of course, there’s also a command
line alternative (--master-volume-correction).

4.6. Configuration Files 19

SoundScape Renderer, Release 0.6.1-24-ga5e05f7

4.7 Keyboard Actions in Non-GUI Mode

If you start SSR without GUI (option --no-gui), it starts automatically replaying the scene that you have loaded. You
can have some interaction via the shell. Currently implemented actions are (all followed by Return):

• c: calibrate tracker (if available)

• p: start playback

• q: quit application

• r: “rewind”; go back to the beginning of the current scene

• s: stop (pause) playback

Note that in non-GUI mode, audio processing is always taking place. Live inputs are processed even if you pause
playback.

4.8 Recording the SSR Output

You can record the audio output of the SSR using the --record=FILE command line option. All output signals (i.e. the
loudspeaker signals) will be recorded to a multichannel wav-file named FILE. The order of channels corresponds to the
order of loudspeakers specifed in the reproduction setup (see Sections Reproduction Setups and ASDF). The recording
can then be used to analyze the SSR output or to replay it without the SSR using a software player like ecaplay
(http://nosignal.fi/ecasound/).

4.9 Head Tracking

We provide integration of the InterSense InertiaCube3 tracking sensor, the Polhemus Fastrak and the Polhemus Patriot
as well as all trackers supported by VRPN. The Supperware head tracker is supported indirectly via the Pd patch pd/
supperware_head_tracker_to_ssr.pd. The head trackers are used to update the orientation of the reference (in
binaural reproduction this is the listener) in real-time.

See Dependencies for how to compile the SSR with head tracking support.

Note that on startup, the SSR tries to find the tracker. If it fails, it continues without it. If you use a tracker, make sure
that you have the appropriate rights to read from the respective port.

You can calibrate the tracker while the SSR is running by pressing Return. The instantaneous orientation will then be
interpreted as straight forward, i.e. upwards on the screen (𝛼 = 90∘).

SSR is progressively (and silently) moving from 2D scenes to 3D scenes. The binaural renderer can handle head
tracking about all three axes of rotation if the HRIRs are provided in SOFA. We recommend using the browser-based
GUI to monitor the tracking as the built-in GUI only visualizes tracking along the azimuth.

20 Chapter 4. Running the SSR

http://nosignal.fi/ecasound/

SoundScape Renderer, Release 0.6.1-24-ga5e05f7

4.9.1 Preparing InterSense InertiaCube3

Make sure that you have the required access rights to the tracker before starting SSR. For you are using the USB
connection type

sudo chmod a+rw /dev/ttyUSBX

whereby X can be any digit or number. If you are not sure which port is the tracker then unplug the tracker, type

ls /dev/ttyUSB*

replug the tracker, execute above command again and see which port was added. That one is the tracker. It’s likely that
it is the one whose name contains the highest number.

4.9.2 Preparing Polhemus Fastrak/Patriot

Make sure that you have the required access rights to the tracker before starting SSR by typing something like

sudo chmod a+rw /dev/ttyS0

or

sudo chmod a+rw /dev/ttyS1

or so.

If you want to disable this tracker, use ./configure --disable-polhemus and recompile.

If you are using head tracking about all three axes of rotation, make sure that the tracking sensor is mounted on the
headphones such that the cable leaves the sensor towards the left relative to the look direction of the user.

4.9.3 Preparing VRPN

In order to use Virtual Reality Peripheral Network (VRPN) compatible trackers create a config file vrpn.cfg with one
of the following lines (or similar)

vrpn_Tracker_Fastrak MyFastrak /dev/ttyUSB0 115200
vrpn_Tracker_Fastrak MyOtherFastrak COM1 115200
vrpn_Tracker_Liberty MyPatriot /dev/ttyUSB1 115200

. . . and start vrpn_server. You can choose the name of the Tracker arbitrarily. Then, start the SSR with the given
Tracker name, e.g.:

ssr-binaural --tracker=vrpn --tracker-port=MyFastrak@localhost

If the tracker runs on a different computer, use its hostname (or IP address) instead of localhost. You can of course
select your head tracker settings by means of Configuration Files.

4.9. Head Tracking 21

http://www.cs.unc.edu/Research/vrpn/index.html

SoundScape Renderer, Release 0.6.1-24-ga5e05f7

4.10 Using the SSR with DAWs

As stated before, the SSR is currently not able to dynamically replay audio files (refer to Section ASDF). If your audio
scenes are complex, you might want to consider using the SSR together with a digital audio work station (DAW). To do
so, you simply have to create as many sources in the SSR as you have audio tracks in your respective DAW project and
assign live inputs to the sources. Amongst the ASDF examples we provide on SSR website http://spatialaudio.net/ssr/
you’ll find an scene description that does exactly this.

DAWs like Ardour (https://ardour.org) support JACK and their use is therefore straightforward. DAWs which do not
run on Linux or do not support JACK can be connected via the input of the sound card.

In the future we will provide a VST plug-in which will allow you to dynamically operate all virtual source’s properties
(like e.g. a source’s position or level etc.). You will then be able to have the full SSR functionality controlled from your
DAW.

4.11 Using the SSR with different audio clients

This page contains some short description how to connect your own audio files with the SSR using different audio
players.

4.11.1 VLC Media Player

How to connect the SSR in binaural playback mode with the own audio library using Jack and VLC Media Player:

After installing Jack and the SSR (with all needed components: see Configuring) it is necessary to install the VLC
Media Player with its Jack plugin (for example UBUNTU):

1. sudo apt-get install vlc vlc-plugin-jack

(or use the packet manager of your choice instead of the command line and install: vlc and vlc-plugin-
jack)

2. After installing open VLC Media Player and navigate to Tools->Preferences Select “All” on the bottom left corner
In the appearing menu on the left navigate to “Audio”->”Output Module” and extend it by using “+”

3. In the submenu of “Output Module” select “JACK” and replace “system” by ” Binaural-Renderer” in the “Connect
to clients matching”-box. Do not forget to enable “Automatically connect to writable clients” above. (Otherwise you
have to connect the audio output of vlc with the SSR input after every played audio file using jack.)

(Note: If you want to use another Renderer, e.g. for WFS, you have to enter “WFS-Renderer” in the box)

4. Save your changes.

5. Start everything together using the command line:

qjackctl -s & vlc & ssr-binaural --gui /"path_of_your_scene_file(s)"/stereo.asd &

This will start jack, vlc and the ssr with the GUI and a provided stereo
scene (TODO: LINK) (stereo.asd)

6. Open an audio file in vlc and press play

22 Chapter 4. Running the SSR

http://spatialaudio.net/ssr/
https://ardour.org

SoundScape Renderer, Release 0.6.1-24-ga5e05f7

4.11. Using the SSR with different audio clients 23

SoundScape Renderer, Release 0.6.1-24-ga5e05f7

4.11.2 Using a Head-Tracker

Running with InterSense tracker support

Due to copyright reasons, the SSR does not come with a built-in InterSense tracker support. So first you have to build
the SSR with InterSense tracker support yourself (see the CI configuration file .github/workflows/main.yml for
instructions).

If you are using a USB-to-Serial interface with your tracker, you need to install drivers for that. This seems to work
fine for the interface made by InterSense: https://ftdichip.com/drivers/vcp-drivers/

To check if the system sees the tracker do:

ls -l /dev/tty.usb*

On the MacBooks tested, the serial ports were called /dev/tty.usbserial- 00001004 or /dev/tty.
usbserial-00002006 depending on which USB port was used.

To make the SSR use the InterSense tracker with these ports, you have two options:

Using the command line (only one port can be specified):

open -a SoundScapeRenderer --args --binaural "--tracker=intersense
--tracker-port=/dev/tty.usbserial-XXXXXXXX"

. . . or using config files:

Add these lines to a config file (multiple ports can be specified):

TRACKER = intersense
TRACKER_PORTS = /dev/tty.usbserial-XXXXXXXX /dev/tty.usbserial-YYYYYYYY

It’s recommended to use the config file approach - best use a global :ref:` config file<ssr_configuration_file>`.

Running with Razor AHRS tracker support

If you happen not to own a Polhemus or InterSense tracker to do your head- tracking, an alternative would be to use
our DIY low-cost Razor AHRS tracker.

If you have Arduino installed on you machine, FTDI drivers will be there too. Otherwise get the driver from https:
//ftdichip.com/drivers/vcp-drivers/.

To check if the system sees the tracker do:

ls -l /dev/tty.usb*

This should give you something like /dev/tty.usbserial-A700eEhN.

To make the SSR use this Razor AHRS tracker, you have two options:

Using the command line:

open -a SoundScapeRenderer --args --binaural "--tracker=razor
--tracker-port=/dev/tty.usbserial-XXXXXXXX"

. . . or using config files:

Add these lines to a config file:

24 Chapter 4. Running the SSR

https://ftdichip.com/drivers/vcp-drivers/
https://github.com/Razor-AHRS/razor-9dof-ahrs/wiki/Tutorial
https://ftdichip.com/drivers/vcp-drivers/
https://ftdichip.com/drivers/vcp-drivers/

SoundScape Renderer, Release 0.6.1-24-ga5e05f7

TRACKER = intersense
TRACKER_PORTS = /dev/tty.usbserial-XXXXXXXX

It’s recommended to use the config file approach - best use a global config file.

4.11. Using the SSR with different audio clients 25

SoundScape Renderer, Release 0.6.1-24-ga5e05f7

26 Chapter 4. Running the SSR

CHAPTER

FIVE

THE RENDERERS

5.1 General

5.1.1 Reproduction Setups

The geometry of the actual reproduction setup is specified in .asd files, just like sound scenes. By default, it is
loaded from the file /usr/local/share/ssr/default_setup.asd. Use the --setup command line option to load
another reproduction setup file. Note that the loudspeaker setups have to be convex. This is not checked by the SSR.
The loudspeakers appear at the outputs of your sound card in the same order as they are specified in the .asd file,
starting with channel 1.

A sample reproduction setup description:

<?xml version="1.0"?>
<asdf version="0.1">
<header>
<name>Circular Loudspeaker Array</name>

</header>
<reproduction_setup>
<circular_array number="56">
<first>
<position x="1.5" y="0"/>
<orientation azimuth="-180"/>

</first>
</circular_array>

</reproduction_setup>
</asdf>

We provide the following setups in the directory data/reproduction_setups/:

• 2.0.asd: standard stereo setup at 1.5 mtrs distance

• 2.1.asd: standard stereo setup at 1.5 mtrs distance plus subwoofer

• 5.1.asd: standard 5.1 setup on circle with a diameter of 3 mtrs

• rounded_rectangle.asd: Demonstrates how to combine circular arcs and linear array segments.

• circle.asd: This is a circular array of 3 mtrs diameter composed of 56 loudspeakers.

• loudspeaker_setup_with_nearly_all_features.asd: This setup describes all supported options, open
it with your favorite text editor and have a look inside.

27

SoundScape Renderer, Release 0.6.1-24-ga5e05f7

There is some limited freedom in assigning channels to loudspeakers: If you insert the element <skip number="5"/
>, the specified number of output channels are skipped and the following loudspeakers get higher channel numbers
accordingly.

Of course, the binaural and BRS renderers do not load a loudspeaker setup. By default, they assume the listener to
reside in the coordinate origin looking straight forward.

5.1.2 A Note on the Timing of the Audio Signals

The WFS renderer is the only renderer in which the timing of the audio signals is somewhat peculiar. None of the
other renderers imposes any algorithmic delay on individual source signals. Of course, if you use a renderer that is
convolution based such as the BRS renderer, the employed HRIRs do alter the timing of the signals due to their inherent
properties.

This is different with the WFS renderer. Here, also the propagation duration of sound from the position of the virtual
source to the loudspeaker array is taken into account. This means that the farther a virtual source is located, the longer
is the delay imposed on its input signal. This also holds true for plane waves: Theoretically, plane waves do originate
from infinity. Though, the SSR does consider the origin point of the plane wave that is specified in ASDF. This origin
point also specifies the location of the symbol that represents the respective plane wave in the GUI.

We are aware that this procedure can cause confusion and reduces the ability of a given scene of translating well between
different types of renderers. In the upcoming version 0.4 of the SSR we will implement an option that will allow you
specifying for each individual source whether the propagation duration of sound shall be considered by a renderer or
not.

5.1.3 Subwoofers

All loudspeaker-based renderers support the use of subwoofers. Outputs of the SSR that are assigned to subwoofers
receive a signal having full bandwidth. So, you will have to make sure yourself that your system lowpasses these signals
appropriately before they are emitted by the subwoofers.

You might need to adjust the level of your subwoofer(s) depending on the renderers that you are using as the overall
radiated power of the normal speakers cannot be predicted easily so that we cannot adjust for it automatically. For
example, no matter of how many loudspeakers your setup is composed of the VBAP renderer will only use two loud-
speakers at a time to present a given virtual sound source. The WFS renderer on the other hand might use 10 or 20
loudspeakers, which can clearly lead to a different sound pressure level at a given receiver location.

For convenience, ASDF allows for specifying permantent weight for loudspeakers and subwoofers using the weight
attribute:

<loudspeaker model="subwoofer" weight="0.5">
<position x="0" y="0"/>
<orientation azimuth="0"/>

</loudspeaker>

weight is a linear factor that is always applied to the signal of this speaker. Above example will obviously attenuate
the signal by approx. 6 dB. You can use two ASDF description for the same reproduction setup that differ only with
respect to the subwoofer weights if you’re using different renderers on the same loudspeaker system.

28 Chapter 5. The Renderers

SoundScape Renderer, Release 0.6.1-24-ga5e05f7

5.1.4 Distance Attenuation

Note that in all renderers – except for the BRS and generic renderers –, the distance attenuation in the virtual space is 1
𝑟

with respect to the distance 𝑟 of the respective virtual point source to the reference position. Point sources closer than
0.5 m to the reference position do not experience any increase of amplitude. Virtual plane waves do not experience any
algorithmic distance attenuation in any renderer.

You can specify your own preferred distance attenuation exponent 𝑒𝑥𝑝 (in 1
𝑟𝑒𝑥𝑝) either via the command line argument

--decay-exponent=VALUE or the configuration option DECAY_EXPONENT (see the file data/ssr.conf.example).
The higher the exponent, the faster is the amplitude decay over distance. The default exponent is 𝑒𝑥𝑝 = 11. Fig. 3.1
illustrates the effect of different choices of the exponent. In simple words, the smaller the exponent the slower is the
amplitude decay over distance. Note that the default decay of 1

𝑟 is theoretically correct only for infinitessimally small
sound sources. Spatially extended sources, like most real world sources, exhibit a slower decay. So you might want to
choose the exponent to be somewhere between 0.5 and 1. You can completely suppress any sort of distance attenuation
by setting the decay exponent to 0.

The amplitude reference distance, i.e. the distance from the reference at which plane waves are as loud as the other
source types (like point sources), can be set in the SSR configuration file (Section Configuration File). The desired
amplitude reference distance for a given sound scene can be specified in the scene description (Section ASDF). The
default value is 3 m.

The overall amplitude normalization is such that plane waves always exhibit the same amplitude independent of what
amplitude reference distance and what decay exponent have been chosen. Consequently, also virtual point source
always exhibit the same amplitude at amplitude reference distance, whatever it has been set to.

5.1.5 Doppler Effect

In the current version of the SSR the Doppler Effect in moving sources is not supported by any of the renderers.

5.1.6 Signal Processing

All rendering algorithms are implemented on a frame-wise basis with an internal precision of 32 bit floating point. The
signal processing is illustrated in Fig. 3.2.

The input signal is divided into individual frames of size nframes, whereby nframes is the frame size with which JACK
is running. Then e.g. frame number 𝑛 + 1 is processed both with previous rendering parameters 𝑛 as well as with
current parameters 𝑛 + 1. It is then crossfaded between both processed frames with cosine-shaped slopes. In other
words the effective frame size of the signal processing is 2·nframes with 50% overlap. Due to the fade-in of the frame
processed with the current parameters 𝑛 + 1, the algorithmic latency is slightly higher than for processing done with
frames purely of size nframes and no crossfade.

The implementation approach described above is one version of the standard way of implementing time-varying audio
processing. Note however that this means that with all renderers, moving sources are not physically correctly repro-
duced. The physically correct reproduction of moving virtual sources as in [Ahrens2008a] and [Ahrens2008b] requires
a different implementation approach which is computationally significantly more costly.

1 A note regarding previous versions of the WFS renderer: In the present SSR version, the amplitude decay is handled centrally and equally
for all renderers that take distance attenuation into account (see Table 2). Previously, the WFS renderer relied on the distance attenuation that was
inherent to the WFS driving function. This amplitude decay is very similar to an exponent of 0.5 (instead of the current default exponent of 1.0). So
you might want to set the decay exponent to 0.5 in WFS to make your scenes sound like they used to do previously.

5.1. General 29

SoundScape Renderer, Release 0.6.1-24-ga5e05f7

Fig. 1: Illustration of the amplitude of virtual point sources as a function of source distance from the reference point for
different exponents 𝑒𝑥𝑝. The exponents range from 0 to 2 (black color to gray color). The amplitude reference distance
is set to 3 m. Recall that sources closer than 0.5 m to the reference position do not experience any further increase of
amplitude.

30 Chapter 5. The Renderers

SoundScape Renderer, Release 0.6.1-24-ga5e05f7

Fig. 2: Illustration of the frame-wise signal processing as implemented in the SSR renderers (see text)

5.1. General 31

SoundScape Renderer, Release 0.6.1-24-ga5e05f7

5.2 Binaural Renderer

Executable: ssr-binaural

Binaural rendering is an approach where the acoustical influence of the human head is electronically simulated to
position virtual sound sources in space. Be sure that you are using headphones to listen.

The acoustical influence of the human head is coded in so-called head-related impulse responses (HRIRs) or
equivalently by head-related transfer functions. The HRIRs are loaded from the file /usr/local/share/ssr/
default_hrirs.wav. If you want to use different HRIRs then use the --hrirs=FILE command line option or the
SSR configuration file (Section Configuration File) to specify your custom location. The SSR connects its outputs
automatically to outputs 1 and 2 of your sound card.

For virtual sound sources that are closer to the reference position (= the listener position) than 0.5 m, the HRTFs are
interpolated with a Dirac impulse. This ensures a smooth transition of virtual sources from the outside of the listener’s
head to the inside.

SSR uses HRIRs with an angular resolution of 1∘. Thus, the HRIR file contains 720 impulse responses (360 for each
ear) stored as a 720-channel .wav-file. The HRIRs all have to be of equal length and have to be arranged in the following
order3:

• 1st channel: left ear, virtual source position 0∘

• 2nd channel: right ear, virtual source position 0∘

• 3rd channel: left ear, virtual source position 1∘

• 4th channel: right ear, virtual source position 1∘

• . . .

• 720th channel: right ear, virtual source position 359∘

If your HRIRs have lower angular resolution you have to interpolate them to the target resolution or use the same HRIR
for serveral adjacent directions in order to fulfill the format requirements. Higher resolution is not supported. Make
sure that the sampling rate of the HRIRs matches that of JACK. So far, we know that both 16bit and 24bit word lengths
work.

The SSR automatically loads and uses all HRIR coefficients it finds in the specified file. You can use the
--hrir-size=VALUE command line option in order to limit the number of HRIR coefficients read and used to VALUE.
You don’t need to worry if your specified HRIR length VALUE exceeds the one stored in the file. You will receive a
warning telling you what the score is. The SSR will render the audio in any case.

The actual size of the HRIRs is not restricted (apart from processing power). The SSR cuts them into partitions of size
equal to the JACK frame buffer size and zero-pads the last partition if necessary.

Note that there’s some potential to optimize the performance of the SSR by adjusting the JACK frame size and accord-
ingly the number of partitions when a specific number of HRIR taps are desired. The least computational load arises
when the audio frames have the same size like the HRIRs. By choosing shorter frames and thus using partitioned
convolution the system latency is reduced but computational load is increased.

3 Note that the binaural renderer has the currently hidden and undocumented feature of being able to read HRIRs in SOFA. It supports head
tracking about all three axes of rotation in this case.

32 Chapter 5. The Renderers

https://www.sofaconventions.org/

SoundScape Renderer, Release 0.6.1-24-ga5e05f7

5.2.1 The HRIR sets shipped with SSR

SSR comes with two different HRIR sets: FABIAN and KEMAR (QU). The differ with respect to the manikin that was
used in the measurement (FABIAN vs. KEMAR). The reference for the FABIAN measurement is [Lindau2007], and
the reference for the KEMAR (QU) is [Wierstorf2011]. The low-frequency extension from [SpatialAudio] has been
applied to the KEMAR (QU) HRTFs.

You will find all sets in the folder data/impulse_responses/hrirs/. The suffix _eq in the file name indicates
the equalized data. The unequalized data is of course also there. See the file data/impulse_responses/hrirs/
hrirs_fabian_documentation.pdf for a few more details on the FABIAN measurement.

Starting with SSR release 0.5.0, the default HRIR set that is loaded is headphone compensated, i.e., we equalized the
HRIRs a bit in order to compensate for the alterations that a typical pair of headphones would apply to the ear signals.
Note that by design, headphones do not have a flat transfer function. However, when performing binaural rendering,
we need the headphones to be transparent. Our equalization may not be perfect for all headphones or earbuds as these
can exhibit very different properties between different models.

We chose a frequency sampling-based minimum-phase filter design. The transfer functions and impulse responses of
the two compensation filters are depicted in Fig. 3.3. The impulse responses themselves can be found in the same folder
like the HRIRs (see above). The length is 513 taps so that the unequalized HRIRs are 512 taps long, the equalized ones
are 1024 taps long.

Fig. 3: Magnitude transfer functions and impulse responses of the headphone compensation / equalization filters

Recall that there are several ways of defining which HRIR set is loaded, for example the HRIR_FILE_NAME in the SSR

5.2. Binaural Renderer 33

SoundScape Renderer, Release 0.6.1-24-ga5e05f7

configuration files property, or the command line option --hrirs=FILE.

5.2.2 Preparing HRIR sets

You can easily prepare your own HRIR sets for use with the SSR by adopting the MATLAB script data/
matlab_scripts/prepare_hrirs_cipic.m to your needs. This script converts the HRIRs of the KEMAR manikin
included in the CIPIC database [AlgaziCIPIC] to the format that the SSR expects. See the script for further information
and how to obtain the raw HRIRs. Note that the KEMAR (CIPIC) HRIRs are not identical to the KEMAR (QU) ones.

5.3 Binaural Room Synthesis Renderer

Executable: ssr-brs

The Binaural Room Synthesis (BRS) renderer is a binaural renderer (refer to Section Binaural Renderer) which uses
one dedicated HRIR set of each individual sound source. The motivation is to have more realistic reproduction than in
simple binaural rendering. In this context HRIRs are typically referred to as binaural room impulse responses (BRIRs).

Note that the BRS renderer does not consider any specification of a virtual source’s position. The positions of the virtual
sources (including their distance) are exclusively coded in the BRIRs. Consequently, the BRS renderer does not apply
any distance attenuation. It only applies the respective source’s gain and the master volume. No interpolation with a
Dirac as in the binaural renderer is performed for very close virtual sources. The only quantity which is explicitely
considered is the orientation of the receiver, i.e. the reference. Therefore, specification of meaningful source and
receiver positions is only necessary when a correct graphical illustration is desired.

The BRIRs are stored in the a format similar to the one for the HRIRs for the binaural renderer (refer to Section Binaural
Renderer). However, there is a fundamental difference: In order to be consequent, the different channels do not hold
the data for different positions of the virtual sound source but they hold the information for different head orientations.
Explicitely,

• 1st channel: left ear, head orientation 0∘

• 2nd channel: right ear, head orientation 0∘

• 3rd channel: left ear, head orientation 1∘

• 4th channel: right ear, head orientation 1∘

• . . .

• 720th channel: right ear, head orientation 359∘

In order to assign a set of BRIRs to a given sound source an appropriate scene description in .asd-format has to be
prepared (refer also to Section Audio Scenes). As shown in brs_example.asd (from the example scenes), a virtual
source has the optional property properties_file which holds the location of the file containing the desired BRIR
set. The location to be specified is relative to the folder of the scene file. Note that – as described above – specification
of the virtual source’s position does not affect the audio processing. If you do not specify a BRIR set for each virtual
source, then the renderer will complain and refuse processing the respective source.

We have measured the BRIRs of the FABIAN manikin in one of our mid-size meeting rooms called Sputnik with 8
different source positions. Due to the file size, we have not included them in the release. You can obtain the data from
[BRIRs].

34 Chapter 5. The Renderers

SoundScape Renderer, Release 0.6.1-24-ga5e05f7

5.4 Vector Base Amplitude Panning Renderer

Executable: ssr-vbap

The Vector Base Amplitude Panning (VBAP) renderer uses the algorithm described in [Pulkki1997]. It tries to find a
loudspeaker pair between which the phantom source is located (in VBAP you speak of a phantom source rather than a
virtual one). If it does find a loudspeaker pair whose angle is smaller than 180∘ then it calculates the weights 𝑔𝑙 and 𝑔𝑟
for the left and right loudspeaker as

𝑔𝑙,𝑟 =
cos𝜑 sin𝜑0 ± sin𝜑 cos𝜑0

2 cos𝜑0 sin𝜑0
.

𝜑0 is half the angle between the two loudspeakers with respect to the listening position, 𝜑 is the angle between the
position of the phantom source and the direction “between the loudspeakers”.

If the VBAP renderer can not find a loudspeaker pair whose angle is smaller than 180∘ then it uses the closest loud-
speaker provided that the latter is situated within 30∘. If not, then it does not render the source. If you are in verbosity
level 2 (i.e. start the SSR with the -vv option) you’ll see a notification about what’s happening.

Note that all virtual source types (i.e. point and plane sources) are rendered as phantom sources.

Contrary to WFS, non-uniform distributions of loudspeakers are ok here. Ideally, the loudspeakers should be placed on
a circle around the reference position. You can optionally specify a delay for each loudspeakers in order to compensate
some amount of misplacement. In the ASDF (refer to Section ASDF), each loudspeaker has the optional attribute delay
which determines the delay in seconds to be applied to the respective loudspeaker. Note that the specified delay will
be rounded to an integer factor of the temporal sampling period. With 44.1 kHz sampling frequency this corresponds
to an accuracy of 22.676 𝜇s, respectively an accuracy of 7.78 mm in terms of loudspeaker placement. Additionally,
you can specify a weight for each loudspeaker in order to compensate for irregular setups. In the ASDF format (refer
to Section ASDF), each loudspeaker has the optional attribute weight which determines the linear (!) weight to be
applied to the respective loudspeaker. An example would be

<loudspeaker delay="0.005" weight="1.1">
<position x="1.0" y="-2.0"/>
<orientation azimuth="-30"/>

</loudspeaker>

Delay defaults to 0 if not specified, weight defaults to 1.

Although principally suitable, we do not recommend to use our amplitude panning algorithm for dedicated 5.1 (or
comparable) mixdowns. Our VBAP renderer only uses adjacent loudspeaker pairs for panning which does not exploit all
potentials of such a loudspeaker setup. For the mentioned formats specialized panning processes have been developed
also employing non-adjacent loudspeaker pairs if desired.

The VBAP renderer is rather meant to be used with non-standardized setups.

5.5 Wave Field Synthesis Renderer

Executable: ssr-wfs

The Wave Field Synthesis (WFS) renderer is the only renderer so far that discriminates between virtual point sources
and plane waves. It implements the simple (far-field) driving function given in [Spors2008]. Note that we have only
implemented a temporary solution to reduce artifacts when virtual sound sources are moved. This topic is subject to
ongoing research. We will work on that in the future. In the SSR configuration file (Section Configuration File) you
can specify an overall predelay (this is necessary to render focused sources) and the overall length of the involved delay
lines. Both values are given in samples.

5.4. Vector Base Amplitude Panning Renderer 35

SoundScape Renderer, Release 0.6.1-24-ga5e05f7

5.5.1 Prefiltering

As you might know, WFS requires a spectral correction additionally to the delay and weighting of the input signal.
Since this spectral correction is equal for all loudspeakers, it needs to be performed only once on the input. We are
working on an automatic generation of the required filter. Until then, we load the impulse response of the desired filter
from a .wav-file which is specified via the --prefilter=FILE command line option (see Section Running SSR) or
in the SSR configuration file (Section Configuration File). Make sure that the specified audio file contains only one
channel. Files with a differing number of channels will not be loaded. Of course, the sampling rate of the file also has
to match that of the JACK server.

Note that the filter will be zero-padded to the next highest power of 2. If the resulting filter is then shorter than the
current JACK frame size, each incoming audio frame will be divided into subframes for prefiltering. That means, if
you load a filter of 100 taps and JACK frame size is 1024, the filter will be padded to 128 taps and prefiltering will be
done in 8 cycles. This is done in order to save processing power since typical prefilters are much shorter than typical
JACK frame sizes. Zero-padding the prefilter to the JACK frame size usually produces large overhead. If the prefilter
is longer than the JACK frame buffer size, the filter will be divided into partitions whose length is equal to the JACK
frame buffer size.

If you do not specify a filter, then no prefiltering is performed. This results in a boost of bass frequencies in the
reproduced sound field.

In order to assist you in the design of an appropriate prefilter, we have included the MATLAB script data/
matlab_scripts/make_wfs_prefilter.m which does the job. In the very top of the file, you can specify the
sampling frequency, the desired length of the filter as well as the lower and upper frequency limits of the spectral
correction. The lower limit should be chosen such that the subwoofer of your system receives a signal which is not
spectrally altered. This is due to the fact that only loudspeakers which are part of an array of loudspeakers need to
be corrected. The lower limit is typically around 100 Hz. The upper limit is given by the spatial aliasing frequency.
The spatial aliasing is dependent on the mutual distance of the loudspeakers, the distance of the considered listening
position to the loudspeakers, and the array geometry. See [Spors2006] for detailed information on how to determine
the spatial aliasing frequency of a given loudspeaker setup. The spatial aliasing frequency is typically between 1000
Hz and 2000 Hz. For a theoretical treatment of WFS in general and also the prefiltering, see [Spors2008].

The script make_wfs_prefilter.m will save the impulse response of the designed filter in a file like
wfs_prefilter_120_1500_44100.wav. From the file name you can extract that the spectral correction starts at
120 Hz and goes up to 1500 Hz at a sampling frequency of 44100 Hz. Check the folder data/impules_responses/
wfs_prefilters for a small selection of prefilters.

5.5.2 Tapering

When the listening area is not enclosed by the loudspeaker setup, artifacts arise in the reproduced sound field due to the
limited aperture. This problem of spatial truncation can be reduced by so-called tapering. Tapering is essentially an
attenuation of the loudspeakers towards the ends of the setup. As a consequence, the boundaries of the aperture become
smoother which reduces the artifacts. Of course, no benefit comes without a cost. In this case the cost is amplitude
errors for which the human ear fortunately does not seem to be too sensitive.

In order to taper, you can assign the optional attribute weight to each loudspeaker in ASDF format (refer to Sec-
tion [sec:asdf]). The weight determines the linear (!) weight to be applied to the respective loudspeaker. It defaults
to 1 if it is not specified.

36 Chapter 5. The Renderers

SoundScape Renderer, Release 0.6.1-24-ga5e05f7

5.6 Ambisonics Amplitude Panning Renderer

Executable: ssr-aap

The Ambisonics Amplitude Panning (AAP) renderer does very simple Ambisonics rendering. It does amplitude pan-
ning by simultaneously using all loudspeakers that are not subwoofers to reproduce a virtual source (contrary to the
VBAP renderer which uses only two loudspeakers at a time). Note that the loudspeakers should ideally be arranged on a
circle and the reference should be the center of the circle. The renderer checks for that and applies delays and amplitude
corrections to all loudspeakers that are closer to the reference than the farthest. This also includes subwoofers. If you
do not want close loudspeakers to be delayed, then simply specify their location in the same direction like its actual
position but at a larger distance from the reference. Then the graphical illustration will not be perfectly aligned with
the real setup, but the audio processing will take place as intended. Note that the AAP renderer ignores delays assigned
to an individual loudspeaker in ASDF. On the other hand, it does consider weights assigned to the loudspeakers. This
allows you to compensate for irregular loudspeaker placement.

Note finally that AAP does not allow to encode the distance of a virtual sound source since it is a simple panning
renderer. All sources will appear at the distance of the loudspeakers.

If you do not explicitly specify an Ambisonics order, then the maximum order which makes sense on the given loud-
speaker setup will be used. The automatically chosen order will be one of (𝐿−1)/2 for an odd number𝐿 of loudspeakers
and accordingly for even numbers.

You can manually set the order via a command line option (Section Running SSR) or the SSR configuration file (Sec-
tion Configuration File). We therefore do not explicitly discriminate between “higher order” and “lower order” Am-
bisonics since this is not a fundamental property. And where does “lower order” end and “higher order” start anyway?

Note that the graphical user interface will not indicate the activity of the loudspeakers since theoretically all loudspeak-
ers contribute to the sound field of a virtual source at any time.

5.6.1 Conventional driving function

By default we use the standard Ambisonics panning function presented, for example, in [Neukom2007]. It reads

𝑑(𝛼0) =
sin

(︀
2𝑀+1

2 (𝛼0 − 𝛼s)
)︀

(2𝑀 + 1) sin
(︀
𝛼0−𝛼s

2

)︀ ,
whereby 𝛼0 is the azimuth angle of the position of the considered secondary source, 𝛼s is the azimuth angle of the
position of the virtual source, both in radians, and 𝑀 is the Ambisonics order.

5.6.2 In-phase driving function

The conventional driving function leads to both positive and negative weights for individual loudspeakers. An object
(e.g. a listener) introduced into the listening area can lead to an imperfect interference of the wave fields of the individual
loudspeakers and therefore to an inconsistent perception. Furthermore, conventional Ambisonics panning can lead to
audible artifacts for fast source motions since it can happen that the weights of two adjacent audio frames have a different
algebraic sign.

These problems can be worked around when only positive weights are applied on the input signal (in-phase rendering).
This can be accomplished via the in-phase driving function given e.g. in [Neukom2007] reading

𝑑(𝛼0) = cos2𝑀
(︂
𝛼0 − 𝛼s

2

)︂
.

Note that in-phase rendering leads to a less precise localization of the virtual source and other unwanted perceptions.
You can enable in-phase rendering via the according command-line option or you can set the IN_PHASE_RENDERING
property in the SSR configuration file (see section Configuration File) to be TRUE or true.

5.6. Ambisonics Amplitude Panning Renderer 37

SoundScape Renderer, Release 0.6.1-24-ga5e05f7

5.7 Distance-coded Ambisonics Renderer

Executable: ssr-dca

Distance-coded Ambisonics (DCA) is sometimes also termed “Nearfield Compensated Higher-Order Ambisonics”.
This renderer implements the driving functions from [Spors2011]. The difference to the AAP renderer is a long story,
which we will elaborate on at a later point.

Note that the DCA renderer is experimental at this stage. It currently supports orders of up to 28. There are some
complications regarding how the user specifies the locations of the loudspeakers and how the renderer handles them.
The rendered scene might appear mirrored or rotated. If you are experiencing this, you might want to play around with
the assignment of the outputs and the loudspeakers to fix it temporarily. Or contact us.

Please bear with us. We are going to take care of this soon.

5.8 Generic Renderer

Executable: ssr-generic

The generic renderer turns the SSR into a multiple-input-multiple-output convolution engine. You have to use an ASDF
file in which the attribute properties_file of the individual sound source has to be set properly. That means that
the indicated file has to be a multichannel file with the same number of channels like loudspeakers in the setup. The
impulse response in the file at channel 1 represents the driving function for loudspeaker 1 and so on.

Be sure that you load a reproduction setup with the corresponding number of loudspeakers.

It is obviously not possible to move virtual sound sources since the loaded impulse responses are static. We use this
renderer in order to test advanced methods before implementing them in real-time or to compare two different rendering
methods by having one sound source in one method and another sound source in the other method.

Download the ASDF examples from https://github.com/SoundScapeRenderer/example-scenes and check out the file
generic_renderer_example.asd which comes with all required data.

Look also here for more general signal processing examples using SSR.

individual delay weight
binaural renderer - -
BRS renderer - -
VBAP renderer + +
WFS renderer - +
AAP renderer autom. +
generic renderer - -

Table 1: Loudspeaker properties considered by the different renderers.

gain mute position orientation2 distance attenuation model
binaural renderer + + + + + only w.r.t. ampl.
BRS renderer + + - - - -
VBAP renderer + + + + + only w.r.t. ampl.
WFS renderer + + + + + +
AAP renderer + + + - + only w.r.t. ampl.
generic renderer + + - - - -

38 Chapter 5. The Renderers

https://github.com/SoundScapeRenderer/example-scenes

SoundScape Renderer, Release 0.6.1-24-ga5e05f7

Table 2: Virtual source’s properties considered by the different renderers.

5.9 Summary

Tables 1 and 2 summarize the functionality of the SSR renderers.

2 So far, only planar sources have a defined orientation. By default, their orientation is always pointing from their nominal position to the reference
point no matter where you move them. Any other information or updates on the orientation are ignored. You can changes this behavior by using
either the command line option --no-auto-rotation, using the AUTO_ROTATION configuration parameter, or hitting r in the GUI.

5.9. Summary 39

SoundScape Renderer, Release 0.6.1-24-ga5e05f7

40 Chapter 5. The Renderers

CHAPTER

SIX

GRAPHICAL USER INTERFACE

Our graphical user interface (GUI) is quite costly in terms of computation. So we emphatically recommend that you
properly configure the hardware acceleration of your graphics card. If you still have performance issues make the
window as small as possible. The smaller the window is the less is the processing cost.

The SSR GUI tries to enable samplebuffer support to enable anti-aliasing of the screen output. It will tell you if it didn’t
work out. Check Fig. 4.1 to get an idea of the influence of anti-aliasing. One day we will also implement a variable
frequency for the screen update so that you can slow it down if CPU load is too high. Of course it won’t look as nice
then.

Fig. 1: No anti-aliasing on the left image.

6.1 General Layout

The graphical user interface (GUI) consists mainly of an illustration of the scene that you are hearing and some inter-
action tools. The renderer type is indicated in the window title. See a screen shot in Fig. 4.2.

On the top left you will find the file menu where you can open files, save scenes, and quit the application. So far only
the save scene as. . . option is available. That means every time to save the current scene you will be asked to specify
the file name. This will be made more convenient in the future.

Next to the file menu, there is a button which lets you activate and deactivate the audio processing. Deactivating the
audio processing does not necessarily lower the CPU load. It means rather that the SSR won’t give any audio output,
neither for involved audio files nor for live inputs.

Next to the processing button, you find the transport section with buttons to skip back to the beginning of a scene, pause
replaying, and continue/start playing. Note that pausing a scene does not prevent live inputs from being processed. To
prevent audio output switch off processing (see above). You may also replay while processing is switched off to navigate
to a certain point in time in the respective scene.

In the top middle section of the GUI there is the audio scene time line. By default, it shows a time interval of two
minutes duration. Whenever the progress exceeds the displayed time interval the latter is shifted such that the progress
is always properly indicated. Below the handle, there is a numerical indication of the elapsed time with respect to the
beginning of the scene. See Sec. Mouse Actions for information on how to operate on the time line.

41

SoundScape Renderer, Release 0.6.1-24-ga5e05f7

Fig. 2: Screen shot of the SSR GUI.

To the right of the time line there’s the CPU load gauge. It displays the average CPU load as estimated by the JACK
audio server on a block-wise basis. Further right there’s the label to indicate the current zoom factor in percent.

And finally, on the top right you find the master level meter combined with the master volume fader. The colored bar
indicates an estimation of the relative maximum audio level in dB, also updated block-wise. The left boundary of the
meter is at -50 dB; the right boundary is at +12 dB. The black triangle below the colored bar indicates the master volume
in dB. Click somewhere into the widget and the master volume gets additionally displayed as a number. Note that this
meter displays full scale, i.e. above 0 dB clipping and thus distortion of the output signal occurs! 0 dB is indicated by
a thin vertical line.

In the row below the transport section, you occasionally find some tabs giving fast access to a number of scenes. These
tabs can be defined in a file. By default, the file scene_menu.conf in the current working directory is assumed;
there is also an option to specify the file name in the SSR configuration file. Refer to Sec. Configuration-File. The
configuration file for the tabs may contain something like the following:

This file configures the menu for the scene selection.
#
scenes/dual_mono.asd Guitar######### comments are possible
scenes/jazz.asd Jazz
scenes/rock.asd Rock
#scenes/speech.asd Speech
scenes/live_conference.xml live conference

The syntax is as follows:

• Everything after a hash symbol (#) in a line is ignored.

• A valid entry consists of the path (relative or absolute) to ASDF file (or pure audio file) followed by space and a
short keyword that will be displayed on the respective tab on the screen.

42 Chapter 6. Graphical User Interface

SoundScape Renderer, Release 0.6.1-24-ga5e05f7

Of course, also audio files can be specified instead of .asd files. Note that so far, no syntax validation is performed,
so watch your typing. We furthermore recommend that you keep the keywords short because space on the screen is
limited. Note also that only those tabs are displayed which fit on the screen.

The SSR always tries to find the file scene_menu.conf in its current working directory (or at the location specified in
the SSR configuration file). If is does not find it no tabs will be displayed in the GUI. So you can have several of such
files at different locations. We have added an example in folder data/.

The main part of the screen is occupied by the graphical illustration of the scene that you are hearing. The orientation
of the coordinate system is exactly like depicted in Fig. 1.1. I.e., the 𝑥-axis points to the right of the screen, the 𝑦-axis
points to the top of the screen. The origin of the coordinate system is marked by a cross, the reference is marked by
a rhomb. The direction “straight in front” is typically assumed to be vertically upwards on the screen, especially for
binaural techniques. We do so as well. Note that in this case “straight in front” means 𝛼 = 90∘ and NOT 𝛼 = 0∘.

In Fig. 4.2 you see a number of sound sources with their individual audio level meters (combined with their individual
volume sliders) underneath. The left hand boundary of the level meter is at -50 dB; the right hand boundary is at 0 dB.
Spherical sources don’t have any additional decoration. The wave front and propagation direction of plane waves are
indicated.

You also see icons for the loudspeakers of the current rendering setup (if the currently applied technique employs any).

6.2 Mouse Actions

The GUI is designed such that the most important functionalities can be accessed via a touch screen. Thus, it mostly
employs ‘left clicks’ with the mouse.

The use of the file and transport section is rather intuitive so we won’t further explain it here. The time line can be
used to jump to a certain position within the sound scene and it also shows the progress of the scene. Click into the
white/blue area of the time line in order to jump to a specific point in time, or drag the handle to fast forward or rewind.
Left-clicking to the right of the time line skips forward by 5 seconds, left-clicking to the left of the time line skips back
by 5 seconds. Double-clicking on the time line skips back to the beginning of the scene. Right-clicking on the time line
opens an input window in order that you can numerically specify the time instant to jump to (refer to Sec. Keyboard
Actions).

You can change the zoom either by clicking into the zoom label and dragging up or down for zooming in or out.
Alternatively, you can use the mouse wheel1. Clicking and dragging on the background of the screen lets you move
inside the scene. A double-click brings you back to the default position and also defaults the zoom.

Clicking and dragging on a sound source lets you select and move it. Note that you cannot directly manipulate the
propagation direction of plane waves. It’s rather such that plane sources always face the reference point. To change
their direction of incidence move the plane wave’s origin point to the appropriate position. Right clicking2 on a sound
source opens a window that lists the properties of the source such as position, volume, etc. Refer to Fig. 4.3 and
Sec. Source Properties Dialog.

A right mouse click on the scene background3 lets you select multiple sound sources via a rubber band.

If you hold the Ctrl key pressed during any mouse action then you operate on all selected sound sources at the same
time (i.e. mute, move, etc. them).

Click on the SSR logo and you’ll see the About the SSR information.
1 On a touchpad on macOS, swipe up and down with two finger to zoom in and out (don’t click!).
2 On a touchpad on macOS, click with two fingers simultaneously.
3 On a touchpad on macOS, click with two fingers simultaneously, hold the click and move one finger, or both fingers simultaneously, or use a

third finger to operate the rubber band.

6.2. Mouse Actions 43

SoundScape Renderer, Release 0.6.1-24-ga5e05f7

6.2.1 Source Properties Dialog

Fig. 3: Source properties dialog

The source properties dialog can be accessed via a right click on a source and shows information about the actual state
of the selected source. Its main purpose is to provide the possibility of an exact positioning of sources. The properties
fixed position, muted and model can be changed. Refer to Fig. 4.3 to see the complete list of properties this dialog
shows.

6.2.2 Drag & Drop of Scenes

You can also drag & drop scenes (or audio files) into the GUI to open them. Currently, you can only drag & drop one
single file.

44 Chapter 6. Graphical User Interface

SoundScape Renderer, Release 0.6.1-24-ga5e05f7

6.3 Keyboard Actions

A number of keyboard actions have been implemented as listed below. Recall that also some keyboard actions are
available when the SSR is run without GUI (refer to Sec. Running SSR).

• +/-: if no sound source is selected: raise/lower master volume by 1dB, otherwise raise/lower the selected sources’
volume by 1dB

• Arrow up/down/left/right: navigate in scene

• Space: toggles the play/pause state

• Backspace: skip to beginning of scene

• Return: calibrate tracker (if present). When pressed, the instantaneous orientation is assumed to be straight
forward (i.e. 90:math:^circ azimuth)

• Ctrl: when pressed, multiple sound sources can be selected via mouse clicks or operations can be performed
on multiple sources simultaniously

• Ctrl+Alt: individual sound sources can be deselected from a larger selection via a mouse click or the rubber
band

• Ctrl+a: select all sources

• f: toggles the position-fix-state of all selected sound sources (sources which can not be moved are marked with
a little cross)

• m: toggles the mute state of all selected sound sources (muted sources are displayed with a grey frame instead of
a black one)

• p: toggles the source model between plane wave and point source

• r: toggles whether or not all sources are always automatically oriented toward the reference.

• s: if no source selected: unsolos all potentially soloed sources, otherwise: solos selected sound sources.

• Shift+s: solo in place, unsolos all other sources.

• Ctrl+s: opens the save scene as. . . dialog

• F11: toggles window fullscreen state

• 1-9: select source no. 1-9

• 0: deselect all sources

• Ctrl+c: quit

• Ctrl+t: open text edit for time line. The format is hours:mins(2digits):secs(2digits) whereby hours:
and hours:mins(2digits): can be omitted if desired.

• Esc: quit

6.3. Keyboard Actions 45

SoundScape Renderer, Release 0.6.1-24-ga5e05f7

46 Chapter 6. Graphical User Interface

CHAPTER

SEVEN

BROWSER-BASED GUI

Warning: Currently, the browser GUI is only a highly experimental prototype. It should be usable, but there are
many missing features and other possibilities for improvements.

As always, contributions are very welcome!

Using the SSR’s WebSocket-based Network Interface, it is possible to control the SSR from an off-the-shelf web browser.
Just make sure the SSR has been started with the --websocket-server option and visit the URL http://localhost:9422.

If you just want to test the WebSocket connection, you can visit http://localhost:9422/test.

You can of course also access the SSR if it is running on a different computer in the network, by simply using the
appropriate host name or IP address instead of localhost.

47

http://localhost:9422
http://localhost:9422/test

SoundScape Renderer, Release 0.6.1-24-ga5e05f7

48 Chapter 7. Browser-based GUI

CHAPTER

EIGHT

NETWORK INTERFACES

Warning: We did not evaluate any of the network interfaces in terms of security. So please be sure that you are in
a safe network when using them.

The SoundScape Renderer has no less than three network interfaces using different protocols:

• The WebSocket protocol has built-in support in all modern web browsers and can be used to control the SSR
from a web browser.

• The FUDI protocol is the native protocol of the visual programming language Pure Data.

• The legacy XML-based protocol is still supported for backwards-compatibility but should not be used for new
projects.

8.1 WebSocket-based Network Interface

Warning: We did not evaluate any of the network interfaces in terms of security. So please be sure that you are in
a safe network when using them.

The WebSocket network interface can be activated with:

ssr-binaural --websocket-server

This of course works for all renderers, not only ssr-binaural.

Once the SSR is running, you can use your browser to connect to http://localhost:9422/test. This will show a simple
test client which you can use to check whether everything is working.

If you want to try out the Browser-based GUI , use the address http://localhost:9422.

By default, the port number 9422 is used. You can choose a different port with:

ssr-binaural --websocket-server=4321

The relevant settings in the Configuration Files are:

WEBSOCKET_INTERFACE = on
WEBSOCKET_PORT = 4321

49

http://localhost:9422/test
http://localhost:9422

SoundScape Renderer, Release 0.6.1-24-ga5e05f7

8.2 FUDI-based Network Interface (for Pure Data)

Warning: We did not evaluate any of the network interfaces in terms of security. So please be sure that you are in
a safe network when using them.

The FUDI network interface can be activated with:

ssr-binaural --fudi-server

This of course works for all renderers, not only ssr-binaural.

The default port is 1174; you can choose a different port with:

ssr-binaural --fudi-server=4321

The relevant settings in the Configuration Files are:

FUDI_INTERFACE = on
FUDI_PORT = 4321

8.2.1 Controlling the SSR from Pure Data

Have a look at the Pd patch ssrclient.pd in the pd/ directory.

Note: If you are using Pure Data to control the stand-alone SSR application, you might want to consider using the
SSR externals for Pure Data instead, see SSR as a Library.

8.2.2 Controlling the SSR from a Terminal

The FUDI interface is very simple and thanks to that any tool that can send TCP/IP messages can be used to control
the SSR. One such tool is netcat.

While the SSR is running (with the FUDI interface activated), launch this command in a separate terminal window:

nc localhost 1174

Now you can type FUDI messages (don’t forget the semicolon at the end!) which will be sent to the SSR when you
press Return.

To then, for example, move source 1 to the position (x, y) = (1, 1), type:

src 1 pos 1 1;

If you want to receive messages from the SSR, use something like this:

nc localhost 1174 <<< "subscribe scene; subscribe renderer;"

50 Chapter 8. Network Interfaces

https://en.wikipedia.org/wiki/Netcat

SoundScape Renderer, Release 0.6.1-24-ga5e05f7

8.3 Legacy XML-based Network Interface

Warning: We did not evaluate any of the network interfaces in terms of security. So please be sure that you are in
a safe network when using them.

The legacy network interface can be activated with:

ssr-binaural --ip-server

This of course works for all renderers, not only ssr-binaural.

The default port is 4711; you can choose a different port with:

ssr-binaural --ip-server=4321

The relevant settings in the Configuration Files are:

NETWORK_INTERFACE = on
SERVER_PORT = 4321

8.3.1 Messages

This is just a short overview about the XML messages which can be sent to the SSR via TCP/IP. By default, messages
have to be terminated with a binary zero (\0). This can be changed to, for example, a newline / line feed (\n) or to a
carriage return (\r) using one of the following ways:

• Command line: Use the command line option --end-of-message-character=VALUE VALUE is the ASCII
code for the desired character (binary zero: 0; line feed: 10; carriage return: 13).

• Configuration file: Here, there is the option END_OF_MESSAGE_CHARACTER. See the example data/ssr.
conf.example. Use ASCII codes here as well.

The choice of delimiter applies to, of course, both sent and received messages.

Scene

• Load Scene: <request><scene load="path/to/scene.asd"/></request>

• Clear Scene (remove all sources): <request><scene clear="true"/></request>

• Set Master Volume (in dB): <request><scene volume="6"/></request>

State

• Start processing: <request><state processing="start"/></request>

• Stop processing: <request><state processing="stop"/></request>

• Transport Start (Play): <request><state transport="start"/></request>

• Transport Stop (Pause): <request><state transport="stop"/></request>

• Transport Rewind: <request><state transport="rewind"/></request>

8.3. Legacy XML-based Network Interface 51

SoundScape Renderer, Release 0.6.1-24-ga5e05f7

• Transport Locate: <request><state seek="4:33"/></request> <request><state seek="1.
5 h"/></request> <request><state seek="42"/></request> (seconds) <request><state
seek="4:23:12.322"/></request>

• Reset/Calibrate Head-Tracker: <request><state tracker="reset"/></request>

Source

• Set Source Position (in meters): <request><source id="42"><position x="1.2" y="-2"/></
source></request>

• Fixed Position (true/false): <request><source id="42"><position fixed="true"/></source></
request>

<request><source id="42">
<position x="1.2" y="-2" fixed="true"/>

</source></request>

• Set Source Orientation (in degrees, zero in positive x-direction): <request><source
id="42"><orientation azimuth="93"/></source></request>

• Set Source Gain (Volume in dB): <request><source id="42" volume="-2"/></request>

• Set Source Mute (true/false): <request><source id="42" mute="true"/></request>

• Set Source Name: <request><source id="42" name="My first source" /></request>

• Set Source Model (point/plane): <request><source id="42" model="point"/></request>

• Set Source Port Name (any JACK port): <request><source id="42" port="system:capture_3"/></
request>

• New Source (some of the parameters are optional):

<request>
<source new="true" name="a new source"

file="path/to/audio.wav" channel="2">
<postition x="-0.3" y="1" fixed="true"/>
<orientation azimuth="99"/>

</source>
</request>

<request>
<source new="true" name="a source from pd"

port="pure_data_0:output0" volume="-6">
<postition x="0.7" y="2.3"/>

</source>
</request>

• Delete Source: <request><delete><source id="42"/></delete></request>

52 Chapter 8. Network Interfaces

SoundScape Renderer, Release 0.6.1-24-ga5e05f7

Reference

• Set Reference Position (in meters): <request><reference><position x="-0.3" y="1.1"/></
reference></request>

• Set Reference Orientation (in degrees, zero in positive x-direction): <request><reference><orientation
azimuth="90"/></reference></request>

8.3. Legacy XML-based Network Interface 53

SoundScape Renderer, Release 0.6.1-24-ga5e05f7

54 Chapter 8. Network Interfaces

CHAPTER

NINE

SSR AS A LIBRARY

Until now, we were talking about the stand-alone SSR application that uses the JACK audio backend. But all renderers
can also be used as a library in any C++ project, using any audio backend (or none).

Only the bare renderers are available; no GUI, no network interface, no scene files, no head trackers. Multi-threading
is still available!

The easiest way to use an SSR renderer as a library is to include the SSR repository as a Git submodule into your own
project. For more details, have a look at the examples in the SSR repository:

• Pure Data externals, see flext directory

• MEX files for Octave/Matlab, see mex directory

55

https://github.com/SoundScapeRenderer/ssr/tree/master/flext
https://github.com/SoundScapeRenderer/ssr/tree/master/mex

SoundScape Renderer, Release 0.6.1-24-ga5e05f7

56 Chapter 9. SSR as a Library

CHAPTER

TEN

USE CASES

10.1 SSR in Pure Data

The SSR renderers are available as externals in Pure Data (Pd). Install them in Pd via Help → Find externals, then
search for ‘ssr’. This is available on both Linux and macOS, whereby the macOS version for Macs with Apple silicon
is experimental. If this one does not work for you, use Pd for Intel processors with Rosetta.

Each renderer is available as a separate external, namely ssr_binaural~, ssr_brs~, ssr_dca~, ssr_aap~,
ssr_wfs~ and ssr_vbap~. The externals have to be added to Pure Data’s path, for example by creating an object
[declare -path ssr] in your patch.

Here is a screenshot of what it looks like when using SSR’s binaural renderer with the minimum-phase EQ’d HRIRs
of the FABIAN manikin and 2 virtual sound sources in Pd, whereby the signal that feeds source 1 is a sine of 440 Hz,
and the signal that feeds source 2 is noise:

The source positions, orientations and many other things can be changed by sending messages to the external. See the
help patch for all available messages.

The computational performance of SSR in Pd is somewhat lower than that of the standalone version because we have
not got it to work in Pd with internal block sizes that are larger than 64. Such short blocks cause filters to be cut in very
large numbers of partitions, which produces computational overhead.

57

https://puredata.info/
https://en.wikipedia.org/wiki/Rosetta_(software)

SoundScape Renderer, Release 0.6.1-24-ga5e05f7

10.2 Using SSR for Listening Experiments

This is one of the main applications for which we use SSR. Most of the times, we perform the experiment over head-
phones. We use the BRS renderer in which each condition of the experiment is represented by a virtual source. The
impulse responses that are associated to that source implement the actual experimental condition. Lastly, we use exter-
nal software like Python or MATLAB to have a GUI for the subjects and to play audio that we route to SSR via JACK.
Switching from one condition to another one is implemented by muting an unmuting the corresponding virtual sources
in SSR through the network interface.

Watch this 1m:35s video to see this in action: https://youtu.be/aaAc7cDlacU

All resources for the subsequent subsections are found here: https://github.com/SoundScapeRenderer/listening-test

10.3 Using SSR for General Realtime Multichannel Signal Processing

SSR is designed for providing the spatial audio rendering functionality as discussed throughout this documentation.
Looking at the entire concept from a different angle enables a large set of applications that are not obvious at first sight.
One application that we would like to discuss here with some amount of comprehensiveness is dynamic or “realtime”
multichannel signal processing. More precisely, we will demonstrate how SSR allows for performing multichannel
realtime convolution whereby we can exchange the filters that are being applied.

10.3.1 1-in-1-out

Let’s assume that we want to filter a single-channel signal in realtime with a filter that we would like to be able to
replace as the convolution is going. We use the Binaural Renderer for this with one virtual source.

SSR accepts one input channel, which it convolves with two different dedicated impulse responses (one for the left
and one for right ear) to produce two output signals. We would like to process only one channel so that we simply
ignore the second output. The file data_linked_in_ssr_manual/impulse_responses/irs_1-in-1-out.wav
that contains the pre-computed impulse responses that we would like to filter with looks as follows:

• 1st channel: impulse response of the filter that will be invoked by calling the index 0

• 2nd channel: only zeros (we don’t want it to produce output)

• 3rd channel: impulse response of the filter that will be invoked by calling the index 359

• 4th channel: only zeros (we don’t want it to produce output)

• . . .

• 719th channel: impulse response of the filter that will be invoked by calling the index 1

• 720th channel: only zeros (we don’t want it to produce output)

(The indexing is a bit funny because we’re using the binaural render for convenience. In real-life, you would most likely
use the BRS renderer with which the indexing is 0, 1, 2, . . . , 359 instead of the 0, 359, 358, . . . , 1 that it is here.)

You have probably gotten the idea already. We can use this setup for 1-in-1-out dynamic filtering by not interpret-
ing the loaded filter as ear impulse responses that are called via given orientation angles of the user. Rather, we
think of filter indices that we can call using the head tracking interface. We only need to replace the head tracking
with another interface that allows us to select the desired filter indices. Here is a Pd patch that does exactly this:
data_linked_in_ssr_manual/select_filter_by_index.pd

Start the SSR using:

58 Chapter 10. Use Cases

https://youtu.be/aaAc7cDlacU
https://github.com/SoundScapeRenderer/listening-test
https://github.com/SoundScapeRenderer/example-scenes/blob/master/data_linked_in_ssr_manual/impulse_responses/irs_1-in-1-out.wav
https://github.com/SoundScapeRenderer/example-scenes/blob/master/data_linked_in_ssr_manual/select_filter_by_index.pd

SoundScape Renderer, Release 0.6.1-24-ga5e05f7

ssr-binaural --fudi-server=1147 --hrirs=data/scenes/impulse_responses/irs_1-in-1-out.wav

and drag and drop an audio file into the GUI.

Start Pd with the control patch and play around with the filter index. You will find that, depending on the chosen filter
index, different amounts of lowpass filtering will be applied in this example.

10.3.2 Multiple Input Multiple Output

Let’s increase the complexity by a considerable amount and perform 2-in-8-out as an example for multiple input multiple
output (MIMO) dynamic convolution. We used this in the experiment in [Ma2019] to create a user-tracked 8-channel
loudspeaker array (8 outs) that delivers binaural content (2 ins) by means of crosstalk cancelation. We are actually
dealing with two 1-in-8-out systems (one for the left ear content and one for the right ear content) the outputs of which
are added.

The user was able to be located at any possible position along a straight line of length 80 cm that was parallel to the
loudspeaker array. We used a tracking system to monitor the instantaneous position.

Here is how we implemented it:

• We used the BRS renderer for the implementation. It has two outputs, which means that we need 4 SSR running
in parallel.

• Each BRS renderer employed a scene with 2 virtual sound sources.

• SSR 1: Virtual source 1 produced the output signal for the left ear content for loudspeakers 1 and 2; virtual
source 2 produced the output signal for the right ear content for loudspeakers 1 and 2

• SSR 2: Same like SSR 1 but for loudspeaker 3 and 4

• SSR 3 and 4 drive loudspeakers 5 and 6 as well as 7 and 8, respectively.

Each combination of input and output allows for applying 360 different impulse responses the indices of which we
can select using the head tracking interface. This means that we were required to quantize the user’s position to 360
different positions along that 80-cm-long-line which effectively reduced the head tracking accuracy to 0.8/359 m =
2 mm. We precomputed all impulse responses for all combinations of input and output channel and user position in
MATLAB.

The last component that remains to be implemented is a patch that transforms user position to filter index and distributes
that to all SSR synchronously. We did this with this Pd patch: data_linked_in_ssr_manual/tracker_to_4_ssr.
pd. You will see that there is no mechanism for guaranteeing that all filter indices arrive synchronously. We rather
send updates as soon as they come in from the tracker. The last index that an SSR instance receives just before the
processing of a new signal block is the index that SSR uses. We did not notice a single occasion when this led to
audible consequences because of a lack of synchronicity.

When running several SSR at a time, we need to make sure that they all use different JACK client names as well as that
all SSR instances receive TCP/IP messages on different ports. SSR will otherwise refuse to start.

Here is a shell script that work on both Linux and macOS is SSR is installed: data_linked_in_ssr_manual/
start_ssr_4_times.sh (and here one for the macOS app: data_linked_in_ssr_manual/
start_ssr_4_times_macos_app.sh, make them executable using chmod a+x SCRIPT_NAME.SH, in the
macOS script, you need to adapt the global paths to the asdf files) that starts the 4 SSR instances for the 8-channel
crosstalk-canceling array. It then waits 5 s to make sure that all SSR instances have started up and then performs the
required JACK connections. Note the --input-prefix=XXX:XXX and --output-prefix=YYY:YYY arguments.
These make sure that SSR does not automatically connect to existing JACK ports. We did this for convenience to
have manual control over which connections are established. All SSR instances would otherwise connect to output
channels 1 and 2 automatically.

Afterwards, start Pd with the patch referenced above.

10.3. Using SSR for General Realtime Multichannel Signal Processing 59

https://github.com/SoundScapeRenderer/example-scenes/blob/master/data_linked_in_ssr_manual/tracker_to_4_ssr.pd
https://github.com/SoundScapeRenderer/example-scenes/blob/master/data_linked_in_ssr_manual/tracker_to_4_ssr.pd
https://github.com/SoundScapeRenderer/example-scenes/blob/master/data_linked_in_ssr_manual/start_ssr_4_times.sh
https://github.com/SoundScapeRenderer/example-scenes/blob/master/data_linked_in_ssr_manual/start_ssr_4_times.sh
https://github.com/SoundScapeRenderer/example-scenes/blob/master/data_linked_in_ssr_manual/start_ssr_4_times_macos_app.sh
https://github.com/SoundScapeRenderer/example-scenes/blob/master/data_linked_in_ssr_manual/start_ssr_4_times_macos_app.sh

SoundScape Renderer, Release 0.6.1-24-ga5e05f7

The audio signal was played from a GUI via JACK like we did it with other listening experiments.

Note that you will need an audio interface with at least 8 output channels for all of the above to work. You will otherwise
receive error messages about failure to establish some of the JACK connections.

60 Chapter 10. Use Cases

CHAPTER

ELEVEN

KNOWN ISSUES

This page describes a few open issues and – if available – possible work-arounds. Resolved issues are also listed here,
in case you want to use an old version of the SSR for some reason.

Please also visit https://github.com/SoundScapeRenderer/ssr/issues to check for even more issues. If you want to report
a problem, please open a new issue there.

11.1 Open Issues

11.1.1 make dmg on macOS chokes on symbolic links

On some file system (e.g. network shares with ACLs) you might get an error like this:

... copy helper ... copy error (canceling): /Volumes/SoundScape Renderer ...

... Operation not supported ... could not access /Volumes/...
hdiutil: create failed - Operation not supported
make[1]: *** [dmg] Error 1
make: *** [dmg] Error 2

This has something to do with symbolic links and the way how hdiutil handles them. If you get this error, just try to
compile the SSR from a different location. You can do this by either moving all the source files somewhere else, or by
doing something like this:

cd /tmp
mkdir ssr-bundle
cd ssr-bundle
export PKG_CONFIG_PATH=/usr/local/lib/pkgconfig
$PATH_TO_SSR_SOURCE/configure --enable-app-bundle
make
make dmg

In this example, $PATH_TO_SSR_SOURCE is the directory where you put the SSR source files. Instead of /tmp you can
of course use something else, but with /tmp it should work on most systems out there.

If you don’t like this work-around, you may also play around with fsaclctl.

61

https://github.com/SoundScapeRenderer/ssr/issues

SoundScape Renderer, Release 0.6.1-24-ga5e05f7

11.1.2 Only WAVE_FORMAT_PCM and WAVE_FORMAT_IEEE_FLOAT are supported.

Multi-channel WAV files would normally use the format WAVE_FORMAT_EXTENSIBLE, see https://web.archive.org/
web/20220911060540/http://www-mmsp.ece.mcgill.ca/Documents/AudioFormats/WAVE/WAVE.html.

However, Ecasound doesn’t know this format, that’s why we have to use one of the above mentioned formats, although
for files with more than 2 channels this is not compliant to the WAV standard.

To check the exact format of your WAV files, you can use sndfile-info (Debian package sndfile-programs), and to convert
your files, you can use, for example, sox (Debian package sox) with the wavpcm option:

sox old.wav new.wavpcm
mv new.wavpcm new.wav

11.1.3 SSR crashes with a segmentation fault on Max OS X

If this happens whenever you are opening an audio file or loading a scene that involves opening an audio file, then this
might be due to Ecasound. We’ve seen this with the app bundle. Try the following:

Download the Ecasound source code from http://nosignal.fi/ecasound/download.php. Cd into the folder and compile
Ecasound with:

./configure
make

Finally, replace the Ecasound executable in the SSR bundle with something like this:

sudo cp ecasound/ecasound /Applications/SoundScapeRenderer-0.4.2-74-gb99f8b2/
→˓SoundScapeRenderer.app/Contents/MacOS/

You might have to modify the name of the SSR folder in the above command as you’re likely to use a different version.

11.1.4 A file that can’t be loaded results in a connection to a live input

If there is an error in loading a specified audio file, the corresponding source is still created and (unexpectedly) con-
nected to the first soundcard input channel.

We believe this is a bug in the JACK system related to the API function jack_connect()_: If the destination_port
argument is an empty string, the function returns (correctly) with an error. However, if the source_port argument is
an empty string, the port is connected to the first “system” port (or the first port at all, or who knows . . .). And this is
the case if the SSR cannot open a specified audio file.

If you also think that’s a bug, feel free to report it to the JACK developers.

11.1.5 Conflicting JACK and Ecasound versions

There is a problem due to a special combination of ecasound and JACK versions on 64 bit systems leading to an error
(terminating the SSR) similar to this:

(ecasoundc_sa) Error='read() error', cmd='cs-connect' last_error='' cmd_cnt=6
last_cnt=5.

62 Chapter 11. Known Issues

https://web.archive.org/web/20220911060540/http://www-mmsp.ece.mcgill.ca/Documents/AudioFormats/WAVE/WAVE.html
https://web.archive.org/web/20220911060540/http://www-mmsp.ece.mcgill.ca/Documents/AudioFormats/WAVE/WAVE.html
http://nosignal.fi/ecasound/download.php

SoundScape Renderer, Release 0.6.1-24-ga5e05f7

We experienced this error on 64 bit systems with ecasound version 2.4.6.1 and 2 .7.0 in combination with JACK version
0.118.0. A similar error occured on macOS with ecasound version 2.7.2 and JackOSX version 0.89 (with Jackdmp
1.9.8).

Please try to update to the newest ecasound and JACK versions.

11.1.6 Annoying Ecasound message

You may have seen this message:

* Message from libecasoundc:
*
* 'ECASOUND' environment variable not set. Using the default value
* value 'ECASOUND=ecasound'.

You can totally ignore this, but if it bothers you, you can disable it easily by specifying the following line in /etc/
bash.bashrc (system-wide setting) or, if you prefer, you can put it into your $HOME/.bashrc (just for your user
account):

export ECASOUND=ecasound

11.1.7 Ecasound cannot open a JACK port

Sometimes, when Ecasound is installed via Homebrew, it can have trouble finding JACK. As a result SSR displays
the sound source symbols in the GUI, but they don’t play audio, and an according error message is posted in the SSR
terminal.

Type ecasound -c in a terminal to start Ecasound in interactive mode. Then type aio-register to list all available
outputs that Ecasound has recognized. If JACK is not listed, then download the Ecasound source code from http:
//nosignal.fi/ecasound/download.php, and

./configure --enable-jack
make
make install

The last line might have to be

sudo make install

11.1.8 Long paths to audio files on macOS

It can happen that SSR displays this error message when loading audio files directily:

Error: AudioPlayer::Soundfile: ERROR: Connecting chainsetup failed: "Enabling␣
→˓chainsetup: AUDIOIO-JACK: Unable to open JACK-client" (audioplayer.cpp:310)
Warning: AudioPlayer: Initialization of soundfile '/Users/YOUR_USERNAME/Documents/audio/
→˓YOUR_AUDIO_FILE.wav' failed! (audioplayer.cpp:87)

Opening such a file would result in a JACK port name that is too long. You can resolve this limitation by moving the
audio file to a location that produces a shorter (full) path name or by wrapping the audio file in an asd-file.

11.1. Open Issues 63

http://nosignal.fi/ecasound/download.php
http://nosignal.fi/ecasound/download.php

SoundScape Renderer, Release 0.6.1-24-ga5e05f7

11.1.9 Segmentation Fault when Opening a Scene

This problem occured on some old SuSE systems.

When you start the SSR with GUI, everything is alright at first. As soon as you open a scene, a segmentation fault
arises. This is a problem in the interaction between Qt and OpenGL. As a workaround, comment the line

renderText(0.18f * scale, 0.13f * scale, 0.0f, source->name.c_str(), f);

in the file src/gui/qopenglrenderer.cpp and recompile the code. The consequence is that the names of the sound
sources will not be displayed anymore.

11.1.10 Choppy Sound on Cheap (On-Board) Sound Cards

Sometimes JACK doesn’t play well with those on-board sound cards. One possibility to improve this, is to increase the
frames/period setting from the default 2 to a more generous 3. This can be done in the Settings dialog of qjackctl or
with the command line option -n:

jackd -n 3

11.1.11 dylibbundler doesn’t grok Qt Frameworks

If make dmg doesn’t copy the Qt .dylib files into the application bundle (to Contents/Libraries), you might try
the following commands (or similar, depending on the exact Qt installation).

Go to the online manual to copy and paste them.

install_name_tool -id /opt/local/lib/libQtCore.dylib /opt/local/Library/Frameworks/
→˓QtCore.framework/QtCore
install_name_tool -id /opt/local/lib/libQtGui.dylib /opt/local/Library/Frameworks/QtGui.
→˓framework/QtGui
install_name_tool -change /opt/local/Library/Frameworks/QtCore.framework/Versions/5/
→˓QtCore /opt/local/lib/libQtCore.dylib /opt/local/Library/Frameworks/QtGui.framework/
→˓QtGui
install_name_tool -id /opt/local/lib/libQtOpenGL.dylib /opt/local/Library/Frameworks/
→˓QtOpenGL.framework/QtOpenGL
install_name_tool -change /opt/local/Library/Frameworks/QtCore.framework/Versions/5/
→˓QtCore /opt/local/lib/libQtCore.dylib /opt/local/Library/Frameworks/QtOpenGL.framework/
→˓QtOpenGL
install_name_tool -change /opt/local/Library/Frameworks/QtGui.framework/Versions/5/QtGui␣
→˓/opt/local/lib/libQtGui.dylib /opt/local/Library/Frameworks/QtOpenGL.framework/QtOpenGL

You need the appropriate rights to change the library files, so you probably need to use sudo before the commands.

WARNING: You can totally ruin your Qt installation with this stuff!

To get some information about a library, you can try something like those:

otool -L /opt/local/Library/Frameworks/QtOpenGL.framework/QtOpenGL
otool -l /opt/local/Library/Frameworks/QtOpenGL.framework/QtOpenGL
otool -D /opt/local/Library/Frameworks/QtOpenGL.framework/QtOpenGL

64 Chapter 11. Known Issues

http://ssr.rtfd.org/en/latest/operation.html#dylibbundler-doesn-t-grok-qt-frameworks

SoundScape Renderer, Release 0.6.1-24-ga5e05f7

11.1.12 Second instance of SSR crashes

This happens when two or more instances of the SSR are started with the IP server enabled. Start all (or at least all
instances higher than 1) with the -I flag to disable the IP interface.

11.1.13 Error ValueError: unknown locale: UTF-8 when building the manual

This can happen on non-US Macs. Go to your home folder /Users/YOUR_USER_NAME, open (or create) the file .
bash_profile and add the following to this file:

export LC_ALL=en_US.UFT-8
export LANG=en_US.UTF-8
export LANGUAGE=en_US.UTF-8
export LC_CTYPE=en_US.UTF-8

You might have to re-open the terminal or log out and in again to see the effect.

11.2 Resolved Issues

11.2.1 SSR for macOS: qt_menu.nib not found

This was fixed in MacPorts, see https://trac.macports.org/ticket/37662. Thanks to Chris Pike! Since version 0.5
(switching to qt5), qt_menu.nib is not needed any more.

11.2.2 Compilation Error on Ubuntu and Archlinux

This issue was resolved in version 0.3.4. Some newer distributions got more picky about the necessary #include
commands. If the SSR refuses to compile, add this to the file src/gui/qopenglplotter.h (somewhere at the be-
ginning):

#include <GL/glu.h>

On macOS you’ll need this instead:

#include <OpenGL/glu.h>

11.2.3 Polhemus tracker does not work with SSR

This issue was resolved in version 0.3.3, where we changed the tracker selection. Use --tracker=fastrak,
--tracker=patriot and --tracker=intersense, respectively. The serial port can be specified with
--tracker-port=/dev/ ttyUSB0 (or similar).

This can happen when both the Intersense tracker as well as the Polhemus tracker are compiled and the file isports.
ini is present. The latter tells the Intersense tracker which port to use instead of the standard serial port /dev/ttyS0.
If the isports.ini file lists the port to which the Polhemus tracker is connected, it can happen that something that
we have not fully understood goes wrong and the Pohlemus data can not be read. In this case you can either rename
the file isports.ini or change its content.

It might be necessary to execute echo C > /dev/ttyS0 several times in order to make Polhemus Fastrak operational
again. Use echo -e "C\r" > /dev/ttyS0 for Polhemus Patriot. You can check with cat /dev/ttyS0 if it delivers
data.

11.2. Resolved Issues 65

https://trac.macports.org/ticket/37662

SoundScape Renderer, Release 0.6.1-24-ga5e05f7

11.2.4 Missing GUI Buttons and Timeline

This issue was resolved in version 0.3.2, the default setting for --enable-floating-control-panel is chosen
depending on the installed Qt version. As of version 0.5 (switching to qt5), the floating control panel is always enabled.

Different versions of Qt show different behaviour regarding OpenGL Overlays and as a result, the GUI buttons are not
shown in newer Qt versions.

To overcome this limitation, we provide two GUI variants:

• Traditional GUI, can be used up to Qt 4.6.x

• Floating control panel, which is used with Qt 4.7 and above

The floating control panel is the default setting on macOS, for Linux it can be activated with:

./configure --enable-floating-control-panel

11.2.5 OpenGL Linker Error

This issue was resolved in version 0.3.2.

On some systems, after running make, you’ll get an error mentioning ” glSelectBuffer”.

For now, this is the solution (see also the issue below):

./configure LIBS=-lGL

11.2.6 IP interface isn’t selected although boost libraries are installed

This issue was resolved with dropping boost::asio for asio in version 0.5.0.

For older builds, you might need to add the -lpthread flag:

./configure LIBS=-lpthread

11.2.7 Audio files with spaces

This issue was resolved in version 0.3.2.

Please do not use audio files with spaces for scenes. Neither the filename nor the directory referenced in the scene
(asd-file) should contain spaces.

66 Chapter 11. Known Issues

BIBLIOGRAPHY

[Geier2008a] Matthias Geier, Jens Ahrens, and Sascha Spors. The SoundScape Renderer: A unified spatial audio re-
production framework for arbitrary rendering methods. In 124th AES Convention, Amsterdam, The Nether-
lands, May 2008 Audio Engineering Society (AES).

[Geier2012] Matthias Geier and Sascha Spors. Spatial audio reproduction with the SoundScape Renderer. In 27th
Tonmeistertagung – VDT International Convention, 2012.

[Geier2008b] Matthias Geier, Jens Ahrens, and Sascha Spors. ASDF: Ein XML Format zur Beschreibung von
virtuellen 3D-Audioszenen. In 34rd German Annual Conference on Acoustics (DAGA), Dresden, Germany,
March 2008.

[Ahrens2008a] Jens Ahrens and Sascha Spors. Reproduction of moving virtual sound sources with special attention
to the doppler effect. In 124th Convention of the AES, Amsterdam, The Netherlands, May 17–20, 2008.

[Ahrens2008b] Jens Ahrens and Sascha Spors. Reproduction of virtual sound sources moving at supersonic speeds in
Wave Field Synthesis. In 125th Convention of the AES, San Francisco, CA, Oct. 2–5, 2008.

[Lindau2007] Alexander Lindau and Stefan Weinzierl. FABIAN - Schnelle Erfassung binauraler Raumimpulsant-
worten in mehreren Freiheitsgraden. In Fortschritte der Akustik, DAGA Stuttgart, 2007.

[Wierstorf2011] Hagen Wierstorf, Matthias Geier, Alexander Raake, and Sascha Spors. A Free Database of Head-
Related Impulse Response Measurements in the Horizontal Plane with Multiple Distances. In 130th Con-
vention of the Audio Engineering Society (AES), May 2011.

[SpatialAudio] https://github.com/spatialaudio/lf-corrected-kemar-hrtfs (commit 5b5ec8)

[AlgaziCIPIC] V. Ralph Algazi. The CIPIC HRTF database. https://web.archive.org/web/20170916053150/interface.
cipic.ucdavis.edu/sound/hrtf.html.

[BRIRs] The Sputnik BRIRs can be obtained from here: https://github.com/ssr-scenes/tu-berlin/tree/master/
sputnik. More BRIR repositories are compiled here: http://www.soundfieldsynthesis.org/other-resources/
#impulse-responses.

[Pulkki1997] Ville Pulkki. Virtual sound source positioning using Vector Base Amplitude Panning. In Journal of the
Audio Engineering Society (JAES), Vol.45(6), June 1997.

[Spors2008] Sascha Spors, Rudolf Rabenstein, and Jens Ahrens. The theory of Wave Field Synthesis revisited. In
124th Convention of the AES, Amsterdam, The Netherlands, May 17–20, 2008.

[Spors2006] Sascha Spors and Rudolf Rabenstein. Spatial aliasing artifacts produced by linear and circular loudspeaker
arrays used for Wave Field Synthesis. In 120th Convention of the AES, Paris, France, May 20–23, 2006.

[Neukom2007] Martin Neukom. Ambisonic panning. In 123th Convention of the AES, New York, NY, USA, Oct. 5–8,
2007.

67

https://github.com/spatialaudio/lf-corrected-kemar-hrtfs
https://web.archive.org/web/20170916053150/interface.cipic.ucdavis.edu/sound/hrtf.html
https://web.archive.org/web/20170916053150/interface.cipic.ucdavis.edu/sound/hrtf.html
https://github.com/ssr-scenes/tu-berlin/tree/master/sputnik
https://github.com/ssr-scenes/tu-berlin/tree/master/sputnik
http://www.soundfieldsynthesis.org/other-resources/#impulse-responses
http://www.soundfieldsynthesis.org/other-resources/#impulse-responses

SoundScape Renderer, Release 0.6.1-24-ga5e05f7

[Spors2011] Sascha Spors, Vincent Kuscher, and Jens Ahrens. Efficient Realization of Model-Based Rendering for
2.5-dimensional Near-Field Compensated Higher Order Ambisonics. In IEEE WASPAA, New Paltz, NY,
USA, 2011.

[Ma2019] X. Ma, C. Hohnerlein, J. Ahrens. Concept and Perceptual Validation of Listener-Position Adaptive Su-
perdirective Crosstalk Cancelation Using a Linear Loudspeaker Array. JAES 67(11), p. 871-881, 2019,
DOI: 10.17743/jaes.2019.0037

68 Bibliography

	General
	Introduction
	Quick Start
	Audio Scenes
	Format
	Coordinate System

	Audio Scene Description Format (ASDF)
	Legacy Syntax
	Examples

	IP Interface
	Bug Reports, Feature Requests and Comments
	Contributors
	Your Own Contributions

	Installation
	Arch Linux
	Building and installing with makepkg

	Debian/Ubuntu
	macOS
	MS Windows

	Building the SSR from Source
	Tarball
	Git Repository
	Dependencies
	Linux
	macOS

	Configuring
	Building
	Installing
	Uninstalling

	Running the SSR
	Starting the JACK Audio Server
	SSR binaries
	Loading a Single Audio File
	Loading an Audio Scene File
	Command Line Options
	Configuration Files
	Keyboard Actions in Non-GUI Mode
	Recording the SSR Output
	Head Tracking
	Preparing InterSense InertiaCube3
	Preparing Polhemus Fastrak/Patriot
	Preparing VRPN

	Using the SSR with DAWs
	Using the SSR with different audio clients
	VLC Media Player
	Using a Head-Tracker
	Running with InterSense tracker support
	Running with Razor AHRS tracker support

	The Renderers
	General
	Reproduction Setups
	A Note on the Timing of the Audio Signals
	Subwoofers
	Distance Attenuation
	Doppler Effect
	Signal Processing

	Binaural Renderer
	The HRIR sets shipped with SSR
	Preparing HRIR sets

	Binaural Room Synthesis Renderer
	Vector Base Amplitude Panning Renderer
	Wave Field Synthesis Renderer
	Prefiltering
	Tapering

	Ambisonics Amplitude Panning Renderer
	Conventional driving function
	In-phase driving function

	Distance-coded Ambisonics Renderer
	Generic Renderer
	Summary

	Graphical User Interface
	General Layout
	Mouse Actions
	Source Properties Dialog
	Drag & Drop of Scenes

	Keyboard Actions

	Browser-based GUI
	Network Interfaces
	WebSocket-based Network Interface
	FUDI-based Network Interface (for Pure Data)
	Controlling the SSR from Pure Data
	Controlling the SSR from a Terminal

	Legacy XML-based Network Interface
	Messages
	Scene
	State
	Source
	Reference

	SSR as a Library
	Use Cases
	SSR in Pure Data
	Using SSR for Listening Experiments
	Using SSR for General Realtime Multichannel Signal Processing
	1-in-1-out
	Multiple Input Multiple Output

	Known Issues
	Open Issues
	make dmg on macOS chokes on symbolic links
	Only WAVE_FORMAT_PCM and WAVE_FORMAT_IEEE_FLOAT are supported.
	SSR crashes with a segmentation fault on Max OS X
	A file that can’t be loaded results in a connection to a live input
	Conflicting JACK and Ecasound versions
	Annoying Ecasound message
	Ecasound cannot open a JACK port
	Long paths to audio files on macOS
	Segmentation Fault when Opening a Scene
	Choppy Sound on Cheap (On-Board) Sound Cards
	dylibbundler doesn’t grok Qt Frameworks
	Second instance of SSR crashes
	Error ValueError: unknown locale: UTF-8 when building the manual

	Resolved Issues
	SSR for macOS: qt_menu.nib not found
	Compilation Error on Ubuntu and Archlinux
	Polhemus tracker does not work with SSR
	Missing GUI Buttons and Timeline
	OpenGL Linker Error
	IP interface isn’t selected although boost libraries are installed
	Audio files with spaces

	Bibliography

