

 Navigation

 	
 index

 	SSIM latest documentation

Welcome to Read the Docs

This is an autogenerated index file.

Please create a /home/docs/checkouts/readthedocs.org/user_builds/ssim/checkouts/latest/index.rst or /home/docs/checkouts/readthedocs.org/user_builds/ssim/checkouts/latest/README.rst file with your own content.

If you want to use another markup, choose a different builder in your settings.

 Copyright 2016.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	SSIM latest documentation

Index

 Copyright 2016.
 Created using Sphinx 1.3.5.

 _static/plus.png

README.html

 Navigation

 		
 index

 		SSIM latest documentation »

 [image: CircleCI] [https://circleci.com/gh/obartra/ssim/tree/master] [image: Test Coverage] [https://codeclimate.com/github/obartra/ssim/coverage] [image: license] [https://opensource.org/licenses/MIT]

SSIM.JS

Get a 0 to 1 score on how similar two images are

The closer SSIM [https://en.wikipedia.org/wiki/Structural_similarity] is to 1 the higher the similarity. It correlates better with subjective ratings than other measures like PSNR [https://en.wikipedia.org/wiki/Peak_signal-to-noise_ratio] and MSE [https://en.wikipedia.org/wiki/Mean_squared_error]. For instance:

————————————	————————————-	————————————-
[image:]	[image:]	[image:]
Original, MSE = 0, SSIM = 1	MSE = 144, SSIM = 0.988	MSE = 144, SSIM = 0.913
[image:]	[image:]	[image:]
MSE = 144, SSIM = 0.840	MSE = 144, SSIM = 0.694	MSE = 142, SSIM = 0.662

Table extracted from http://www.cns.nyu.edu/~lcv/ssim/

🖥 Install

npm install ssim.js

This will install the node, web and CLI versions.

Install it globally (npm install -g) to make ssim available on your path.

You can also use the web version directly from unpkg [https://unpkg.com]‘s CDN: https://unpkg.com/ssim.js@{{semver}}.

📝 Usage

Playground [https://ssim-comparison.gomix.me/] for Node and Web versions.

Node:

import ssim from 'ssim.js';

ssim('./img1.jpg', './img2.jpg')
 .then(({ mssim, performance }) => console.log(`SSIM: ${mssim} (${performance}ms)`))
 .catch(err => console.error('Error generating SSIM', err));

Browser:

 <script src="https://unpkg.com/ssim.js@^2.0.0"></script>
 <script>
 ssim('/img1.jpg', '/img2.jpg')
 .then(function(out) {
 console.log('SSIM:', out.mssim, '(', out.performance, 'ms)');
 })
 .catch(function(err) {
 console.error('Error generating SSIM', err);
 });
 </script>

CLI:

$./node_modules/.bin/ssim ./img1.jpg ./img2.jpg

📖 Documentation

If you run into any issues or want a more info, check the wiki [https://github.com/obartra/ssim/wiki].

The code is fully documented and a hosted version is available here [https://doclets.io/obartra/ssim/master].

🏁 Metrics

Process	Status
—————	———–
Code Quality	[image: Code Climate] [https://codeclimate.com/github/obartra/ssim] [image: Issue Count] [https://codeclimate.com/github/obartra/ssim]
Versioning	[image: semantic-release] [https://github.com/semantic-release/semantic-release] [image: Commitizen friendly] [http://commitizen.github.io/cz-cli/] [image: npm] [https://www.npmjs.com/package/ssim.js]
Dependencies	[image: Known Vulnerabilities] [https://snyk.io/test/github/obartra/ssim] [image: DavidDM] [https://david-dm.org/obartra/ssim]
Documentation	[image: InchCI] [https://inch-ci.org/github/obartra/ssim]
Environments	[image:] [image:] [image: Sauce Test Status] [https://saucelabs.com/u/saucessim-master]

[image: Sauce Browser Matrix] [https://saucelabs.com/u/saucessim-master]

💡 Rationale

This project is a direct port of algorithms published by Wang, et al. 2004 on “Image Quality Assessment: From Error Visibility to Structural Similarity”. The original Matlab scripts are available here [https://ece.uwaterloo.ca/~z70wang/research/iwssim/] with their datasets. To view the steps taken to validate ssim.js results, check the wiki [https://github.com/obartra/ssim/wiki/Results-Validation].

 © Copyright 2016.
 Created using Sphinx 1.3.5.

_static/ajax-loader.gif

_static/up.png

search.html

 Navigation

 		
 index

 		SSIM latest documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

_static/comment-bright.png

CONTRIBUTING.html

 Navigation

 		
 index

 		SSIM latest documentation »

Contributing

Hey there, glad you are reading this, all contributions are welcome here!

If you are looking for ideas on what to help on check the issues tab [https://github.com/obartra/ssim/issues].

Setup

Fork, then clone the repo:

$ git clone git@github.com:your-username/ssim.git

Set up your machine:

$ npm install && npm run build

Make sure the tests pass:

$ npm test

Now it’s time to set up your editor.

This project requires following the linting style, full documentation and full unit test coverage. In order to make that easier, the following tasks that will let you know if anything is missing:

Linting

$ npm run lint

This task will run the linter (eslint [http://eslint.org/]). It’s more convenient if you set up your editor to automatically highlight the rules for you. If you are using VSC [https://code.visualstudio.com/] you may want to use this [https://marketplace.visualstudio.com/items?itemName=dbaeumer.vscode-eslint] extension. For Sublime [https://www.sublimetext.com/], check out this [https://github.com/roadhump/SublimeLinter-eslint] one instead. Most editors will have an eslint plugin you can use.

Documentation

$ npm run docs:check

This task will validate the documentation and give you pointers if any methods require more information. You can look at the rest of the code base for examples.

Testing

For any changes that add, modify or remove a feature you should add unit tests. In addition to that, if you are modifying the public API you should add end-to-end (e2e) tests. These are in the spec/unit and spec/e2e folders, respectively.

You can run unit tests with:

$ npm test

And integration ones with:

$ npm run e2e

Asking for help

If you are struggling to get CI to pass, just make a pull request and I’ll help you sort out any issues.

Making a PR

		On your fork, create a new branch (git checkout -b awesome-ssim-feature)

		Make your changes

		Add them (git add -A)

		Commit them (npm run commit)

		Follow the commitizen [https://github.com/commitizen/cz-cli] instructions

		Make a PR

 © Copyright 2016.
 Created using Sphinx 1.3.5.

_static/file.png

_static/comment-close.png

_static/down.png

_static/down-pressed.png

_static/comment.png

generate/README.html

 Navigation

 		
 index

 		SSIM latest documentation »

Generate

This folder contains scripts related to the manipulation of the Matlab results published relatd to SSIM so that they can be easily compared with the JS output

LIVE database

		SSIM [https://en.wikipedia.org/wiki/Structural_similarity] (Structural Similarity) results were obtained from the “LIVE results” at: https://ece.uwaterloo.ca/~z70wang/research/ssim

		MOS [https://en.wikipedia.org/wiki/Mean_opinion_score] (Mean Opinion Score) results were obtained from the “Release 2” dataset at: http://live.ece.utexas.edu/research/quality/subjective.htms

JS Comparison

The compareLIVESSIM.m script generates multiple csv files containing the reference image, the compared image, generated MSSIM results and reported MSSIM results.

Reported results and generated ones do not match exactly although they are fairly similar, diverging, on average, by 0.0024 (mean(abs(computed_ssim - LIVE_ssim_all))). These are differences between the published results and the results of running the published Matlab scripts. They are likely due to the different aggregation methods of MOS between “Release 1” and “Release 2”.

The generated csv files can then be processed by LIVEresults.js to generate the JSON file at spec/samples/LIVE.json. The main reason for commiting the file (vs. generating it on the fly) is that it takes a couple minutes to create and it would require additional dependencies (Octave or Matlab) to run the integration tests.

Regeneration

Note that you don’t have to regenerate this file to validate the results. If you want to though, you would run (in Matlab / Octave):

>> compareLIVESSIM

That will create one csv file per image distorsion type on the LIVE database. Then from your terminal:

node LIVEresults.js

This will create a new JSON file with the results and replace spec/samples/LIVE.json. Now if you run:

node spec/e2e/live.spec.js

The integration tests for the LIVE database will run. Make sure you have npm install‘ed your dependencies and have generated a build (npm run build)

Plot

To reproduce the plot of Figure 8 (d) on the SSIM paper, you can run:

plot

This will create 2 graphs:

		reported_results.png: Generated with the published results

		computed_results.png: Generated with the results derived from the published Matlab scripts

Note that in order to be able to generate computed_results.png you’ll need to have run compareLIVESSIM first so that the computed results are available.

Also note that graphs are generated including all distorsions. The paper only includes the JPEG and JPEG2000 ones because those where the only ones available for “Release 1” at publication time. Another difference is that these graphs do not exclude any outliers.

Numerical comparison

To compute the values from this section we’ll need to load LIVE_SSIM_results, dmos.mat and computed_ssim (generated after running compareLIVESSIM). In addition, we’ll convert dmos values to mos (0-100). The following snipet would do it:

>> compareLIVESSIM
>> load LIVE_SSIM_results
>> load computed_ssim
>> load dmos
>> nmos = 100 - (dmos_all - min(dmos_all)) / (max(dmos_all) - min(dmos_all)) * 100;

Now we have LIVE_ssim_all, nmos and computed_ssim variables available. They should all be arrays of size [1:982]. The first [1:460] elements represent the JPEG and JPEG2000 results.

Correlation

Focusing only on the JPEG and JPEG2000 results, we can determine the correlation by simply running:

>> corr(LIVE_ssim_all(1:460), nmos(1:460))
ans = 0.91666
>> corr(computed_ssim(1:460), nmos(1:460))
ans = 0.91399

If we compare the entire dataset the correlation worsens:

>> corr(LIVE_ssim_all, nmos)
ans = 0.82832
>> corr(computed_ssim, nmos)
ans = 0.82093

RMSE (Root Mean Squared Error)

Similarly, for RMSE:

>> sqrt(mean((nmos(1:460) - LIVE_ssim_all(1:460)).^2));
ans = 71.735
>> sqrt(mean((nmos(1:460) - computed_ssim(1:460)).^2))
ans = 71.735
>> sqrt(mean((nmos - computed_ssim).^2))
ans = 68.752
>> sqrt(mean((nmos - LIVE_ssim_all).^2))
ans = 68.752

Discussion

These results include outliers and use a larger dataset so they differ from the ones originally reported. They also suggest a stronger correlation when detecting JPEG artifacts than other kinds of distorsions.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

_static/minus.png

.github/PULL_REQUEST_TEMPLATE.html

 Navigation

 		
 index

 		SSIM latest documentation »

 Thanks for contributing! Please make sure do the following:

		The commit message has a descriptive explanation on the changes, including their rationale

		You follow conventional changelog

		A single commit per PR, if you need multiple commits to organize the code meaningfully, submit
multiple PRs

 © Copyright 2016.
 Created using Sphinx 1.3.5.

.github/ISSUE_TEMPLATE.html

 Navigation

 		
 index

 		SSIM latest documentation »

 Thanks for contributing to the project! Before creating a ticket, make sure there isn’t already a duplicate one.

If reporting a bug, please include information about your platform, node version and reproduction steps.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

_static/up-pressed.png

