
sshuttle documentation
Release 0.78.2

Brian May

Jul 08, 2017

Contents

1 Overview 3

2 Requirements 5
2.1 Client side Requirements . 5
2.2 Server side Requirements . 6
2.3 Additional Suggested Software . 6

3 Installation 7

4 Usage 9
4.1 Usage Notes . 9

5 Platform Specific Notes 11
5.1 TPROXY . 11
5.2 Microsoft Windows . 12

6 sshuttle 13
6.1 Synopsis . 13
6.2 Description . 13
6.3 Options . 13
6.4 Examples . 15
6.5 Discussion . 16

7 How it works 17

8 Support 19

9 Useless Trivia 21

10 Change log 23
10.1 0.78.2 - 2017-07-09 . 23
10.2 0.78.1 - 2016-08-06 . 24
10.3 0.78.0 - 2016-04-08 . 24
10.4 0.77.2 - 2016-03-07 . 24
10.5 0.77.1 - 2016-03-07 . 24
10.6 0.77 - 2016-03-03 . 25
10.7 0.76 - 2016-01-17 . 25
10.8 0.75 - 2016-01-12 . 25

i

10.9 0.74 - 2016-01-10 . 25

11 Indices and tables 27

ii

sshuttle documentation, Release 0.78.2

Date Jul 08, 2017

Version 0.78

Contents:

Contents 1

sshuttle documentation, Release 0.78.2

2 Contents

CHAPTER 1

Overview

As far as I know, sshuttle is the only program that solves the following common case:

• Your client machine (or router) is Linux, MacOS, FreeBSD, OpenBSD or pfSense.

• You have access to a remote network via ssh.

• You don’t necessarily have admin access on the remote network.

• The remote network has no VPN, or only stupid/complex VPN protocols (IPsec, PPTP, etc). Or maybe you are
the admin and you just got frustrated with the awful state of VPN tools.

• You don’t want to create an ssh port forward for every single host/port on the remote network.

• You hate openssh’s port forwarding because it’s randomly slow and/or stupid.

• You can’t use openssh’s PermitTunnel feature because it’s disabled by default on openssh servers; plus it does
TCP-over-TCP, which has terrible performance (see below).

3

sshuttle documentation, Release 0.78.2

4 Chapter 1. Overview

CHAPTER 2

Requirements

Client side Requirements

• sudo, or root access on your client machine. (The server doesn’t need admin access.)

• Python 2.7 or Python 3.5.

Linux with NAT method

Supports:

• IPv4 TCP

• IPv4 DNS

Requires:

• iptables DNAT, REDIRECT, and ttl modules.

Linux with TPROXY method

Supports:

• IPv4 TCP

• IPv4 UDP (requires recvmsg - see below)

• IPv6 DNS (requires recvmsg - see below)

• IPv6 TCP

• IPv6 UDP (requires recvmsg - see below)

• IPv6 DNS (requires recvmsg - see below)

5

sshuttle documentation, Release 0.78.2

Full UDP or DNS support with the TPROXY method requires the recvmsg() syscall. This is not available in Python
2, however it is in Python 3.5 and later. Under Python 2 you might find it sufficient to install PyXAPI in order to get
the recvmsg() function. See TPROXY for more information.

MacOS / FreeBSD / OpenBSD / pfSense

Method: pf

Supports:

• IPv4 TCP

• IPv4 DNS

• IPv6 TCP

• IPv6 DNS

Requires:

• You need to have the pfctl command.

Windows

Not officially supported, however can be made to work with Vagrant. Requires cmd.exe with Administrator access.
See Microsoft Windows for more information.

Server side Requirements

The server can run in any version of Python between 2.4 and 3.6. However it is recommended that you use Python
2.7, Python 3.5 or later whenever possible as support for older versions might be dropped in the future.

Additional Suggested Software

• You may want to use autossh, available in various package management systems.

• If you are using systemd, sshuttle can notify it when the connection to the remote end is established and the
firewall rules are installed. For this feature to work you must configure the process start-up type for the sshuttle
service unit to notify, as shown in the example below.

[Unit]
Description=sshuttle
After=network.target

[Service]
Type=notify
ExecStart=/usr/bin/sshuttle --dns --remote <user>@<server> <subnets...>

[Install]
WantedBy=multi-user.target

6 Chapter 2. Requirements

http://www.pps.univ-paris-diderot.fr/~ylg/PyXAPI/

CHAPTER 3

Installation

• From PyPI:

pip install sshuttle

• Clone:

git clone https://github.com/sshuttle/sshuttle.git
./setup.py install

7

sshuttle documentation, Release 0.78.2

8 Chapter 3. Installation

CHAPTER 4

Usage

Note: For information on usage with Windows, see the Microsoft Windows section. For information on using the
TProxy method, see the TPROXY section.

Forward all traffic:

sshuttle -r username@sshserver 0.0.0.0/0

• Use the sshuttle -r parameter to specify a remote server.

• By default sshuttle will automatically choose a method to use. Override with the sshuttle --method
parameter.

• There is a shortcut for 0.0.0.0/0 for those that value their wrists:

sshuttle -r username@sshserver 0/0

If you would also like your DNS queries to be proxied through the DNS server of the server you are connect to:

sshuttle --dns -r username@sshserver 0/0

The above is probably what you want to use to prevent local network attacks such as Firesheep and friends. See the
documentation for the sshuttle --dns parameter.

(You may be prompted for one or more passwords; first, the local password to become root using sudo, and then the
remote ssh password. Or you might have sudo and ssh set up to not require passwords, in which case you won’t be
prompted at all.)

Usage Notes

That’s it! Now your local machine can access the remote network as if you were right there. And if your “client”
machine is a router, everyone on your local network can make connections to your remote network.

9

sshuttle documentation, Release 0.78.2

You don’t need to install sshuttle on the remote server; the remote server just needs to have python available. sshuttle
will automatically upload and run its source code to the remote python interpreter.

This creates a transparent proxy server on your local machine for all IP addresses that match 0.0.0.0/0. (You can use
more specific IP addresses if you want; use any number of IP addresses or subnets to change which addresses get
proxied. Using 0.0.0.0/0 proxies everything, which is interesting if you don’t trust the people on your local network.)

Any TCP session you initiate to one of the proxied IP addresses will be captured by sshuttle and sent over an ssh
session to the remote copy of sshuttle, which will then regenerate the connection on that end, and funnel the data back
and forth through ssh.

Fun, right? A poor man’s instant VPN, and you don’t even have to have admin access on the server.

10 Chapter 4. Usage

CHAPTER 5

Platform Specific Notes

Contents:

TPROXY

TPROXY is the only method that has full support of IPv6 and UDP.

There are some things you need to consider for TPROXY to work:

• The following commands need to be run first as root. This only needs to be done once after booting up:

ip route add local default dev lo table 100
ip rule add fwmark 1 lookup 100
ip -6 route add local default dev lo table 100
ip -6 rule add fwmark 1 lookup 100

• The --auto-nets feature does not detect IPv6 routes automatically. Add IPv6 routes manually. e.g. by
adding '::/0' to the end of the command line.

• The client needs to be run as root. e.g.:

sudo SSH_AUTH_SOCK="$SSH_AUTH_SOCK" $HOME/tree/sshuttle.tproxy/sshuttle --
→˓method=tproxy ...

• You may need to exclude the IP address of the server you are connecting to. Otherwise sshuttle may attempt to
intercept the ssh packets, which will not work. Use the --exclude parameter for this.

• Similarly, UDP return packets (including DNS) could get intercepted and bounced back. This is the case if
you have a broad subnet such as 0.0.0.0/0 or ::/0 that includes the IP address of the client. Use the
--exclude parameter for this.

• You need the --method=tproxy parameter, as above.

• The routes for the outgoing packets must already exist. For example, if your connection does not have IPv6
support, no IPv6 routes will exist, IPv6 packets will not be generated and sshuttle cannot intercept them:

11

sshuttle documentation, Release 0.78.2

telnet -6 www.google.com 80
Trying 2404:6800:4001:805::1010...
telnet: Unable to connect to remote host: Network is unreachable

Add some dummy routes to external interfaces. Make sure they get removed however after sshuttle exits.

Microsoft Windows

Currently there is no built in support for running sshuttle directly on Microsoft Windows.

What we can really do is to create a Linux VM with Vagrant (or simply Virtualbox if you like). In the Vagrant settings,
remember to turn on bridged NIC. Then, run sshuttle inside the VM like below:

sshuttle -l 0.0.0.0 -x 10.0.0.0/8 -x 192.168.0.0/16 0/0

10.0.0.0/8 excludes NAT traffic of Vagrant and 192.168.0.0/16 excludes traffic to local area network (assuming that
we’re using 192.168.0.0 subnet).

Assuming the VM has the IP 192.168.1.200 obtained on the bridge NIC (we can configure that in Vagrant), we can
then ask Windows to route all its traffic via the VM by running the following in cmd.exe with admin right:

route add 0.0.0.0 mask 0.0.0.0 192.168.1.200

12 Chapter 5. Platform Specific Notes

CHAPTER 6

sshuttle

Synopsis

sshuttle [options] [-r [username@]sshserver[:port]] <subnets ...>

Description

sshuttle allows you to create a VPN connection from your machine to any remote server that you can connect to
via ssh, as long as that server has python 2.3 or higher.

To work, you must have root access on the local machine, but you can have a normal account on the server.

It’s valid to run sshuttle more than once simultaneously on a single client machine, connecting to a different server
every time, so you can be on more than one VPN at once.

If run on a router, sshuttle can forward traffic for your entire subnet to the VPN.

Options

subnets
A list of subnets to route over the VPN, in the form a.b.c.d[/width][port[-port]]. Valid exam-
ples are 1.2.3.4 (a single IP address), 1.2.3.4/32 (equivalent to 1.2.3.4), 1.2.3.0/24 (a 24-bit subnet, ie. with a
255.255.255.0 netmask), and 0/0 (‘just route everything through the VPN’). Any of the previous examples are
also valid if you append a port or a port range, so 1.2.3.4:8000 will only tunnel traffic that has as the destina-
tion port 8000 of 1.2.3.4 and 1.2.3.0/24:8000-9000 will tunnel traffic going to any port between 8000 and 9000
(inclusive) for all IPs in the 1.2.3.0/24 subnet. It is also possible to use a name in which case the first IP it
resolves to during startup will be routed over the VPN. Valid examples are example.com, example.com:8000
and example.com:8000-9000.

13

sshuttle documentation, Release 0.78.2

--method [auto|nat|tproxy|pf]
Which firewall method should sshuttle use? For auto, sshuttle attempts to guess the appropriate method depend-
ing on what it can find in PATH. The default value is auto.

-l, --listen=[ip:]port
Use this ip address and port number as the transparent proxy port. By default sshuttle finds an available
port automatically and listens on IP 127.0.0.1 (localhost), so you don’t need to override it, and connections are
only proxied from the local machine, not from outside machines. If you want to accept connections from other
machines on your network (ie. to run sshuttle on a router) try enabling IP Forwarding in your kernel, then
using --listen 0.0.0.0:0. You can use any name resolving to an IP address of the machine running
sshuttle, e.g. --listen localhost.

For the tproxy and pf methods this can be an IPv6 address. Use this option twice if required, to provide both
IPv4 and IPv6 addresses.

-H, --auto-hosts
Scan for remote hostnames and update the local /etc/hosts file with matching entries for as long as the VPN
is open. This is nicer than changing your system’s DNS (/etc/resolv.conf) settings, for several reasons. First,
hostnames are added without domain names attached, so you can ssh thatserver without worrying if
your local domain matches the remote one. Second, if you sshuttle into more than one VPN at a time, it’s
impossible to use more than one DNS server at once anyway, but sshuttle correctly merges /etc/hosts entries
between all running copies. Third, if you’re only routing a few subnets over the VPN, you probably would
prefer to keep using your local DNS server for everything else.

-N, --auto-nets
In addition to the subnets provided on the command line, ask the server which subnets it thinks we should route,
and route those automatically. The suggestions are taken automatically from the server’s routing table.

--dns
Capture local DNS requests and forward to the remote DNS server.

--python
Specify the name/path of the remote python interpreter. The default is just python, which means to use the
default python interpreter on the remote system’s PATH.

-r, --remote=[username@]sshserver[:port]
The remote hostname and optional username and ssh port number to use for connecting to the remote server.
For example, example.com, testuser@example.com, testuser@example.com:2222, or example.com:2244.

-x, --exclude=subnet
Explicitly exclude this subnet from forwarding. The format of this option is the same as the <subnets> option.
To exclude more than one subnet, specify the -x option more than once. You can say something like 0/0 -x
1.2.3.0/24 to forward everything except the local subnet over the VPN, for example.

-X, --exclude-from=file
Exclude the subnets specified in a file, one subnet per line. Useful when you have lots of subnets to exclude.

-v, --verbose
Print more information about the session. This option can be used more than once for increased verbosity. By
default, sshuttle prints only error messages.

-e, --ssh-cmd
The command to use to connect to the remote server. The default is just ssh. Use this if your ssh client is in a
non-standard location or you want to provide extra options to the ssh command, for example, -e 'ssh -v'.

--seed-hosts
A comma-separated list of hostnames to use to initialize the --auto-hosts scan algorithm.
--auto-hosts does things like poll local SMB servers for lists of local hostnames, but can speed things
up if you use this option to give it a few names to start from.

14 Chapter 6. sshuttle

mailto:testuser@example.com
mailto:testuser@example.com

sshuttle documentation, Release 0.78.2

If this option is used without --auto-hosts, then the listed hostnames will be scanned and added, but no
further hostnames will be added.

--no-latency-control
Sacrifice latency to improve bandwidth benchmarks. ssh uses really big socket buffers, which can overload the
connection if you start doing large file transfers, thus making all your other sessions inside the same tunnel go
slowly. Normally, sshuttle tries to avoid this problem using a “fullness check” that allows only a certain
amount of outstanding data to be buffered at a time. But on high-bandwidth links, this can leave a lot of your
bandwidth underutilized. It also makes sshuttle seem slow in bandwidth benchmarks (benchmarks rarely
test ping latency, which is what sshuttle is trying to control). This option disables the latency control feature,
maximizing bandwidth usage. Use at your own risk.

-D, --daemon
Automatically fork into the background after connecting to the remote server. Implies --syslog.

--syslog
after connecting, send all log messages to the syslog(3) service instead of stderr. This is implicit if you use
--daemon.

--pidfile=pidfilename
when using --daemon, save sshuttle‘s pid to pidfilename. The default is sshuttle.pid in the current
directory.

--disable-ipv6
If using tproxy or pf methods, this will disable IPv6 support.

--firewall
(internal use only) run the firewall manager. This is the only part of sshuttle that must run as root. If you
start sshuttle as a non-root user, it will automatically run sudo or su to start the firewall manager, but the
core of sshuttle still runs as a normal user.

--hostwatch
(internal use only) run the hostwatch daemon. This process runs on the server side and collects hostnames for the
--auto-hosts option. Using this option by itself makes it a lot easier to debug and test the --auto-hosts
feature.

Examples

Test locally by proxying all local connections, without using ssh:

$ sshuttle -v 0/0

Starting sshuttle proxy.
Listening on ('0.0.0.0', 12300).
[local sudo] Password:
firewall manager ready.
c : connecting to server...
s: available routes:
s: 192.168.42.0/24

c : connected.
firewall manager: starting transproxy.
c : Accept: 192.168.42.106:50035 -> 192.168.42.121:139.
c : Accept: 192.168.42.121:47523 -> 77.141.99.22:443.

...etc...
^C
firewall manager: undoing changes.
KeyboardInterrupt

6.4. Examples 15

sshuttle documentation, Release 0.78.2

c : Keyboard interrupt: exiting.
c : SW#8:192.168.42.121:47523: deleting
c : SW#6:192.168.42.106:50035: deleting

Test connection to a remote server, with automatic hostname and subnet guessing:

$ sshuttle -vNHr example.org

Starting sshuttle proxy.
Listening on ('0.0.0.0', 12300).
firewall manager ready.
c : connecting to server...
s: available routes:
s: 77.141.99.0/24

c : connected.
c : seed_hosts: []
firewall manager: starting transproxy.
hostwatch: Found: testbox1: 1.2.3.4
hostwatch: Found: mytest2: 5.6.7.8
hostwatch: Found: domaincontroller: 99.1.2.3
c : Accept: 192.168.42.121:60554 -> 77.141.99.22:22.
^C
firewall manager: undoing changes.
c : Keyboard interrupt: exiting.
c : SW#6:192.168.42.121:60554: deleting

Discussion

When it starts, sshuttle creates an ssh session to the server specified by the -r option. If -r is omitted, it will start
both its client and server locally, which is sometimes useful for testing.

After connecting to the remote server, sshuttle uploads its (python) source code to the remote end and executes
it there. Thus, you don’t need to install sshuttle on the remote server, and there are never sshuttle version
conflicts between client and server.

Unlike most VPNs, sshuttle forwards sessions, not packets. That is, it uses kernel transparent proxying (iptables
REDIRECT rules on Linux) to capture outgoing TCP sessions, then creates entirely separate TCP sessions out to the
original destination at the other end of the tunnel.

Packet-level forwarding (eg. using the tun/tap devices on Linux) seems elegant at first, but it results in several prob-
lems, notably the ‘tcp over tcp’ problem. The tcp protocol depends fundamentally on packets being dropped in order to
implement its congestion control agorithm; if you pass tcp packets through a tcp-based tunnel (such as ssh), the inner
tcp packets will never be dropped, and so the inner tcp stream’s congestion control will be completely broken, and
performance will be terrible. Thus, packet-based VPNs (such as IPsec and openvpn) cannot use tcp-based encrypted
streams like ssh or ssl, and have to implement their own encryption from scratch, which is very complex and error
prone.

sshuttle‘s simplicity comes from the fact that it can safely use the existing ssh encrypted tunnel without incurring a
performance penalty. It does this by letting the client-side kernel manage the incoming tcp stream, and the server-side
kernel manage the outgoing tcp stream; there is no need for congestion control to be shared between the two separate
streams, so a tcp-based tunnel is fine.

See also:

ssh(1), python(1)

16 Chapter 6. sshuttle

CHAPTER 7

How it works

sshuttle is not exactly a VPN, and not exactly port forwarding. It’s kind of both, and kind of neither.

It’s like a VPN, since it can forward every port on an entire network, not just ports you specify. Conveniently, it lets
you use the “real” IP addresses of each host rather than faking port numbers on localhost.

On the other hand, the way it works is more like ssh port forwarding than a VPN. Normally, a VPN forwards your
data one packet at a time, and doesn’t care about individual connections; ie. it’s “stateless” with respect to the traffic.
sshuttle is the opposite of stateless; it tracks every single connection.

You could compare sshuttle to something like the old Slirp program, which was a userspace TCP/IP implementation
that did something similar. But it operated on a packet-by-packet basis on the client side, reassembling the packets on
the server side. That worked okay back in the “real live serial port” days, because serial ports had predictable latency
and buffering.

But you can’t safely just forward TCP packets over a TCP session (like ssh), because TCP’s performance depends
fundamentally on packet loss; it must experience packet loss in order to know when to slow down! At the same time,
the outer TCP session (ssh, in this case) is a reliable transport, which means that what you forward through the tunnel
never experiences packet loss. The ssh session itself experiences packet loss, of course, but TCP fixes it up and ssh
(and thus you) never know the difference. But neither does your inner TCP session, and extremely screwy performance
ensues.

sshuttle assembles the TCP stream locally, multiplexes it statefully over an ssh session, and disassembles it back into
packets at the other end. So it never ends up doing TCP-over-TCP. It’s just data-over-TCP, which is safe.

17

http://en.wikipedia.org/wiki/Slirp

sshuttle documentation, Release 0.78.2

18 Chapter 7. How it works

CHAPTER 8

Support

Mailing list:

• Subscribe by sending a message to <sshuttle+subscribe@googlegroups.com>

• List archives are at: http://groups.google.com/group/sshuttle

Issue tracker and pull requests at github:

• https://github.com/sshuttle/sshuttle

19

mailto:sshuttle+subscribe@googlegroups.com
http://groups.google.com/group/sshuttle
https://github.com/sshuttle/sshuttle

sshuttle documentation, Release 0.78.2

20 Chapter 8. Support

CHAPTER 9

Useless Trivia

This section written by the original author, Avery Pennarun <apenwarr@gmail.com>.

Back in 1998, I released the first version of Tunnel Vision, a semi-intelligent VPN client for Linux. Unfortunately, I
made two big mistakes: I implemented the key exchange myself (oops), and I ended up doing TCP-over-TCP (double
oops). The resulting program worked okay - and people used it for years - but the performance was always a bit funny.
And nobody ever found any security flaws in my key exchange, either, but that doesn’t mean anything. :)

The same year, dcoombs and I also released Fast Forward, a proxy server supporting transparent proxying. Among
other things, we used it for automatically splitting traffic across more than one Internet connection (a tool we called
“Double Vision”).

I was still in university at the time. A couple years after that, one of my professors was working with some graduate
students on the technology that would eventually become Slipstream Internet Acceleration. He asked me to do a
contract for him to build an initial prototype of a transparent proxy server for mobile networks. The idea was similar
to sshuttle: if you reassemble and then disassemble the TCP packets, you can reduce latency and improve performance
vs. just forwarding the packets over a plain VPN or mobile network. (It’s unlikely that any of my code has persisted
in the Slipstream product today, but the concept is still pretty cool. I’m still horrified that people use plain TCP on
complex mobile networks with crazily variable latency, for which it was never really intended.)

That project I did for Slipstream was what first gave me the idea to merge the concepts of Fast Forward, Double Vision,
and Tunnel Vision into a single program that was the best of all worlds. And here we are, at last. You’re welcome.

21

mailto:apenwarr@gmail.com
http://alumnit.ca/wiki/?TunnelVisionReadMe
http://www.slipstream.com/

sshuttle documentation, Release 0.78.2

22 Chapter 9. Useless Trivia

CHAPTER 10

Change log

All notable changes to this project will be documented in this file. The format is based on Keep a Changelog and this
project adheres to Semantic Versioning.

0.78.2 - 2017-07-09

Added

• Adds support for tunneling specific port ranges (#144).

• Add support for iproute2.

• Allow remote hosts with colons in the username.

• Re-introduce ipfw support for sshuttle on FreeBSD with support for –DNS option as well.

• Add support for PfSense.

• Tests and documentation for systemd integration.

• Allow subnets to be given only by file (-s).

Fixed

• Work around non tabular headers in BSD netstat.

• Fix UDP and DNS support on Python 2.7 with tproxy method.

• Fixed tests after adding support for iproute2.

• Small refactoring of netstat/iproute parsing.

• Set started_by_sshuttle False after disabling pf.

• Fix punctuation and explain Type=notify.

23

http://keepachangelog.com/
http://semver.org/

sshuttle documentation, Release 0.78.2

• Move pytest-runner to tests_require.

• Fix warning: closed channel got=STOP_SENDING.

• Support sdnotify for better systemd integration.

• Fix #117 to allow for no subnets via file (-s).

• Fix argument splitting for multi-word arguments.

• requirements.rst: Fix mistakes.

• Fix typo, space not required here.

• Update installation instructions.

• Support using run from different directory.

• Ensure we update sshuttle/version.py in run.

• Don’t print python version in run.

• Add CWD to PYTHONPATH in run.

0.78.1 - 2016-08-06

• Fix readthedocs versioning.

• Don’t crash on ENETUNREACH.

• Various bug fixes.

• Improvements to BSD and OSX support.

0.78.0 - 2016-04-08

• Don’t force IPv6 if IPv6 nameservers supplied. Fixes #74.

• Call /bin/sh as users shell may not be POSIX compliant. Fixes #77.

• Use argparse for command line processing. Fixes #75.

• Remove useless –server option.

• Support multiple -s (subnet) options. Fixes #86.

• Make server parts work with old versions of Python. Fixes #81.

0.77.2 - 2016-03-07

• Accidentally switched LGPL2 license with GPL2 license in 0.77.1 - now fixed.

0.77.1 - 2016-03-07

• Use semantic versioning. http://semver.org/

• Update GPL 2 license text.

24 Chapter 10. Change log

http://semver.org/

sshuttle documentation, Release 0.78.2

• New release to fix PyPI.

0.77 - 2016-03-03

• Various bug fixes.

• Fix Documentation.

• Add fix for MacOS X issue.

• Add support for OpenBSD.

0.76 - 2016-01-17

• Add option to disable IPv6 support.

• Update documentation.

• Move documentation, including man page, to Sphinx.

• Use setuptools-scm for automatic versioning.

0.75 - 2016-01-12

• Revert change that broke sshuttle entry point.

0.74 - 2016-01-10

• Add CHANGES.rst file.

• Numerous bug fixes.

• Python 3.5 fixes.

• PF fixes, especially for BSD.

10.6. 0.77 - 2016-03-03 25

sshuttle documentation, Release 0.78.2

26 Chapter 10. Change log

CHAPTER 11

Indices and tables

• genindex

• search

27

sshuttle documentation, Release 0.78.2

28 Chapter 11. Indices and tables

Index

Symbols
–disable-ipv6

sshuttle command line option, 15
–dns

sshuttle command line option, 14
–firewall

sshuttle command line option, 15
–hostwatch

sshuttle command line option, 15
–method [auto|nat|tproxy|pf]

sshuttle command line option, 13
–no-latency-control

sshuttle command line option, 15
–pidfile=pidfilename

sshuttle command line option, 15
–python

sshuttle command line option, 14
–seed-hosts

sshuttle command line option, 14
–syslog

sshuttle command line option, 15
-D, –daemon

sshuttle command line option, 15
-H, –auto-hosts

sshuttle command line option, 14
-N, –auto-nets

sshuttle command line option, 14
-X, –exclude-from=file

sshuttle command line option, 14
-e, –ssh-cmd

sshuttle command line option, 14
-l, –listen=[ip:]port

sshuttle command line option, 14
]sshserver[:port]

sshuttle command line option, 14
-v, –verbose

sshuttle command line option, 14
-x, –exclude=subnet

sshuttle command line option, 14

S
sshuttle command line option

–disable-ipv6, 15
–dns, 14
–firewall, 15
–hostwatch, 15
–method [auto|nat|tproxy|pf], 13
–no-latency-control, 15
–pidfile=pidfilename, 15
–python, 14
–seed-hosts, 14
–syslog, 15
-D, –daemon, 15
-H, –auto-hosts, 14
-N, –auto-nets, 14
-X, –exclude-from=file, 14
-e, –ssh-cmd, 14
-l, –listen=[ip:]port, 14
]sshserver[:port], 14
-v, –verbose, 14
-x, –exclude=subnet, 14
subnets, 13

subnets
sshuttle command line option, 13

29

	Overview
	Requirements
	Client side Requirements
	Server side Requirements
	Additional Suggested Software

	Installation
	Usage
	Usage Notes

	Platform Specific Notes
	TPROXY
	Microsoft Windows

	sshuttle
	Synopsis
	Description
	Options
	Examples
	Discussion

	How it works
	Support
	Useless Trivia
	Change log
	0.78.2 - 2017-07-09
	0.78.1 - 2016-08-06
	0.78.0 - 2016-04-08
	0.77.2 - 2016-03-07
	0.77.1 - 2016-03-07
	0.77 - 2016-03-03
	0.76 - 2016-01-17
	0.75 - 2016-01-12
	0.74 - 2016-01-10

	Indices and tables

