
Squint Documentation
Release 0.1.0

Shawn Brown

Jan 11, 2020

Documentation

1 Documentation 3
1.1 Tutorials . 3
1.2 How-to Guide . 13
1.3 API Reference . 14

2 Other Resources 23

Python Module Index 25

Index 27

i

ii

Squint Documentation, Release 0.1.0

Version 0.1.0

Squint is a simple query interface for tabular data that’s light-weight and easy to learn. A core feature of Squint is that
the structure of a query’s selection determines the structure of its result. With it you can:

• Select data using Python literals—sets, lists, dictionaries, etc.—and get results in the same format.

• Aggregate, map, filter, reduce, and otherwise manipulate data.

• Lazily iterate over results, write them to a file, or eagerly evaluate them in memory.

• Analyze data from CSV, Excel, SQL, and other data sources.

Documentation 1

Squint Documentation, Release 0.1.0

2 Documentation

CHAPTER 1

Documentation

1.1 Tutorials

These tutorials are written with the intent that you follow along and type the examples into Python’s interactive prompt
yourself. This will give you hands-on experience working with Select, Query, and Result objects.

1.1.1 Making Selections

The following examples demonstrate squint’s Select class. For these examples, we will use the following data set:

A B C
x foo 20
x foo 30
y foo 10
y bar 20
z bar 10
z bar 10

Get Started

Download the data set as a CSV file:

example.csv

Start the Interactive Prompt

Open a command prompt and navigate to the folder that contains the example data. Then start Python in interactive
mode so you can type commands at the >>> prompt:

3

Squint Documentation, Release 0.1.0

$ python3
Python 3.8.0 (default, Oct 16 2019, 12:47:36)
[GCC 9.2.1 20190827 (Red Hat 9.2.1-1)] on linux
Type "help", "copyright", "credits" or "license" for more information.
>>>

Supported Formats

Using Select, you can load data from difference sources:

• CSV files

• Database connections

• MS Excel files

• DBF files

• Pandas objects: DataFrame, Series, Index, or MultiIndex

You can also use shell-style wildcards to load multiple files into a single Select object:

select = Select('*.csv')

Load the Data

Import Squint and load the CSV data into a Select object:

>>> import squint
>>> select = squint.Select('example.csv')

Inspect Field Names

The fieldnames attribute contains a list of field names used in the data:

>>> select.fieldnames
['A', 'B', 'C']

Select Elements

A Select object can be called like a function—doing so returns a Query object.

Select a list of elements from column A:

>>> select('A')
Query(<squint.Select object at 0x7f02919d>, ['A'])
---- preview ----
['x', 'x', 'y', 'y', 'z', 'z']

Above, look at the “preview” and notice that these values come from column A in our data set.

Select a list of tuple elements from columns A and B, ('A', 'B'):

4 Chapter 1. Documentation

https://docs.python.org/3/library/stdtypes.html#tuple

Squint Documentation, Release 0.1.0

>>> select(('A', 'B'))
Query(<squint.Select object at 0x7f02919d>, [('A', 'B')])
---- preview ----
[('x', 'foo'), ('x', 'foo'), ('y', 'foo'), ('y', 'bar'),
('z', 'bar'), ('z', 'bar')]

Select a list of list elements from columns A and B, ['A', 'B']:

>>> select(['A', 'B'])
Query(<squint.Select object at 0x7f02919d>, [['A', 'B']])
---- preview ----
[['x', 'foo'], ['x', 'foo'], ['y', 'foo'], ['y', 'bar'],
['z', 'bar'], ['z', 'bar']]

The container type used in a selection determines the container types returned in the result. You can think of the
selection as a template that describes the values and data types that are returned.

Note: In the examples above, we did not specify an outer-container type and—when unspecified—a list is used.
So the outer-containers for all of the previous results were lists: a list of strings, a list of tuples, and a list of lists.

Specify Outer-Container Data Types

Compatible sequence and set types can be selected as inner- and outer-containers as needed. To specify an outer-
container type, provide one of the following:

• a container that holds a single field name

• a container that holds another container (this second, inner-container can hold one or more field names)

Select a set of elements from column A, {'A'}:

>>> select({'A'})
Query(<squint.Select object at 0x7f02919d>, {'A'})
---- preview ----
{'x', 'y', 'z'}

Select a set of tuple elements from columns A and B, {('A', 'B')}:

>>> select({('A', 'B')})
Query(<squint.Select object at 0x7f02919d>, {('A', 'B')})
---- preview ----
{('x', 'foo'), ('y', 'foo'), ('y', 'bar'), ('z', 'bar')}

Tip: As mentioned previously, the default outer-container is a list, so when an early example used select('A'),
that was actually a shorthand for select(['A']). Likewise, select(('A', 'B')), was a shorthand for
select([('A', 'B')]).

Select Groups of Elements

To select groups of elements, use a dict (or other mapping type) as the outer-container—this dictionary must hold
a single key-value pair. The key elements determine the “groups” used to arrange the results. And value elements are
assigned to the same group when their associated keys are the same.

1.1. Tutorials 5

https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#set
https://docs.python.org/3/library/stdtypes.html#set
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#dict

Squint Documentation, Release 0.1.0

Select groups arranged by elements from column A that contain lists of elements from column B, {'A': 'B'}:

>>> select({'A': 'B'})
Query(<squint.Select object at 0x7f02919d>, {'A': ['B']})
---- preview ----
{'x': ['foo', 'foo'], 'y': ['foo', 'bar'], 'z': ['bar', 'bar']}

Select groups arranged by elements from column A that contain lists of tuple elements from columns B and C,
{'A': ('B', 'C')}:

>>> select({'A': ('B', 'C')})
Query(<squint.Select object at 0x7f8cbc77>, {'A': [('B', 'C')]})
---- preview ----
{'x': [('foo', '20'), ('foo', '30')],
'y': [('foo', '10'), ('bar', '20')],
'z': [('bar', '10'), ('bar', '10')]}

To group by multiple columns, we use a tuple of key fields. Select groups arranged by elements from columns A
and B that contain lists of elements from column C, {('A', 'B'): 'C'}:

>>> select({('A', 'B'): 'C'})
Query(<squint.Select object at 0x7f8cbc77>, {('A', 'B'): ['C']})
---- preview ----
{('x', 'foo'): ['20', '30'],
('y', 'bar'): ['20'],
('y', 'foo'): ['10'],
('z', 'bar'): ['10', '10']}

Specify Container Types for Groups

When selecting groups of elements, you can specify inner- and outer-container types for the value. The previous
groupings used the default list shorthand. But as with non-grouped selections, you can specify a type explicitly.

Select groups arranged by elements from column A that contain sets of elements from column B, {'A': {'B'}}:

>>> select({'A': {'B'}})
Query(<squint.Select object at 0x7f2c36ee>, {'A': {'B'}})
---- preview ----
{'x': {'foo'}, 'y': {'foo', 'bar'}, 'z': {'bar'}}

Select groups arranged by elements from column A that contain sets of tuple elements from columns B and C,
{'A': {('B', 'C')}}:

>>> select({'A': {('B', 'C')}})
Query(<squint.Select object at 0x7fc4a060>, {'A': {('B', 'C')}})
---- preview ----
{'x': {('foo', '30'), ('foo', '20')},
'y': {('foo', '10'), ('bar', '20')},
'z': {('bar', '10')}}

Narrowing a Selection

Selections can be narrowed to rows that satisfy given keyword arguments.

Narrow a selection to rows where column B equals “foo”, B='foo':

6 Chapter 1. Documentation

https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#set
https://docs.python.org/3/library/stdtypes.html#set
https://docs.python.org/3/library/stdtypes.html#tuple

Squint Documentation, Release 0.1.0

>>> select(('A', 'B'), B='foo')
Query(<squint.Select object at 0x7f978939>, [('A', 'B')], B='foo')
---- preview ----
[('x', 'foo'), ('x', 'foo'), ('y', 'foo')]

The keyword column does not have to be in the selected result:

>>> select('A', B='foo')
Query(<squint.Select object at 0x7f978939>, ['A'], B='foo')
---- preview ----
['x', 'x', 'y']

Narrow by Multiple Columns

Narrow a selection to rows where column A equals “y” and column B equals “bar”, A='y', B='bar':

>>> select(('A', 'B', 'C'), A='y', B='bar')
Query(<squint.Select object at 0x7f97893>, [('A', 'B', 'C')], A='y', B='bar')
---- preview ----
[('y', 'bar', '20')]

Only one row matches the above keyword conditions.

Narrow by Other Predicates

The argument’s key specifies the column to check and its value is used to construct a Predicate that checks for
matching elements. In addition to matching values like 'y' or 'bar', Predicate objects can be sets, functions,
boolean values, and more.

Use a predicate set to narrow a selection to rows where column A equals “x” or “y”, A={'x', 'y'}:

>>> select(('A', 'B'), A={'x', 'y'})
Query(<squint.Select object at 0x7f97893>, [('A', 'B')], A={'y', 'x'})
---- preview ----
[('x', 'foo'), ('x', 'foo'), ('y', 'foo'), ('y', 'bar')]

Use a predicate function to narrow a selection to rows where column C is greater than 15, C=greaterthan15:

>>> def greaterthan15(x):
... return float(x) > 15
...
>>> select(('A', 'C'), C=greaterthan15)
Query(<squint.Select object at 0x7fa6b9ea>, [('A', 'C')], C=greaterthan15)
---- preview ----
[('x', '20'), ('x', '30'), ('y', '20')]

When functions are simple like the one above, you can use a lambda statement rather than writing a separate function,
C=lambda x: float(x) > 15:

>>> select(('A', 'C'), C=lambda x: float(x) > 15)
Query(<squint.Select object at 0x7f5f08e4>, [('A', 'C')], C=<lambda>)
---- preview ----
[('x', '20'), ('x', '30'), ('y', '20')]

1.1. Tutorials 7

https://docs.python.org/3/library/stdtypes.html#set

Squint Documentation, Release 0.1.0

In addition to set membership and function testing, Predicates can be used for type checking, regex matching, and
more. See the Predicate documentation for details.

Getting the Data Out

The examples so far have called Select objects and gotten Query objects in return. While the preview shows what
the output will look like, it’s still a Query object—not the data itself. One way to get the actual data is to use the
Query’s fetch() method.

Get the data out by calling the fetch() method:

>>> select('A').fetch()
['x', 'x', 'y', 'y', 'z', 'z']

1.1.2 Building Queries

The following examples demonstrate squint’s Query class. This document builds on the Making Selections tutorial.

Get Started

We will get started the same way we did in the first tutorial. Begin by starting the Python interactive prompt in the
same directory as the example.csv file. Once you are at the >>> prompt, import squint and load the data:

>>> import squint
>>> select = squint.Select('example.csv')

Creating a Query Object

In the Making Selections tutorial, we created several Query objects—each call to a Select object returns a Query.

By selecting a list of elements from column C, we get a Query object in return:

>>> select('C')
Query(<squint.Select object at 0x7ffa625b>, ['C'])
---- preview ----
['20', '30', '10', '20', '10', '10']

We can also create Queries directly using the following syntax (although it’s rarely necessary to do so):

>>> squint.Query(select, 'C')
Query(<squint.Select object at 0x7ffa625b>, ['C'])
---- preview ----
['20', '30', '10', '20', '10', '10']

Once a Query has been created, we can perform additional operations on it using the methods described below.

Aggregate Methods

Aggregate methods operate on a collection of elements and produce a single result. The Query class provides sev-
eral aggregate methods: sum(), avg(), min(), max(), and count(). For more information see the aggregate
methods reference documentation.

Use the sum() method to sum the elements in column C:

8 Chapter 1. Documentation

Squint Documentation, Release 0.1.0

>>> select('C').sum()
Query(<squint.Select object at 0x7ffa625b>, ['C']).sum()
---- preview ----
100

When an aggregate method is called on a dict or other mapping, the groups—the dictionary values—are operated
on separately.

Use the sum() method to sum each group of elements:

>>> select({'A': 'C'}).sum()
Query(<squint.Select object at 0x7ffa625b>, {'A': ['C']}).sum()
---- preview ----
{'x': 50, 'y': 30, 'z': 20}

Type Conversion

The Query class contains two methods that perform automatic type conversion:

• sum()

• avg()

In the example above, column C contains str elements. These strings are automatically converted to float values.
The other functional methods do not do this—use map() to convert values explicitly.

Functional Methods

Functional methods take a user-provided function and use it to perform a specified procedure. The Query class provides
the following functional methods: map(), filter(), reduce(), apply(), etc. For more information see the
functional methods reference documentation.

Use the map() method to apply a function to each element:

>>> def uppercase(value):
... return value.upper()
...
>>> select('B').map(uppercase)
Query(<squint.Select object at 0x7ffa625b>, ['B']).map(uppercase)
---- preview ----
['FOO', 'FOO', 'FOO', 'BAR', 'BAR', 'BAR']

Use the filter() method to narrow the selection to items for which the function returns True:

>>> def not_bar(value):
... return value != 'bar'
...
>>> select('B').filter(not_bar)
Query(<squint.Select object at 0x7ffa625b>, ['B']).filter(not_bar)
---- preview ----
['foo', 'foo', 'foo']

Element-Wise vs Group-Wise Methods

The map(), filter(), and reduce() methods perform element-wise procedures—they call their user-provided
functions for each element and do something with the result. The apply() method, however, performs a group-wise

1.1. Tutorials 9

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float

Squint Documentation, Release 0.1.0

procedure. Rather than calling its user-provided function for each element, it calls the function once per container of
elements.

Use the apply() method to apply a function to an entire container of elements:

>>> def join_strings(container):
... return '-'.join(container)
...
>>> select('B').apply(join_strings)
Query(<squint.Select object at 0x7ffa625b>, ['B']).apply(join_strings)
---- preview ----
'foo-foo-foo-bar-bar-bar'

Like the aggregate methods, when apply() is called on a dict or other mapping, the groups—the dictionary
values—are operated on separately.

Use the apply() method to apply a function for each container of elements:

>>> select({'A': 'B'}).apply(join_strings)
Query(<squint.Select object at 0x7ffa625b>, {'A': ['B']}).apply(join_strings)
---- preview ----
{'x': 'foo-foo', 'y': 'foo-bar', 'z': 'bar-bar'}

Data Handling Methods

Data handling methods operate on a collection of elements by reshaping or otherwise reformatting the data. The
Query class provides the following data handling methods: flatten(), unwrap(), and distinct(). For more
information see the data handling methods reference documentation.

The flatten() method serializes a dict or other mapping into list of tuple rows. Let’s start by observing the
structure of a selected dictionary {'B': 'C'}:

>>> select({'B': 'C'})
Query(<squint.Select object at 0x7ffa625b>, {'B': ['C']})
---- preview ----
{'foo': ['20', '30', '10'],
'bar': ['20', '10', '10']}

Now, use the flatten() method to serialize this same selection ({'B': 'C'}) into a list of tuples:

>>> select({'B': 'C'}).flatten()
Query(<squint.Select object at 0x7ffa625b>, {'B': ['C']}).flatten()
---- preview ----
[('foo', '20'), ('foo', '30'), ('foo', '10'),
('bar', '20'), ('bar', '10'), ('bar', '10')]

The unwrap() method unwraps single-element containers and returns the element itself. Multi-element containers
are untouched. Observe the structure of the following preview, {('A', 'B'): 'C'}:

>>> select({('A', 'B'): 'C'})
Query(<squint.Select object at 0x7ffa625b>, {('A', 'B'): ['C']})
---- preview ----
{('x', 'foo'): ['20', '30'],
('y', 'bar'): ['20'],
('y', 'foo'): ['10'],
('z', 'bar'): ['10', '10']}

10 Chapter 1. Documentation

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict

Squint Documentation, Release 0.1.0

Use the unwrap() method to unwrap ['20'] and ['10'] but leave the multi-element lists untouched:

>>> select({('A', 'B'): 'C'}).unwrap()
Query(<squint.Select object at 0x7ffa625b>, {('A', 'B'): ['C']}).unwrap()
---- preview ----
{('x', 'foo'): ['20', '30'],
('y', 'bar'): '20',
('y', 'foo'): '10',
('z', 'bar'): ['10', '10']}

Data Output Methods

Data output methods evaluate the query and return its results. The Query class provides the following data output
methods: fetch(), execute() and to_csv(). For more information see the data output methods reference
documentation.

Use the fetch() method to eagerly evaluate the query and return its results:

>>> select('A').fetch()
['x', 'x', 'y', 'y', 'z', 'z']

Use the execute() method to lazily evaluate the query by returning a Result object:

>>> select('A').execute()
<Result object (evaltype=list) at 0x7fa32d16>

Eager vs Lazy Evaluation

When a query is eagerly evaluated, its elements are all loaded into memory at the same time. But when a query is lazily
evaluated, its individual elements are computed one-at-a-time. See the Using Results tutorial for more information
about eager and lazy evaluation.

Use the to_csv() method to save the query results into a CSV file:

>>> select('A').to_csv('myresults.csv')

Method Chaining

You can build increasingly complex queries by chaining methods together as needed:

>>> def not_z(value):
... return value != 'z'
...
>>> def uppercase(value):
... return str(value).upper()
...
>>> select('A').filter(not_z).map(uppercase).fetch()
['X', 'X', 'Y', 'Y']

In the example above, the filter(), map(), and fetch() methods are chained together to perform multiple
operations within a single statement and then output the data.

Method Order

1.1. Tutorials 11

Squint Documentation, Release 0.1.0

The order of most Query methods can be mixed and matched as needed. But the data output methods—like fetch(),
execute(), and to_csv()—can only appear at the end of a chain, not in the middle of one.

1.1.3 Using Results

The following examples demonstrate squint’s Result class. This document builds on the previous Making Selections
and Building Queries tutorials.

Get Started

We will get started the same way we did in the previous tutorials. Begin by starting the Python interactive prompt in
the same directory as the example.csv file. Once you are at the >>> prompt, import squint and load the data:

>>> import squint
>>> select = squint.Select('example.csv')

Creating a Result Object

Typically, we create Result objects by calling a Query’s execute() method:

>>> select('A').execute()
<Result object (evaltype=list) at 0x7ff5f372>

We can also create Results directly with the following syntax:

>>> iterable = [1, 2, 3, 4, 5]
>>> squint.Result(iterable, evaltype=list)
<Result object (evaltype=list) at 0x7ff5f38d>

The evaltype Attribute

The evaltype attribute—short for “evaluation type”—indicates the type of container that a Result represents:

>>> result = select('A').execute()
>>> result.evaltype
<class 'list'>

Eager Evaluation

When a Result is eagerly evaluated, all of its contents are loaded into memory at the same time. Doing this returns an
container of elements whose type is determined by the Result’s evaltype.

Use the fetch() method to eagerly evaluate the result and get its contents:

>>> result = select('A').execute()
>>> result.fetch()
['x', 'x', 'y', 'y', 'z', 'z']

For many results, eager evaluation is entirely acceptible. But large results might use a lot of memory or even exceed
the memory available on your system.

12 Chapter 1. Documentation

Squint Documentation, Release 0.1.0

Lazy Evaluation

When a Result is lazily evaluated, its individual elements are computed one-at-a-time as they are needed. In fact, the
primary purpose of a Result object is to facilitate lazy evaluation when possible.

Use a for loop to lazily evaluate the result and get its contents:

>>> result = select('A').execute()
>>> for element in result:
... print(element)
...
...
x
x
y
y
z
z

For each iteration of the loop in the above example, the next element is evaluated and the previous element is discarded.
At no point in time do all of the elements occupy memory together.

Note: When lazily evaluating a Result, you are free to check the evaltype but it is never actually used to create an
object of that type.

1.2 How-to Guide

Many of the following sections use the example CSV from the tutorials. You can download it here:

example.csv

1.2.1 How to Install Squint

The Squint package is tested on Python 2.7, 3.4 through 3.8, PyPy, and PyPy3; and is freely available under the Apache
License, version 2.

The easiest way to install squint is to use pip:

pip install squint

To upgrade an existing installation, use the “--upgrade” option:

pip install --upgrade squint

The development repository for squint is hosted on GitHub. If you need bug-fixes or features that are not available
in the current stable release, you can “pip install” the development version directly from GitHub:

pip install --upgrade https://github.com/shawnbrown/squint/archive/master.zip

All of the usual caveats for a development install should apply—only use this version if you can risk some instability
or if you know exactly what you’re doing. While care is taken to never break the build, it can happen.

1.2. How-to Guide 13

https://pip.pypa.io
https://github.com/shawnbrown/squint

Squint Documentation, Release 0.1.0

1.2.2 How To Select Single-Item Inner-Containers

To specify a single-item inner-container, you must provide both inner- and outer-types explicitly.

For example, select single-item sets of elements from column B, [{'B'}]:

>>> import squint
>>>
>>> select = squint.Select('example.csv')
>>>
>>> select([{'B'}])
Query(<squint.Select object at 0x7ff9292f>, [{'B'}])
---- preview ----
[{'foo'}, {'foo'}, {'foo'}, {'bar'}, {'bar'}, {'bar'}]

This is necessary because a single-item container—when used by itself—specifies an outer-container type. You cannot
use the implicit list shorthand demonstrated elsewhere in the documentation.

1.2.3 How To Select Exotic Data Types

Most examples demonstrate the use of squint’s Select class with list, tuple and set types, but it’s possible to use a
wide variety of other containers, too. For instance, frozensets, deques, namedtuples, etc. can be used the
same way you would use any of the previously mentioned types.

For example, select a deque of namedtuple elements from columns A and B, deque([ntup('A', 'B')]):

>>> from collections import deque
>>> from collections import namedtuple
>>> import squint
>>>
>>> select = squint.Select('example.csv')
>>>
>>> ntup = namedtuple('ntup', ['first', 'second'])
>>>
>>> select(deque([ntup('A', 'B')]))
Query(<squint.Select object at 0x7f4cf01c>, deque([ntup(first='A', second='B')]))
---- preview ----
deque([ntup(first='x', second='foo'), ntup(first='x', second='foo'),

ntup(first='y', second='foo'), ntup(first='y', second='bar'),
ntup(first='z', second='bar'), ntup(first='z', second='bar')])

Note: You can mix and match container types as desired, but the normal object limitations still apply. For example,
sets and dictionary keys can only contain immutable types (like str, tuple, frozenset, etc.).

1.3 API Reference

1.3.1 Select

class squint.Select(objs=None, *args, **kwds)
A class to quickly load and select tabular data. The given objs, *args, and **kwds, can be any values supported
by get_reader(). Additionally, objs can be a list of supported objects or a string with shell-style wildcards.
If objs is already a reader-like object, it will be used as is.

14 Chapter 1. Documentation

https://docs.python.org/3/library/stdtypes.html#set
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#frozenset
https://docs.python.org/3/library/collections.html#collections.deque
https://docs.python.org/3/library/collections.html#collections.namedtuple
https://docs.python.org/3/library/collections.html#collections.deque
https://docs.python.org/3/library/collections.html#collections.namedtuple
http://docs.python.org/3/glossary.html#term-immutable
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#frozenset

Squint Documentation, Release 0.1.0

Load a single file:

select = datatest.Select('myfile.csv')

Load a reader-like iterable:

select = datatest.Select([
['A', 'B'],
['x', 100],
['y', 200],
['z', 300],

])

Load multiple files:

select = datatest.Select(['myfile1.csv', 'myfile2.csv'])

Load multple files using a shell-style wildcard:

select = datatest.Select('*.csv')

When multiple sources are loaded into a single Select, data is aligned by fieldname and missing fields receive
empty strings:

load_data(objs, *args, **kwds)
Load data from one or more objects into the Select. The given objs, *args, and **kwds, can be any values
supported by the Select class initialization.

Load a single file into an empty Select:

select = datatest.Select() # <- Empty Select.
select.load_data('myfile.csv')

Add a single file to an already-populated Select:

select = datatest.Select('myfile1.csv')
select.load_data('myfile2.xlsx', worksheet='Sheet2')

Add multiple files to an already-populated Select:

select = datatest.Select('myfile1.csv')
select.load_data(['myfile2.csv', 'myfile3.csv'])

fieldnames
A list of field names used by the data source.

__call__(columns, **where)
After a Select has been created, it can be called like a function to select fields and return an associated
Query object.

The columns argument serves as a template to define the values and data types selected. All columns
selections will be wrapped in an outer container. When a container is unspecified, a list is used as the
default:

select = datatest.Select('example.csv')
query = select('A') # <- selects a list of values from 'A'

1.3. API Reference 15

https://docs.python.org/3/library/stdtypes.html#list

Squint Documentation, Release 0.1.0

When columns specifies an outer container, it must hold only one field—if a given container holds multiple
fields, it is assumed to be an inner container (which gets wrapped in the default outer container):

query = select(('A', 'B')) # <- selects a list of tuple
values from 'A' and 'B'

When columns is a dict, values are grouped by key:

query = select({'A': 'B'}) # <- selects a dict with
keys from 'A' and
values from 'B'

Optional where keywords can narrow the selected data to matching rows. A key must specify the field to
check and a value must be a predicate object (see Predicate for details). Rows where the predicate is a
match are selected and rows where it doesn’t match are excluded:

select = datatest.Select('example.csv')
query = select({'A'}, B='foo') # <- selects only the rows

where 'B' equals 'foo'

See the Making Selections tutorial for step-by-step examples.

create_index(*columns)
Create an index for specified columns—can speed up testing in many cases.

If you repeatedly use the same few columns to group or filter results, then you can often improve perfor-
mance by adding an index for these columns:

select.create_index('town')

Using two or more columns creates a multi-column index:

select.create_index('town', 'postal_code')

Calling the function multiple times will create multiple indexes:

select.create_index('town')
select.create_index('postal_code')

Note: Indexes should be added with discretion to tune a test suite’s over-all performance. Creating several
indexes before testing even begins could lead to longer run times so use indexes with care.

1.3.2 Query

class squint.Query(columns, **where)
class squint.Query(select, columns, **where)

A class to query data from a source object. Queries can be created, modified, and passed around without actually
computing the result—computation doesn’t occur until the query object itself or its fetch() method is called.

The given columns and where arguments can be any values supported by Select.__call__().

Although Query objects are usually created by calling an existing Select, it’s possible to create them inde-
pendent of any single data source:

16 Chapter 1. Documentation

https://docs.python.org/3/library/stdtypes.html#dict

Squint Documentation, Release 0.1.0

query = Query('A')

classmethod from_object(obj)
Creates a query and associates it with the given object.

mylist = [1, 2, 3, 4]
query = Query.from_object(mylist)

If obj is a Query itself, a copy of the original query is created.

AGGREGATE METHODS

Aggregate methods operate on a collection of elements and produce a single result.

sum()
Get the sum of non-None elements.

avg()
Get the average of non-None elements. Strings and other objects that do not look like numbers are inter-
preted as 0.

min()
Get the minimum value from elements.

max()
Get the maximum value from elements.

count()
Get the count of non-None elements.

FUNCTIONAL METHODS

Functional methods take a user-provided function and use it to perform a specified procedure.

apply(function)
Apply function to entire group keeping the resulting data. If element is not iterable, it will be wrapped as
a single-item list.

map(function)
Apply function to each element, keeping the results. If the group of data is a set type, it will be converted
to a list (as the results may not be distinct or hashable).

filter(predicate=True)
Filter elements, keeping only those values that match the given predicate. When predicate is True, this
method keeps all elements for which bool returns True (see Predicate for details).

reduce(function, initializer_factory=None)
Reduce elements to a single value by applying a function of two arguments cumulatively to all elements
from left to right. If the optional initializer_factory is present, it is called without arguments to provide a
value that is placed before the items of the sequence in the calculation, and serves as a default when the
sequence is empty. If initializer_factory is not given and sequence contains only one item, the first item is
returned.

starmap(function)

DATA HANDLING METHODS

Data handling methods operate on a collection of elements by reshaping or otherwise reformatting the data.

distinct()
Filter elements, removing duplicate values.

1.3. API Reference 17

https://docs.python.org/3/library/functions.html#bool

Squint Documentation, Release 0.1.0

flatten()
Flatten dictionary into list of tuple rows. If data is not a dictionary, the original values are returned un-
changed.

unwrap()
Unwrap single-item sequences or sets.

DATA OUTPUT METHODS

Data output methods evaluate the query and return its results.

execute(source=None, optimize=True)
A Query can be executed to return a single value or an iterable Result appropriate for lazy evaluation:

query = source('A')
result = query.execute() # <- Returns Result (iterator)

Setting optimize to False turns-off query optimization.

fetch()
Executes query and returns an eagerly evaluated result.

to_csv(file, fieldnames=None, **fmtparams)
Execute the query and write the results as a CSV file (dictionaries and other mappings will be seralized).

The given file can be a path or file-like object; fieldnames will be printed as a header row; and fmtparams
can be any values supported by csv.writer().

When fieldnames are not provided, names from the query’s original columns argument will be used if the
number of selected columns matches the number of resulting columns.

1.3.3 Result

class squint.Result(iterable, evaltype, closefunc=None)
A simple iterator that wraps the results of Query execution. This iterator is used to facilitate the lazy evaluation
of data objects (where possible) when asserting data validity.

Although Result objects are usually constructed automatically, it’s possible to create them directly:

iterable = iter([...])
result = Result(iterable, evaltype=list)

Warning: When iterated over, the iterable must yield only those values necessary for constructing an
object of the given evaltype and no more. For example, when the evaltype is a set, the iterable must not
contain duplicate or unhashable values. When the evaltype is a dict or other mapping, the iterable must
contain unique key-value pairs or a mapping.

evaltype
The type of instance returned by the fetch method.

fetch()
Evaluate the entire iterator and return its result:

result = Result(iter([...]), evaltype=set)
result_set = result.fetch() # <- Returns a set of values.

18 Chapter 1. Documentation

https://docs.python.org/3/library/csv.html#csv.writer
https://docs.python.org/3/library/stdtypes.html#dict

Squint Documentation, Release 0.1.0

When evaluating a dict or other mapping type, any values that are, themselves, Result objects will
also be evaluated.

__wrapped__
The underlying iterator—useful when introspecting or rewrapping.

1.3.4 Predicate

Squint can use Predicate objects for narrowing and filtering selections.

class squint.Predicate(obj, name=None)
A Predicate is used like a function of one argument that returns True when applied to a matching value and
False when applied to a non-matching value. The criteria for matching is determined by the obj type used to
define the predicate:

obj type matches when
function the result of function(value) tests as True
type value is an instance of the type
re.
compile(pattern)

value matches the regular expression pattern

True value is truthy (bool(value) returns True)
False value is falsy (bool(value) returns False)
str or non-container value is equal to the object
set value is a member of the set
tuple of predicates tuple of values satisfies corresponding tuple of predicates—each according to

their type
... (Ellipsis literal) (used as a wildcard, matches any value)

Example matches:

1.3. API Reference 19

https://docs.python.org/3/library/stdtypes.html#dict

Squint Documentation, Release 0.1.0

obj example value matches

def iseven(x):
return x % 2 == 0

4 Yes

9 No

float
1.0 Yes

1 No

re.compile('[bc]ake')
'bake' Yes
'cake' Yes
'fake' No

True
'x' Yes

'' No

False
'' Yes

'x' No

'foo'
'foo' Yes

'bar' No

{'A', 'B'}
'A' Yes

'C' No

('A', float)
('A', 1.0) Yes

('A', 2) No

('A', ...)

Uses ellipsis wildcard.

('A', 'X') Yes

('A', 'Y') Yes
('B', 'X') No

Example code:

>>> pred = Predicate({'A', 'B'})
>>> pred('A')
True
>>> pred('C')
False

Predicate matching behavior can also be inverted with the inversion operator (~). Inverted Predicates return
False when applied to a matching value and True when applied to a non-matching value:

>>> pred = ~Predicate({'A', 'B'})
>>> pred('A')
False
>>> pred('C')
True

If the name argument is given, a __name__ attribute is defined using the given value:

>>> pred = Predicate({'A', 'B'}, name='a_or_b')
>>> pred.__name__
'a_or_b'

If the name argument is omitted, the object will not have a __name__ attribute:

20 Chapter 1. Documentation

Squint Documentation, Release 0.1.0

>>> pred = Predicate({'A', 'B'})
>>> pred.__name__
Traceback (most recent call last):
File "<input>", line 1, in <module>

pred.__name__
AttributeError: 'Predicate' object has no attribute '__name__'

1.3. API Reference 21

Squint Documentation, Release 0.1.0

22 Chapter 1. Documentation

CHAPTER 2

Other Resources

• Squint on PyPI

• Squint on GitHub

23

https://pypi.org/project/squint/
https://github.com/shawnbrown/squint

Squint Documentation, Release 0.1.0

24 Chapter 2. Other Resources

Python Module Index

s
squint, 1

25

Squint Documentation, Release 0.1.0

26 Python Module Index

Index

Symbols
__call__() (squint.Select method), 15
__wrapped__ (squint.Result attribute), 19

A
apply() (squint.Query method), 17
avg() (squint.Query method), 17

C
count() (squint.Query method), 17
create_index() (squint.Select method), 16

D
distinct() (squint.Query method), 17

E
evaltype (squint.Result attribute), 18
execute() (squint.Query method), 18

F
fetch() (squint.Query method), 18
fetch() (squint.Result method), 18
fieldnames (squint.Select attribute), 15
filter() (squint.Query method), 17
flatten() (squint.Query method), 17
from_object() (squint.Query class method), 17

L
load_data() (squint.Select method), 15

M
map() (squint.Query method), 17
max() (squint.Query method), 17
min() (squint.Query method), 17

P
Predicate (class in squint), 19

Q
Query (class in squint), 16

R
reduce() (squint.Query method), 17
Result (class in squint), 18

S
Select (class in squint), 14
squint (module), 1
starmap() (squint.Query method), 17
sum() (squint.Query method), 17

T
to_csv() (squint.Query method), 18

U
unwrap() (squint.Query method), 18

27

	Documentation
	Tutorials
	How-to Guide
	API Reference

	Other Resources
	Python Module Index
	Index

