
Squash Keyword Framework
Documentation

squahstest

Apr 08, 2020

Contents

1 Getting started 1
1.1 An example to begin with . 1
1.2 An example to go further . 14

2 Introduction to Squash Keyword Framework (SKF) 29
2.1 Automated Project Structure . 29
2.2 Test Case . 30
2.3 Macros . 31

3 Create a new SKF automation Project 33
3.1 Create a Squash TF Project with IntelliJ . 33
3.2 Create a Squash TF Project with Squash TA Toolbox . 39
3.3 Create a Squash TF Project using a command line . 47
3.4 Default SKF automation project pom.xml . 52

4 Writing tests 57
4.1 Sections . 57
4.2 Resource Components . 60
4.3 Macros . 64
4.4 Ecosystem . 67
4.5 Writing tests - Advanced Users . 71

5 Execution and Reporting 87
5.1 Logging . 87
5.2 Tests Execution and Reporting . 88
5.3 List tests in an SKF project . 109
5.4 Check TF metadata in project . 113

6 SKF Plugins 117
6.1 Commons component plugin . 117
6.2 Database Plugin . 160
6.3 Filechecker Plugin . 235
6.4 FTP Plugin . 255
6.5 JUnit Plugin . 272
6.6 Local process Plugin . 280
6.7 MEN XML Checker Plugin . 299
6.8 SAHI Plugin . 306

i

6.9 Selenium Plugin . 313
6.10 Selenium Plugin Legacy . 321
6.11 SoapUI Plugin . 333
6.12 SSH/SFTP Plugin . 342
6.13 XML Functions Plugin . 350

7 Tutorials 365
7.1 Automated Tests Rudiments . 365

8 Overview 373

9 A small example to illustrate 375

10 SKF benefits 377

ii

CHAPTER 1

Getting started

1.1 An example to begin with

Contents :

• Create a project

• Configure database

• Create SKF script

• Execute an SQL script to create a table in database

• Populate the database table with a DbUnit dataset

• Test that our table contains expected data with a DbUnit dataset

• Test that our table contains all the expected data

• Clean the database

In this example, we will show you a simple SKF script that uses macros to do tests against an H2 database in embedded
mode.

1

Squash Keyword Framework Documentation

1.1.1 Create a project

First of all you need to open your favorite IDE and create a new maven project with squash-ta-archetype.

If you don’t know how to generate a maven archetype, you can follow our guide.

Delete all the samples in the folders of the generated project. Just keep the structure :

1.1.2 Configure database

For the database, you need to add the following dependency to your POM file :

2 Chapter 1. Getting started

Squash Keyword Framework Documentation

<dependencies>
<dependency>

<groupId>com.h2database</groupId>
<artifactId>h2</artifactId>
<version>1.3.176</version>

</dependency>
</dependencies>

Your POM file should look like this :

In the targets folder (be careful about the name, targets != target), you need to create a .properties file.

The .properties file should have the following properties :

• #!db : The shebang to indicate that this file contains informations about a database.

• squashtest.ta.database.driver : The driver to be used.

• squashtest.ta.database.url : The path to the database.

• squashtest.ta.database.username (optional, not used in our example) : The username to use to connect to the
database.

• squashtest.ta.database.password (optional, not used in our example) : The password to use to connect to the
database.

In our example, it will be as follow :

#!db
squashtest.ta.database.driver=org.h2.Driver
squashtest.ta.database.url=jdbc:h2:file:target/database/myH2

.properties file to connect to a database :

1.1. An example to begin with 3

Squash Keyword Framework Documentation

1.1.3 Create SKF script

In tests folder create a .ta file.

In this file, write down :

SETUP :

TEST :

TEARDOWN :

We will use those 3 phases in our example.

1.1.4 Execute an SQL script to create a table in database

First of all, during the SETUP phase, we want te create a new table in our H2 database.

To do so, we need to create a .sql script file in resources folder. It’s good practice to create different subfolders for
each type of resources (sql, selenium, soapui, etc).

Here is the script :

DROP TABLE IF EXISTS PETS_STORE;

CREATE TABLE PETS_STORE (
ID INT NOT NULL,
ANIMAL VARCHAR(45) NULL,

(continues on next page)

4 Chapter 1. Getting started

Squash Keyword Framework Documentation

(continued from previous page)

COLOR VARCHAR(45) NULL,
QUANTITY INT NULL,
PRIMARY KEY (id)

);

In the SKF script, add the following macro to your SETUP phase :

EXECUTE_SQL_SCRIPT {file} ON {database} AS {result}

{file} : The SQL script, we have just created. Give the path of the file in the resources folder.

1.1. An example to begin with 5

Squash Keyword Framework Documentation

{database} : The database we want to operate the script on. Give the name of the .properties file you have created
in the targets folder (without the .properties extension).

{result} : A free identifier for the result. As the ‘execute’ command with an sql script return an empty resource,
this result resource will also be empty.

1.1.5 Populate the database table with a DbUnit dataset

The populate the table, we will use a DbUnit dataset.

Create an .xml file in resources folder. You should also create a dbunit subfolder.

In this file, write down the following :

<?xml version="1.0" encoding="UTF-8"?>

<dataset>
<PETS_STORE ID="1" ANIMAL="cat" COLOR="black" QUANTITY="4"/>
<PETS_STORE ID="2" ANIMAL="cat" COLOR="white" QUANTITY="2"/>
<PETS_STORE ID="3" ANIMAL="cat" COLOR="grey" QUANTITY="5"/>
<PETS_STORE ID="4" ANIMAL="cat" COLOR="red hair" QUANTITY="2"/>
<PETS_STORE ID="5" ANIMAL="cat" COLOR="invisible" QUANTITY="0"/>

</dataset>

In the SKF script, add the following macro to your SETUP phase :

INSERT_DBUNIT {dataset} INTO {database}

{dataset} : The .xml, we have just created. Give the path of the file in the resources folder.

6 Chapter 1. Getting started

Squash Keyword Framework Documentation

{database} : The database we want to operate the script on. Give the name of the .properties file you have created
in the targets folder (without the .properties extension).

1.1.6 Test that our table contains expected data with a DbUnit dataset

First we will do an incorrect dataset so that the assertion executed by the script fails.

Create a new .xml file in the resources/dbunit folder.

Write down the following dataset :

<?xml version="1.0" encoding="UTF-8"?>

<dataset>
<PETS_STORE ID="1" ANIMAL="cat" COLOR="black" QUANTITY="4"/>
<PETS_STORE ID="2" ANIMAL="cat" COLOR="green" QUANTITY="2"/>

</dataset>

In the SKF script, add the following macro to your TEST phase :

ASSERT_DBUNIT TARGET {database} CONTAINS {dataset}

Now we are going to execute th script. Use the following maven command to build your project :

mvn squash-ta:run

1.1. An example to begin with 7

Squash Keyword Framework Documentation

After the execution, an HTML report is generated. It can give further details about the reason of the failure.

You can access this report in target/squashTA/html-reports folder :

Open this report with the web browser of your choice :

You can the diffrences between the dataset and the database by opening EXECUTION_REPORT-diff in the attach-
ments :

Now we are going to create a new .xml file with a correct dataset :

<?xml version="1.0" encoding="UTF-8"?>

<dataset>
<PETS_STORE ID="1" ANIMAL="cat" COLOR="black" QUANTITY="4"/>
<PETS_STORE ID="2" ANIMAL="cat" COLOR="white" QUANTITY="2"/>

</dataset>

8 Chapter 1. Getting started

Squash Keyword Framework Documentation

1.1. An example to begin with 9

../_static/getting-started/example-to-begin-with/html-report-build-failure-assert-contains.png

Squash Keyword Framework Documentation

Don’t forget to change the dataset used in the SKF script :

If you execute the script again, you should have a build SUCCESS.

1.1.7 Test that our table contains all the expected data

As in the previous example, we will start with an incorrect dataset.

Create a new .xml file in the resources/dbunit folder and write down the following dataset :

<?xml version="1.0" encoding="UTF-8"?>

<dataset>
<PETS_STORE ID="1" ANIMAL="cat" COLOR="black" QUANTITY="4"/>
<PETS_STORE ID="2" ANIMAL="cat" COLOR="white" QUANTITY="2"/>
<PETS_STORE ID="3" ANIMAL="cat" COLOR="grey" QUANTITY="5"/>
<PETS_STORE ID="4" ANIMAL="cat" COLOR="red hair" QUANTITY="2"/>

</dataset>

The invisible cat is missing.

In the SKF script, add the following macro to your TEST phase :

10 Chapter 1. Getting started

Squash Keyword Framework Documentation

ASSERT_DBUNIT TARGET {database} EQUALS {dataset}

Execute the script. You should have a build failure with the following error :

You can open the HTML report to have more details :

In SKF script, change the dataset in the last macro and use the first one we created to populate the table :

If you execute the script again, you should have a build SUCCESS.

1.1.8 Clean the database

The last thing we want to do is to clean the database after the execution of the test.

In SKF script, add the following macro in TEARDOWN phase :

DELETE_DBUNIT {dataset} FROM {database}

1.1. An example to begin with 11

Squash Keyword Framework Documentation

12 Chapter 1. Getting started

../_static/getting-started/example-to-begin-with/html-report-build-failure-assert-equals.

Squash Keyword Framework Documentation

1.1. An example to begin with 13

Squash Keyword Framework Documentation

1.2 An example to go further

Contents:

• User Story

• Pre-requisites

• Context

• Structure of the test file (or SKF script)

• Create a project

• Interact with the database

• Create an SKF Script

• Change host address

• Test the webservice

• Clean the database

• Execution

• Reporting

1.2.1 User Story

We want to test a few web services in a SUT (System Under Test).

In order to test the web services, we’ll also need to inject some SQL.

Since we want to be able to use our test wherever we want, we can change the host address easily.

Our web service testing tool will be SoapUI.

To end our test, we should clean the database.

1.2.2 Pre-requisites

You will need docker and docker-compose installed on your system.

In our example, we’ll be running docker on a Linux system. The rest of the example can be executed on any OS.

14 Chapter 1. Getting started

https://docs.docker.com/install/
https://docs.docker.com/compose/install/

Squash Keyword Framework Documentation

1.2.3 Context

The SUT is jacksonviews. It’ll be deployed with docker and coupled with a pgSQL 10 database that’ll be automatically
downloaded during the docker-compose.

Download the compressed image of the jacksonviews, available here. Open a shell in the directory where the com-
pressed image is located and decompress it with the following command (Linux) :

tar xvf jackson_image.tar

Once untarred, just run the following commands :

sudo docker load -i jacksonviews.tar
sudo docker-compose -f docker/app.yml up -d

The SUT will then be available on any OS at : http://{host address}:8080

1.2.4 Structure of the test file (or SKF script)

First of all, we should think about how to organize our test file.

Let’s start with the user story.

Our main goal is to test the web services, so that’ll be the TEST phase.

In order to test it correctly, we’ll need a few dataset and specify the host where the SUT is available. That’ll be the
SETUP phase.

The clean up comes after the test phase, it is used just to rollback to the initial status. That’ll be the TEARDOWN
phase.

Additionally, if the test file is to be automated via a test management platform (for example Squash TM), we’ll need a
section named METADATA to store the credentials.

Phases: We want to test a few web services in SUT (System Under Test):
META-
DATA

To associate this test script with a Test case in a Test Management platform.

SETUP In order to test the web services, we’ll need to inject some SQL.
To use our test wherever we want, we can easily change host address.

TEST Our web service testing tool will be SoapUI.
TEAR-
DOWN

To end our test, we should clean the database.

1.2. An example to go further 15

http://repo.squashtest.org/acceptance/jackson_image.tar

Squash Keyword Framework Documentation

1.2.5 Create a project

Let’s start with a clean project. You can use the squash-ta archetype with the latest version.

If you don’t know how to generate a maven archetype, you can follow our guide.

You can delete all the samples in the generated project, just keep the structure.

Fig. 1: Fig 1. Clean SKF project

16 Chapter 1. Getting started

Squash Keyword Framework Documentation

1.2.6 Interact with the database

“In order to test the web services, we’ll need to inject some SQL.”

To interact with a database, we’ll need three things.

The first one is a .properties file put in the targets folder (be careful about the name, targets != target).

The .properties file should have the following properties :

• #!db : The shebang to indicate that this file contains informations about a database.

• squashtest.ta.database.driver : The driver to be used.

• squashtest.ta.database.url : The path to the database.

• squashtest.ta.database.username : The username to use to connect to the database.

• squashtest.ta.database.password (optional, not used in our example) : The password to use to
connect to the database.

In our example, it will be as follow :

#!db
squashtest.ta.database.driver=org.postgresql.Driver
squashtest.ta.database.url=jdbc:postgresql://{host_address}:5432/jacksonviews
squashtest.ta.database.username=jacksonviews

Fig. 2: Fig 2. .properties file to connect to a database

The second one is of course the query to use in the database.

We can define it inline (directly in the macro) or we can put it in a file that’ll be loaded by the macro.

In general, it’s better to put it in a file for readability and to facilitate changes.

In this case, we’ll use the .sql file (both options will be shown later during the TEST phase).

We just need to create a .sql file in the resources folder and write all the queries inside.

In our example, we’ll insert a row in the table jac_contact of our database by adding the following line to
add_contact.sql :

INSERT INTO jac_contact VALUES (1, 'John', 'Smith', 'foo@foo.foo', 39);

It’s good practice to create different subfolders for each type of resources (sql, selenium, soapui, etc).

The third one is to add the jdbc driver to the pom.xml.

1.2. An example to go further 17

Squash Keyword Framework Documentation

Fig. 3: Fig 3. Contact table in the Db

Fig. 4: Fig 4. .sql file containing the query

18 Chapter 1. Getting started

Squash Keyword Framework Documentation

It’s of course dependent of the database. In our case it’ll be pgSQL.

The dependency is in the squash-ta-maven-plugin declaration.

<dependencies>
<dependency>

<groupId>org.postgresql</groupId>
<artifactId>postgresql</artifactId>
<version>42.2.5</version>

</dependency>
</dependencies>

Fig. 5: Fig 5. Dependency to add in the pom.xml

1.2.7 Create an SKF Script

Now that we have all the prerequisites, we can create our first .ta script.

Since all the test files should be in the tests folder, this one is no exception.

The first thing to do is to add the SETUP phase that’ll be used before the test itself to add the necessary data.

1.2. An example to go further 19

Squash Keyword Framework Documentation

We can then use the following macro to execute the query on the database :

EXECUTE_SQL sql/add_contact.sql ON jacksonviews-db AS query_result

• sql/add_contact.sql : The .sql file with the query

• jacksonviews-db : The .properties file in the targets folder to specify the database

• query_result : The result of the query

Fig. 6: Fig 6. EXECUTE_SQL macro in .ta file

For more informations on the macro, please check the following page.

1.2.8 Change host address

“To use our test wherever we want, we can easily change host address.”

To change the host address, we will add the following macro to the SETUP phase of our script :

SUBSTITUTE KEYS IN {files} USING {key_value_list} AS {processed_files}

For more information, please check the following page.

We’ll need this macro to change the SoapUI XML project that’ll be used later for the TEST phase.

Let’s add the SoapUI project to our resources folder. You can copy the content of this file in a JacksonviewsAPI-
project.xml (or right-click and save it) and use it for our example.

Just like the .sql, it’s good practice to put it in a subfolder (a soapui folder in our example).

To perform the substitution of the host address specified in the project’s xml file, we added placeholders defined with
$(key_name), and the value will be stored in a key=value list that can be defined inline or in a .properties file.

In our case we’ll make a host_info.properties that we’ll place at the base of the resources folder, and specify the host
address :

20 Chapter 1. Getting started

../_static/getting-started/JacksonviewsAPI-project.xml

Squash Keyword Framework Documentation

Fig. 7: Fig 7. SoapUI project location

1.2. An example to go further 21

Squash Keyword Framework Documentation

Fig. 8: Fig 8. SoapUI project with placeholders

Fig. 9: Fig 9. .properties file with the values needed for the substitute keys macro

22 Chapter 1. Getting started

Squash Keyword Framework Documentation

You need to change the URL in the jacksonviews-db.properties directly, or specify it as an option during the Maven
execution with the following syntax :

-Dfilename_without_type.property=value

For example :

-Djacksonviews-db.squashtest.ta.database.url=jdbc:postgresql://192.168.0.178:5432/jacksonviews

We can now add the SUBSTITUTE KEYS macro to the .ta file, after the execution macro in the SETUP phase.

SUBSTITUTE KEYS IN soapui/JacksonviewsAPI-project.xml USING host_info.properties AS modified-soap

• soapui/JacksonviewsAPI-project.xml : The SoapUI project exported in XML.

• host_info.properties : Property file with the key=value to use by the macro.

• modified-soap : Result of the instruction.

If you’d rather indicate the key=value inline, you can use the following syntax :

SUBSTITUTE KEYS IN soapui/JacksonviewsAPI-project.xml USING $(host_address=192.168.0.79) AS
modified-soap

In the case of multiple key=value, we need to add an “\n” to indicate each newline.

For example :

$(host_address=192.168.0.79 \n my_second_key=my_second_value)

You should now have the following script :

1.2.9 Test the webservice

“Our web service testing tool will be SoapUI.”

The SETUP phase is finished, we can now begin the TEST phase.

We can execute our SoapUI project with the following macro :

EXECUTE_SOAPUI modified-soap

1.2. An example to go further 23

Squash Keyword Framework Documentation

• modified-soap : The result from the SUBSTITUTE KEYS macro with the right URL to connect to the
API.

The SoapUI project use the getContact API to check that all the informations added through the SQL query are
available.

Fig. 10: Fig 10. Test phase with an EXECUTE_SOAPUI

For more information, check the following page.

1.2.10 Clean the database

“To end our test, we should clean the database.”

We’re now trying to clean our past operations. That’s the TEARDOWN phase.

The target property is already created so we just need to create a .sql file.

In our examle, we’ll delete the row we created in the table jac_contact of our database during the SETUP phase by
adding the following line to delete_contact.sql :

DELETE FROM jac_contact WHERE id=1;

We can then call the macro, just like in the SETUP phase :

EXECUTE_SQL sql/delete_contact.sql ON jacksonviews-db AS teardown_result

24 Chapter 1. Getting started

Squash Keyword Framework Documentation

Fig. 11: Fig 11. .sql for the TEARDOWN phase

Fig. 12: Fig 12. TEARDOWN phase in a .ta script

1.2. An example to go further 25

Squash Keyword Framework Documentation

1.2.11 Execution

The test is now finished.

We can start the test by typing the following command in a shell window opened at the base of your project (where
the pom.xml is located) :

mvn squash-ta:run

We should have a build success.

1.2.12 Reporting

The report will then be generated in the target (and not targets) folder, more specifically in target/squashTA/html-
reports/squash-ta-report.html.

26 Chapter 1. Getting started

Squash Keyword Framework Documentation

Fig. 13: Fig 13. Reports location

1.2. An example to go further 27

Squash Keyword Framework Documentation

Fig. 14: Fig 14. HTML Report

28 Chapter 1. Getting started

../_static/getting-started/example-html-report.png

CHAPTER 2

Introduction to Squash Keyword Framework (SKF)

Contents :

• Automated Project Structure

• Test Case

• Macros

In order to create and maintain your SKF test cases you need several tools. To simplify the installation process, we
have bundled these tools into Squash TA Toolbox. The installation of Squash TA Toolbox is described here.

In order to execute your test cases you need Squash Keyword Framework, which is NOT part of the toolbox. No
need to install it though as it will be automatically downloaded and installed the first time you will try to run an SKF
test (Squash Keyword Framework is integrated as a maven plugin, as we will see later on).

2.1 Automated Project Structure

An SKF automated project is a Maven Project and must have the following structure :

The root of the Squash TF files is the src/squashTA directory. It is subdivided in 5 subdirectories :

29

Squash Keyword Framework Documentation

• The tests directory contains SKF test scripts (Files ‘.ta’).

• The targets directory contains configuration files to define the tested systems (Files ‘.properties’).

• The shortcuts directory is used to define macros (Files ‘.macro’).

• The resources directory contains all resources used by test scripts (test data, third party tools, configuration
files, . . .).

• The repositories directory contains definitions of the resources library of the automated project (Files
‘.properties’).

‘pom.xml’ (Project Object Model) is the configuration file of a Maven Project.

2.2 Test Case

In an SKF automated project all test cases must be in the tests directory of the project (or in a subdirectory of this
directory).

A test case is described within a file named SKF script. The extension of the file to use is ‘.ta’. An SKF script
represents a test case.

The script names ‘setup.ta’ and ‘teardown.ta’ are reserved names for the ecosystem setup and teardown phases (see
here).

A test case can contain 3 phases :

• A setup phase (optional) : Used to initiate the test case and to be sure that all necessary conditions to execute
the test are gathered.

• A test phase (mandatory) : Contains the different test steps of the test case.

30 Chapter 2. Introduction to Squash Keyword Framework (SKF)

Squash Keyword Framework Documentation

• A teardown phase (optional) : Generally used to clean-up the actions of the test case and so to prepare the
environement for the next test case.

2.3 Macros

Each phase of a test case is comprised of discreet instruction lines.

Most often these instuctions are written as macros that contain a sequence of instructions functionally linked.

Macro files all have the extension ‘.macro’. Some are provided with the SKF but you can always write your own cus-
tom macros as described here. User created macros are to be placed in the shortcuts directory or its subdirectories.

Macros are parametrized for each use by the user with inputs, and depending on the instructions, an output and other
resources needed to execute their instructions set.

For example, the following macro is used to execute an SQL query (written on a ‘.sql’ file in the resources
directory) on a target database db, with the resource result defined as the output of the process.

In this example the black parts of the macro are fixed and the green parts are parameters filled by the user :

• The red parameter is an input. It is the relative path (to the ‘resources’ folder) to the ‘.sql’ file which will be
executed by the macro.

• The yellow parameter is also an input. This resource represents a database which will be the target of the SQL
script.

• The blue parameter is the output. The resource will contain the result of the SQL query written in the SQL
script.

2.3. Macros 31

Squash Keyword Framework Documentation

32 Chapter 2. Introduction to Squash Keyword Framework (SKF)

CHAPTER 3

Create a new SKF automation Project

As SKF is a maven plugin, the best way to create a new SKF automation project is to use the SKF project archetype.
When you do so, Maven creates a new SKF automation project for you. Later on, when you first run your tests, Maven
will download the SKF execution engine and its dependencies.

3.1 Create a Squash TF Project with IntelliJ

Contents :

• Pre-requisites

• Creating your Squash TF project

3.1.1 Pre-requisites

If you are using a Maven > 3.0.0, you’ll need to add the following section to your settings.xml (located in the conf
directory of your Maven folder, or in \plugins\maven\lib\maven3\conf in your IntelliJ directory for the bundled
version) :

<profiles>
<profile>

<repositories>
<repository>

(continues on next page)

33

Squash Keyword Framework Documentation

(continued from previous page)

<snapshots>
<enabled>false</enabled>

</snapshots>
<id>archetype</id>
<name>squashTA</name>
<url>http://repo.squashtest.org/maven2/releases/</url>

</repository>
</repositories>
<pluginRepositories>

<pluginRepository>
<snapshots>

<enabled>false</enabled>
</snapshots>
<id>squashTA</id>
<name>squashTA</name>
<url>http://repo.squashtest.org/maven2/releases/</url>

</pluginRepository>
</pluginRepositories>
<id>squashTA</id>

</profile>
</profiles>
<activeProfiles>

<activeProfile>squashTA</activeProfile>
</activeProfiles>

Add the following to your file :

<?xml version="1.0" encoding="UTF-8"?>
<settings xmlns="http://maven.apache.org/SETTINGS/1.0.0"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://maven.apache.org/SETTINGS/1.0.0 http://maven.

→˓apache.org/xsd/settings-1.0.0.xsd">

<profiles>
<profile>

<repositories>
<repository>

<snapshots>
<enabled>false</enabled>

</snapshots>
<id>archetype</id>
<name>squashTA</name>
<url>http://repo.squashtest.org/maven2/releases/</url>

</repository>
</repositories>
<pluginRepositories>

<pluginRepository>
<snapshots>

<enabled>false</enabled>
</snapshots>
<id>squashTA</id>
<name>squashTA</name>
<url>http://repo.squashtest.org/maven2/releases/</url>

</pluginRepository>
</pluginRepositories>
<id>squashTA</id>

</profile>
(continues on next page)

34 Chapter 3. Create a new SKF automation Project

Squash Keyword Framework Documentation

3.1. Create a Squash TF Project with IntelliJ 35

Squash Keyword Framework Documentation

(continued from previous page)

</profiles>
<activeProfiles>

<activeProfile>squashTA</activeProfile>
</activeProfiles>

</settings>

3.1.2 Creating your Squash TF project

Launch IntelliJ IDEA then click on “Create New Project” :

Select in the left column the Maven type then check the “Create from archetype” box.

Click on “Add Archetype. . . ” to add the one needed.

Insert the following informations :

• GroupId : org.squashtest.ta

• ArtifactId : squash-ta-project-archetype

• Version : You can check the last version of the Squash Keyword Framework on our website

• Repository : http://repo.squashtest.org/maven2/releases (Only if your Maven is < 3.0.0)

36 Chapter 3. Create a new SKF automation Project

https://www.squashtest.com/telechargements

Squash Keyword Framework Documentation

3.1. Create a Squash TF Project with IntelliJ 37

Squash Keyword Framework Documentation

38 Chapter 3. Create a new SKF automation Project

Squash Keyword Framework Documentation

Select the newly created archetype and click on “Next”.

Insert your groupId, ArtifactId, Version, and click on “Next”.

Select your Maven. It should be the one with the repository in the settings.xml. Click on “Next”.

Select a project name and location, and click on “Finish”.

You may need to wait a little bit.

You should have a build success and the following structure :

3.2 Create a Squash TF Project with Squash TA Toolbox

3.2. Create a Squash TF Project with Squash TA Toolbox 39

Squash Keyword Framework Documentation

40 Chapter 3. Create a new SKF automation Project

Squash Keyword Framework Documentation

3.2. Create a Squash TF Project with Squash TA Toolbox 41

Squash Keyword Framework Documentation

Contents :

• Pre-requisites

• Creating your Squash TF project

3.2.1 Pre-requisites

You need to have the Squash TA toolbox installed on your workstation. The toolbox is packaged with Eclipse and the
m2eclipse plugin.

You can download and install it, as described here.

3.2.2 Creating your Squash TF project

Let’s start a dedicated Eclipse instance by clicking on the “Squash-TA Eclipse” icon on your desktop.

Confirm that you want to use your newly created workspace.

It is important to use this workspace because it contains specific archetypes for your projects and run configurations
for your test scripts.

When Eclipse is started, we will create a new Squash TF project as follows :

• Select File > New > Maven Project :

• In the “New Maven Project” dialog window that opens, click on Next :

• Select the Squash-TF project maven archetype with Artifact id squash-ta-project-archetype :

42 Chapter 3. Create a new SKF automation Project

https://squash-tf.readthedocs.io/en/latest/development-tools/squash-ta-toolbox/squash-ta-toolbox-install.html

Squash Keyword Framework Documentation

3.2. Create a Squash TF Project with Squash TA Toolbox 43

Squash Keyword Framework Documentation

• If you can’t find this archetype or wish to create your own you can instead add it from scratch as
follows :

– Click on the Add Archetype button :

– Enter the following values :

* Archetype Group ID : org.squashtest.ta

* Archetype Artifact ID : squash-ta-project-archetype

* Archetype Version : You can check the last version of the Squash Keyword Frame-
work on our website

* Repository URL : http://repo.squashtest.org/maven2/releases/

– Confirm by clicking on the OK button :

44 Chapter 3. Create a new SKF automation Project

https://www.squashtest.com/telechargements

Squash Keyword Framework Documentation

• Then, select the archetype (it has appeared in the archetype list) and uncheck the Show the last
version of Archetype only option. In the Catalog list at the top of the window, choose Default
local. Click on Next to go to the next page :

• On the next screen, (wether you used a provided or custom archetype), you are describing your new
test project :

– The Group Id is the name of the broader software package your test automation project belongs
to. In our example we will use org.squashtest.tutorial as group Id.

– The Artifact Id is the specific name of your test project. Let’s use my.squash.tf.project as
artifact id.

– Finally, we will use the 1.0 version number, and ignore the field package which is not relevant
for Squash-TF projects.

• Now just launch project creation by clicking on the Finish button :

• The newly created test project appears in the explorer :

Note: If you encounter some difficulties to create your new TF project through the Squash TF project archetype in
Eclipse, please try the command-line method.

3.2. Create a Squash TF Project with Squash TA Toolbox 45

Squash Keyword Framework Documentation

46 Chapter 3. Create a new SKF automation Project

Squash Keyword Framework Documentation

3.3 Create a Squash TF Project using a command line

You can create the Squash TF project with a maven command-line, then import it into your preferred IDE.

Open a shell window at the location where you want your project created and execute the following command line :

mvn archetype:generate -DarchetypeGroupId=org.squashtest.ta -
→˓DarchetypeArtifactId=squash-ta-project-archetype -DarchetypeVersion={SKF version} -
→˓DarchetypeRepository=http://repo.squashtest.org/maven2/releases

Note : Do not forget to replace the {SKF version} with the last version of the Squash Keyword Framework. You can
check it on our website

• At the prompt, enter the desired groupId (in our example, org.squashtest.tutorial).

• Next, enter the desired artifactId (here, my.squash.ta.project).

• Next, enter the version (here, 1.0).

• Skip the next, irrelevant, prompt about java packages and you can check the parameters and confirm
them with y if it’s OK.

After the execution of the archetype, you should have the following :

Now, you can close the shell window and import the project into your IDE (Eclipse in the following example) :

• Select menu File > Import. . . , then Maven > Existing Maven Projects. Click on Browse and go to the newly
created project directory (in our example C:\Workspace\my.squash.tf.project) :

• Click on OK, then Finish to complete the project import operation :

3.3. Create a Squash TF Project using a command line 47

https://www.squashtest.com/telechargements

Squash Keyword Framework Documentation

48 Chapter 3. Create a new SKF automation Project

Squash Keyword Framework Documentation

3.3. Create a Squash TF Project using a command line 49

Squash Keyword Framework Documentation

50 Chapter 3. Create a new SKF automation Project

Squash Keyword Framework Documentation

3.3. Create a Squash TF Project using a command line 51

Squash Keyword Framework Documentation

• The newly created Test project now appears in the TA Navigator :

3.4 Default SKF automation project pom.xml

3.4.1 Default pom

Here is an example of SKF‘s default pom. It’s the one generated with the maven archetype (for more information,
please consult the page about creating a new project).

<project
xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/

→˓maven-4.0.0.xsd"
xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://www.w3.org/2001/

→˓XMLSchema-instance">

<modelVersion>4.0.0</modelVersion>

<groupId>squash-project</groupId>
<artifactId>test</artifactId>
<packaging>pom</packaging>
<version>1.0-SNAPSHOT</version>

<!-- Properties definition -->
<properties>

<!-- Squash-TA framework version used by the project -->
<ta.framework.version>1.12.0-RELEASE</ta.framework.version>

(continues on next page)

52 Chapter 3. Create a new SKF automation Project

Squash Keyword Framework Documentation

(continued from previous page)

</properties>

<build>
<plugins>

<!-- Configuration of the Squash TA framework used by the project -->
<plugin>

<groupId>org.squashtest.ta</groupId>
<artifactId>squash-ta-maven-plugin</artifactId>
<version>${ta.framework.version}</version>

<!-- Here you can add libraries to the engine classpath, using the
→˓<dependencies></dependencies> tag -->

<!-- A sample with the mySql jdbc driver -->
<!-- <dependencies> -->
<!-- <dependency> -->
<!-- <groupId>mysql</groupId> -->
<!-- <artifactId>mysql-connector-java</artifactId> -->
<!-- <version>5.1.19</version> -->
<!-- </dependency> -->
<!-- </dependencies> -->

<!-- Under here is the Squash TA framework default configuration -->
<configuration>

<!--
Uncomment the line below in order to the build finish in

→˓success even if a test failed
(functional (assertion) failure), but fail the build if an

→˓ERROR (technical failure) occurred.
-->
<!-- <mojoSuccessThreshold>FAIL</mojoSuccessThreshold> -->

<!-- Define a log configuration file (at log4j format) to
→˓override the one defined internally -->

<!-- If the given file can't be found the engine switch to the
→˓internal configuration-->

<logConfiguration>${logConfFile}</logConfiguration>

<!-- Define exporters -->
<exporters>

<surefire>
<jenkinsAttachmentMode>${ta.jenkins.attachment.mode}</

→˓jenkinsAttachmentMode>
</surefire>
<html/>

</exporters>

<!-- Define configurers -->
<configurers>

<tmCallBack>
<endpointURL>${status.update.events.url}</endpointURL>
<executionExternalId>${squash.ta.external.id}</

→˓executionExternalId>
<jobName>${jobname}</jobName>
<hostName>${hostname}</hostName>
<endpointLoginConfFile>${squash.ta.conf.file}</

→˓endpointLoginConfFile>
(continues on next page)

3.4. Default SKF automation project pom.xml 53

Squash Keyword Framework Documentation

(continued from previous page)

<reportBaseUrl>${ta.tmcallback.reportbaseurl}</
→˓reportBaseUrl>

<jobExecutionId>${ta.tmcallback.jobexecutionid}</
→˓jobExecutionId>

<reportName>${ta.tmcallback.reportname}</reportName>
</tmCallBack>

</configurers>
</configuration>

<!-- Bind the Squash TA "run" goal to the maven integration-test
→˓phase and reuse the default configuration -->

<executions>
<execution>

<goals>
<goal>run</goal>

</goals>
</execution>

</executions>
</plugin>

</plugins>
</build>

<!-- Squash TA maven repository -->
<repositories>

<repository>
<id>org.squashtest.ta.release</id>
<name>squashtest test automation - releases</name>
<url>http://repo.squashtest.org/maven2/releases</url>

</repository>
</repositories>

<!-- Squash TA maven plugin repository -->
<pluginRepositories>

<pluginRepository>
<id>org.squashtest.plugins.release</id>
<name>squashtest.org</name>
<url>http://repo.squashtest.org/maven2/releases</url>
<snapshots>

<enabled>false</enabled>
</snapshots>
<releases>

<enabled>true</enabled>
</releases>

</pluginRepository>
</pluginRepositories>

</project>

By default, the following configuration has been set :

• Generation of an html report at the end of the execution.

• Generation of Junit reports at the end of execution with attachment and jenkinsAttachmentMode deactivated.

• Squash TM events callback for Squash TF-TM link is declared but deactivated.

54 Chapter 3. Create a new SKF automation Project

Squash Keyword Framework Documentation

3.4.2 <exporters>

For more information on the Squash TF exporters configuration, please read this.

3.4.3 <configurer>

Currently, there is only one configurer existing in SKF. It is used to configure Squash TM events callback for the
TF-TM link. When activated, this component send progression events to Squash TM during the execution of a test
suite. If you don’t use TF-TM link, then you don’t need this configurer.

To declare the Squash TM events callback in your project :

<configuration>
...
<configurers>
<tmCallBack>

<endpointURL>${status.update.events.url}</endpointURL>
<executionExternalId>${squash.ta.external.id}</executionExternalId>
<jobName>${jobname}</jobName>
<hostName>${hostname}</hostName>
<endpointLoginConfFile>${squash.ta.conf.file}</endpointLoginConfFile>
<reportBaseUrl>${ta.tmcallback.reportbaseurl}</reportBaseUrl>
<jobExecutionId>${ta.tmcallback.jobexecutionid}</jobExecutionId>
<reportName>${ta.tmcallback.reportname}</reportName>

</tmCallBack>
</configurers>
...

</configuration>

For automation project using a version before 1.7.0, you have to use :

<configuration>
...
<configurers>
<configurer implementation="org.squashtest.ta.link.SquashTMCallbackEventConfigurer

→˓">
<endpointURL>${status.update.events.url}</endpointURL>
<executionExternalId>${squash.ta.external.id}</executionExternalId>
<jobName>${jobname}</jobName>
<hostName>${hostname}</hostName>
<endpointLoginConfFile>${squash.ta.conf.file}</endpointLoginConfFile>
<reportBaseUrl>${ta.tmcallback.reportbaseurl}</reportBaseUrl>
<jobExecutionId>${ta.tmcallback.jobexecutionid}</jobExecutionId>
<reportName>${ta.tmcallback.reportname}</reportName>

</configurer>
</configurers>

(continues on next page)

3.4. Default SKF automation project pom.xml 55

Squash Keyword Framework Documentation

(continued from previous page)

...
</configuration>

Note: Since Squash TA 1.7.0, the endpointURL has a default value : file://dev/null. Moreover this default value has
for effect to deactivate the send event mecanism. A valid URL should be given to activate it.

56 Chapter 3. Create a new SKF automation Project

file://dev/null

CHAPTER 4

Writing tests

A script is at the basis of an SKF automation test. In this section, we’re going to see the different elements of an SKF
Script and how it is built.

4.1 Sections

Contents :

• Test case script

• Metadata section

– Declaration

– Content

* Metadata key

* Metadata value

– Example

4.1.1 Test case script

As we have seen in our example, a typical test case script contains 4 sections, including 1 Metadata section and 3
execution phases :

57

Squash Keyword Framework Documentation

Label Occurrence
METADATA : optional
SETUP : optional
TEST : exactly one
TEARDOWN : optional

Note that the space-columns ’ :’ are part of the label. A script must contain exactly one ‘TEST :’ phase and may
contain up to one ‘METADATA :’ section, and up to one ‘SETUP :’ and/or ‘TEARDOWN :’ phase. The phases may
be declared in any order, but the ‘METADATA :’ section must come first. When a label is declared, no other element
is allowed on the same line.

A section begins with a label and ends when another label begins or when the end of file is reached. Instructions must
be placed within the boundaries of a section, and any instructions out of a section (mainly when placed before the first
label) will cause an error and stop the processing.

Table 1: Correct test script structure
METADATA :
//a comment
key1 : value1
key2 : value2
SETUP :
//another comment
an instruction
another instruction
TEST :
some instructions
//another comment
lots of instructions. . .
TEARDOWN :
more instructions
//other comment
and a last instruction

Table 2: Minimal test script structure
TEST :
An instruction
Another instruction
Some more instructions. . .

4.1.2 Metadata section

Declaration

This section can be declared by writing “METADATA :” in a typical Squash Test script, not in an Ecosystem one.

58 Chapter 4. Writing tests

Squash Keyword Framework Documentation

In fact, a typical Test script may or may not contain a Metadata section. However, this section, if any, must be unique.
The Metadata section must also be placed before any execution phases (SETUP, TEST or TEARDOWN).

Content

A Metadata section can contain only empty lines, comment lines and, of course metadata lines. While an empty line
must contain nothing or only spaces/tabulations and a comment line must start with the symbol ‘//’, a metadata line is
always 1 of these 3 types :

• key

• key : value

• : value (allowed only after a metadata line of second type)

The symbol ‘:’ is the separator, used between a metadata key and its value.

Note: Spaces/tabulations between the separator and its key or/and value are not mandatory but strongly advised.

Metadata key

A metadata key can contain only alphanumeric characters, dashes, underscores and dots, and stops at the first
space/tabulation found or at the end of the line. Moreover, no inline space/tabulation is allowed before a metadata key.

Metadata key is case insensitive and must be unique in a Test file.

Metadata value

A metadata value is always placed after a separator “:”. It can contain alphanumeric characters, dashes, under-
scores, dots and slashes, and stops at the first space/tabulation found or at the end of the line.

Metadata value is case sensitive and must not be empty (i.e. there must be at least a letter/character after the separator
“:”).

A metadata value must be assigned with a metadata key. If a key has more than one values, the first value will be
written with its key as: “key : value”. Other values will be declared of type : “[space/tabulation] : value”.

Important: Between “key : value” line and its following “: value” lines, comment lines are allowed, but NOT empty
lines.

4.1. Sections 59

Squash Keyword Framework Documentation

Example

4.2 Resource Components

Contents :

• Resource, repository and target

– Resource

– Repository

– Target

• Foreword about repositories and Targets configuration

• Test and Ecosystem contexts

• Identifiers (names in the context)

• Reserved names / identifiers

60 Chapter 4. Writing tests

Squash Keyword Framework Documentation

4.2.1 Resource, repository and target

Instructions and shortcuts are using resources and targets (Targets to test). Resources are included in repositories
(librairies of resources). There are 3 kinds of resource components within SKF :

Resource

An SKF resource is a data. More precisely, it is a container which includes certain content (the data) and a category
which qualifies the type of data.

It may come from various origins : your own test data, results from the SUT (System Under Test) or derived from
another resource.

SKF has defined one category of resource : the file resource. This is the basic category of resource in SKF and is
nothing more than a handle on a file.

This type of resource is very common in SKF scripts since any resource loaded from a repository (see below) will first
be assumed to be a file resource before it can be converted to a more appropriate type (examples of resource categories:
file, xml, script.sql. . .).

When a resource is loaded, it’s created in a specific context and is available only for this context (See below Test
context / Ecosystem context).

Repository

A repository represents a physical resources location where you will be able to access your data and bring them in the
Test context as file resources.

Repositories are read-only by design : their content cannot be altered by a script execution.

It’s defined by :

• A .properties file. The name of the file will be the identifier of the resource repository in the test context.

• Only one resource repository must be defined per .properties file.

• Repository categories : URL, FTP, classpath.

Here are some examples we can find in the ‘repository’ directory of an automation project :

Example 1 : ftp_example.properties

squashtest.ta.ftp.host=192.168.2.24
squashtest.ta.ftp.username=squash
squashtest.ta.ftp.password=squash
squashtest.ta.ftp.system=windows
squashtest.ta.ftp.port=21

Example 2 : url_example.properties

squashtest.ta.url.base=http://repo.squashtest.org/maven2/releases/eclipse/jdtcore/

Target

Targets represent the SUT (System Under Test). They may stand for a http, a ftp server, a SSH server or a database.
They may be in read-write mode. It’s defined by :

• A .properties file. The name of the file will be the identifier of the target in the test context.

4.2. Resource Components 61

Squash Keyword Framework Documentation

• Only one target must be defined per file.

• Target categories : database, http, FTP, SSH.

Here are some examples we can find in the target directory of an automation project :

Example 1 : ‘yahoo.properties’

#!http
squashtest.ta.http.endpoint.url=http://www.yahoo.fr

Example 2 : ‘webcalendar_DB.properties’

#!db
squashtest.ta.database.driver=com.mysql.jdbc.Driver
squashtest.ta.database.url=jdbc:mysql://localhost:3306/webcalendar-db
squashtest.ta.database.username=webcalendar
squashtest.ta.database.password=squash

4.2.2 Foreword about repositories and Targets configuration

Every repository and target are configured using a .properties file dropped in the ‘repositories’ / ‘targets’ directory
of your test project.

Each file will create one instance of the corresponding repository / target.

The name under which they are published in the Test context is the name of their configuration file minus the extension
(i.e., if the configuration file is myrepo.properties then the name in the Test context will be ‘myrepo’).

Every repository and target in the plugins shipped by default in SKF supports overrides using system properties.

Combined with the configuration file itself, a repository can read its configuration from three levels :

• ‘Prefixed’ system properties.

• The ‘Normal’ configuration file itself.

• ‘Default’ system properties.

Those level are hierarchical : ‘Prefixed’ > ‘Normal’ > ‘Default’. The higher level at which a property was found
defines the definitive value of that property.

For example, consider a property: ‘squashtest.ta.my.property’ defined in a file named ‘myrepo.properties’. The fol-
lowing ways to set that property are all valid :

level property name declaration location
‘Prefixed’ myrepo./squashtest.ta.my.property system properties
‘Normal’ squashtest.ta.my.property configuration file
‘Default’ squashtest.ta.my.property system properties

As you can see the ‘Prefixed’ level reads a meta property which simply results from appending the property to the
name of the Repository or Target (not the full name of the file, myrepo.properties).

62 Chapter 4. Writing tests

Squash Keyword Framework Documentation

4.2.3 Test and Ecosystem contexts

An ecosystem is a succession of test cases which have in common a SETUP phase and a TEARDOWN phase.

From this, we can figure out two distinctives execution context :

• Test context

• Ecosystem context.

The test context contains the resources for the duration of one single test. Resources can be retrieved from the test
context using its name.

The ecosystem context contains the resources for both ecosystem’s SETUP AND TEARDOWN phases.

In other words, resources created in the ecosystem setup are also available in the ecosystem teardown whereas those
created during a test case are only available for this test case.

For more information, please read the following page.

4.2. Resource Components 63

Squash Keyword Framework Documentation

4.2.4 Identifiers (names in the context)

Almost anything in the test context has an identifier. To be valid, an identifier (for a Resource, a Target or an Engine
Component) can be composed of :

• Any lowercase or uppercase a-z letters.

• Digits.

• Dashes ‘-‘, underscores ‘_’, dots ‘.’ and slashes ‘/’.

Examples of valid identifiers : my_resource05 Another.Test.File testfolder/My_File.txt

Example of invalid identifier : <-no space allowed $ï¿½ï¿½}{ï¿½# etc <-uncommon characters

You should avoid using any file or folder which does not comply with those rules.

When it comes to Resources, a good practice is to mention in the identifiers what kind of resources they actually are.

For instance, when loading a file, a good name would be my_resource.file. This is not mandatory but it really
helps.

In the rest of this document we will commonly use ‘name’ as a synonymous for ‘identifier’.

4.2.5 Reserved names / identifiers

There are two reserved names / identifiers in SKF (for context parameters) :

• context_script_params

• context_global_params

Note that the framework doesn’t prevent you to define your own SKF resource with those context names. If you ever
do it, your context parameters will be overwritten (and a warn is logged).

4.3 Macros

Contents :

• What does a shortcut look like ?

• How do I use a macro ?

• Variabilized shortcuts

64 Chapter 4. Writing tests

Squash Keyword Framework Documentation

The basic instructions set covers your need for writing working scripts, but they might be quite verbose. If you find
yourself writing the same group of instructions again and again, you will probably find a use for shortcuts (or macros).

A certain number of shortcuts are defined natively in the SKF modules.

4.3.1 What does a shortcut look like ?

A shortcut is simply a sequence of instructions put in a separate file, that defines a hook of your choice that will be
replaced by a set of instructions defined below. The syntax is the following :

<macro expression>
=>
<instruction 1>
<instruction 2>
. . .
<instruction n>

The part above the => separator is the hook and the part below is the expansion.

Spacing characters don’t matter : you may put any spaces or tabulations between every word, either in the hook or in
the expansion, or before and after the separator.

Please respect the following rules :

• The hook must :

– Hold in one single line.

– Be the first line of the shortcut file.

– Have a space between # and <macro expression>. This is mandatory.

• After the hook, the next line must immediately have the separator =>.

• The expansion must comply to the rules of the basic instruction set (one instruction per line, etc. . .).

4.3.2 How do I use a macro ?

The file you just created must land in the shortcuts directory (or its subdirectories) of your test project, and the
filename must end with a ‘.macro’ extension.

You can now write regular tests using your shortcut just like any other basic instruction. You don’t have to respect
your hooks to the letter : lowercase and uppercase characters are matched equally, and you may put any extra spaces
you like. When your script is executed, any hook encountered will be replaced by the corresponding expansion.

4.3. Macros 65

Squash Keyword Framework Documentation

Example : load ‘myfile.xml’ and convert it to type ‘dataset.dbunit’ under the name ‘mydataset.dataset’

load my favourite dataset
=>
//remember that, although the original extension of
//the file is .xml, as a resource in the Test context,
//its initial type is ‘file’, not ‘xml’
LOAD myfile.xml AS myfile.file
CONVERT myfile.file TO xml AS myfile.intermediate.xml
CONVERT myfile.intermediate.xml TO dataset.dbunit AS mydataset.dataset

Macro usage :

load my favourite dataset

4.3.3 Variabilized shortcuts

You can define variables in the hook and use them in the expansion. When a variable is defined in the hook it won’t be
literally matched, the hook will match solely on the basis of the other tokens. The variables defined in the hook may
then be used in the expansion. Variables are declared within curly braces ‘{}’, and are used as follow :

Example : Definition of the macro

LOAD {file_name} TO XML DATASET {converted_name}
=>
LOAD {file_name} AS data.file
CONVERT data.file TO xml (structured) AS data.file
CONVERT data.xml TO dataset.dbunit (dataset) AS {converted_name}

Macro usage :

LOAD foo.xml TO XML DATASET foo.dataset

Corresponding instructions :

LOAD foo.file AS data.file
CONVERT data.file TO xml (structured) AS data.file
CONVERT data.xml TO dataset.dbunit (dataset) AS foo.dataset

At some point you will probably have to create temporary variables, and thus have to worry about possible conflicting
Resource identifiers.

Thankfully there is a mechanism of randomization that helps to tackle the problem, using a special expression in the
extension that will generate a random number between -32768 and 32767.

It looks like this :

66 Chapter 4. Writing tests

Squash Keyword Framework Documentation

{%%whatever}, where whatever is a string of your choice.

When the expression {%%whatever} is used in a resource name inside a macro, it’s replaced by a string dynamically
generated.

If an identical expression {%%whatever} is used several times inside a macro, it’s replaced each time with the same
value.

If two different expressions {%%whatever} are used inside a macro (for example %%data1 and %%data2), they’re
replaced by two different values.

When a script is processed and matches the hook, the variables will be remembered and replaced at their corresponding
place in the expression, and placeholders will be filled as well.

Let’s rewrite the previous example :

Example : The same shortcut than above, with variables

LOAD {file_name} TO XML DATASET {converted_name}
=>
LOAD {file_name} AS __{%%data1}.file
CONVERT __{%%data1}.file TO xml (structured) AS result{%%data2}.xml
CONVERT result{%%data2}.xml TO dataset.dbunit (dataset) AS {converted_name}

Macro usage :

LOAD foo.xml TO XML DATASET foo.dataset

Corresponding instructions :

LOAD foo.file AS __354.file
CONVERT __354.file TO xml (structured) AS result6345.xml
CONVERT result6345.xml TO dataset.dbunit (dataset) AS foo.dataset

4.4 Ecosystem

Contents :

• Introduction

• Workflow

• Ecosystems Setup & Teardown scripts

4.4. Ecosystem 67

Squash Keyword Framework Documentation

4.4.1 Introduction

Let’s introduce the ecosystem notion in SKF. An ecosystem is a suite of test cases which have in common a setup
phase and a teardown phase.

It allows to prepare the environment for a specific bunch of test cases and doing so for as many ecosystems as you
need.

Each tests directory of an SKF project and its subdirectories correspond to an ecosystem as soon as they contain
test cases.

The name of the ecosystem (Such as it will appear in the execution reports) is determined by the name of the directory
which contains it.

The ecosystem directory contains :

• A setup.ta file (optional) : To prepare the environement for the bunch of test cases included in the ecosystem.

• From 1 to N test files (<test_name>.ta) : Each file corresponding to one test case.

• A teardown.ta file (optional) : To clean-up the environement after the execution of all test cases included in the
ecosystem.

An ecosystem execution takes place in 3 ordered steps (Independant of the order in the directory) :

1. A setup phase where the SKF script setup.ta is executed (if present). This phase is executed only once.

2. A test cases execution phase during which each test case is executed one after the other.

3. A teardown phase where the SKF script teardown.ta is executed (if present). This phase is executed only once.

Here is an example with 5 different ecosystems in a Squash TF automated project :

4.4.2 Workflow

First there is an initialization of contents of the following directories : targets, repositories and shortcuts. At this step
the different elements of those directories are verified. If everything is ok these elements are available for the full
duration of the execution, therefore for all different ecosystems to execute.

Afterwards comes the execution of the different ecosystems. Each of them with its own ecosystem context and for
each test case its own test context.

Whatever status an ecosystem has after its execution, the next ecosystem of the test suite is launched.

Once all ecosystems have been executed a cleaning-up step occurs, and finally the publication of the execution report
available in the ‘target’ directory.

Here is a schema of the SKF workflow :

68 Chapter 4. Writing tests

Squash Keyword Framework Documentation

4.4. Ecosystem 69

Squash Keyword Framework Documentation

70 Chapter 4. Writing tests

Squash Keyword Framework Documentation

4.4.3 Ecosystems Setup & Teardown scripts

As said before, an ecosystem is a suite of test cases which have in common a setup phase and a teardown phase. An
ecosystem may - but is not required to - define up to one setup script and one teardown script. They obey to the same
rules than regular test scripts, except two points :

• They don’t care about phases : A setup or teardown script only contains instructions, no phase should be defined.

• Regular resource names have a special context : the ecosystem context, which is common to BOTH setup and
teardown ecosystem script and which is INDEPENDANT (in term of resources) of the test cases included in the
ecosystem.

Note that unlike other tests (that may be named freely), setup and teardown scripts MUST be named respectively
‘setup.ta’ and ‘teardown.ta’.

Example : valid setup/teardown script

* - //that's right, no phase needs to be defined
//instructions are directly written as follow :

instruction
instruction
instruction

An example of project containing ecosystems setup and teardown scripts :

4.5 Writing tests - Advanced Users

4.5.1 Instructions

4.5. Writing tests - Advanced Users 71

Squash Keyword Framework Documentation

Contents :

• Syntax convention

• Comments

• DEFINE instruction / Inlined instruction $(. . .)

• LOAD instruction

• CONVERT instruction

• EXECUTE instruction

• Assertion instructions (ASSERT / VERIFY)

The valid instruction set is defined as follow :

Blank lines (no instruction)
Comments : starting by a double slash ‘//’ (no instruction)
DEFINE $(raw data) AS {nameInTheContext<Res:File>}
LOAD {path_To_Resource} [FROM {resourceLibrary<Rep>}] [AS {nameInTheContext<Res:File>}]
CONVERT {resourceToConvert<Res>} TO {<Cat:Res>} ({<Conv>}) [USING {config<Res>}] AS {converte-
dResource<Res>}
EXECUTE {<Cmd>} WITH {<Res>} ON {<Tar>} [USING {config<Res>}] AS {result<Res>}
ASSERT {resourceToTest<Res>} (IS | HAS | DOES) {<Asr>} [(WITH | THAN | THE) {expectedResult<Res>}
] [USING {config<Res>}]
VERIFY {resourceToTest<Res>} (IS | HAS | DOES) {<Asr>} [(WITH | THAN | THE) {expectedResult<Res>}
] [USING {config<Res>}]

Note: The VERIFY instruction is available since Squash TA 1.6.0. It’s a new type of assertion instruction.

Syntax convention

• Red words : They represent the language tokens. They are in uppercase and they never change.

• Black words : They represent a physical resource.

• Blue words : Identifiers which point to a resource component. They have the following structure :
{name<Type:Category_name>} or {name<Type>} or {<Type>} with :

– name : A name which corresponds to the element that should be pointed by the identifier.

– Type : The component type of the element pointed by the identifier : Res for resources, Tar for targets,
Repo for repositories.

– Category_Name : The category of the component which wraps the pointed element.

• Pink words : Identifiers which reference an engine component : {<Cmd>} for commands, {<Asr>} for asser-
tions and {<Conv>} for converters.

• Yellow word : The category of the expected resource after a conversion.

72 Chapter 4. Writing tests

Squash Keyword Framework Documentation

• [] : Element inside this square brackets can be omitted in some cases.

Note: For convenience, name is often use instead of identifier in the documentation.

One instruction per line and one line per instruction. In other words, the end of line means that the instruction ends
here and will be parsed as is. The language tokens are case-insensitive and accept inline resource definitions (just like
in a DEFINE instruction, see below). On the other hand the identifier we discussed above are case-sensitive (i.e. you
should respect lowercase and uppercase letters).

An instruction can be divided into clauses. Some are mandatory while others are optional. A clause can be recognized
by its language token (uppercased words) and an identifier that immediately follows it.

For each instruction the most obvious mandatory clause is the first one that states which instruction you are referring
to. This first clause is also named head clause.

The optional clauses are stated here between enclosing brackets ‘[]’.

Caution: Those brackets aren’t part of the language and just serve the purpose of delimiting those optional
clauses.

Except for the head clause which determines the kind of instruction, the order of other clauses is not fixed.

Also note that the DSL does not support nested instructions.

Comments

TA Scripts can contain comments. They start with a ‘//’. To write a multiline comment, start each line of the comment
with the ‘//’. It’s not allowed to write a comment on the same line that an instruction.

Example of a not allowed comment :

LOAD example.txt AS example.file //This comment is not allowed

DEFINE instruction / Inlined instruction $(. . .)

DEFINE $(raw data) AS {nameInTheContext<Res:File>}

> Input :

• raw data : A string (If there is more than one line, each line must be separate with ‘\n’)

4.5. Writing tests - Advanced Users 73

Squash Keyword Framework Documentation

> Output :

• {nameInTheContext<Res:File>} : The identifier of the resource created in the test context.

The DEFINE instruction is rarely used but may come handy. Basically it let you define any text content directly within
the script, and binds it to a name.

This content will be stored in the Test context as a file resource, under the name supplied in AS clause.

This resource will be available throughout the whole test but won’t exist anymore when another test begins.

Example 1 : Simple DEFINE resource

DEFINE $(select * from MY_TABLE) AS query.file

Example 2 : Structured DEFINE resource

DEFINE $(some letters, a tabulation t and n the rest after a linefeed.) AS structured-text.file

A more common use for resource definition is to simply inline them within the instruction that will use it.

Example : Resource inlined in a CONVERT instruction

CONVERT $(select * from MY_TABLE) TO query.sql AS my_query.query.sql

The advantage of explicitly using DEFINE is to bind the newly created file resource to a name, thus allowing you to
refer to it again later in the script. If you won’t need to reuse that resource, an inlined definition is fine.

Inlined resources are notably useful when passing configuration to Engine Components. Engine Components some-
times need a few text to be configured properly, which can be inlined instead of explicitly creating a file for it.

LOAD instruction

LOAD {path_To_Resource} [FROM {resourceRepository<Rep>}] [AS {nameInTheContext<Res:File>}]

> Input :

• {path_To_Resource} : The path to the resource to load

• {resourceRepository<Rep>} : The name of the resource repository in which is located the resource to load.

> Output :

• {nameInTheContext<Res:File>} : The name of the resource created in the test context.

The LOAD instruction will search for a resource in all of the existing repositories. When it is finally found it will be
brought to the test context as a file resource. If no AS clause is supplied, the name of this file resource will be the name
under which it was searched for (including folder hierarchy if it was hidden in a deep file tree).

74 Chapter 4. Writing tests

Squash Keyword Framework Documentation

The path of the resource doesn’t need to be a full URL, as that kind of details will be handled by the repositories. In
case of a repository looking for the file system it generally have a base directory, you can then omit the full path and
only supply a path relative to the base directory.

Also note that the directory separator is a slash ‘/’ regardless of the underlying operating system. More precisely,
no backslashes ‘’ needed under Windows. Backslashes aren’t a valid character for an identifier and will be rejected
anyway.

If by chance two or more repositories could answer the query (i.e. if a given file name exists in two file systems, each
of them being addressed by a distinct repository), the file resource returned depends on which of them replied first.
Consider it as random, and if problems happen you could be interested in the FROM clause (see below).

If the loading fails because the resource was not found, the test will end with a status depending on the phase it was
executed in.

The FROM clause is optional. If specified, instead of searching every repository for the resource it will search only
the one you specified. It may speed up file retrieval if some of repositories are very slow or busy.

The AS clause is optional. If specified, instead of binding the new file resource to the name used in the first clause, the
engine will bind it to this alias instead.

Example 1 : Simple file loading

LOAD data-folder/myfile // that’s it, the file resource will be accessible under the name ‘data-folder/myfile’

Example 2 : Load with alias

LOAD long/path/to/the/resource AS my_resource.file

Example 3 : Load from a specific repository

LOAD myfile FROM my.repository

CONVERT instruction

CONVERT {resourceToConvert<Res>} TO {<Cat:Res>} (<Conv>) [USING {config<Res>}] AS {converte-
dResource<Res>}

> Input :

• {resourceToConvert<Res>} : The name of the resource to convert

• {<Cat:Res>} : The category of the resource expected after the conversion.

• <Conv> : The category of the converter used for the conversion.

• {config<Res>} : The name of the complementary resource needed for the conversion.

> Output :

• {convertedResource<Res>} : The name of the converted resource.

4.5. Writing tests - Advanced Users 75

Squash Keyword Framework Documentation

The CONVERT instruction will take an input resource and produce a new resource, that will then be available under
the name mentioned in the AS clause. The resource must exist in the Test context beforehand (for instance as resulting
from a LOAD instruction).

Remember that no Engine Component will ever modify the input resource, and it will still be available as it was after
the conversion is over.

Depending on the invoked converter, a CONVERT instruction will perform at least one of the two operations :

• Produce a resource with the same data than the input resource but wrapped in a different category.

• Produce a resource with new data based on the input resource but the category stays the same.

Some converters do even both. In any case you should refer to the documentation of this converter.

The TO clause is mandatory, as it is where you specify the category of the output (which may be the same than the
category of the input resource).

However in some cases, it may happen that two or more converters, accepting the same input and output categories,
exist together in the engine, thus leading to an error.

In such cases one should deambiguate the situation by specifying which specific converter you need.

This is the only case where you need to expand the full signature of that converter. You can specify that converter by
immediately appending its name to the output category, surrounded by parenthesis ().

Warning: Even in the cases where you don’t need to specify the converter name, we highly advise you to do it.

Indeed this could prevent you from encountering problems if a new converter with the same input and output is
created (making mandatory to specify the converter category).

The optional USING clause lets you specify an arbitrary number or resources that will be treated as configuration for
this operation. The category of resources, or which informations they should convey depends on the converter being
used. Having a look at the documentation of that converter is certainly useful.

Example 1 : Simple CONVERT from file to CSV

CONVERT mydata.file TO csv AS mydata.csv

Example 2 : CONVERT with configuration

CONVERT my_result.resultset TO dataset.dbunit USING $(tablename : MY_TABLE) AS mydata.csv

Example 3 : CONVERT with an inline definition

CONVERT $(select * from MY_TABLE) TO query.sql (query) AS my_query.query.sql

76 Chapter 4. Writing tests

Squash Keyword Framework Documentation

EXECUTE instruction

EXECUTE {<Cmd>} WITH {<Res>}‘ ON {<Tar>} [USING {config<Res>}] AS {result<Res>}

> Input :

• {<Cmd>} : The command to execute.

• {<Res>} : The name of the resource to use with the command.

• {<Tar>} : The name of the target.

• {config<Res>} : The name of the complementary resource needed to use with the command.

> Output :

• {convertedResource<Res>} : The name of the resource generated by the command.

The EXECUTE instruction will perform an operation involving a resource (WITH clause), on a given target (ON
clause). The result of this operation, if any, will be returned as a resource published in the Test context under the name
supplied in the AS clause.

If the operation returns some results, the actual type of the resulting resource depends on the command being executed,
so you should refer to the documentation of that command to know how to handle it in the rest of the test.

The optional USING clause lets you specify an arbitrary number of resources that will be treated as configuration for
this operation. The category of resources, or which informations they should convey depends on the command being
used.

You MUST provide an input resource, a target and an alias for the result, even if the command does not actually use
all of theses features.

Example 1 : Command using a dummy identifier for the result name (because that command doesn’t return
any)

EXECUTE put WITH my_file.file ON my_ftp AS no_result_anyway

Example 2 : Command with configuration

EXECUTE get WITH $() ON my_ftp USING $(remotepath : data/the-file.txt, filetype : ascii) AS my_new_file.file

Note that in the last example we used a dummy inlined resource $(), since in that case the get command doesn’t use
any input resource.

Assertion instructions (ASSERT / VERIFY)

ASSERT {resourceToTest<Res>} (IS | HAS | DOES) {<Asr>} [(WITH | THAN | THE) {expectedResult<Res>}
] [USING {config<Res>}]
VERIFY {resourceToTest<Res>} (IS | HAS | DOES) {<Asr>} [(WITH | THAN | THE) {expectedResult<Res>}
] [USING {config<Res>}]

4.5. Writing tests - Advanced Users 77

Squash Keyword Framework Documentation

> Input :

• {resourceToTest<Res>} : The name of the resource to validate.

• {<Asr>} : The kind of assertion to use.

• {expectedResult<Res>} : The name of the reference resource.

• {config<Res>} : The name of the complementary resource needed for the assertion.

The assertion instructions will perform a test on the supplied resource, optionally compared to another resource.

If the assertion is successful, the test will continue.

If the assertion failed or finished in error :

• In ASSERT mode, the execution of the current test phase is stopped. The teardown test phase is then executed
(if it was not already in this teardown test phase).

• In VERIFY mode, the next instructions is executed.

The test final status will always be the most severe status of its instructions.

For details on the execution workflow and test status please see this page.

The VERIFY assertion mode is available since Squash TA 1.6.0. Before only the ASSERT mode was available.

Note that, unlike other instructions, an assertion can have multiple choices.

The first multi-token clause is the one identifying the assertion ({<Asr>}, in the syntax above).

The second one is identifying the secondary resource ({expectedResult<Res>}, in the syntax above).

In either case you only need to pick one, and it makes sense to pick the one that fits the most to the grammar of the
instruction (see examples below).

The optional (WITH | THAN | THE) clause specifies another resource. In that case, the primary resource will be
compared to the secondary resource.

If that clause is used, then we talk of a ‘binary assertion’, and the primary resource usually represents the actual result
from the SUT while the secondary result represents the expected result.

If no (WITH | THAN | THE) clause is used, the resource and the assertion are assumed self-sufficient to perform the
check. We then talk of a ‘unary assertion’.

The optional USING clause let you specify an arbitrary number or resources that will be treated as configuration for
this operation. The category of resources, or which information they should convey depends on the assertion being
used, so having a look at the documentation of that assertion is certainly useful.

Example 1 : Simple unary assertion

ASSERT my_result.result.sahi IS success

Example 2 : Simple binary assertion (awkward)

ASSERT actual_result.dataset.dbunit IS contain WITH expected_result.dataset.dbunit

In this example, the sentence is grammatically wrong but it will work as expected. You might prefer the following
syntax :

Example 3 : Simple binary assertion (better)

ASSERT actual_result.dataset.dbunit DOES contain THE expected_result.dataset.dbunit

78 Chapter 4. Writing tests

Squash Keyword Framework Documentation

This version does exactly the same thing but is better.

4.5.2 Engine Components

Contents :

• Converters

• Commands

• Assertions

• Common behavior of an Engine Component

Scripts are written using a DSL (Domain Specific Language) that provides very basic ways to invoke parts of the SKF
engine. Those parts are known as the Engine Components and are divided in three categories : Converters, Commands
and Assertions.

Converters

They will help you to modify your resources. Usually a converter will handle one task between the following :

• To modify the content (aka data) of a resource.

– For example : To modify the content of a text file.

• To modify the wrapper (aka type) of a resource.

– For example : To convert a text file to a SQL batch.

In either case the resulting resource will be a new resource. Both the previous and the new version exist and are
available in the Test Context once the operation is done.

4.5. Writing tests - Advanced Users 79

Squash Keyword Framework Documentation

Commands

A command will perform an operation against a Target, usually using a resource. For instance, execute an SQL query
against a database, send a file to a FTP etc.

If the operation carries some results they will be brought back to the Test context as resources.

Assertions

An assertion is a check ran on resource(s). Sometimes the tested resources carry all the information you need to test.
In this case we speak of unary assertion.

On the other hand, when you need to compare one resource to another, we speak of binary assertion.

A successful assertion (i.e. the tested resource(s) match(es) the expected criteria) will let the script continue. A failed
assertion will stop the script and report the error.

Common behavior of an Engine Component

As resources are immutable, an engine component will never modify a resource. If any new data/result is produced, it
will be brought in as a new resource.

An engine component is identified by its name AND by the type of resources and/or targets it manipulates.

For example, let’s consider a command named “put” that uses SQL batches against databases, and a second command
also named “put” that uploads files to an FTP.

At runtime when the engine reads an instruction, depending on the name of command, resource and target, it will
decide which operation will be ran.

An engine component may take additional resources that will tweak its behavior. Those (mostly optional) resources
are called configuration (or parameters).

Example :

Let’s imagine you want to upload multiple files to an FTP (e.g. using the command “put” above) using the defaults
settings associated to the FTP Target. For one of those files, you need to override the settings.

In this case the “put” command allows you to mention another resource carrying those overridden values, and will
use them for this specific case only.

80 Chapter 4. Writing tests

Squash Keyword Framework Documentation

4.5.3 Example of SKF Script

Contents :

• What does this SKF script do ?

• Some more insights

In this example, we are going to use an SKF script which contains standard instructions and macros.

A script is a plain text file (with .ta extension) containing lists of instructions. All you have to do is to drop it in the
‘tests’ directory (or anywhere in its sub hierarchy) of your project.

Here is the script :

// Step 1
SETUP :
// Step 2
LOAD queries/sql/select.sql AS select.file
CONVERT select.file TO query.sql AS query
// Step 3
LOAD dbunit/resultsets/mytable_simple_select.xml TO XML DATASET expected.dataset
// Step 4
TEST :
// Step 5
EXECUTE execute WITH query ON my_database AS raw_result
// Step 6
CONVERT raw_result TO dataset.dbunit AS actual.dataset
// Step 7
ASSERT actual.dataset IS equal WITH expected.dataset

What does this SKF script do ?

This script executes an SQL query and compares the result to the content of a DbUnit dataset.

We can notice several elements :

• Some comments (lines beginning with ‘//’)

• Phases (SETUP : and TEST :)

• Instructions (multi-colored lines)

• Macros (brown lines).

Now we will break down and analyze that script, identify its components and see how they work together.

SETUP phase declaration :

// Step 1
SETUP :

4.5. Writing tests - Advanced Users 81

Squash Keyword Framework Documentation

The SETUP phase groups instructions that will prepare the test. Note that the instructions in that phase could also be
set in the main TEST phase.

Differences lie in the handling of test failures : when an instruction fails during the SETUP phase, it means that the
script itself is wrong or that the resource is not avalaible. On the other hand, a failure happening during the TEST
phase means that the System Under Test (SUT) has a problem.

To sum up, the SETUP phase sets the test prerequisites.

Loading an SQL query :

// Step 2
LOAD queries/sql/select.sql AS select.file
CONVERT select.file TO query.sql AS query

This pair of instructions will load a file and declare that it contains an SQL query (in that order).

Loading a DbUnit dataset :

// Step 3
LOAD dbunit/resultsets/mytable_simple_select.xml TO XML DATASET expected.dataset

The standard way to load a DbUnit dataset requires the same steps than above : load the file and convert it to make it
a DbUnit dataset.

However, instead of explicitly writing the corresponding instructions, SKF proposes a shortcut (macro) to achieve that
goal.

The line in the script is not syntax colored because it is a macro and not a standard instruction.

TEST phase declaration :

// Step 4
TEST :

The TEST phase groups the main test instructions. The following instructions will interact with the SUT (System
Under Test) and the resources created during the SETUP phase remain available.

If an instruction fails, the test will end and the status displayed in the test result will be set according to the nature of
the error.

82 Chapter 4. Writing tests

Squash Keyword Framework Documentation

Execution of the query :

// Step 5
EXECUTE execute WITH query ON my_database AS raw_result

We use the query created during SETUP and execute it against the database. The name of the database here is
my_database.

The resulting data are stored in the context under the name supplied at the end of the instruction (raw_result).

Data transformation :

// Step 6
CONVERT raw_result TO dataset.dbunit AS actual.dataset

In step 3 we prepared the (expected) data, formatted as a DbUnit dataset. If we are to compare the actual data with the
expected data, we must first convert the actual data to a suitable type. In this case it must be formatted as a DbUnit
dataset.

Perform the comparison :

// Step 7
ASSERT actual.dataset IS equal WITH expected.dataset

Now we’re all set to proceed and test the data against each other. The status of the test will depend on the status of that
comparison.

If the comparison fails, the test will be flagged as failed, while if the comparison is a success the script continues to
the next instruction.

Here there are no further instruction and the test will terminate with SUCCESS status.

4.5. Writing tests - Advanced Users 83

Squash Keyword Framework Documentation

Some more insights

So now you should have a glimpse of what an SKF script is made of.

There is a TEARDOWN phase too which is optional (just like SETUP phase) but it was not used in this example.

When looking closer at an instruction (e.g. step 5), we can distinguish two kinds of elements : the tokens (red words)
and the variable elements (black, blue, pink and yellow words).

The tokens never change whereas identifiers are variable and refer to elements available in the script, including :

• A file or other physical resource (e.g. step 2 : queries/sql/select.sql).

• The assertion type : a command or a converter (e.g. step 5 : EXECUTE execute WITH query ON my_database
AS raw_result).

• The resource type (e.g. step 6 : CONVERT raw_result TO dataset.dbunit).

• The name of a target, a repository, an already loaded resource or a resource to be created (e.g. step 5 : EXECUTE
execute WITH query ON my_database AS raw_result).

Basically the tokens tell the engine to execute or activate some components and make them interact with each others.

This section will give you further details about the instructions and the engine components (converters, commands or
asserts) of SKF which are used by macros.

An SKF script is a file containing an amount of instructions, resources components, engine components and shortcuts
(macros) that will be interpreted by the engine of SKF to execute automation tests.

All those elements form the specific language of SKF to describe automation tests.

It allows to address an heterogeneous panel of tests with a common formalism.

First, we will explain the different phases of an SKF script and see what are the resource components.

We will also see how macros work.

In an Advanced Users section, we will explain the instructions and engine components which are behind the macros.

With those knowledge, you can write your own custom macros if you wish.

If you want to see how macros are used in an SKF script, you can check this example.

To see how instructions and engine components are used, please check this other example of SKF script.

84 Chapter 4. Writing tests

Squash Keyword Framework Documentation

4.5. Writing tests - Advanced Users 85

Squash Keyword Framework Documentation

86 Chapter 4. Writing tests

CHAPTER 5

Execution and Reporting

5.1 Logging

We recommand to patch your maven by using the procedure below for a better logging with our runners :

Note: In all the procedure $MVN_HOME is your maven installation directory, and $MVN_VERSION your maven
version.

• Add in $MVN_HOME/lib/ext/ the jars :

– log4j-slf4j-impl-2.5.jar

– log4j-core2.5.jar

– log4j-api-2.5.jar

• Create a logging configuration file called log4j2.xml in $MVN_HOME/conf/logging/ and fill it with :

<?xml version="1.0" encoding="UTF-8" ?>
<Configuration>

<Properties>
<Property name="maven.logging.root.level">INFO</Property>

</Properties>
<Appenders>
<Console name="console" target="SYSTEM_OUT">

<PatternLayout pattern="[%p] %msg%n%throwable" />
</Console>

</Appenders>
<Loggers>
<Root level="${sys:maven.logging.root.level}">

<Appender-ref ref="console"/>
</Root>

<!-- <logger name="[USER_MESSAGE]" level="DEBUG"/> -->

(continues on next page)

87

http://central.maven.org/maven2/org/apache/logging/log4j/log4j-slf4j-impl/2.5/log4j-slf4j-impl-2.5.jar
http://central.maven.org/maven2/org/apache/logging/log4j/log4j-core/2.5/log4j-core-2.5.jar
http://central.maven.org/maven2/org/apache/logging/log4j/log4j-api/2.5/log4j-api-2.5.jar

Squash Keyword Framework Documentation

(continued from previous page)

</Loggers>
</Configuration>

• Remove if exists :

– In the directory $MVN_HOME/lib the file maven-sl4j-provider-$MVN_VERSION.jar

– In the directory $MVN_HOME/conf/logging/ the file deletesimpleLogger.properties

5.2 Tests Execution and Reporting

5.2.1 Execute SKF tests

‘run’ goal (squash-ta:run)

The run goal of the SKF maven plugin is used to execute one or several tests. By default this goal is associated with
the Integration-test phase of the maven build life cycle.

To execute ALL tests, you can use one of the command bellow (in the root directory of your project) :

mvn integration-test

mvn squash-ta:run

Specify the test list to execute

The SKF maven plugin defines a maven property which allows to specify the test list to execute. This option is :
ta.test.suite.

It’s possible to specify its value by modifying the pom.xml of an SKF project :

...
<modelVersion>4.0.0</modelVersion>
<groupId>fr.mycompany</groupId>
<artifactId>my-app-automated-tests</artifactId>
<packaging>pom</packaging>
<version>0.0.1-SNAPSHOT</version>
<properties>

<ta.test.suite>tc1.txt,tc2.txt</ta.test.suite>
</properties>
<build>
...

It’s also possible to specify its value in the command line :

mvn integration-test -Dta.test.suite=tc1.txt,tc2.txt

Note:

• If a property is defined in ‘pom.xml’ AND via command line, the command line value predominates.

• If a property has an empty value, all tests are executed.

88 Chapter 5. Execution and Reporting

Squash Keyword Framework Documentation

There are many ways to define the test list to execute through ta.test.suite parameter. More details here.

Manage temporary files

The SKF maven plugin also defines two maven properties which allow to manage temporary files created during
execution.

• ta.temp.directory : Defines where temporary files should be stored.

• ta.debug.mode : Defines if temporary files are deleted or not after the execution (its value must be “true” or
“false”).

Same as ta.test.suite, it’s possible to define them in the pom.xml.

Example :

mvn integration-test -Dta.temp.directory=C:Squash_TF_temp
mvn integration-test -Dta.debug.mode=true
mvn integration-test -Dta.temp.directory=C:Squash_TF_temp -Dta.debug.mode=true

Note:

• If a property is defined in ‘pom.xml’ AND via command line, the command line value predominates.

• ta.temp.directory default value is the system temporary directory.

• ta.debug.mode default value is “false”.

Attention: If there are syntax-error-metadata in the running test script(s), warning message(s) will be displayed
in the console. (See Metadata section for more information about Metadata syntax conventions)

5.2.2 Define Test suite Perimeter

Contents :

• “ta.test.suite”: filters

– Definition

– Usage

• “ta.test.suite”: json data

– Filtered execution

– Ordered execution

– Usage

5.2. Tests Execution and Reporting 89

Squash Keyword Framework Documentation

• Filtered execution vs Ordered execution

– Filtered execution

– Ordered execution

When you execute your test through the run goal, you define the test suite to execute through the ta.test.suite
parameter (more details on the run goal here).

You can define your test suite by providing to ta.test.suite filters (for filtered execution) or data structured in
.json (for filtered or ordedered execution).

“ta.test.suite”: filters

Definition

The ta.test.suite parameter can be a list of filters separated by comma.

A filter can be :

• The test case path (absolute or relative to the automation project “tests” directory).

The file path D:/myProject/src/squashTA/tests/foo/bar/baz.ta can be matched as :
– D:/myProject/src/squashTA/tests/foo/bar/baz.ta
– foo/bar/baz.ta

• A path using a wildcard characters which selects matching test script inside “tests” directory. Wildcard charac-
ters can be used :

– ** to replace directories path (one or many levels).

– * to replace 0,1 or many characters.

Examples of file paths matching foo/bar/baz.ta using wildcard characters :
– **/baz.ta
– **/bar/baz.ta
– foo/**/baz.ta
– f*o/b*/baz.ta
– **/b*z.ta
– etc.

• A regular expression, using regex’<myRegex>’ format, which selects matching test script inside “tests” direc-
tory.

regex’<regular_expression>’
regular_expression : The regular expression to use to select tests.

Usage

In the example below, ta.test.suite is composed of two filters :

90 Chapter 5. Execution and Reporting

Squash Keyword Framework Documentation

"foo/bar/baz.ta"

will select for execution foo/bar/baz.ta file in “tests” directory (if it exists).

"sample/**/*.ta"

will select for execution all files in “tests/sample” directory and its subdirectories which name finish by “.ta”.

mvn squash-tf:run -Dta.test.suite=foo/bar/baz.tf,sample/**/*.ta

“ta.test.suite”: json data

Through json data you can do a filtered execution or an ordered execution.

Filtered execution

In the json data you can provide filters (as defined in the previous section) by using the syntax below :

{
"filter" : "**/*.ta"

}

In addition, you can provide some global parameters :

{
"filter" : "**/*.ta",
"param" : {
"property5" : "value13",
"property6" : "value14"

}
}

Ordered execution

The other possibility, in json format, is to provide the list of tests to execute :

// Path to the test script to execute

// Test execution identifier

// Script parameters

5.2. Tests Execution and Reporting 91

Squash Keyword Framework Documentation

{
"test": [
{

"script": "pathToMyscript1",
"id": "TestCase1",
"param": {
"property1": "value1",
"property2": "value2"

}
},
{

"script": "pathToMyscript2",
"id": "TestCase2",
"param": {
"property3": "value7",
"property4": "value8"

}
},
{

"script": "pathToMyscript1",
"id": "TestCase3",
"param": {
"property1": "value3",
"property2": "value4"

}
}

],
"param": {
"property5": "value13",
"property6": "value14"

}
}

-
-
-
<---- Path to the test script to execute
<---- Test execution identifier
<---- Script parameters
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
<---- Global parameters
-
-
-
-

Where for each test :

• script is the the path to the test to execute relative to the “tests” directory. This property is mandatory.

• id is the test execution identifier. Only useful for Squash TM - Squash TF link. However, if “id” is defined
for one test then it should be defined for all tests of test suite.

• param is a list of parameters (key/value) associated to the test. This property is optional.

As for json filtered execution, global parameters are optionals.

When no param and id properties are defined for test, it’s possible to use a simplier syntax :

{
"test": [
"script1Path",
"script2Path",
"script3Path"

],
"param": {
"property5": "value13",
"property6": "value14"

}
}

92 Chapter 5. Execution and Reporting

Squash Keyword Framework Documentation

Usage

Json data can be provided through a String or a file.

> Json provided through a String

mvn squash-ta:run -Dta.test.suite={'test':[{'script':'pathToMyscript1
→˓','param':{'property1':'value1','property2':'value2'}},{'script':
→˓'pathToMyscript2'}]}

Note: Note that the double quote surrounding properties and values of the json data has been
replaced. You can :

• replace them by simple quote (as it’s done in the example)

• escape the double quote "

> Json provided through a file

mvn squash-ta:run -Dta.test.suite={file:pathToMyJsonFile}

Where pathToMyJsonFile is the path to the json data file. This path can be absolute or relative
to the root directory of the automation project.

Filtered execution vs Ordered execution

Filtered execution

When you do a filtered execution you provide filters. The list of test to execute is composed of all the tests in “tests”
directory whose path matches the filter. With this kind of execution :

• A test can only be executed once during an execution.

• There is no execution order.

• You can’t provide specific parameters to the script however you can provide global parameters through json
data.

5.2. Tests Execution and Reporting 93

Squash Keyword Framework Documentation

Ordered execution

When you do an ordered execution you provide the list of tests to execute through json format. With this kind of
execution :

• A test can be executed as many times as needed.

• The tests are executed in the order that they were declared in the json data if the tests are in the same ecosystem.
If the tests are not in the same ecosystem they are executed ecosystem by ecosystem. That means we execute
all the tests of the first ecosystem used (in the order they are declared) then the tests of the second ecosytem are
executed, etc.

Given the test tree below :

tests
|--foo
| |--test21.ta
| `--test22.ta
|--test01.ta
`--test02.ta

When this json data is given as input :

{
"test" : [{
"script" : "foo/test22.ta"

}, {
"script" : "test01.ta"

}, {
"script" : "test02.ta"

}, {
"script" : "foo/test21.ta"

}]
}

Then : test22.ta and test21.ta of ecosystem foo will be executed, then test01.ta and test02.ta will be executed.

• Parameters can be specified for each test.

5.2.3 Reporting

Contents :

• Configuration

• Report Status

• SKF HTML Report

– HTML Report Configuration

– HTML Report overview

• HTML Summary

– Normal HTML Summary

– Lightened HTML Summary

94 Chapter 5. Execution and Reporting

Squash Keyword Framework Documentation

• Surefire Report

– Surefire Report Configuration

– Surefire report overview

Configuration

All configurations are done in the <exporters> section of the pom.xml of your project.

A report is defined by the implementation attribute of an <exporter>. Child tags (of <exporter>) are report-
dependant.

<configuration>
...
<exporters>

<exporter implementation="org.squashtest.ta.commons.exporter.surefire.
→˓SurefireSuiteResultExporter">

<exportAttached>true</exportAttached>
<jenkinsAttachmentMode>true</jenkinsAttachmentMode>

</exporter>
<exporter implementation="org.squashtest.ta.commons.exporter.html.

→˓HtmlSuiteResultExporter"></exporter>
</exporters>
...

</configuration>

5.2. Tests Execution and Reporting 95

Squash Keyword Framework Documentation

Report Status

Element : Status :
Instruction :

• NOT RUN : Instruction was not executed.
• SUCCESS : Instruction was successfully exe-

cuted.
• FAILURE : An assertion has failed.
• ERROR : An instruction raised an unexpected er-

ror

Test case :
• NOT_RUN : A phase of a test case was not exe-

cuted.
• Otherwise its status is the severest one among sta-

tus of its instructions.

Script TF :
(Test) • NOT_RUN : Script was not executed.

• Otherwise its status is the severest one among sta-
tus of its instructions.

Ecosystem :
• Its status is the severest one among status of its

scripts.

SKF HTML Report

HTML Report Configuration

In our maven archetype, HTML reports are already enabled. Otherwise, you can do it with the following implementa-
tion :

org.squashtest.ta.commons.exporter.html.HtmlSuiteResultExporter

HTML report configuration sample :

<configuration>
...
<exporters>

<exporter implementation="org.squashtest.ta.commons.exporter.html.
→˓HtmlSuiteResultExporter"></exporter>

</exporters>
...

</configuration>

Since 1.7.0 version, it’s also possible to enable it with the following configuration :

96 Chapter 5. Execution and Reporting

Squash Keyword Framework Documentation

<configuration>
...
<exporters>

<html/>
</exporters>
...

</configuration>

Note: Both solutions are equivalent and work since 1.7.0.

HTML Report overview

The HTML Report (squash-ta-report.html) is created post-execution in directory : my.squash.ta.project/
target/SquashTA/html-reports.

Here are some screenshots of an html report :

• Test suite summary :

• Ecosystem summary :

• Target Initialisation summary : (@since Squash-TA framework 1.7.0)

• Test script result :

A full sample is also available here : Execution report - execution-report-test-sample.pdf

5.2. Tests Execution and Reporting 97

Squash Keyword Framework Documentation

98 Chapter 5. Execution and Reporting

Squash Keyword Framework Documentation

5.2. Tests Execution and Reporting 99

Squash Keyword Framework Documentation

HTML Summary

The HTML Summary is a less detailed version of the HTML report.

Normal HTML Summary

If you want to have an HTML Summary report, you have to add the following lines in <exporters> :

<exporters>
<htmlSummary>

<outputDirectoryName>directoryOfHtmlSummary</outputDirectoryName>
</htmlSummary>

</exporters>

Lightened HTML Summary

You can lighten the report if you add to the <htmlSummary> configuration the tag :

100 Chapter 5. Execution and Reporting

Squash Keyword Framework Documentation

<includeHeader>false</includeHeader>

Which gives :

<exporters>
<htmlSummary>

<outputDirectoryName>directoryOfHtmlSummary</outputDirectoryName>
<includeHeader>false</includeHeader>

</htmlSummary>
</exporters>

Note: It’s possible to have both HTML report and HTML Summary together : Put the two tags in <ex-
porters>. . . </exporters>

<exporters>
<htmlSummary>
<outputDirectoryName>directoryOfHtmlSummary</outputDirectoryName>
<includeHeader>false</includeHeader>

</htmlSummary>
<html/>

</exporters>

Surefire Report

Surefire Report Configuration

In our maven archetype, Surefire reports are already enabled. Otherwise, you can enable it with the following imple-
mentation :

5.2. Tests Execution and Reporting 101

Squash Keyword Framework Documentation

org.squashtest.ta.commons.exporter.surefire.SurefireSuiteResultExporter

The Surefire report uses 2 properties :

• exportAttached : If you want to generate the attachments in the surefire-reports-directory :

– Default value : true (since 1.7.0).

– Values accepted : true/false.

• jenkinsAttachmentMode : Used with the Squash TF server for the Jenkins JUnit attachment plugin.

Surefire report configuration sample :

<configuration>
...
<exporters>

<exporter implementation="org.squashtest.tf.commons.exporter.surefire.
→˓SurefireSuiteResultExporter">

<exportAttached>true</exportAttached>
<jenkinsAttachmentMode>true</jenkinsAttachmentMode>

</exporter>
</exporters>
...

</configuration>

Since 1.7.0 version, there is an easy solution to activate the Surefire report :

<configuration>
...
<exporters>

<surefire>
<exportAttached>true</exportAttached>
<jenkinsAttachmentMode>true</jenkinsAttachmentMode>

</surefire>
</exporters>
...

</configuration>

Note: Both solutions are equivalent and works since SKF 1.7.0.

Surefire report overview

A Surefire report is an .xml file which contains all results of the scripts execution.

Each <testsuite> element represents an ecosystem and each <testcase> element a .ta script.

Surefire reports are created in directory : my.squash.ta.project/target/squashTA/
surefire-reports

Here is an example of a Surefire report :

Three kind of results are possible :

102 Chapter 5. Execution and Reporting

Squash Keyword Framework Documentation

5.2. Tests Execution and Reporting 103

Squash Keyword Framework Documentation

• Passed : In this case the Surefire report provides only the name and the execution time of the test
case :

<testcase time="0.017" classname="tests.F01.ScriptsTF.Set1" name="UC01.
→˓01_Success.ta" />

• Failed (because of a false assertion) : In this case the Surefire report provides the name and the
execution time of the test case. It also indicates that a ‘failure’ occured and gives the associated
trace.

<testcase time="0.0090" classname="tests.Set1" name="Failure_in_setup.ta" >
<failure message="The pattern rubbish was not found in the file."
type="org.squashtest.ta.framework.exception.BinaryAssertionFailedException

→˓" >
Summary
SETUP :
[SUCCESS] LOAD file.txt AS file
[FAIL] ASSERT file DOES contain WITH $(rubbish)

[SUCCESS] $(rubbish) --> {{__temp306}}
[FAIL] ASSERT file DOES contain WITH {{__temp306}}

Trace here

[NOT_RUN] ASSERT file DOES contain WITH $(Hello)
[NOT_RUN] $(Hello) --> {{__temp152}}
[NOT_RUN] ASSERT file DOES contain WITH {{__temp152}}

TEST :
[NOT_RUN] ASSERT file DOES contain WITH $(Hello)

[NOT_RUN] $(Hello) --> {{__temp597}}
[NOT_RUN] ASSERT file DOES contain WITH {{__temp597}}

TEARDOWN :
[SUCCESS] ASSERT file DOES contain WITH $(Hello)

[SUCCESS] $(Hello) --> {{__temp529}}
[SUCCESS] ASSERT file DOES contain WITH {{__temp529}}

</failure>
</testcase>

• Failed (because of a technical error) : In this case the Surefire report provides the name and the
execution time of the test case. It also indicates that an ‘error’ occurs and give the associated trace.

<testcase time="0.013" classname="tests.Set2" name="Error_in_setup.ta" >
<error message="ASSERT wrongId DOES contain WITH {{__temp238}}: Cannot

→˓apply assertion :
SCOPE_TEST:wrongId does not exist in this test context: you must load it

→˓first."
type="org.squashtest.tf.backbone.exception.ResourceNotFoundException" >

Summary
SETUP :
[SUCCESS] LOAD file.txt AS file
[ERROR] ASSERT wrongId DOES contain WITH $(Hello)

[SUCCESS] $(Hello) --> {{__temp238}}
[ERROR] ASSERT wrongId DOES contain WITH {{__temp238}}

Trace was here

[NOT_RUN] ASSERT file DOES contain WITH $(Hello)
[NOT_RUN] $(Hello) --> {{__temp362}}
[NOT_RUN] ASSERT file DOES contain WITH {{__temp362}}

(continues on next page)

104 Chapter 5. Execution and Reporting

Squash Keyword Framework Documentation

(continued from previous page)

TEST :
[NOT_RUN] ASSERT file DOES contain WITH $(Hello)

[NOT_RUN] $(Hello) --> {{__temp345}}
[NOT_RUN] ASSERT file DOES contain WITH {{__temp345}}

TEARDOWN :
[SUCCESS] ASSERT file DOES contain WITH $(Hello)

[SUCCESS] $(Hello) --> {{__temp875}}
[SUCCESS] ASSERT file DOES contain WITH {{__temp875}}

</error>
</testcase>

Inside the target directory, there are also attached documents produced by SKF scripts to make easier diagnosis when
an error occurs (snapshots, diff-reports, detailed logs. . .).

5.2.4 Context Parameters

The purpose of context parameters is :

• To provide a list of key/value through json data (at script or at global level).

For example :

{
"test" : [{

"script" : "pathToMyscript1",
"param" : { // Script context

→˓parameters
"my_cuf" : "value1",
"property2" : "value2"

}
}

],
"param" : { // Global context
→˓parameters

"property2" : "value13",
"property6" : "value14"

}

• To transform the parameters as a properties resource and then use it in test script through file to file (using param)
converter (in USING clause).

– For script context parameters the resource is available in the test with : context_script_params.

– For global context parameters the resource is available in the test with : context_global_params.

In the sample below, in processedCommandFile, ${my_cuf} is replaced by “value1” :

{
"test" : [{

"script" : "pathToMyscript1",
"param" : {

"my_cuf" : "value1",
"property2" : "value2"

}
}

],
"param" : {

(continues on next page)

5.2. Tests Execution and Reporting 105

Squash Keyword Framework Documentation

(continued from previous page)

"property2" : "value13",
"property6" : "value14"

}
}

DEFINE $(monShell.sh -param1=${my_cuf}) AS commandFile
CONVERT commandFile TO file (param) USING context_script_params AS processedCommandFile
CONVERT processedCommandFile TO query.shell (query) AS commandLine
EXECUTE local WITH commandLine AS result

context_script_params and context_global_params can be used together but be wary of multiple def-
initions of the same parameter.

Only the latest parameter sent will be used.

For example :

{
"test" : [{

"script" : "pathToMyscript1",
"param" : {

"my_cuf" : "value1",
"property2" : "value2"

}
}

],
"param" : {

"property2" : "value13",
"property6" : "value14"

}
}

If you send the parameters in the following order :

CONVERT xmlResource TO file (param) USING context_global_params, context_script_params AS convert-
edXml

Then : property2 will be replaced by value2.

On the other hand, if you send them in the reverse order :

CONVERT xmlResource TO file (param) USING context_script_params, context_global_params AS convert-
edXml

Then : property2 will be replaced by value13.

Note: The framework doesn’t prevent you from defining your own SKF resource with those context names. If you
ever do it, your context parameters will be overwritten (and a warn is logged).

In the sample below, context_script_params corresponds to sample.properties :

LOAD sample.properties AS sample.file
CONVERT sample.file TO properties (structured) AS context_script_params

106 Chapter 5. Execution and Reporting

Squash Keyword Framework Documentation

5.2.5 SKF behaviour if an exception is raised during execution

5.2. Tests Execution and Reporting 107

Squash Keyword Framework Documentation

Phases : SKF bevahiour if an exception1 is raised :
Ecosystem
SETUP
(setup.ta)

General behaviour :
• Stops the execution of this setup.ta script.
• Launches the teardown.ta script.

Using VERIFY2 instruction :
• Executes the next instruction in the setup.ta script.
• When setup.ta script is finished, launches test

cases of the ecosystem.

Test case
SETUP

General behaviour :
• Stops the execution of this test case setup phase.
• Launches the test case teardown phase.
• When test case teardown phase is finished,

launches next SKF script3.
Using VERIFY2 instruction :

• Executes the next instruction in this test case
setup phase.

• When test case setup phase is finished, launches
test case test phase.

Test case
TEST

General behaviour :
• Stops the execution of this test case test phase.
• Launches the test case teardown phase.
• When test case teardown phase is finished,

launches next SKF script3.
Using VERIFY2 instruction :

• Executes the next instruction in this test case test
phase.

• When test case test phase is finished, launches test
case teardown phase.

Test case
TEARDOWN

General behaviour :
• Stops the execution of this test case teardown

phase.
• Launches the next SKF script (test case or tear-

down.ta).
Using VERIFY2 instruction:

• Executes the next instruction in this test case tear-
down phase.

• When test case teardown phase is finished,
launches the next SKF script3.

Ecosystem
TEARDOWN
(teardown.ta)

General behaviour :
• Stops the execution of this teardown.tf script.
• Launches the next ecosystem.

Using VERIFY2 instruction:
• Executes the next instruction in this teardown.ta

script.
• When this teardown.ta Script is finished, launches

the next ecosystem.

1 Exception could be an assertion failure or an unexpected error.

108 Chapter 5. Execution and Reporting

Squash Keyword Framework Documentation

2 For more information about VERIFY instruction, please check the following page.
3 test case or teardown.ta

5.3 List tests in an SKF project

Contents :

• ‘list’ goal (squash-ta:list)

– Listing test JSON report

• ‘list’ goal with Metadata

– Listing test JSON report with Metadata

– Disable Metadata when test listing

5.3.1 ‘list’ goal (squash-ta:list)

The list goal generates a json file representing the test tree of the current project. To generate this list, run at the
root of your project (where the pom.xml of your project is located) the command :

mvn squash-ta:list

The generated json file is named testTree.json and is created in <root_project_path>/target/
squashTA/test-tree directory.

Listing test JSON report

{
"timestamp": "2014-06-17T09:48:19.733+0000",
"name": "tests",
"contents": [
{

"name": "sample",
"contents": [

{
"name": "test-OK.tf",
"contents": null

}
]

},
{

"name": "sample2",
"contents": [

{
"name": "placeHolder.tf",
"contents": null

},
{
"name": "test-OK.tf",

(continues on next page)

5.3. List tests in an SKF project 109

Squash Keyword Framework Documentation

(continued from previous page)

"contents": null
}

]
},
{

"name": "placeHolder.tf",
"contents": null

},
{

"name": "test-KO-db-verification.tf",
"contents": null

},
{

"name": "test-KO-sahi.tf",
"contents": null

},
{

"name": "test-OK.tf",
"contents": null

}
]

}

5.3.2 ‘list’ goal with Metadata

If there are Squash metadata in the current test project, the goal “list” searches and checks if all metadata in a SKF
project respect the conventions for writing and using Squash TF metadata. (See Metadata section for more informa-
tion about Metadata syntax conventions)

The goal will check through the project, collect all the metadata error(s) if any and lead to a FAILURE. Otherwise, a
SUCCESS result will be obtained.

Metadata error(s), if found, will be grouped by test names.

110 Chapter 5. Execution and Reporting

Squash Keyword Framework Documentation

Listing test JSON report with Metadata

If the build is successful, the generated report (JSON file) will contain the metadata associated with each of the test
scripts.

{
"timestamp": "2014-06-17T09:48:19.733+0000",
"name": "tests",
"contents": [
{

"name": "sample",
"metadata" : {},
"contents": [

{
"name": "test-OK.ta",
"metadata" : {

"linked-TC": ["guid-1", "guid-2"],
"key2": null,
"key3": ["value"]

},
"contents": null

}
]

},
{

"name": "test-KO.ta",

(continues on next page)

5.3. List tests in an SKF project 111

Squash Keyword Framework Documentation

(continued from previous page)

"metadata" : {},
"contents": null

}
]

}

Disable Metadata when test listing

If there are Metadata in your project but you want to ignore them during the project test listing, then insert
tf.disableMetadata property after the goal “list”

mvn squash-ta:list -Dtf.disableMetadata=true

or as a property in the pom.xml file

<properties>
<tf.disableMetadata>true</tf.disableMetadata>

</properties>

The generated report (JSON file) will then NO LONGER contain the metadata.

{
"timestamp": "2014-06-17T09:48:19.733+0000",
"name": "tests",
"contents": [
{

"name": "sample",
"contents": [

{
"name": "test-OK.ta",
"contents": null

}
]

},
{

"name": "test-KO.ta",
"contents": null

}
]

}

Note: SKF has also a deprecated test-list goal. It generates the test list in the console / log and through the
exporters configured in pom.xml (html, surefire)

112 Chapter 5. Execution and Reporting

Squash Keyword Framework Documentation

5.4 Check TF metadata in project

Contents:

• ‘check-metadata’ goal (squash-ta:check-metadata)

– ‘check-metadata’ goal with Unicity checking

– ‘check-metadata’ goal with Unicity checking for specific Keys

5.4.1 ‘check-metadata’ goal (squash-ta:check-metadata)

As goal “list”, the goal “check-metadata” searches and checks if all metadata in a SKF project respect the conven-
tions for writing and using Squash TF metadata (see Metadata section for more information about Metadata syntax
conventions).

mvn squash-ta:check-metadata

The goal will check through the project, collect all the metadata error(s) if any and lead to a FAILURE. Otherwise, a
SUCCESS result will be obtained (however, no JSON report will be created with a successful check-metadata goal).

Metadata error(s), if found, will be grouped by test names.

5.4. Check TF metadata in project 113

Squash Keyword Framework Documentation

When a SKF project has duplicate values in a multi-value key on a given test, the ‘check-metadata’ goal will create a
WARNING message in the console.

‘check-metadata’ goal with Unicity checking

In addition to the normal syntax checking, you can insert the tf.metadata.check property after the goal “check-
metadata” to check the unicity of each Metadata Key - Value pair.

mvn squash-ta:check-metadata -Dtf.metadata.check=[valueUnicity]

If there are metadata Key - Value duplicate(s) in the SKF project (even if the syntax is OK), a FAILURE result will be
obtained.

114 Chapter 5. Execution and Reporting

Squash Keyword Framework Documentation

‘check-metadata’ goal with Unicity checking for specific Keys

You can even check the unicity of each Metadata Key - Value pair with just some specific Keys by inserting the second
property tf.metadata.check.key after the first one mentioned above.

mvn squash-ta:check-metadata -Dtf.metadata.check=[valueUnicity] -Dtf.metadata.check.
→˓keys=[xxx,yyy,zzz]

Important: In the bracket, the key list MUST be a string of characters composed by the concatenation of 1 to n keys
separated by commas : -Dtf.metadata.check.keys=[xxx,yyy,zzz]

If the list is surrounded by double quotes, spaces are allowed : -Dtf.metadata.check.keys=”[xxx, yyy, zzz]”

It is NOT allowed to have two commas without any key OR only spaces/tabulations between them (ex: -
Dtf.metadata.check.keys=”[xxx, ,yyy„zzz]”).

Key list is NOT allowed to be either uninitiated or empty (ex: -Dtf.metadata.check.keys= OR -
Dtf.metadata.check.keys=[]).

For each searched metadata key, if there are Key - Value duplicate(s) in the SKF project, a FAILURE result will be
obtained.

Note: If searched metadata key(s) are not found in any Test files, a WARNING message will be raised in the console.

5.4. Check TF metadata in project 115

Squash Keyword Framework Documentation

SKF is a maven plugin. So an SKF automation project is a maven project. You’ll need maven and a jdk installed on
your system.

To execute your tests, list your tests, etc . . . , you will have to use the maven goals we create to handle them. Currently
3 goals are defined :

• run : this goal handles the execution of your tests.

• list : this goal handles the listing of your tests.

• check-metadata : this goal handles some checks on TF metadata in SKF test scripts.

116 Chapter 5. Execution and Reporting

CHAPTER 6

SKF Plugins

6.1 Commons component plugin

6.1.1 Commons component plugin - Repositories

Contents :

• Classpath

• URL

The Repositories give you access to your test data from your script using the LOAD instruction. The present subsection
will teach you how to configure and use them.

IMPORTANT :

By default you can always access the Resources in your ‘resources’ directory (a default Repository pointing to that
directory always exists). So if all you need is this unique directory you don’t need to declare any Repository.

Classpath

Category-name : classpath

What ?

117

Squash Keyword Framework Documentation

Retrieves files present in the classpath of SKF and is helpful to load Resources embedded in other SKF plugins. If you
don’t know what it means, then you probably don’t need it.

Configuration : A simple .properties file dropped in the ‘repositories’ directory of your test project. It must contain
EXACTLY ‘squashtest.ta.classpath’, with any values you like (it doesn’t matter). Any other properties present in
this file will disqualify it.

Example of valid configuration file :

squashtest.ta.classpath=whatever

URL

Category-name : url

What ?

A generic repository for files (and ONLY FILES) accessible using an URL. An ideal choice for http or file-system
based repositories. Technical note : the supported protocols depends on the protocol handlers available in the jvm at
runtime, so adding your own handlers will naturally increase the range of addresses accessible from SKF (For more
informations, please consult the Java Documentation).

Configuration : A simple .properties file dropped in the ‘repositories’ directory of your test project. The file must
contain AT LEAST ‘squashtest.ta.url.base’.

Available properties are :

• squashtest.ta.url.base : The base url representing your repository.

• squashtest.ta.url.useCache : Whether to use a cache, to speed up future references to recurrent resources.

• squashtest.ta.url.login : Specifies a username for http authentication (special, see below).

• squashtest.ta.url.password : Specifies the password for the username above (special, see below).

HTTP Authentication : The login and password options above only hold for http authentication (protocols listed
here). It may also fail if the http server implements a custom protocol.

Note: You can also use the URL repository as a cheap replacement for the FTP repository. You must then format the
url with respect to the standard : ftp://user:password@host:port/path/to/basedir. In that case the login and password
properties are useless (since they’re inlined in the url itself).

Example of valid configuration file pointing to a .txt file :

note that the space in 'Program Files' is url encoded.

squashtest.ta.url.base = file:///C:/Program%20Files/fileTest.txt
squashtest.ta.ftp.useCache = false

118 Chapter 6. SKF Plugins

https://docs.oracle.com/javase/6/docs/api/java/net/URL.html
https://docs.oracle.com/javase/6/docs/technotes/guides/net/http-auth.html
ftp://user:password@host:port/path/to/basedir

Squash Keyword Framework Documentation

6.1.2 Commons component plugin - Target

Remark

All ‘.properties’ file corresponding to a target file must contain a shebang on the first line (example for a database
target the shebang is : #!db).

http

Category-name : http

What ?

The http target represents a basic http endpoint.

Configuration : A simple .properties file dropped in the ‘targets’ directory of your test project. The file must contain
EXACTLY ‘squashtest.tf.endpoint.url’. It must also include a shebang on the very first line : ‘#!http’.

Example of valid configuration file :

#!http

squashtest.ta.http.endpoint.url = http://www.google.com/pacman/

6.1.3 Commons component plugin - Resources

Contents :

• file

• bundle

• directory

• process

• properties

• script.java

• xml

This subsection introduces you to the Resources shipped with the commons-components basic plugin. The most
nitpicking of you will notice that the file resource category is part of the core of SKF and doesn’t need the plugin
to be available. Nevertheless it is stated here for convenience.

Most of the resources here will start their careers as file resource, then will be converted to their type using convert-
ers. Some of them can also be produced as the result of a command (for instance result.sql).

6.1. Commons component plugin 119

Squash Keyword Framework Documentation

Since most of the resources will be materialized as a file in your test project, you might be wondering what file
corresponds to complex resources (conf.dbunit for instance). You will NOT find that information here, because
there are potentially unlimited ways to create that resource, not just one file format. In other words, one could imagine
that a given resource could be constructed from other resources involving completely different material. A good
example is the dataset.dbunit resource : the Database Plugin provides three ways of creating one of these.

In fact, the question of how to obtain a resource, given another resource, is typically the job of the converters. If
you’re interested in what you should supply as inputs to the system in order to produce the resources you want, you
should check the ‘Converters’ section, located in the ‘Advanced Users’ section of each plugin. In the case of our
dataset.dbunit example, the answer you look for is in this section.

file

Category-name : file

What ?

file is a resource type representing a plain file or a directory, no assumption made on the content of either of them.

bundle

Category-name : bundle

What ?

bundle is a resource type representing a set of files. Basically it is a directory containing more directories or files. The
root directory is called the ‘base’. However it also have additional attributes. Those attributes give clues on what is the
relationships between the files it embeds.

The followig attribute is available :

• mainpath : denotes which file is considered to be the main file, and the other files represent its dependencies.
The mainpath is the path relative to the base of the bundle. When used, the context will decide what to do with
that main file, typically when using commands.

120 Chapter 6. SKF Plugins

Squash Keyword Framework Documentation

directory

Category-name : directory

What ?

directory is a resource type that represents a whole directory.

process

Category-name : process

@See : Since Squash TA 1.7.0, this resource moved to the Local Process Plugin.

properties

Category-name : properties

What ?

properties is a resource type that represents properties, in other words a set of pairs of <key - value >.

script.java

Category-name : script.java

What ?

This resource encapsulates a java code bundle, including resources and compiled java classes.

6.1. Commons component plugin 121

Squash Keyword Framework Documentation

xml

Category-name : xml

What ?

xml is a resource type that represents a file or a folder, like file. The difference is that the content is trusted to be of
XML nature.

6.1.4 Commons component plugin - Macros

Commons component plugin - Macros - Logs

Contents :

• # DEBUG $(message)

• # ERROR $(message)

• # INFO $(message)

• # WARN $(message)

• # LOG FILE CONTENT FROM {file} WITH LEVEL {level}

• # LOG FILE CONTENT FROM {content1} , {otherContent} WITH LEVEL {level}

DEBUG $(message)

What ?

This macro allows to write a message in the console with the DEBUG status.

Underlying instruction :

EXECUTE log WITH $({message}) USING $(logLevel:DEBUG) AS whatever

> Input :

122 Chapter 6. SKF Plugins

Squash Keyword Framework Documentation

• message : The message to display.

Example :

DEBUG $(This is a debug message logged with a macro)

SKF Script :

To be able to see the message in the console, you need to activate maven debug output.

Console output :

6.1. Commons component plugin 123

Squash Keyword Framework Documentation

ERROR $(message)

What ?

This macro allows to write a message in the console with the ERROR status.

Underlying instruction :

EXECUTE log WITH $({message}) USING $(logLevel:ERROR) AS whatever

> Input :

• message : The message to display.

Example :

ERROR $(This is an error message logged with a macro)

SKF Script :

Console output :

INFO $(message)

What ?

This macro allows to write a message in the console with the INFO status.

Underlying instruction :

124 Chapter 6. SKF Plugins

Squash Keyword Framework Documentation

EXECUTE log WITH $({message}) USING $(logLevel:INFO) AS whatever

> Input :

• message : The message to display.

Example :

INFO $(This is an info message logged with a macro)

SKF Script :

Console output :

WARN $(message)

What ?

This macro allows to write a message in the console with the WARN status.

Underlying instruction :

EXECUTE log WITH $({message}) USING $(logLevel:WARN) AS whatever

> Input :

• message : The message to display.

Example :

6.1. Commons component plugin 125

Squash Keyword Framework Documentation

WARN $(This is a warn message logged with a macro)

SKF Script :

Console output :

LOG FILE CONTENT FROM {file} WITH LEVEL {level}

What ?

This macro allows to write the content of a file in the console with the status of your choice (DE-
BUG,INFO,WARN,ERROR).

Underlying instruction :

LOAD {file} AS __target{%%r1}
EXECUTE log WITH __target{%%r1} USING $(logLevel:{level},multiline:yes) AS $()

> Input :

• file : The file which you want to display the content.

Example :

LOG FILE CONTENT FROM folder/example.txt WITH LEVEL INFO

File to log :

SKF Script :

Console output :

126 Chapter 6. SKF Plugins

Squash Keyword Framework Documentation

LOG FILE CONTENT FROM {content1} , {otherContent} WITH LEVEL {level}

What ?

This macro allows to write the content of multiple files in the console with the status of your choice (DE-
BUG,INFO,WARN,ERROR).

Underlying instruction :

LOG FILE CONTENT FROM {content1} WITH LEVEL {level}
LOG FILE CONTENT FROM {otherContent} WITH LEVEL {level}

> Input :

• content1 : The selected file which you want to display the content.

• otherContent : Another file which you want to display the content.

Example :

LOG FILE CONTENT FROM folder/example.txt , folder/example2.txt WITH LEVEL WARN

First file to log :

Second file to log :

6.1. Commons component plugin 127

Squash Keyword Framework Documentation

128 Chapter 6. SKF Plugins

Squash Keyword Framework Documentation

Resource folder where files to log are stored :

SKF Script :

Console output :

Commons component plugin - Macros - Pause

Contents :

• # PAUSE {time_in_ms} MILLISECONDS

• # PAUSE {time_in_s} SECONDS

PAUSE {time_in_ms} MILLISECONDS

What ?

This macro makes the test execution sleep for a given time (expressed in milliseconds).

Underlying instruction :

EXECUTE pause WITH $({time_in_ms}) AS $()

> Input :

• time_in_ms : Time in milliseconds.

6.1. Commons component plugin 129

Squash Keyword Framework Documentation

Example :

PAUSE 3000 MILLISECONDS

SKF script :

Console Output :

PAUSE {time_in_s} SECONDS

What ?

This macro makes the test execution sleep for a given time (expressed in seconds).

Underlying instruction :

EXECUTE pause WITH $({time_in_s}000) AS $()

> Input :

• time_in_s : Time in seconds.

Example :

PAUSE 3 SECONDS

SKF script :

Console Output :

130 Chapter 6. SKF Plugins

Squash Keyword Framework Documentation

Commons component plugin - Macros - Substitute dates

Contents :

• # SUBSTITUTE DATES IN {files} AS {processed_files}

• # SUBSTITUTE DATES IN {files} FOR FILES WHOSE NAMES MATCHING {regex} AS {processed_files}

• # SUBSTITUTE DATES IN {files} FOR FILES WHOSE NAMES NOT MATCHING {regex} AS {pro-
cessed_files}

• # SUBSTITUTE DATES IN {files} USING {dates} AS {processed_files}

• # SUBSTITUTE DATES IN {files} USING {dates} FOR FILES WHOSE NAMES MATCHING {regex} AS
{processed_files}

• # SUBSTITUTE DATES IN {files} USING {dates} FOR FILES WHOSE NAMES NOT MATCHING {regex}
AS {processed_files}

SUBSTITUTE DATES IN {files} AS {processed_files}

What ?

This macro allows to replace dates in a bundle of files. For more information about the formulas to use in order to
replace dates, please check this page.

Underlying instruction :

LOAD {files} AS __bundle{%%rand1}
CONVERT __bundle{%%rand1} TO file(param.relativedate) AS {processed_files}

> Input :

• {files} : The bundle of files where you want to apply the substitution.

6.1. Commons component plugin 131

Squash Keyword Framework Documentation

> Output :

• {processed_files} : The bundle of files that have been processed.

Example :

SUBSTITUTE DATES IN resources_folder AS result_bundle

First file to process :

Second file to process :

The folder containing files to process which corresponds to{files} :

SKF script :

In order to check that the macro worked properly, we added in this example the instruction “LOAD result
AS resultOutput” to be able to see the result output.

You can access to the result output in the following folder which contains temporary files :

C:\Users*user name*\AppData\Local\Temp\Squash_TA\20190909_121048_957615127627872437436\tests\tests\substitute_dates.ta\date88302692580700934357655997463584302temp

132 Chapter 6. SKF Plugins

Squash Keyword Framework Documentation

Result output for first file (script executed on 09/09/2019) :

Result output for second file :

SUBSTITUTE DATES IN {files} FOR FILES WHOSE NAMES MATCHING {regex} AS {pro-
cessed_files}

What ?

This macro allows to replace dates in a bundle of files whose names match a specific regular expression. For more
information about the formulas to use in order to replace dates, please check this page.

Underlying instruction :

LOAD {files} AS __bundle{%%rand1}
CONVERT __bundle{%%rand1} TO file(param.relativedate) USING $(squashtest.ta.param.
→˓include:{regex}) AS {processed_files}

> Input :

• {files} : The bundle of files where you want to apply the substitution.

• {regex} : The regular expression used to filter the files in the bundle.

> Output :

6.1. Commons component plugin 133

Squash Keyword Framework Documentation

• {processed_files} : The bundle of filtered files that have been processed.

Example :

SUBSTITUTE DATES IN resources_folder FOR FILES WHOSE NAMES MATCHING .xml AS
result_bundle

This example is based on the previous one. For more details, please check here.

SKF script :

Console output :

The .txt file which does not match the selected regex is properly excluded.

Result output for first file :

Result output for second file :

The .txt file is not processed whereas the .xml is.

134 Chapter 6. SKF Plugins

Squash Keyword Framework Documentation

SUBSTITUTE DATES IN {files} FOR FILES WHOSE NAMES NOT MATCHING {regex} AS {pro-
cessed_files}

What ?

This macro allows to replace dates in a bundle of files whose names don’t match a specific regular expression. For
more information about the formulas to use in order to replace dates, please check this page.

Underlying instruction :

LOAD {files} AS __bundle{%%rand1}
CONVERT __bundle{%%rand1} TO file(param.relativedate) USING $(squashtest.ta.param.
→˓exclude:{regex}) AS {processed_files}

> Input :

• {files} : The bundle of files where you want to apply the substitution.

• {regex} : The regular expression used to filter the files in the bundle.

> Output :

• {processed_files} : The bundle of filtered files that have been processed.

Example :

SUBSTITUTE DATES IN resources_folder FOR FILES WHOSE NAMES NOT MATCHING .xml
AS result_bundle

This example is based on the first one. For more details, please check here.

SKF script :

Console output :

6.1. Commons component plugin 135

Squash Keyword Framework Documentation

The .xml file which match the selected regex is properly excluded.

Result output for first file :

Result output for second file :

The .xml file is not processed whereas the .txt is.

SUBSTITUTE DATES IN {files} USING {dates} AS {processed_files}

What ?

This macro allows to replace dates in a bundle of files with dates you have specified. For more information about the
formulas to use in order to replace dates, please check this page.

Underlying instruction :

LOAD {dates} AS placeholder{%%rand2}.file
CONVERT placeholder{%%rand2}.file TO properties(structured) AS placeholder{%%rand3}.
→˓properties

(continues on next page)

136 Chapter 6. SKF Plugins

Squash Keyword Framework Documentation

(continued from previous page)

LOAD {files} AS __bundle{%%rand1}
CONVERT __bundle{%%rand1} TO file(param.relativedate) USING placeholder{%%rand3}.
→˓properties AS {processed_files}

> Input :

• {files} : The bundle of files where you want to apply the substitution.

• {dates} : It can either be a path to a properties file or an inline command with keys and values for
the dates you want to specify.

Example of inline command : $(date1=01/01/2001 \n date2=31/12/2018).
Example of date in file to process : ${date(date1,dd/MM/yyyy).format(dd-MM-yyyy)}

> Output :

• {processed_files} : The bundle of files that have been processed.

Examples :

SUBSTITUTE DATES IN resources_folder USING resources_folder/dates.properties AS re-
sult_bundle

Or

SUBSTITUTE DATES IN resources_folder USING $(date1=01/01/2001 \n date2=31/12/2018) AS
result_bundle

This example is based on the first one. For more details, please check here.

File to process :

.properties File :

6.1. Commons component plugin 137

Squash Keyword Framework Documentation

.properties File Location :

SKF script :

Console output :

Result output :

SUBSTITUTE DATES IN {files} USING {dates} FOR FILES WHOSE NAMES MATCHING {regex} AS
{processed_files}

138 Chapter 6. SKF Plugins

Squash Keyword Framework Documentation

What ?

This macro allows to replace dates (with dates you have specified) in a bundle of files whose names match a specific
regular expression. For more information about the formulas to use in order to replace dates, please check this page.

Underlying instruction :

LOAD {dates} AS placeholder{%%rand2}.file
CONVERT placeholder{%%rand2}.file TO properties(structured) AS placeholder{%%rand3}.
→˓properties
LOAD {files} AS __bundle{%%rand1}
CONVERT __bundle{%%rand1} TO file(param.relativedate) USING placeholder{%%rand3}.
→˓properties,$(squashtest.ta.param.include:{regex}) AS {processed_files}

> Input :

• {files} : The bundle of files where you want to apply the substitution.

• {dates} : It can either be a path to a properties file or an inline command with keys and values for
the dates you want to specify.

Example of inline command : $(date1=01/01/2001 \n date2=31/12/2018).
Example of date in file to process : ${date(date1,dd/MM/yyyy).format(dd-MM-yyyy)}

• {regex} : The regular expression used to filter the files in the bundle.

> Output :

• {processed_files} : The bundle of filtered files that have been processed.

Examples :

SUBSTITUTE DATES IN resources_folder USING resources_folder/dates.properties FOR FILES WHOSE
NAMES MATCHING .xml AS result_bundle

6.1. Commons component plugin 139

Squash Keyword Framework Documentation

Or

SUBSTITUTE DATES IN resources_folder USING $(date1=01/01/2001 \n date2=31/12/2018) FOR FILES
WHOSE NAMES MATCHING .xml AS result_bundle

For more infomation, please check this example and this one.

SUBSTITUTE DATES IN {files} USING {dates} FOR FILES WHOSE NAMES NOT MATCHING {regex}
AS {processed_files}

What ?

This macro allows to replace dates (with dates you have specified) in a bundle of files whose names don’t match a
specific regular expression. For more information about the formulas to use in order to replace dates, please check this
page.

Underlying instruction :

LOAD {dates} AS placeholder{%%rand2}.file
CONVERT placeholder{%%rand2}.file TO properties(structured) AS placeholder{%%rand3}.
→˓properties
LOAD {files} AS __bundle{%%rand1}
CONVERT __bundle{%%rand1} TO file(param.relativedate) USING placeholder{%%rand3}.
→˓properties,$(squashtest.ta.param.exclude:{regex}) AS {processed_files}

> Input :

• {files} : The bundle of files where you want to apply the substitution.

• {dates} : It can either be a path to a properties file or an inline command with keys and values for
the dates you want to specify.

Example of inline command : $(date1=01/01/2001 \n date2=31/12/2018).
Example of date in file to process : ${date(date1,dd/MM/yyyy).format(dd-MM-yyyy)}

• {regex} : The regular expression used to filter the files in the bundle.

> Output :

• {processed_files} : The bundle of filtered files that have been processed.

Examples :

SUBSTITUTE DATES IN resources_folder USING resources_folder/dates.properties FOR FILES WHOSE
NAMES NOT MATCHING .txt AS result_bundle

Or

140 Chapter 6. SKF Plugins

Squash Keyword Framework Documentation

SUBSTITUTE DATES IN resources_folder USING $(date1=01/01/2001 \n date2=31/12/2018) FOR FILES
WHOSE NAMES NOT MATCHING .txt AS result_bundle

For more infomation, please check this example and this one.

Commons component plugin - Macros - Substitute keys

Contents :

• # SUBSTITUTE KEYS IN {files} USING {key_value_list} AS {processed_files}

• # SUBSTITUTE KEYS IN {files} FOR FILES WHOSE NAMES MATCHING {regex} USING {key_value_list}
AS {processed_files}

• # SUBSTITUTE KEYS IN {files} FOR FILES WHOSE NAMES NOT MATCHING {regex} USING
{key_value_list} AS {processed_files}

SUBSTITUTE KEYS IN {files} USING {key_value_list} AS {processed_files}

What ?

This macro allows to replace specific keys by selected values in a bundle of files.

Underlying instruction :

LOAD {key_value_list} AS placeholder{%%rand2}.file
CONVERT placeholder{%%rand2}.file TO properties(structured) AS placeholder{%%rand3}.
→˓properties
LOAD {files} AS __bundle{%%rand1}
CONVERT __bundle{%%rand1} TO file(param) USING placeholder{%%rand3}.properties AS
→˓{processed_files}

> Input :

• {files} : The bundle of files where you want to apply the substitution.

• {key_value_list} : It can either be a path to a properties file or an inline command with keys
and values.

Example of inline command : $(key1=value1 \n key2=value2).

> Output :

• {processed_files} : The bundle of filtered files that have been processed.

6.1. Commons component plugin 141

Squash Keyword Framework Documentation

Examples :

SUBSTITUTE KEYS IN resources_folder USING resources_folder/file.properties AS result_bundle

Or

SUBSTITUTE KEYS IN resources_folder USING $(oneKey=oneValue \n anoth-
erKey=anotherValue) AS result_bundle

First file to process :

Second file to process :

.properties File :

The folder containing files to process which corresponds to{files} :

SKF script :

In order to check that the macro worked properly, we added in this example, the instruction “LOAD
result AS resultOutput” to be able to see the result output.

You can access to the result output in the following folder which contains temporary files :

C:\Users*user name*\AppData\Local\Temp\Squash_TA\20190909_121048_957615127627872437436\tests\tests\substitute_keys.ta\myResources2594181966007652622639979916temp

Result output for first file :

Result output for second file :

142 Chapter 6. SKF Plugins

Squash Keyword Framework Documentation

6.1. Commons component plugin 143

Squash Keyword Framework Documentation

SUBSTITUTE KEYS IN {files} FOR FILES WHOSE NAMES MATCHING {regex} USING
{key_value_list} AS {processed_files}

What ?

This macro allows to replace specific keys by selected values in a bundle of files whose names are matching a selected
regular expression.

Underlying instruction :

LOAD {key_value_list} AS placeholder{%%rand2}.file
CONVERT placeholder{%%rand2}.file TO properties(structured) AS placeholder{%%rand3}.
→˓properties
LOAD {files} AS __bundle{%%rand1}
CONVERT __bundle{%%rand1} TO file(param) USING placeholder{%%rand3}.properties,
→˓$(squashtest.ta.param.include:{regex}) AS {processed_files}

> Input :

• {files} : The bundle of files where you want to apply the substitution.

• {regex} : The regular expression used to filter the files in the bundle.

• {key_value_list} : It can either be a path to a properties file or an inline command with keys
and values.

Example of inline command : $(key1=value1 \n key2=value2).

> Output :

• {processed_files} : The bundle of filtered files that have been processed.

Examples :

SUBSTITUTE KEYS IN resources_folder FOR FILES WHOSE NAMES MATCHING .xml USING
resources_folder/file.properties AS result_bundle

Or

SUBSTITUTE KEYS IN resources_folder FOR FILES WHOSE NAMES MATCHING .xml USING
$(oneKey=oneValue \n anotherKey=anotherValue) AS result_bundle

This example is based on the previous one. For more details, please check here.

SKF script :

Or

144 Chapter 6. SKF Plugins

Squash Keyword Framework Documentation

Console output :

The .txt and .properties files which don’t match the selected regex are properly excluded.

Result output for first file :

Result output for second file :

The .xml file is the only one that has been processed.

SUBSTITUTE KEYS IN {files} FOR FILES WHOSE NAMES NOT MATCHING {regex} USING
{key_value_list} AS {processed_files}

What ?

This macro allows to replace specific keys by selected values in a bundle of files whose names are not matching a
selected regular expression.

Underlying instruction :

LOAD {key_value_list} AS placeholder{%%rand2}.file
CONVERT placeholder{%%rand2}.file TO properties(structured) AS placeholder{%%rand3}.
→˓properties

(continues on next page)

6.1. Commons component plugin 145

Squash Keyword Framework Documentation

(continued from previous page)

LOAD {files} AS __bundle{%%rand1}
CONVERT __bundle{%%rand1} TO file(param) USING placeholder{%%rand3}.properties,
→˓$(squashtest.ta.param.exclude:{regex}) AS {processed_files}

> Input :

• {files} : The bundle of files where you want to apply the substitution.

• {regex} : The regular expression used to filter the files in the bundle.

• {key_value_list} : It can either be a path to a properties file or an inline command with keys
and values.

Example of inline command : $(key1=value1 \n key2=value2).

> Output :

• {processed_files} : The bundle of filtered files that have been processed.

Examples :

SUBSTITUTE KEYS IN resources_folder FOR FILES WHOSE NAMES NOT MATCHING .xml
USING resources_folder/file.properties AS result_bundle

Or

SUBSTITUTE KEYS IN resources_folder FOR FILES WHOSE NAMES NOT MATCHING .xml
USING $(oneKey=oneValue,anotherKey \n anotherValue) AS result_bundle

This example is based on the previous one. For more details, please check here.

SKF script :

Console output :

The .xml file which match the selected regex is properly excluded.

Result output for first file :

146 Chapter 6. SKF Plugins

Squash Keyword Framework Documentation

Result output for second file :

The .xml file is not processed whereas the .txt is.

Commons component plugin - Macros - Substitute dates and keys

Contents :

• # SUBSTITUTE DATES AND KEYS IN {files} USING {key_value_list} AS {processed_files}

• # SUBSTITUTE DATES AND KEYS IN {files} FOR FILES WHOSE NAMES MATCHING {regex} USING
{key_value_list} AS {processed_files}

• # SUBSTITUTE DATES AND KEYS IN {files} FOR FILES WHOSE NAMES NOT MATCHING {regex} US-
ING {key_value_list} AS {processed_files}

SUBSTITUTE DATES AND KEYS IN {files} USING {key_value_list} AS {processed_files}

What ?

6.1. Commons component plugin 147

Squash Keyword Framework Documentation

This macro allows to replace dates and keys by values in a bundle of files. For more information about the formulas to
use in order to replace dates, please check this page.

Underlying instruction :

LOAD {key_value_list} AS placeholder{%%rand2}.file
CONVERT placeholder{%%rand2}.file TO properties(structured) AS placeholder{%%rand3}.
→˓properties
LOAD {files} AS __bundle{%%rand1}
CONVERT __bundle{%%rand1} TO file(param.relativedate) USING placeholder{%%rand3}.
→˓properties AS __bundle{%%rand2}
CONVERT __bundle{%%rand2} TO file(param) USING placeholder{%%rand3}.properties AS
→˓{processed_files}

> Input :

• {files} : The bundle of files where you want to apply the substitution.

• {key_value_list} : It can either be a path to a properties file or an inline command with keys
and values.

Example of inline command : $(key1=value1 \n key2=value2).

> Output :

• {processed_files} : The bundle of filtered files that have been processed.

Examples :

SUBSTITUTE DATES AND KEYS IN resources_folder USING resources_folder/file.properties AS re-
sult_bundle

Or

SUBSTITUTE DATES AND KEYS IN resources_folder USING $(oneKey=oneValue \n anoth-
erKey=anotherValue) AS result_bundle

For more information please check the following sections : substitute dates macro and substitute keys macro.

SUBSTITUTE DATES AND KEYS IN {files} FOR FILES WHOSE NAMES MATCHING {regex} USING
{key_value_list} AS {processed_files}

What ?

This macro allows to replace dates and keys by values in a bundle of files whose names match a selected regular
expression. For more information about the formulas to use in order to replace dates, please check this page.

148 Chapter 6. SKF Plugins

Squash Keyword Framework Documentation

Underlying instruction :

LOAD {key_value_list} AS placeholder{%%rand2}.file
CONVERT placeholder{%%rand2}.file TO properties(structured) AS placeholder{%%rand3}.
→˓properties
LOAD {files} AS __bundle{%%rand1}
CONVERT __bundle{%%rand1} TO file(param.relativedate) USING placeholder{%%rand3}.
→˓properties,$(squashtest.ta.param.include:{regex}) AS __bundle{%%rand2}
CONVERT __bundle{%%rand2} TO file(param) USING placeholder{%%rand3}.properties,
→˓$(squashtest.ta.param.include:{regex}) AS {processed_files}

> Input :

• {files} : The bundle of files where you want to apply the substitution.

• {regex} : The regular expression used to filter the files in the bundle.

• {key_value_list} : It can either be a path to a properties file or an inline command with keys
and values.

Example of inline command : $(key1=value1 \n key2=value2).

> Output :

• {processed_files} : The bundle of filtered files that have been processed.

Examples :

SUBSTITUTE DATES AND KEYS IN resources_folder FOR FILES WHOSE NAMES MATCHING .xml US-
ING resources_folder/file.properties AS result_bundle

Or

SUBSTITUTE DATES AND KEYS IN resources_folder FOR FILES WHOSE NAMES MATCHING .xml US-
ING $(oneKey=oneValue \n anotherKey=anotherValue) AS result_bundle

For more information please check the following sections : substitute dates macro and substitute keys macro for files
whose names are matching the given regular expression.

SUBSTITUTE DATES AND KEYS IN {files} FOR FILES WHOSE NAMES NOT MATCHING {regex}
USING {key_value_list} AS {processed_files}

What ?

This macro allows to replace dates and keys by values in a bundle of files whose names are not matching a selected
regular expression. For more information about the formulas to use in order to replace dates, please check this page.

Underlying instruction :

6.1. Commons component plugin 149

Squash Keyword Framework Documentation

LOAD {key_value_list} AS placeholder{%%rand2}.file
CONVERT placeholder{%%rand2}.file TO properties(structured) AS placeholder{%%rand3}.
→˓properties
LOAD {files} AS __bundle{%%rand1}
CONVERT __bundle{%%rand1} TO file(param.relativedate) USING placeholder{%%rand3}.
→˓properties,$(squashtest.ta.param.exclude:{regex}) AS __bundle{%%rand2}
CONVERT __bundle{%%rand2} TO file(param) USING placeholder{%%rand3}.properties,
→˓$(squashtest.ta.param.exclude:{regex}) AS {processed_files}

> Input :

• {files} : The bundle of files where you want to apply the substitution.

• {regex} : The regular expression used to filter the files in the bundle.

• {key_value_list} : It can either be a path to a properties file or an inline command with keys
and values.

Example of inline command : $(key1=value1 \n key2=value2).

> Output :

• {processed_files} : The bundle of filtered files that have been processed.

Examples :

SUBSTITUTE DATES AND KEYS IN resources_folder FOR FILES WHOSE NAMES NOT MATCHING .txt
USING resources_folder/file.properties AS result_bundle

Or

SUBSTITUTE DATES AND KEYS IN resources_folder FOR FILES WHOSE NAMES NOT MATCHING .txt
USING $(oneKey=oneValue \n anotherKey=anotherValue) AS result_bundle

For more information please check the following sections : substitute dates macro and substitute keys macro for files
whose names are not matching the given regular expression.

6.1.5 Commons component plugin - Advanced Users

Commons component plugin - Converters

Contents :

• From file . . .

– . . . to bundle

– . . . to csv

– . . . to directory

150 Chapter 6. SKF Plugins

Squash Keyword Framework Documentation

– . . . to file (using param.relativedate)

– . . . to file (using param)

– . . . to properties

– . . . to script.java

– . . . to xml

Since converters create resource of B type using a resource of A type, the documentation on converters follows a
pattern ‘from A to B ‘ (e.g. from file to query.sql). Most of the time knowing the category of the resources you
have and/or you want to obtain will be enough to find which converter you need using the following list. However
remember that a converter is fully qualified by his signature : the only way to disambiguate situations where multiple
converters consuming and producing the same categories could apply is to specify the name of the converter too.

Like the other engine components, a converter is configurable. It means that you can pass parameters and tweak the
operation.

From file . . .

A test project is mostly made of files, including the test resources. This is why the file category is so important and
overly processed by converters.

. . . to bundle

Category-Name : unchecked

What ?

This unchecked converter will convert a file type resource to a bundle type resource. It checks during the conver-
sion that the resource to convert is really pointing to a directory.

CONVERT {resourceToConvert<Res:file>} TO bundle (unchecked) AS {converted<Res:bundle>} [USING
{mainPath<Res:file>}]

> Input :

• resourceToConvert<Res:file> : The name (in the context) of the resource which references the root
directory. This root directory should contains the whole files and directories of the bundle (file type resource).

• mainPath<Res:file> (OPTIONAL) : The name of the configuration resource. The content of the file
should be: mainpath:relativePathToMainFile (Note : you could use an inline definition). This path to main file
should be relative to the directory given as the root directory.

> Output :

• converted<Res:bundle> : The name of the converted resource (bundle type resource).

6.1. Commons component plugin 151

Squash Keyword Framework Documentation

Example (with the USING clause and an inline definition) :

LOAD path/to/rootDirectory AS bundle.file
CONVERT bundle.file TO bundle (unchecked) AS bundle.bundle USING $(mainpath:relative/path/to/mainFile.txt)

. . . to csv

Category-Name : structured

What ?

This structured converter will convert a file type resource to a csv type resource. It checks during the conversion
that the resource to convert is really pointing to a csv file.

CONVERT {resourceToConvert<Res:file>} TO csv (structured) AS {converted<Res:csv>} [USING {main-
Path<Res:file>}]

> Input :

• resourceToConvert<Res:file> : The name (in the context) of the resource which references the csv
file (file type resource).

• mainPath<Res:file> (OPTIONAL) : The name of the configuration resource. given as the root directory.

> Output :

• converted<Res:csv> : The name of the converted resource (csv type resource).

Example :

LOAD csv1/mycsv.csv AS mycsv.file
CONVERT mycsv.file TO csv (structured) AS mycsv.csv

. . . to directory

Category-Name : filesystem

What ?

152 Chapter 6. SKF Plugins

Squash Keyword Framework Documentation

This filesystem converter will convert a file type resource to a directory type resource. It checks during the
conversion that the resource to convert is really pointing to a directory.

CONVERT {resourceToConvert<Res:file>} TO directory (filesystem) AS {converted<Res:directory>}

> Input :

• resourceToConvert<Res:file> : The name (in the context) of the resource which references a directory
(file type resource).

> Output :

• converted<Res:directory> : The name of the converted resource (directory type resource).

Example :

LOAD path/to/Directory AS directory.file
CONVERT directory.file TO directory (filesystem) AS directory.directory

. . . to file (using param.relativedate)

Category-Name : param.relativedate

What ?

This param.relativedate converter will convert a file type resource to another file type resource. In the context
of the aging factor a mechanism has been set-up in SKF to manage dates. It consists in replacing dates of the data set
with formulas of type :

${function}

where function is :

• now().format(f) : return the execution date at the ‘f’ format.

• now().addDay(n).format(f) : return the execution date + ‘n’ days (positive or negative) at the ‘f’
format.

• now().addMonth(n).format(f) : return the execution date + ‘n’ months (positive or negative) at the ‘f’
format.

• now().addYear(n).format(f) : return the execution date + ‘n’ years (positive or negative) at the ‘f’
format.

6.1. Commons component plugin 153

Squash Keyword Framework Documentation

Table 1: Examples with an SKF script run on 16/05/2012 :
Function Result
now().format(yyyyMMdd) 20120516
now().addDay(1).format(dd/MM/yyyy) 17/05/2012
now().addDay(-2).addMonth(1).addYear(-3).format(dd MMMM yyyy) 14 June 2009

Since 1.7.0, you can overwrite the default locale of your date, with a language code or a language and a country :

• now().[. . .].format(f, l) : return the date at the ‘f’ format in the ‘l’ language, where ‘l’ is a lower-case, two-letter
code as defined by ISO-639.

• now().[. . .].format(f, l, C) : return the date at the ‘f’ format in the ‘l’ language of the ‘C’ country, where ‘l’
is a lower-case, two-letter code as defined by ISO-639 and ‘C’ is an upper-case, two-letter code as defined by
ISO-3166.

Function Result
now().addMonth(1).format(dd MMMM yyyy, fr) 16 juin 2012
now().addMonth(1).format(dd MMMM yyyy, de, DE) 16 Juni 2012

Since 1.10.0, you can manipulate the date in the ${function} with 3 new options :

• The ensureWorkingDay($param) function adjusts the computed date to the nearest working day before or after
the input date ($param must be replaced by AFTER or BEFORE).

• The addWorkingDay(n) function allows to add a given number of working days to its input date (n is a positive
or negative integer).

• If you want to specify a date which is different from now(), you can use the following method :

Example :

LOAD folder/file AS templateData
DEFINE $(date-key=05051978) AS rawProperties
CONVERT rawProperties TO properties(structured) AS prop
CONVERT templateData TO file(param.relativedate) USING prop AS data

Written in the file to process : ${date(date-key,ddMMyyyy).addDay(-1).
→˓format(yyyy-MM-dd)}

Function Result
now().addMonth(4).ensureWorkingDay(AFTER).format(dd MMM yyyy, fr) 17 Septembre 2012
now().addMonth(4).ensureWorkingDay(BEFORE).format(dd MMM yyyy, fr) 14 Septembre 2012
now().addWorkingDay(10).format(dd MMM yyyy, fr) 30 Mai 2012

The Working days are read from component configuration through the USING clause.

Example of file :

• org.squashtest.tf.plugin.commons.parms.data.WorkedSunday=false

• org.squashtest.tf.plugin.commons.parms.data.WorkedSaturday=false

• org.squashtest.tf.plugin.commons.parms.data.WorkedMonday=true

• org.squashtest.tf.plugin.commons.parms.data.nonWorkingDays=2018-05-01,2018-12-25,2019-01-01

154 Chapter 6. SKF Plugins

Squash Keyword Framework Documentation

The fourth parameter list all the non working days, you must declare the date like yyyy-MM-dd and separate them
with a comma.

The converter transforms formulas ${function} in valid dates at the execution :

CONVERT {resourceToConvert<Res:file>} TO file
(param.relativedate) [USING {properties<Res:properties>}] AS {converted<Res:file>}

> Input :

• resourceToConvert<Res:file> : The name (in the context) of the resource which references a file. All
the dates of the file must have been replaced by formulas like ‘${function}’.

• properties<Res:properties> : If the resourceToConvert is a bundle containing binary file, this proper-
ties file must contain either the squashtest.tf.param.exclude OR the squashtest.tf.param.include parameter. Both
of them use regular expressions. According to the selected parameter, the file(s) matching the regex will or will
not be treated by this converter.

> Output :

• converted<Res:file> : The name of the converted resource (file type resource). The finale resource is
the same than the input resource, the difference is that formulas have been replaced with valid dates.

Example :

LOAD path/myfile AS myfile.file
CONVERT myfile.file TO file (param.relativedate) AS myfile2.file

. . . to file (using param)

Category-Name : param

Since 1.6.0 :

What ?

This param converter will convert a file type resource to another file type resource. After the conversion all the
placeholder, whose key was found in the properties resource given in the USING clause, should have been replace by
it’s valid value (the value associate to the key in the property resource file). The initial File resource could be a file or
a directory. If it’s a directory then all the file contained in this directory should be process.

Here are the rule used :

• Placeholder syntax : ${key}

• Authorized characters for properties key : letters (a-z;A-Z), digits (0-9), underscore (_), dot (.) and dash (-)

• The convert instruction could take one or many properties file AND one or many inline statements

• If a property key is defined many times, then it’s the last stated which is take into account

6.1. Commons component plugin 155

Squash Keyword Framework Documentation

• If a placeholder is surrounding with character @, then the placeholder is escaped. For example if we have in the
file to process : @${test}@, then we will have in the final file : ${test}

• If a placeholder key is not found in the properties key, then the placeholder is escaped.

CONVERT {resourceToConvert<Res:file>} TO file (param) USING {properties<Res:properties>} AS {con-
verted<Res:file>}

> Input :

• resourceToConvert<Res:file> : The name (in the context) of the resource which references a file.

• properties<Res:properties> : This properties file contains the mapping key-value. If the re-
sourceToConvert is a bundle containing binary file, this properties file must also contain either the squasht-
est.tf.param.exclude OR the squashtest.tf.param.include parameter. Both of them are regular expression the file
contained in the bundle must match to be or not to be treated by this converter.

> Output :

• converted<Res:file> : The name of the converted resource (file type resource). The finale resource
is the same than the input resource, the difference is that the placeholder ${. . . } have been replaced with their
valid values.

Example :

LOAD sahi/placeholder.properties AS placeholder.file
CONVERT placeholder.file TO properties (structured) AS placeholder.properties

LOAD sahi/main/simple-script.sah AS sahiFile
CONVERT sahiFile TO file (param) USING placeholder.properties AS processedSahiFile

CONVERT processedSahiFile TO script.sahi (script) AS suite

Where :

* placeholder.properties contains : c3p0.data=Using c3p0

* simple-script.sah contains : _click(_link("${c3p0.data}"));

Then :

* processedSahiFile should contains : _click(_link("Using c3p0"));

. . . to properties

Category-Name : structured

156 Chapter 6. SKF Plugins

Squash Keyword Framework Documentation

What ?

This structured converter will convert a file type resource to a properties type resource.

CONVERT {resourceToConvert<Res:file>} TO properties (structured) AS {converted<Res:properties>}

> Input :

• resourceToConvert<Res:file> : The name (in the context) of the resource which references the ‘.prop-
erties’ file (list of properties key / value) where the used separator is ‘=’.

> Output :

• converted<Res:properties> : The name of the converted resource (properties type resource).

Example :

LOAD path/myfile.properties AS myfile.file
CONVERT myfile.file TO properties (structured) AS myfile.prop

. . . to script.java

Category-Name : compile

What ?

This compile converter will convert a file type resource to a script.java type resource.

CONVERT {resourceToConvert<Res:file>} TO script.java (compile) AS {converted<Res:script.java>} [USING
{mainPath<Res:file>}]

> Input :

• resourceToConvert<Res:file> : The name (in the context) of the resource which references the root
directory of the java code bundle which contains.resources and the java’s source code.

• mainPath<Res:file> (OPTIONAL) : The name of the configuration resource. It represents a configuration
file containing java compilation options.(Possible options are those of the Java compiler present on the machine).
In this file options can be written:

– In line separated with a space character

– One option per line

– A mix of both

> Output :

6.1. Commons component plugin 157

Squash Keyword Framework Documentation

• converted<Res:script.java>: The name of the converted resource (Resource of type script.java). It
contains the compiled java code.

Example :

LOAD path/to/javaBundle AS bundleJava.file
CONVERT bundleJava.file TO script.java (compile) AS bundleJava.compiled USING $(main-
path:relative/path/to/compileOptions)

. . . to xml

Category-Name : structured

What ?

This structured converter will convert a file type resource to a xml type resource. It checks during the conversion
that the resource to convert is really xml category.

CONVERT {resourceToConvert<Res:file>} TO xml (structured) AS {converted<Res:xml>}

> Input :

• resourceToConvert<Res:file> : The name (in the context) of the resource which references the xml
file.

> Output :

• converted<Res:xml> : The name of the converted resource (xml type resource).

Example :

LOAD myfile.xml AS myfile.file
CONVERT myfile.file TO xml (structured) AS myXMLfile

Commons component plugin - Commands

Contents :

• cleanup

• pause

158 Chapter 6. SKF Plugins

Squash Keyword Framework Documentation

• log

cleanup

@See : Since Squash TA 1.7.0, this command moved to the Local Process Plugin.

pause

Description :

Makes the test execution sleep for a given time (expressed in milliseconds).

EXECUTE pause WITH $(<n>) AS $()

> Input :

• <n> : an integer. It represents the time in milliseconds.

log

Description :

This instruction allows writing a message in the log console.

EXECUTE log WITH $(<message>) USING $(logLevel: <level>) AS $()

> Input :

• <message> : The message you want to display in the log console.

• <level> : The log level to use : DEBUG, INFO, WARN or ERROR.

6.1. Commons component plugin 159

Squash Keyword Framework Documentation

This section will give you further details about the engine components (converters, commands or asserts) of the SKF
which are used by the macros of this plugin.

In an SKF script, the tokens are the spine and the engine components are the muscles. The package commons-
components is a basic plugin shipped with SKF. It provides the platform with some basic Resources, Repositories,
Targets, and Engine Components.

6.2 Database Plugin

6.2.1 Database Plugin - Prerequisites

To connect to a database and so to use database targets, an automation Squash TF project need an adequat JDBC
driver (the driver depends on the database type : mysql, oracle. . .).

The driver is provided in the form of a maven artifact that we add in the automation project. To do so, we modify the
‘squash-ta-maven-plugin’ inside the pom.xml file :

...
<build>

<plugins>
<plugin>

<groupId>org.squashtest.ta</groupId>
<artifactId>squash-ta-maven-plugin</artifactId>
<version>squash-ta-maven-plugin version</version>

<dependencies>
<dependency>

<groupId>JDBC driver groupId</groupId>
<artifactId>JDBC driver artifact ID</artifactId>
<version>JDBC driver version</version>

</dependency>
<dependencies>

...

Example of JDBC Driver for MySql :

<dependency>
<groupId>mysql</groupId>
<artifactId>mysql-connector-java</artifactId>
<version>8.0.17</version>

</dependency>

Project’s POM File :

.properties File to connect to database :

For more information, please check this section.

160 Chapter 6. SKF Plugins

Squash Keyword Framework Documentation

6.2.2 Database Plugin - Target

Database

Category-name : database

What ?

A database target represents, well, a database. The file (.properties) which allows to define this target to test
contains all needed informations to connect to the database.

Configuration (basic) : A simple .properties file dropped in the ‘targets’ directory of your test project. The
file must include the shebang on the very first line : #!db and it must contain AT LEAST squashtest.tf.
database.driver and squashtest.tf.database.url.

Available properties :

• squashtest.ta.database.driver : the jdbc driver supporting your database

• squashtest.ta.database.url : aka connection string, this is the url of your database

• squashtest.ta.database.username : the username to connect with

• squashtest.ta.database.password : the corresponding password

Remark

If properties squashtest.tf.database.username and squashtest.tf.database.password are not
indicated, then the user name and the user password must be indicated in the squashtest.tf.database.

6.2. Database Plugin 161

Squash Keyword Framework Documentation

url property. If they are indicated in both, then datas from the properties squashtest.tf.database.
username and squashtest.tf.database.password prime.

Configuration (advanced) : Using the same .properties file you can also specify options related to the pooling of
the datasource. As for version 1.0.x SKF will create its own datasource - no support for JNDI references for instance
(yet).

To this end, SKF is backed by the c3p0 technology. SKF will transmit to c3p0 its regular configuration properties
(see here). For the sake of consistency with the rest of the file, each key must be prefixed with squashtest.ta.
database.pool. + property. For instance squashtest.ta.database.pool.maxPoolSize will config-
ure the property maxPoolSize.

The only exception to this are the c3p0 properties user and password, that already exist as basic configuration.
Consequently they will be ignored : namely, squashtest.ta.database.pool.user and squashtest.
ta.database.pool.password will be shunted. Please use the basic keys instead.

Example of valid configuration file :

#!db

basic configuration
squashtest.ta.database.driver = com.mysql.jdbc.Driver
squashtest.ta.database.url = jdbc:mysql://localhost:3306/my_database
squashtest.ta.database.username = tester
squashtest.ta.database.password = _tester

advanced configuration
squashtest.ta.database.pool.acquireRetryDelay = 3000
squashtest.ta.database.pool.maxPoolSize = 40

6.2.3 Database Plugin - Resources

Contents :

• conf.dbunit

• conf.dbunit.ppk

• dataset.dbunit

• filter.dbunit

• parameter.named.sql

• parameter.indexed.sql

• query.sql

• result.sql

• script.sql

162 Chapter 6. SKF Plugins

https://www.mchange.com/projects/c3p0/index.html
https://www.mchange.com/projects/c3p0/index.html#configuration_properties

Squash Keyword Framework Documentation

conf.dbunit

Category-name : conf.dbunit

What ?

conf.dbunit is a resource type whose role is to configure DbUnit transactions.

How to use it ?

conf.dbunit.ppk

Category-name : conf.dbunit.ppk

What ?

conf.dbunit.ppk is a resource type that represents a pseudo-primary key filter for DbUnit transactions. The file format
is as follows : for each table, define a property with the name of the table. The value of the property is the comma-
separated list of the names of the columns that make up the primary key.

Here is an example of definition file content :

employee=employee_id
company=company_id
contract=contract_employee_id,contract_company_id

Why ?

Usually DbUnit reads directly from the database, information about the tables it needs to know, including their primary
keys. However some tables simply have no primary key, which can lead DbUnit to failures for a few operations. The
conf.dbunit.ppk is a way to provide DbUnit with these extra information.

6.2. Database Plugin 163

Squash Keyword Framework Documentation

dataset.dbunit

Category-name : dataset.dbunit

What ?

dataset.dbunit is a resource type that represents a DbUnit DataSet.

How to use it ?

filter.dbunit

Category-name : filter.dbunit

What ?

filter.dbunit is a resource type that represents a Dbunit Filter. These filters are used in assertions for comparison
between DbUnit datasets (dataset.dbunit). Their purpose is to exclude / include from the comparison some tables or
some columns if you need to narrow the scope of your assertion.

How to use it ?

parameter.named.sql

Category-name : parameter.named.sql

What ?

parameter.named.sql is a resource type that represents a map of parameters for parameterized sql queries using named
parameters (see query.sql).

164 Chapter 6. SKF Plugins

Squash Keyword Framework Documentation

parameter.indexed.sql

Category-name : parameter.indexed.sql

What ?

parameter.indexed.sql is a resource type that represents a list of parameters for parameterized sql queries using posi-
tional parameters (see query.sql).

query.sql

Category-name : query.sql

What ?

query.sql is a resource type that represents a query written in SQL. It can be parameterized either using named param-
eters or positional (indexed) parameters.

• Named parameters : Usually a named parameter appears in a sql query as a column ‘:’ followed by its name.
For instance :

SELECT * FROM MY_TABLE WHERE id = :value;
with value: the name of the parameter

• Indexed parameters : Usually indexed parameters appear in a sql query as a question mark ‘?’. For instance :

SELECT * FROM MY_TABLE WHERE id = ?;
with '?': the indexed parameter

Since the parameters are identified by their position relative to each others, the order in which they are passed in does
actually matter (they are matched by their position).

result.sql

Category-name : result.sql

What ?

result.sql is a resource type that represents the result of a sql query (or query.sql in TF).

6.2. Database Plugin 165

Squash Keyword Framework Documentation

script.sql

Category-name : script.sql

What ?

script.sql is a resource type that represents a script written in SQL. They aren’t meant to read data, rather to perform
massive operations in bulk like insertion or manipulation of the structure of the database.

6.2.4 Database Plugin - Macros

Database Plugin - Macros - Execute SQL and SQL script

Contents :

• # EXECUTE_SQL {file} ON {database} AS {result}

• # EXECUTE_SQL_SCRIPT {file} ON {database} AS {result} WITH ENCODING {encoding} AND DELIM-
ITER {delimiter}

• #EXECUTE_SQL_SCRIPT_BY_REMOVING_SEPARATOR {file} ON {database} AS {result}

EXECUTE_SQL {file} ON {database} AS {result}

What ?

This macro will load and execute an SQL query against the database, then the result will be returned under the name
you typed for the last parameter.

Underlying instructions :

LOAD {file} AS __temp{%%rand1}.file

CONVERT __temp{%%rand1}.file TO file(param.relativedate) AS __temp{%%rand2}.file
CONVERT __temp{%%rand2}.file TO query.sql(query) AS __temp_{%%rand3}.query
EXECUTE execute WITH __temp_{%%rand3}.query ON {database} AS {result}

166 Chapter 6. SKF Plugins

Squash Keyword Framework Documentation

> Input :

• {file} : A SQL query (‘.sql’).

• {database} : The name (in the context) of the database to use (database type target).

Remark : The {file} must respect the same rules than a file which would serve to create an SKF query.sql type
resource via the converter (From file to query.sql).

> Output :

• {result} : The name of the resource which will contain the result of the SQL query(result.sql type
resource).

Example :

EXECUTE_SQL path/to/query1.sql ON my_database AS result

Example with an INSERT query :

Database overview :

.sql file for the query :

SKF script :

The new employee has been inserted in the database :

6.2. Database Plugin 167

Squash Keyword Framework Documentation

168 Chapter 6. SKF Plugins

Squash Keyword Framework Documentation

Example with a SELECT query :

.sql file for the query :

SKF script :

To be able to see the result output, we added in this example the following instructions :

CONVERT result TO dataset.dbunit (dataset) USING $(tablename : user)
→˓AS dataset
CONVERT dataset TO xml (dbu.xml) AS my_xml_file

You can access to the result output in the following folder which contains temporary files :

Result output :

6.2. Database Plugin 169

Squash Keyword Framework Documentation

EXECUTE_SQL_SCRIPT {file} ON {database} AS {result} WITH ENCODING {encoding} AND DE-
LIMITER {delimiter}

What ?

This macro will load and execute an SQL script against the database, then the result will be returned under the name
you typed for the last parameter.

Underlying instructions :

LOAD {file} AS __temp{%%rand1}.file
DEFINE $(encoding:{encoding}) AS encoding{%%rand1}.opts
DEFINE $(delimiter:{delimiter}) AS delimiter{%%rand1}.opts

CONVERT __temp{%%rand1}.file TO file(param.relativedate) AS __temp{%%rand2}.file
→˓USING encoding{%%rand1}.opts
CONVERT __temp{%%rand2}.file TO script.sql AS __temp_{%%rand3}.script USING encoding{%
→˓%rand1}.opts, delimiter{%%rand1}.opts
EXECUTE execute WITH __temp_{%%rand3}.script ON {database} AS {result}

> Input :

• {file} : An SQL script

• {database} : The name (in the context) of the database to use (database type target).

• Optional - {encoding} : Parameter representing the query file encoding. Default value : “UTF-8”.

• Optional - {delimiter} : Parameter representing the SQL block delimiter. Default value : “@@”. It can be
used in conjunction with {encoding} or by itself - in which case {encoding} will take its value by default.

Remark : The {file} must respect the same rules as a file used to create an SKF script.sql type resource via
the converter (From file to script.sql).

> Output :

• {result} : A free identifier for the result. As the ‘execute’ command with an sql script return an empty
resource, this result resource will also be empty.

170 Chapter 6. SKF Plugins

Squash Keyword Framework Documentation

Example :

EXECUTE_SQL_SCRIPT path/to/script.sql ON my_database AS result WITH ENCODING UTF-
16 AND DELIMITER $$$

script.sql file :

DROP TABLE IF EXISTS `skf`.`employee`;

CREATE TABLE `skf`.`employee` (
`id` INT NOT NULL AUTO_INCREMENT,
`username` VARCHAR(45) NULL,
`password` VARCHAR(45) NULL,
`email` VARCHAR(45) NULL,
PRIMARY KEY (`id`));

INSERT INTO `skf`.`employee` (`username`, `password`, `email`) VALUES (
→˓'bruceW', '?b@Tm@n!_1939', 'brucew@skf.com');
INSERT INTO `skf`.`employee` (`username`, `password`, `email`) VALUES (
→˓'jessicaJ', 'wh1sk3y', 'jessicaJ@skf.com');
INSERT INTO `skf`.`employee` (`username`, `password`, `email`) VALUES (
→˓'homerS', 'd0nuts', 'homers@skf.com');
INSERT INTO `skf`.`employee` (`username`, `password`, `email`) VALUES ('tonyS
→˓', 'tonyIsTheBest', 'tonys@skf.com');
INSERT INTO `skf`.`employee` (`username`, `password`, `email`) VALUES (
→˓'çàééééééèèèèèè', 'ççççççééééééé', 'test');

We encode the file in ISO-8859-1 and use special characters :

SKF script :

Database overview without specifying encoding in macro :

SKF script :

Database overview with encoding :

6.2. Database Plugin 171

Squash Keyword Framework Documentation

172 Chapter 6. SKF Plugins

Squash Keyword Framework Documentation

#EXECUTE_SQL_SCRIPT_BY_REMOVING_SEPARATOR {file} ON {database} AS {result}

What ?

This macro will load and execute an SQL script against the database, then the result will be returned under the name
you typed for the last parameter. The separator (“;”) at the end of each SQL query of the script will be removed.

Underlying instructions:

LOAD {file} AS __temp{%%rand1}.file

CONVERT __temp{%%rand1}.file TO file(param.relativedate) AS __temp{%%rand2}.file
CONVERT __temp{%%rand2}.file TO script.sql AS __temp_{%%rand3}.script
EXECUTE execute WITH __temp_{%%rand3}.script ON {database} USING $(keep.
→˓separator:false) AS {result}

> Input :

• {file} : An SQL script.

• {database} : The name (in the context) of the database to use (database type target).

Remark : The {file} must respect the same rules than a file which would serve to create an SKF script.sql
type resource via the converter (From file to script.sql).

> Output :

• {result} : A free identifier for the result. As the ‘execute’ command with an sql script returns an empty
resource, this result resource will also be empty.

Example :

EXECUTE_SQL_SCRIPT_BY_REMOVING_SEPARATOR path/to/my_script.sql ON my_database AS result

Database Plugin - Macros - Insert DbUnit

Contents :

• # INSERT_DBUNIT {dataset} INTO {database}

• # INSERT_DBUNIT {dataset} INTO {database} WITH CONFIG {config}

• # INSERT_DBUNIT {dataset} INTO {database} USING {ppkfilter}

• # INSERT_DBUNIT {dataset} INTO {database} WITH CONFIG {config} USING {ppkfilter}

6.2. Database Plugin 173

Squash Keyword Framework Documentation

INSERT_DBUNIT {dataset} INTO {database}

What ?

This macro will insert all the data listed in the ‘dataset file’ into the ‘database’.

Underlying instructions :

LOAD {dataset} AS __temp{%%rand1}.file

CONVERT __temp{%%rand1}.file TO file(param.relativedate) AS __temp_{%%rand2}.file
CONVERT __temp_{%%rand2}.file TO xml(structured) AS __temp_{%%rand3}.xml
CONVERT __temp_{%%rand3}.xml TO dataset.dbunit(dataset) AS __temp_{%%rand4}.dbu

EXECUTE insert WITH __temp_{%%rand4}.dbu ON {database} USING $(operation:insert) AS __
→˓temp_{%%rand5}.result

> Input :

• {dataset} : A flat xml dbunit dataset file

• {database} : The name (in the context) of the database to use (database type target).

Remark : The file designed by {dataset} must respect the same rules than a file which would serve to create an
SKF dataset.dbunit type resource via the converter (From xml to dataset.dbunit).

Example :

INSERT_DBUNIT path/to/dataset.xml INTO my_database

DbUnit dataset :

SKF script :

The employees have been inserted in the database :

174 Chapter 6. SKF Plugins

Squash Keyword Framework Documentation

INSERT_DBUNIT {dataset} INTO {database} WITH CONFIG {config}

What ?

This macro will insert all the data listed in the ‘dataset file’ into the ‘database’ using a DbUnit configuration file.

Underlying instructions :

LOAD {config} AS __temp{config}{%%rand1}.file
CONVERT __temp{config}{%%rand1}.file TO conf.dbunit AS __temp{config}{%%rand2}.conf

LOAD {dataset} AS __temp{%%rand3}.file

CONVERT __temp{%%rand3}.file TO file(param.relativedate) AS __temp_{%%rand4}.file
CONVERT __temp_{%%rand4}.file TO xml(structured) AS __temp_{%%rand5}.xml
CONVERT __temp_{%%rand5}.xml TO dataset.dbunit(dataset) AS __temp_{%%rand6}.dbu

EXECUTE insert WITH __temp_{%%rand6}.dbu ON {database} USING $(operation:insert),__
→˓temp{config}{%%rand2}.conf AS __temp_{%%rand7}.result

> Input :

• {dataset} : A flat xml dbunit dataset file.

• {database} : The name (in the context) of the database to use (database type target).

• {config} : A configuration file for DbUnit (‘.properties’).

Remarks :

1. The file designed by {dataset} must respect the same rules than a file which would serve to create an SKF
dataset.dbunit type resource via the converter (From xml to dataset.dbunit).

6.2. Database Plugin 175

Squash Keyword Framework Documentation

2. The file designed by {config} must respect the same rules than a file which would serve to create an SKF
conf.dbunit type resource via the converter (From file to conf.dbunit).

Example :

INSERT_DBUNIT path/to/dataset.xml INTO my_database WITH CONFIG
path/to/my_config_dbunit.properties

DbUnit configuration file :

The table name is now case sensitive.

In dataset, we put capital letters in the table name :

SKF script :

The execution raises an error :

Now we switch the property to “false” in the configuration file :

There is no error this time and users have been inserted in the database :

176 Chapter 6. SKF Plugins

Squash Keyword Framework Documentation

INSERT_DBUNIT {dataset} INTO {database} USING {ppkfilter}

What ?

This macro will insert all datas listed in the ‘dataset file’ into the ‘database’ using a DbUnit filter.

Underlying instructions :

LOAD {dataset} AS __temp{%%rand1}.file
CONVERT __temp{%%rand1}.file TO file(param.relativedate) AS __temp{%%rand2}.file
CONVERT __temp{%%rand2}.file TO xml(structured) AS __temp{%%rand3}.xml
CONVERT __temp{%%rand3}.xml TO dataset.dbunit(dataset) AS __temp{%%rand4}.dbu

LOAD {ppkfilter} AS __temp{%%rand5}.file
CONVERT __temp{%%rand5}.file TO properties(structured) AS __temp{%%rand6}.props
CONVERT __temp{%%rand6}.props TO conf.dbunit.ppk(from.properties) AS __temp{%%rand7}.
→˓ppk

EXECUTE insert WITH __temp{%%rand4}.dbu ON {database} USING __temp{%%rand7}.ppk,
→˓$(operation:insert) AS __temp_{%%rand8}.result

> Input :

• {dataset} : A flat xml dbunit dataset file.

• {database} : The name (in the context) of the database to use (database type target).

• {ppkfilter} : A DbUnit filter referring to pseudo primary keys (‘.properties’).

Example :

INSERT_DBUNIT path/to/dataset.xml INTO my_database USING path/to/my_filter_dbunit.properties

INSERT_DBUNIT {dataset} INTO {database} WITH CONFIG {config} USING {ppkfilter}

What ?

This macro will insert all the data listed in the ‘dataset file’ into the ‘database’ using a DbUnit configuration file and a
DbUnit filter.

6.2. Database Plugin 177

Squash Keyword Framework Documentation

Underlying instructions :

LOAD {config} AS __temp{config}{%%rand1}.file
CONVERT __temp{config}{%%rand1}.file TO conf.dbunit AS __temp{config}{%%rand2}.conf

LOAD {dataset} AS __temp{%%rand3}.file
CONVERT __temp{%%rand3}.file TO file(param.relativedate) AS __temp_{%%rand4}.file
CONVERT __temp_{%%rand4}.file TO xml(structured) AS __temp_{%%rand5}.xml
CONVERT __temp_{%%rand5}.xml TO dataset.dbunit(dataset) AS __temp_{%%rand6}.dbu

LOAD {ppkfilter} AS __temp{%%rand7}.file
CONVERT __temp{%%rand7}.file TO properties(structured) AS __temp{%%rand8}.props
CONVERT __temp{%%rand8}.props TO conf.dbunit.ppk(from.properties) AS __temp{%%rand9}.
→˓ppk

EXECUTE insert WITH __temp_{%%rand6}.dbu ON {database} USING __temp{%%rand9}.ppk,
→˓$(operation:insert),__temp{config}{%%rand2}.conf AS __temp_{%%rand10}.result

> Input :

• {dataset} : A flat xml dbunit dataset file.

• {database} : The name (in the context) of the database to use (database type target).

• {config} : A configuration file for DbUnit (‘.properties’).

• {ppkfilter} : A DbUnit filter referring to pseudo primary keys (‘.properties’).

Example :

INSERT_DBUNIT path/to/dataset.xml INTO my_database WITH CONFIG
path/to/my_config_dbunit.properties USING path/to/my_filter_dbunit.properties

178 Chapter 6. SKF Plugins

Squash Keyword Framework Documentation

Database Plugin - Macros - Delete DbUnit

Contents :

• # DELETE_DBUNIT {dataset} FROM {database}

• # DELETE_DBUNIT {dataset} FROM {database} WITH CONFIG {config}

• # DELETE_DBUNIT {dataset} FROM {database} USING {ppkfilter}

• # DELETE_ALL_DBUNIT {dataset} FROM {database}

• # DELETE_ALL_DBUNIT {dataset} FROM {database} WITH CONFIG {config}

DELETE_DBUNIT {dataset} FROM {database}

What ?

This macro will delete all the data listed in the ‘dataset file’ from the ‘database’.

Underlying instructions :

LOAD {dataset} AS __temp_{%%rand1}.file

CONVERT __temp_{%%rand1}.file TO xml(structured) AS __temp_{%%rand2}.xml
CONVERT __temp_{%%rand2}.xml TO dataset.dbunit(dataset) AS __temp_{%%rand3}.dbu

EXECUTE delete WITH __temp_{%%rand3}.dbu ON {database} USING $(operation : delete) AS
→˓__temp_{%%rand4}.result

> Input :

• database} : The name (in the context) of the database to use (database type target).

• {dataset} : A flat xml dbunit dataset file.

Remark : The file designed by {dataset} must respect the same rules than a file which would serve to create an
SKF dataset.dbunit type resource via the converter (From xml to dataset.dbunit).

Example :

DELETE_DBUNIT path/to/dataset.xml FROM my_database

Database overview :

Dataset .xml File :

SKF script :

There is only one employee left in the database :

6.2. Database Plugin 179

Squash Keyword Framework Documentation

180 Chapter 6. SKF Plugins

Squash Keyword Framework Documentation

DELETE_DBUNIT {dataset} FROM {database} WITH CONFIG {config}

What ?

This macro will delete all the data listed in the ‘dataset file’ from the ‘database’ using a DbUnit configuration file.

Underlying instructions :

LOAD {config} AS __temp{config}{%%rand1}.file
CONVERT __temp{config}{%%rand1}.file TO conf.dbunit AS __temp{config}{%%rand2}.conf

LOAD {dataset} AS __temp_{%%rand3}.file

CONVERT __temp_{%%rand3}.file TO xml(structured) AS __temp_{%%rand4}.xml
CONVERT __temp_{%%rand4}.xml TO dataset.dbunit(dataset) AS __temp_{%%rand5}.dbu

EXECUTE delete WITH __temp_{%%rand5}.dbu USING $(operation : delete),__temp{config}{%
→˓%rand2}.conf ON {database} AS __temp_{%%rand6}.result

> Input :

• {database} : The name (in the context) of the database to use (database type target).

• {dataset} : A flat xml dbunit dataset file.

• {config} : A configuration file for DbUnit (‘.properties’).

Remarks :

1. The file designed by {dataset} must respect the same rules than a file which would serve to create an SKF
dataset.dbunit type resource via the converter (From xml to dataset.dbunit).

2. The file designed by {config} must respect the same rules than a file which would serve to create an SKF
conf.dbunit type resource via the converter (From file to conf.dbunit).

Example :

DELETE_DBUNIT path/to/dataset.xml FROM my_database WITH CONFIG
path/to/my_config_dbunit.properties

6.2. Database Plugin 181

Squash Keyword Framework Documentation

DELETE_DBUNIT {dataset} FROM {database} USING {ppkfilter}

What ?

This macro will load the specified xml dataset and delete datas listed in from the ‘database’ using a filter DbUnit.

Underlying instructions :

// Load and convert the dbunit dataset
LOAD {dataset} AS __{%%r1}.file
CONVERT __{%%r1}.file TO file(param.relativedate) AS __{%%r2}.file
CONVERT __{%%r2}.file TO xml(structured) AS __{%%r3}.xml
CONVERT __{%%r3}.xml TO dataset.dbunit(dataset) AS __{%%r4}.dbu

// Load and convert the pseudo primary key filter
LOAD {ppkfilter} AS __{%%r5}.file
CONVERT __{%%r5}.file TO properties(structured) AS __{%%r6}.props
CONVERT __{%%r6}.props TO conf.dbunit.ppk(from.properties) AS __{%%r7}.ppk

// Execute delete operation using the pseudo primary key filter
EXECUTE delete WITH __{%%r4}.dbu ON {database} USING __{%%r7}.ppk,$(operation :
→˓delete) AS __{%%r8}.result

> Input :

• {database} : The name (in the context) of the database to use (database type target).

• {dataset} : A flat xml dbunit dataset file.

• {ppkfilter} : A DbUnit filter referring to pseudo primary keys (‘.properties’).

Example :

DELETE_DBUNIT path/to/dataset.xml FROM my_database USING
path/to/my_filter_dbunit.properties

For this example, we set the table employee with no primary key :

We set “username” as pseudo primary key in properties file :

Dataset .xml file :

We execute the macro without using ppk properties file :

The following error occurs :

We execute the macro with the ppk properties file :

The operation succeeds and all employees are deleted :

182 Chapter 6. SKF Plugins

Squash Keyword Framework Documentation

6.2. Database Plugin 183

Squash Keyword Framework Documentation

184 Chapter 6. SKF Plugins

Squash Keyword Framework Documentation

DELETE_ALL_DBUNIT {dataset} FROM {database}

What ?

This macro will load the specified xml dataset and truncate every table listed in from the ‘database’.

Underlying instructions :

LOAD {dataset} AS __temp_{%%rand1}.file

CONVERT __temp_{%%rand1}.file TO xml(structured) AS __temp_{%%rand2}.xml
CONVERT __temp_{%%rand2}.xml TO dataset.dbunit(dataset) AS __temp_{%%rand3}.dbu

EXECUTE delete WITH __temp_{%%rand3}.dbu ON {database} AS __temp_{%%rand4}.result

> Input :

• {database} : The name (in the context) of the database to use (database type target).

• {dataset} : A flat xml dbunit dataset file.

Remark : The file designed by {dataset} must respect the same rules than a file which would serve to create an
SKF dataset.dbunit type resource via the converter (From xml to dataset.dbunit).

Example :

DELETE_ALL_DBUNIT path/to/dataset.xml FROM my_database

DELETE_ALL_DBUNIT {dataset} FROM {database} WITH CONFIG {config}

What ?

This macro will load the specified xml dataset and truncate every table listed in from the ‘database’ using a DbUnit
configuration file.

Underlying instructions :

LOAD {config} AS __temp{config}{%%rand1}.file
CONVERT __temp{config}{%%rand1}.file TO conf.dbunit AS __temp{config}{%%rand2}.conf

LOAD {dataset} AS __temp_{%%rand3}.file

CONVERT __temp_{%%rand3}.file TO xml(structured) AS __temp_{%%rand4}.xml
CONVERT __temp_{%%rand4}.xml TO dataset.dbunit(dataset) AS __temp_{%%rand5}.dbu

EXECUTE delete WITH __temp_{%%rand5}.dbu USING __temp{config}{%%rand2}.conf ON
→˓{database} AS __temp_{%%rand6}.result

6.2. Database Plugin 185

Squash Keyword Framework Documentation

> Input :

• {database} : The name (in the context) of the database to use (database type target).

• {dataset} : A flat xml dbunit dataset file.

• {config} : A configuration file for DbUnit (‘.properties’).

Remarks :

1. The file designed by {dataset} must respect the same rules than a file which would serve to create an SKF
dataset.dbunit type resource via the converter (From xml to dataset.dbunit).

2. The file designed by {config} must respect the same rules than a file which would serve to create an SKF
conf.dbunit type resource via the converter (From file to conf.dbunit).

Example :

DELETE_ALL_DBUNIT path/to/dataset.xml FROM my_database WITH CONFIG
path/to/my_config_dbunit.properties

Database Plugin - Macros - Refresh DbUnit

Contents :

• # REFRESH_DBUNIT {dataset} INTO {database}

• # REFRESH_DBUNIT {dataset} INTO {database} WITH CONFIG {config}

• # REFRESH_DBUNIT {dataset} INTO {database} USING {ppkfilter}

• # REFRESH_DBUNIT {dataset} INTO {database} WITH CONFIG {config} USING {ppkfilter}

REFRESH_DBUNIT {dataset} INTO {database}

What ?

This macro will refresh all the data listed in the ‘dataset file’ into the ‘database’. Refresh operation means that data of
existing rows are updated and non-existing row get inserted. Any rows which exist in the database but not in dataset
stay unaffected.

Underlying instructions :

LOAD {dataset} AS __temp{%%rand1}.file

CONVERT __temp{%%rand1}.file TO file(param.relativedate) AS __temp_{%%rand2}.file
CONVERT __temp_{%%rand2}.file TO xml(structured) AS __temp_{%%rand3}.xml

(continues on next page)

186 Chapter 6. SKF Plugins

Squash Keyword Framework Documentation

(continued from previous page)

CONVERT __temp_{%%rand3}.xml TO dataset.dbunit(dataset) AS __temp_{%%rand4}.dbu

EXECUTE insert WITH __temp_{%%rand4}.dbu ON {database} USING $(operation:refresh) AS _
→˓_temp_{%%rand5}.result

> Input :

• {dataset} : A flat xml dbunit dataset file.

• {database} : The name (in the context) of the database to use (database type target).

Remark : The file designed by {dataset} must respect the same rules than a file which would serve to create an
SKF dataset.dbunit type resource via the converter (From xml to dataset.dbunit).

Example :

REFRESH_DBUNIT path/to/dataset.xml INTO my_database

Database overview :

In the dataset, we update employees’ information and add a new one :

SKF script :

The employees are updated and the new one is inserted in the database :

6.2. Database Plugin 187

Squash Keyword Framework Documentation

REFRESH_DBUNIT {dataset} INTO {database} WITH CONFIG {config}

What ?

This macro will refresh all the data listed in the ‘dataset file’ into the ‘database’ using a DbUnit configuration file.
Refresh operation means that data of existing rows are updated and non-existing row get inserted. Any rows which
exist in the database but not in dataset stay unaffected.

Underlying instructions :

LOAD {config} AS __temp{config}{%%rand1}.file
CONVERT __temp{config}{%%rand1}.file TO conf.dbunit AS __temp{config}{%%rand2}.conf

LOAD {dataset} AS __temp{%%rand3}.file

CONVERT __temp{%%rand3}.file TO file(param.relativedate) AS __temp_{%%rand4}.file
CONVERT __temp_{%%rand4}.file TO xml(structured) AS __temp_{%%rand5}.xml
CONVERT __temp_{%%rand5}.xml TO dataset.dbunit(dataset) AS __temp_{%%rand6}.dbu

EXECUTE insert WITH __temp_{%%rand6}.dbu ON {database} USING $(operation:refresh),__
→˓temp{config}{%%rand2}.conf AS __temp_{%%rand7}.result

> Input :

• {dataset} : A flat xml dbunit dataset file.

• {database} : The name (in the context) of the database to use (database type target).

188 Chapter 6. SKF Plugins

Squash Keyword Framework Documentation

• {config} : A configuration file for DbUnit (‘.properties’).

Remarks :

1. The file designed by {dataset} must respect the same rules than a file which would serve to create an SKF
dataset.dbunit type resource via the converter (From xml to dataset.dbunit).

2. The file designed by {config} must respect the same rules than a file which would serve to create an SKF
conf.dbunit type resource via the converter (From file to conf.dbunit).

Example :

REFRESH_DBUNIT path/to/dataset.xml INTO my_database WITH CONFIG
path/to/my_config_dbunit.properties

REFRESH_DBUNIT {dataset} INTO {database} USING {ppkfilter}

What ?

This macro will refresh all datas listed in the ‘dataset file’ into the ‘database’ using a DbUnit filter. Refresh operation
means that data of existing rows are updated and non-existing row get inserted. Any rows which exist in the database
but not in dataset stay unaffected.

Underlying instructions :

LOAD {dataset} AS __temp{%%rand1}.file
CONVERT __temp{%%rand1}.file TO file(param.relativedate) AS __temp{%%rand2}.file
CONVERT __temp{%%rand2}.file TO xml(structured) AS __temp{%%rand3}.xml
CONVERT __temp{%%rand3}.xml TO dataset.dbunit(dataset) AS __temp{%%rand4}.dbu

LOAD {ppkfilter} AS __temp{%%rand5}.file
CONVERT __temp{%%rand5}.file TO properties(structured) AS __temp{%%rand6}.props
CONVERT __temp{%%rand6}.props TO conf.dbunit.ppk(from.properties) AS __temp{%%rand7}.
→˓ppk

EXECUTE insert WITH __temp{%%rand4}.dbu ON {database} USING __temp{%%rand7}.ppk,
→˓$(operation:refresh) AS __temp_{%%rand8}.result

> Input :

• {dataset} : A flat xml dbunit dataset file.

• {database} : The name (in the context) of the database to use (database type target).

• {ppkfilter} : A DbUnit filter referring to pseudo primary keys (‘.properties’).

Example :

REFRESH_DBUNIT path/to/dataset.xml INTO my_database USING path/to/my_filter_dbunit.properties

6.2. Database Plugin 189

Squash Keyword Framework Documentation

REFRESH_DBUNIT {dataset} INTO {database} WITH CONFIG {config} USING {ppkfilter}

What ?

This macro will refresh all the data listed in the ‘dataset file’ into the ‘database’ using a DbUnit configuration file and
a DbUnit filter. Refresh operation means that data of existing rows are updated and non-existing row get inserted. Any
rows which exist in the database but not in dataset stay unaffected.

Underlying instructions :

LOAD {config} AS __temp{config}{%%rand1}.file
CONVERT __temp{config}{%%rand1}.file TO conf.dbunit AS __temp{config}{%%rand2}.conf

LOAD {dataset} AS __temp{%%rand3}.file
CONVERT __temp{%%rand3}.file TO file(param.relativedate) AS __temp_{%%rand4}.file
CONVERT __temp_{%%rand4}.file TO xml(structured) AS __temp_{%%rand5}.xml
CONVERT __temp_{%%rand5}.xml TO dataset.dbunit(dataset) AS __temp_{%%rand6}.dbu

LOAD {ppkfilter} AS __temp{%%rand7}.file
CONVERT __temp{%%rand7}.file TO properties(structured) AS __temp{%%rand8}.props
CONVERT __temp{%%rand8}.props TO conf.dbunit.ppk(from.properties) AS __temp{%%rand9}.
→˓ppk

EXECUTE insert WITH __temp_{%%rand6}.dbu ON {database} USING __temp{%%rand9}.ppk,
→˓$(operation:refresh),__temp{config}{%%rand2}.conf AS __temp_{%%rand10}.result

> Input :

• {dataset} : A flat xml dbunit dataset file.

• {database} : The name (in the context) of the database to use (database type target).

• {config} : A configuration file for DbUnit (‘.properties’).

• {ppkfilter} : A DbUnit filter referring to pseudo primary keys (‘.properties’).

Example :

REFRESH_DBUNIT path/to/dataset.xml INTO my_database WITH CONFIG
path/to/my_config_dbunit.properties USING path/to/my_filter_dbunit.properties

Database Plugin - Macros - Update DbUnit

Contents :

190 Chapter 6. SKF Plugins

Squash Keyword Framework Documentation

• # UPDATE_DBUNIT {dataset} INTO {database}

• # UPDATE_DBUNIT {dataset} INTO {database} WITH CONFIG {config}

• # UPDATE_DBUNIT {dataset} INTO {database} USING {ppkfilter}

• # UPDATE_DBUNIT {dataset} INTO {database} WITH CONFIG {config} USING {ppkfilter}

UPDATE_DBUNIT {dataset} INTO {database}

What ?

This macro will update all the data listed in the ‘dataset file’ into the ‘database’. This update operation assumes that
table data already exists in the target database and fails if this is not the case.

Underlying instructions :

LOAD {dataset} AS __temp{%%rand1}.file

CONVERT __temp{%%rand1}.file TO file(param.relativedate) AS __temp_{%%rand2}.file
CONVERT __temp_{%%rand2}.file TO xml(structured) AS __temp_{%%rand3}.xml
CONVERT __temp_{%%rand3}.xml TO dataset.dbunit(dataset) AS __temp_{%%rand4}.dbu

EXECUTE insert WITH __temp_{%%rand4}.dbu ON {database} USING $(operation:update) AS __
→˓temp_{%%rand5}.result

> Input :

• {database} : The name (in the context) of the database to use (database type target).

• {dataset} : A flat xml dbunit dataset file.

Remark : The file designed by {dataset} must respect the same rules than a file which would serve to create an
SKF dataset.dbunit type resource via the converter (From xml to dataset.dbunit).

Example :

UPDATE_DBUNIT path/to/dataset.xml INTO my_database

Database overview :

In the dataset, we update employees’ information :

SKF script :

All employees are updated :

6.2. Database Plugin 191

Squash Keyword Framework Documentation

192 Chapter 6. SKF Plugins

Squash Keyword Framework Documentation

UPDATE_DBUNIT {dataset} INTO {database} WITH CONFIG {config}

What ?

This macro will update all the data listed in the ‘dataset file’ into the ‘database’ using a DbUnit configuration file. This
update operation assumes that table data already exists in the target database and fails if this is not the case.

Underlying instructions :

LOAD {config} AS __temp{config}{%%rand1}.file
CONVERT __temp{config}{%%rand1}.file TO conf.dbunit AS __temp{config}{%%rand2}.conf

LOAD {dataset} AS __temp{%%rand3}.file

CONVERT __temp{%%rand3}.file TO file(param.relativedate) AS __temp_{%%rand4}.file
CONVERT __temp_{%%rand4}.file TO xml(structured) AS __temp_{%%rand5}.xml
CONVERT __temp_{%%rand5}.xml TO dataset.dbunit(dataset) AS __temp_{%%rand6}.dbu

EXECUTE insert WITH __temp_{%%rand6}.dbu ON {database} USING $(operation:update),__
→˓temp{config}{%%rand2}.conf AS __temp_{%%rand7}.result

> Input :

• {dataset} : A flat xml dbunit dataset file.

• {database} : The name (in the context) of the database to use (database type target).

• {config} : A configuration file for DbUnit (‘.properties’).

Remarks :

1. The file designed by {dataset} must respect the same rules than a file which would serve to create an SKF
dataset.dbunit via the converter (From xml to dataset.dbunit).

2. The file designed by {config} must respect the same rules than a file which would serve to create an SKF
conf.dbunit type resource via the converter (From file to conf.dbunit).

Example :

UPDATE_DBUNIT path/to/dataset.xml INTO my_database WITH CONFIG
path/to/my_config_dbunit.properties

UPDATE_DBUNIT {dataset} INTO {database} USING {ppkfilter}

What ?

This macro will update all datas listed in the ‘dataset file’ into the ‘database’ using a DbUnit filter. This update
operation assumes that table data already exists in the target database and fails if this is not the case.

6.2. Database Plugin 193

Squash Keyword Framework Documentation

Underlying instructions :

LOAD {dataset} AS __temp{%%rand1}.file
CONVERT __temp{%%rand1}.file TO file(param.relativedate) AS __temp{%%rand2}.file
CONVERT __temp{%%rand2}.file TO xml(structured) AS __temp{%%rand3}.xml
CONVERT __temp{%%rand3}.xml TO dataset.dbunit(dataset) AS __temp{%%rand4}.dbu

LOAD {ppkfilter} AS __temp{%%rand5}.file
CONVERT __temp{%%rand5}.file TO properties(structured) AS __temp{%%rand6}.props
CONVERT __temp{%%rand6}.props TO conf.dbunit.ppk(from.properties) AS __temp{%%rand7}.
→˓ppk

EXECUTE insert WITH __temp{%%rand4}.dbu ON {database} USING __temp{%%rand7}.ppk,
→˓$(operation:update) AS __temp_{%%rand8}.result

> Input :

• {dataset} : A flat xml dbunit dataset file.

• {database} : The name (in the context) of the database to use (database type target).

• {ppkfilter} : A DbUnit filter referring to pseudo primary keys (‘.properties’).

Example :

UPDATE_DBUNIT path/to/dataset.xml INTO my_database USING path/to/my_filter_dbunit.properties

UPDATE_DBUNIT {dataset} INTO {database} WITH CONFIG {config} USING {ppkfilter}

What ?

This macro will update all the data listed in the ‘dataset file’ into the ‘database’ using a DbUnit configuration file and
a DbUnit filter. This update operation assumes that table data already exists in the target database and fails if this is
not the case.

Underlying instructions :

LOAD {config} AS __temp{config}{%%rand1}.file
CONVERT __temp{config}{%%rand1}.file TO conf.dbunit AS __temp{config}{%%rand2}.conf

LOAD {dataset} AS __temp{%%rand3}.file
CONVERT __temp{%%rand3}.file TO file(param.relativedate) AS __temp_{%%rand4}.file
CONVERT __temp_{%%rand4}.file TO xml(structured) AS __temp_{%%rand5}.xml
CONVERT __temp_{%%rand5}.xml TO dataset.dbunit(dataset) AS __temp_{%%rand6}.dbu

LOAD {ppkfilter} AS __temp{%%rand7}.file
CONVERT __temp{%%rand7}.file TO properties(structured) AS __temp{%%rand8}.props
CONVERT __temp{%%rand8}.props TO conf.dbunit.ppk(from.properties) AS __temp{%%rand9}.
→˓ppk

(continues on next page)

194 Chapter 6. SKF Plugins

Squash Keyword Framework Documentation

(continued from previous page)

EXECUTE insert WITH __temp_{%%rand6}.dbu ON {database} USING __temp{%%rand9}.ppk,
→˓$(operation:update),__temp{config}{%%rand2}.conf AS __temp_{%%rand10}.result

> Input :

• {dataset} : A flat xml dbunit dataset file.

• {database} : The name (in the context) of the database to use (database type target).

• {config} : A configuration file for DbUnit (‘.properties’).

• {ppkfilter} : A DbUnit filter referring to pseudo primary keys (‘.properties’).

Example :

UPDATE_DBUNIT path/to/dataset.xml INTO my_database WITH CONFIG
path/to/my_config_dbunit.properties USING path/to/my_filter_dbunit.properties

Database Plugin - Macros - Assert DbUnit

Contents :

• # ASSERT_DBUNIT TARGET {database} CONTAINS {dataset}

• # ASSERT_DBUNIT TARGET {database} CONTAINS {dataset} WITH CONFIG {config}

• # ASSERT_DBUNIT TARGET {database} CONTAINS {dataset} WITH FILTER {filter}

• # ASSERT_DBUNIT TARGET {database} CONTAINS {dataset} WITH CONFIG {config} AND FILTER {fil-
ter}

• # ASSERT_DBUNIT TARGET {database} EQUALS {dataset}

• # ASSERT_DBUNIT TARGET {database} EQUALS {dataset} WITH CONFIG {config}

• # ASSERT_DBUNIT TARGET {database} EQUALS {dataset} WITH FILTER {filter}

• # ASSERT_DBUNIT TARGET {database} EQUALS {dataset} WITH CONFIG {config} AND FILTER {filter}

ASSERT_DBUNIT TARGET {database} CONTAINS {dataset}

What ?

This macro will check that all the data listed in the ‘dataset file’ exist in the ‘database’. For differences between
ASSERT and VERIFY assertion mode see this page.

6.2. Database Plugin 195

Squash Keyword Framework Documentation

Underlying instructions :

EXECUTE get.all WITH $() ON {database} AS __actual_{%%rand1}.dbu

LOAD {dataset} AS __temp{%%rand2}.file
CONVERT __temp{%%rand2}.file TO file(param.relativedate) AS __temp_{%%rand3}.file
CONVERT __temp_{%%rand3}.file TO xml(structured) AS __temp_{%%rand4}.xml
CONVERT __temp_{%%rand4}.xml TO dataset.dbunit(dataset) AS __expected_{%%rand5}.dbu

ASSERT __actual_{%%rand1}.dbu DOES contain THE __expected_{%%rand5}.dbu

> Input :

• {database} : The name (in the context) of the database to use (database type target).

• {dataset} : A flat xml dbunit dataset file.

Note :

1. If the file designed by {dataset} contains formulas of date calculation (See the converter From file to file via
param.relativedate), those ones are calculated and replaced by the value.

2. No need to put all tables.

3. No need to put all lines of specified tables.

4. No need to put all columns of specified tables.

Example :

ASSERT_DBUNIT TARGET my_database CONTAINS path/to/my_dataset.xml

Database overview :

We add a new employee in dataset who does not exist in database :

SKF script :

196 Chapter 6. SKF Plugins

Squash Keyword Framework Documentation

We obtain the following error :

We delete the new employee from the dataset :

The assertion is true and you should obtain a build success.

ASSERT_DBUNIT TARGET {database} CONTAINS {dataset} WITH CONFIG {config}

What ?

This macro will check that all the data listed in the ‘dataset file’ exist in the ‘database’ using a DbUnit configuration
file. For differences between ASSERT and VERIFY assertion mode see this page.

Underlying instructions :

LOAD {config} AS __temp{config}{%%rand1}.file
CONVERT __temp{config}{%%rand1}.file TO conf.dbunit AS __temp{config}{%%rand2}.conf

EXECUTE get.all WITH $() ON {database} USING __temp{config}{%%rand2}.conf AS __actual_
→˓{%%rand3}.dbu

LOAD {dataset} AS __temp{%%rand4}.file
CONVERT __temp{%%rand4}.file TO file(param.relativedate) AS __temp_{%%rand5}.file
CONVERT __temp_{%%rand5}.file TO xml(structured) AS __temp_{%%rand6}.xml

(continues on next page)

6.2. Database Plugin 197

Squash Keyword Framework Documentation

(continued from previous page)

CONVERT __temp_{%%rand6}.xml TO dataset.dbunit(dataset) AS __expected_{%%rand7}.dbu

ASSERT __actual_{%%rand3}.dbu DOES contain THE __expected_{%%rand7}.dbu

> Input :

• {database} : The name (in the context) of the database to use (database type target).

• {dataset} : A flat xml dbunit dataset file.

• {config} : A configuration file for DbUnit (‘.properties’).

Note :

1. If the file designed by {dataset} contains formulas of date calculation (See the converter From file to file via
param.relativedate), those ones are calculated and replaced by the value.

2. No need to put all tables.

3. No need to put all lines of specified tables.

4. No need to put all columns of specified tables.

Example :

ASSERT_DBUNIT TARGET my_database CONTAINS path/to/my_dataset.xml WITH CONFIG
path/to/my_config_dbunit.properties

ASSERT_DBUNIT TARGET {database} CONTAINS {dataset} WITH FILTER {filter}

What ?

This macro will check that all the data listed in the ‘dataset file’ exist in the ‘database’ using a DbUnit filter. For
differences between ASSERT and VERIFY assertion mode see this page.

Underlying instructions :

198 Chapter 6. SKF Plugins

Squash Keyword Framework Documentation

LOAD {dataset} AS __temp{%%rand2}.file
CONVERT __temp{%%rand2}.file TO file(param.relativedate) AS __temp_{%%rand3}.file
CONVERT __temp_{%%rand3}.file TO xml(structured) AS __temp_{%%rand4}.xml
CONVERT __temp_{%%rand4}.xml TO dataset.dbunit(dataset) AS __expected_{%%rand5}.dbu

LOAD {filter} AS __filter_{%%rand6}.file
CONVERT __filter_{%%rand6}.file TO filter.dbunit(filter) AS __filter_{%%rand7}.filter

ASSERT __actual_{%%rand1}.dbu DOES contain THE __expected_{%%rand5}.dbu USING __
→˓filter_{%%rand7}.filter

> Input :

• {database} : The name (in the context) of the database to use (database type target).

• {dataset} : A flat xml dbunit dataset file.

• {filter} : A Dbunit filter (filter.dbunit SKF resource).

Remark : If the file designed by {dataset} contains formulas of date calculation (See the converter From file to
file via param.relativedate), those ones are calculated and replaced by the value.

Example :

ASSERT_DBUNIT TARGET my_database CONTAINS path/to/my_dataset.xml WITH FILTER
path/to/my_dbunit_filter.xml

ASSERT_DBUNIT TARGET {database} CONTAINS {dataset} WITH CONFIG {config} AND FILTER
{filter}

What ?

This macro will check that all the data listed in the ‘dataset file’ exist in the ‘database’ using a DbUnit configuration
file and a DbUnit filter. For differences between ASSERT and VERIFY assertion mode see this page.

Underlying instructions :

LOAD {config} AS __temp{config}{%%rand1}.file
CONVERT __temp{config}{%%rand1}.file TO conf.dbunit AS __temp{config}{%%rand2}.conf

EXECUTE get.all WITH $() ON {database} USING __temp{config}{%%rand2}.conf AS __actual_
→˓{%%rand3}.dbu

LOAD {dataset} AS __temp{%%rand4}.file
CONVERT __temp{%%rand4}.file TO file(param.relativedate) AS __temp_{%%rand5}.file
CONVERT __temp_{%%rand5}.file TO xml(structured) AS __temp_{%%rand6}.xml
CONVERT __temp_{%%rand6}.xml TO dataset.dbunit(dataset) AS __expected_{%%rand7}.dbu

(continues on next page)

6.2. Database Plugin 199

Squash Keyword Framework Documentation

(continued from previous page)

LOAD {filter} AS __filter_{%%rand8}.file
CONVERT __filter_{%%rand8}.file TO filter.dbunit(filter) AS __filter_{%%rand9}.filter

ASSERT __actual_{%%rand3}.dbu DOES contain THE __expected_{%%rand7}.dbu USING __
→˓filter_{%%rand9}.filter

> Input :

• {database} : The name (in the context) of the database to use (database type target).

• {dataset} : A flat xml dbunit dataset.

• {config} : A configuration file for DbUnit (‘.properties’). It should be a ‘conf.dbunit’ SKF resource.

• {filter} : A Dbunit filter xml file. It should be a ‘filter.dbunit’ SKF resource.

Remark : If the file designed by {dataset} contains formulas of date calculation (See the converter From file to
file via param.relativedate), those ones are calculated and replaced by the value.

Example :

ASSERT_DBUNIT TARGET my_database CONTAINS path/to/my_dataset.xml WITH CONFIG
path/to/my_dbunit_config.properties AND FILTER path/to/my_dbunit_filter.xml

ASSERT_DBUNIT TARGET {database} EQUALS {dataset}

What ?

This macro will check that all the data listed in the ‘dataset file’ exist in the ‘database’ and the reverse. For differences
between ASSERT and VERIFY assertion mode see this page.

Underlying instructions :

EXECUTE get.all WITH $() ON {database} AS __actual_{%%rand1}.dbu

LOAD {dataset} AS __temp{%%rand2}.file
CONVERT __temp{%%rand2}.file TO file(param.relativedate) AS __temp_{%%rand3}.file
CONVERT __temp_{%%rand3}.file TO xml(structured) AS __temp_{%%rand4}.xml
CONVERT __temp_{%%rand4}.xml TO dataset.dbunit(dataset) AS __expected_{%%rand5}.dbu

ASSERT __actual_{%%rand1}.dbu IS equal THE __expected_{%%rand5}.dbu

> Input :

• {database} : The name (in the context) of the database to use (database type target).

• {dataset} : A flat xml dbunit dataset file.

200 Chapter 6. SKF Plugins

Squash Keyword Framework Documentation

Remark : If the file designed by {dataset} contains formulas of date calculation (See the converter From file to
file via param.relativedate), those ones are calculated and replaced by the value.

Example :

ASSERT_DBUNIT TARGET my_database EQUALS path/to/my_dataset.xml

Database overview :

We use a dataset containing less employees than the database :

SKF script :

We obtain the following error :

6.2. Database Plugin 201

Squash Keyword Framework Documentation

We use a dataset containing exactly all the employees :

We execute the SKF script with the new dataset :

The assertion is true and you should obtain a build success.

ASSERT_DBUNIT TARGET {database} EQUALS {dataset} WITH CONFIG {config}

What ?

This macro will check that all the data listed in the ‘dataset file’ exist in the ‘database’ and the reverse using a DbUnit
configuration file. For differences between ASSERT and VERIFY assertion mode see this page.

Underlying instructions :

LOAD {config} AS __temp{config}{%%rand1}.file
CONVERT __temp{config}{%%rand1}.file TO conf.dbunit AS __temp{config}{%%rand2}.conf

EXECUTE get.all WITH $() ON {database} USING __temp{config}{%%rand2}.conf AS __actual_
→˓{%%rand3}.dbu

LOAD {dataset} AS __temp{%%rand4}.file
CONVERT __temp{%%rand4}.file TO file(param.relativedate) AS __temp_{%%rand5}.file
CONVERT __temp_{%%rand5}.file TO xml(structured) AS __temp_{%%rand6}.xml
CONVERT __temp_{%%rand6}.xml TO dataset.dbunit(dataset) AS __expected_{%%rand7}.dbu

ASSERT __actual_{%%rand3}.dbu IS equal THE __expected_{%%rand7}.dbu

> Input :

• {database} : The name (in the context) of the database to use (database type target).

• {dataset} : A flat xml dbunit dataset file.

202 Chapter 6. SKF Plugins

Squash Keyword Framework Documentation

• {config} : A configuration file for DbUnit (‘.properties’).

Remark : If the file designed by {dataset} contains formulas of date calculation (See the converter From file to
file via param.relativedate), those ones are calculated and replaced by the value.

Example :

ASSERT_DBUNIT TARGET my_database EQUALS path/to/my_dataset.xml WITH CONFIG
path/to/my_config_dbunit.properties

ASSERT_DBUNIT TARGET {database} EQUALS {dataset} WITH FILTER {filter}

What ?

This macro will check that all the data listed in the ‘dataset file’ exist in the ‘database’ and the reverse using a DbUnit
filter. For differences between ASSERT and VERIFY assertion mode see this page.

Underlying instructions :

EXECUTE get.all WITH $() ON {database} AS __actual_{%%rand1}.dbu

LOAD {dataset} AS __temp{%%rand2}.file
CONVERT __temp{%%rand2}.file TO file(param.relativedate) AS __temp_{%%rand3}.file
CONVERT __temp_{%%rand3}.file TO xml(structured) AS __temp_{%%rand4}.xml
CONVERT __temp_{%%rand4}.xml TO dataset.dbunit(dataset) AS __expected_{%%rand5}.dbu

LOAD {filter} AS __filter_{%%rand6}.file
CONVERT __filter_{%%rand6}.file TO filter.dbunit(filter) AS __filter_{%%rand7}.filter

ASSERT __actual_{%%rand1}.dbu IS equal THE __expected_{%%rand5}.dbu USING __filter_{%
→˓%rand7}.filter

> Input :

• {database} : The name (in the context) of the database to use (database type target).

• {dataset} : A flat xml dbunit dataset file.

• {filter} : A DbUnit filter xml file. It should be a ‘filter.dbunit’ SKF resource.

Remark : If the file designed by {dataset} contains formulas of date calculation (See the converter From file to
file via param.relativedate), those ones are calculated and replaced by the value.

6.2. Database Plugin 203

Squash Keyword Framework Documentation

Example :

ASSERT_DBUNIT TARGET my_database EQUALS path/to/my_dataset.xml WITH FILTER
path/to/my_dbunit_filter.xml

ASSERT_DBUNIT TARGET {database} EQUALS {dataset} WITH CONFIG {config} AND FILTER {fil-
ter}

What ?

This macro will check that all the data listed in the ‘dataset file’ exist in the ‘database’ and the reverse using a DbUnit
configuration file and a DbUnit filter. For differences between ASSERT and VERIFY assertion mode see this page.

Underlying instructions :

LOAD {config} AS __temp{config}{%%rand1}.file
CONVERT __temp{config}{%%rand1}.file TO conf.dbunit AS __temp{config}{%%rand2}.conf

EXECUTE get.all WITH $() ON {database} USING __temp{config}{%%rand2}.conf AS __actual_
→˓{%%rand3}.dbu

LOAD {dataset} AS __temp{%%rand4}.file
CONVERT __temp{%%rand4}.file TO file(param.relativedate) AS __temp_{%%rand5}.file
CONVERT __temp_{%%rand5}.file TO xml(structured) AS __temp_{%%rand6}.xml
CONVERT __temp_{%%rand6}.xml TO dataset.dbunit(dataset) AS __expected_{%%rand7}.dbu

LOAD {filter} AS __filter_{%%rand8}.file
CONVERT __filter_{%%rand8}.file TO filter.dbunit(filter) AS __filter_{%%rand9}.filter

ASSERT __actual_{%%rand3}.dbu IS equal THE __expected_{%%rand7}.dbu USING __filter_{%
→˓%rand9}.filter

> Input :

• {database} : The name (in the context) of the database to use (database type target).

• {dataset} : A flat xml dbunit dataset file.

• {config} : A configuration file for DbUnit (‘.properties’). It should be a ‘conf.dbunit’ SKF resource.

• {filter} : A DbUnit filter xml file. It should be a ‘filter.dbunit’ SKF resource.

Remark : If the file designed by {dataset} contains formulas of date calculation (See the converter From file to
file via param.relativedate), those ones are calculated and replaced by the value.

Example :

ASSERT_DBUNIT TARGET my_database EQUALS path/to/my_dataset.xml WITH CONFIG
path/to/my_dbunit_config.properties AND FILTER path/to/my_dbunit_filter.xml

204 Chapter 6. SKF Plugins

Squash Keyword Framework Documentation

Database Plugin - Macros - Verify DbUnit

Contents :

• # VERIFY_DBUNIT TARGET {database} CONTAINS {dataset}

• # VERIFY_DBUNIT TARGET {database} CONTAINS {dataset} WITH CONFIG {config}

• # VERIFY_DBUNIT TARGET {database} CONTAINS {dataset} WITH FILTER {filter}

• # VERIFY_DBUNIT TARGET {database} CONTAINS {dataset} WITH CONFIG {config} AND FILTER {fil-
ter}

• # VERIFY_DBUNIT TARGET {database} EQUALS {dataset}

• # VERIFY_DBUNIT TARGET {database} EQUALS {dataset} WITH CONFIG {config}

• # VERIFY_DBUNIT TARGET {database} EQUALS {dataset} WITH FILTER {filter}

• # VERIFY_DBUNIT TARGET {database} EQUALS {dataset} WITH CONFIG {config} AND FILTER {filter}

VERIFY_DBUNIT TARGET {database} CONTAINS {dataset}

What ?

This macro will check that all the data listed in the ‘dataset file’ exist in the ‘database’. For differences between
ASSERT and VERIFY assertion mode see this page.

Underlying instructions :

EXECUTE get.all WITH $() ON {database} AS __actual_{%%rand1}.dbu

LOAD {dataset} AS __temp{%%rand2}.file
CONVERT __temp{%%rand2}.file TO file(param.relativedate) AS __temp_{%%rand3}.file
CONVERT __temp_{%%rand3}.file TO xml(structured) AS __temp_{%%rand4}.xml
CONVERT __temp_{%%rand4}.xml TO dataset.dbunit(dataset) AS __expected_{%%rand5}.dbu

VERIFY __actual_{%%rand1}.dbu DOES contain THE __expected_{%%rand5}.dbu

> Input :

• {database} : The name (in the context) of the database to use (database type target).

• {dataset} : A flat xml dbunit dataset file.

Remark : If the file designed by {dataset} contains formulas of date calculation (See the converter From file to
file via param.relativedate), those ones are calculated and replaced by the value.

Example :

6.2. Database Plugin 205

Squash Keyword Framework Documentation

VERIFY_DBUNIT TARGET my_database CONTAINS path/to/my_dataset.xml

This macro is very similar to the ASSERT macro. For more information, please check the following page.

VERIFY_DBUNIT TARGET {database} CONTAINS {dataset} WITH CONFIG {config}

What ?

This macro will check that all the data listed in the ‘dataset file’ exist in the ‘database’ using a DbUnit configuration
file. For differences between ASSERT and VERIFY assertion mode see this page.

Underlying instructions :

LOAD {config} AS __temp{config}{%%rand1}.file
CONVERT __temp{config}{%%rand1}.file TO conf.dbunit AS __temp{config}{%%rand2}.conf

EXECUTE get.all WITH $() ON {database} USING __temp{config}{%%rand2}.conf AS __actual_
→˓{%%rand3}.dbu

LOAD {dataset} AS __temp{%%rand4}.file
CONVERT __temp{%%rand4}.file TO file(param.relativedate) AS __temp_{%%rand5}.file
CONVERT __temp_{%%rand5}.file TO xml(structured) AS __temp_{%%rand6}.xml
CONVERT __temp_{%%rand6}.xml TO dataset.dbunit(dataset) AS __expected_{%%rand7}.dbu

VERIFY __actual_{%%rand3}.dbu DOES contain THE __expected_{%%rand7}.dbu

> Input :

• {database} : The name (in the context) of the database to use (database type target).

• {dataset} : A flat xml dbunit dataset file.

• {config} : A configuration file for DbUnit (‘.properties’).

Remark : If the file designed by {dataset} contains formulas of date calculation (See the converter From file to
file via param.relativedate), those ones are calculated and replaced by the value.

Example :

VERIFY_DBUNIT TARGET my_database CONTAINS path/to/my_dataset.xml WITH CONFIG
path/to/my_config_dbunit.properties

206 Chapter 6. SKF Plugins

Squash Keyword Framework Documentation

VERIFY_DBUNIT TARGET {database} CONTAINS {dataset} WITH FILTER {filter}

What ?

This macro will check that all the data listed in the ‘dataset file’ exist in the ‘database’ using a DbUnit filter. For
differences between ASSERT and VERIFY assertion mode see this page.

Underlying instructions :

LOAD {dataset} AS __temp{%%rand2}.file
CONVERT __temp{%%rand2}.file TO file(param.relativedate) AS __temp_{%%rand3}.file
CONVERT __temp_{%%rand3}.file TO xml(structured) AS __temp_{%%rand4}.xml
CONVERT __temp_{%%rand4}.xml TO dataset.dbunit(dataset) AS __expected_{%%rand5}.dbu

LOAD {filter} AS __filter_{%%rand6}.file
CONVERT __filter_{%%rand6}.file TO filter.dbunit(filter) AS __filter_{%%rand7}.filter

VERIFY __actual_{%%rand1}.dbu DOES contain THE __expected_{%%rand5}.dbu USING __
→˓filter_{%%rand7}.filter

> Input :

• {database} : The name (in the context) of the database to use (database type target).

• {dataset} : A flat xml dbunit dataset file.

• {filter} : A Dbunit filter (filter.dbunit TA resource).

Remark : If the file designed by {dataset} contains formulas of date calculation (See the converter From file to
file via param.relativedate), those ones are calculated and replaced by the value.

Example :

VERIFY_DBUNIT TARGET my_database CONTAINS path/to/my_dataset.xml WITH FILTER
path/to/my_dbunit_filter.xml

VERIFY_DBUNIT TARGET {database} CONTAINS {dataset} WITH CONFIG {config} AND FILTER
{filter}

What ?

This macro will check that all the data listed in the ‘dataset file’ exist in the ‘database’ using a DbUnit configuration
file and a DbUnit filter. For differences between ASSERT and VERIFY assertion mode see this page.

Underlying instructions :

6.2. Database Plugin 207

Squash Keyword Framework Documentation

LOAD {config} AS __temp{config}{%%rand1}.file
CONVERT __temp{config}{%%rand1}.file TO conf.dbunit AS __temp{config}{%%rand2}.conf

EXECUTE get.all WITH $() ON {database} USING __temp{config}{%%rand2}.conf AS __actual_
→˓{%%rand3}.dbu

LOAD {dataset} AS __temp{%%rand4}.file
CONVERT __temp{%%rand4}.file TO file(param.relativedate) AS __temp_{%%rand5}.file
CONVERT __temp_{%%rand5}.file TO xml(structured) AS __temp_{%%rand6}.xml
CONVERT __temp_{%%rand6}.xml TO dataset.dbunit(dataset) AS __expected_{%%rand7}.dbu

LOAD {filter} AS __filter_{%%rand8}.file
CONVERT __filter_{%%rand8}.file TO filter.dbunit(filter) AS __filter_{%%rand9}.filter

VERIFY __actual_{%%rand3}.dbu DOES contain THE __expected_{%%rand7}.dbu USING __
→˓filter_{%%rand9}.filter

> Input :

• {database} : The name (in the context) of the database to use (database type target).

• {dataset} : A flat xml dbunit dataset file.

• {config} : A configuration file for DbUnit (‘.properties’). It should be a ‘conf.dbunit’ SKF resource.

• {filter} : A Dbunit filter xml file. It should be a ‘filter.dbunit’ SKF resource.

Remark : If the file designed by {dataset} contains formulas of date calculation (See the converter From file to
file via param.relativedate), those ones are calculated and replaced by the value.

Example :

VERIFY_DBUNIT TARGET my_database CONTAINS path/to/my_dataset.xml WITH CONFIG
path/to/my_dbunit_config.properties AND FILTER path/to/my_dbunit_filter.xml

VERIFY_DBUNIT TARGET {database} EQUALS {dataset}

What ?

This macro will check that all the data listed in the ‘dataset file’ exist in the ‘database’ and the reverse. For differences
between ASSERT and VERIFY assertion mode see this page.

Underlying instructions :

EXECUTE get.all WITH $() ON {database} AS __actual_{%%rand1}.dbu

LOAD {dataset} AS __temp{%%rand2}.file
CONVERT __temp{%%rand2}.file TO file(param.relativedate) AS __temp_{%%rand3}.file
CONVERT __temp_{%%rand3}.file TO xml(structured) AS __temp_{%%rand4}.xml

(continues on next page)

208 Chapter 6. SKF Plugins

Squash Keyword Framework Documentation

(continued from previous page)

CONVERT __temp_{%%rand4}.xml TO dataset.dbunit(dataset) AS __expected_{%%rand5}.dbu

VERIFY __actual_{%%rand1}.dbu IS equal THE __expected_{%%rand5}.dbu

> Input :

• {database} : The name (in the context) of the database to use (database type target).

• {dataset} : A flat xml dbunit dataset file.

Remark : If the file designed by {dataset} contains formulas of date calculation (See the converter From file to
file via param.relativedate), those ones are calculated and replaced by the value.

Example :

ASSERT_DBUNIT TARGET my_database EQUALS path/to/my_dataset.xml

This macro is very similar to the ASSERT macro. For more information, please check the following page.

VERIFY_DBUNIT TARGET {database} EQUALS {dataset} WITH CONFIG {config}

What ?

This macro will check that all the data listed in the ‘dataset file’ exist in the ‘database’ and the reverse using a DbUnit
configuration file. For differences between ASSERT and VERIFY assertion mode see this page.

Underlying instructions :

LOAD {config} AS __temp{config}{%%rand1}.file
CONVERT __temp{config}{%%rand1}.file TO conf.dbunit AS __temp{config}{%%rand2}.conf

EXECUTE get.all WITH $() ON {database} USING __temp{config}{%%rand2}.conf AS __actual_
→˓{%%rand3}.dbu

LOAD {dataset} AS __temp{%%rand4}.file
CONVERT __temp{%%rand4}.file TO file(param.relativedate) AS __temp_{%%rand5}.file
CONVERT __temp_{%%rand5}.file TO xml(structured) AS __temp_{%%rand6}.xml
CONVERT __temp_{%%rand6}.xml TO dataset.dbunit(dataset) AS __expected_{%%rand7}.dbu

VERIFY __actual_{%%rand3}.dbu IS equal THE __expected_{%%rand7}.dbu

> Input :

• {database} : The name (in the context) of the database to use (database type target).

• {dataset} : A flat xml dbunit dataset file.

• {config} : A configuration file for DbUnit (‘.properties’).

6.2. Database Plugin 209

Squash Keyword Framework Documentation

Remark : If the file designed by {dataset} contains formulas of date calculation (See the converter From file to
file via param.relativedate), those ones are calculated and replaced by the value.

Example :

VERIFY_DBUNIT TARGET my_database EQUALS path/to/my_dataset.xml WITH CONFIG
path/to/my_config_dbunit.properties

VERIFY_DBUNIT TARGET {database} EQUALS {dataset} WITH FILTER {filter}

What ?

This macro will check that all the data listed in the ‘dataset file’ exist in the ‘database’ and the reverse using a DbUnit
filter. For differences between ASSERT and VERIFY assertion mode see this page.

Underlying instructions :

EXECUTE get.all WITH $() ON {database} AS __actual_{%%rand1}.dbu

LOAD {dataset} AS __temp{%%rand2}.file
CONVERT __temp{%%rand2}.file TO file(param.relativedate) AS __temp_{%%rand3}.file
CONVERT __temp_{%%rand3}.file TO xml(structured) AS __temp_{%%rand4}.xml
CONVERT __temp_{%%rand4}.xml TO dataset.dbunit(dataset) AS __expected_{%%rand5}.dbu

LOAD {filter} AS __filter_{%%rand6}.file
CONVERT __filter_{%%rand6}.file TO filter.dbunit(filter) AS __filter_{%%rand7}.filter

VERIFY __actual_{%%rand1}.dbu IS equal THE __expected_{%%rand5}.dbu USING __filter_{%
→˓%rand7}.filter

> Input :

• {database} : The name (in the context) of the database to use (database type target).

• {dataset} : A flat xml dbunit dataset file.

• {filter} : A DbUnit filter xml file. It should be a ‘filter.dbunit’ SKF resource.

Remark : If the file designed by {dataset} contains formulas of date calculation (See the converter From file to
file via param.relativedate), those ones are calculated and replaced by the value.

Example :

VERIFY_DBUNIT TARGET my_database EQUALS path/to/my_dataset.xml WITH FILTER
path/to/my_dbunit_filter.xml

210 Chapter 6. SKF Plugins

Squash Keyword Framework Documentation

VERIFY_DBUNIT TARGET {database} EQUALS {dataset} WITH CONFIG {config} AND FILTER {fil-
ter}

What ?

This macro will check that all the data listed in the ‘dataset file’ exist in the ‘database’ and the reverse using a DbUnit
configuration file and a DbUnit filter. For differences between ASSERT and VERIFY assertion mode see this page.

Underlying instructions :

LOAD {config} AS __temp{config}{%%rand1}.file
CONVERT __temp{config}{%%rand1}.file TO conf.dbunit AS __temp{config}{%%rand2}.conf

EXECUTE get.all WITH $() ON {database} USING __temp{config}{%%rand2}.conf AS __actual_
→˓{%%rand3}.dbu

LOAD {dataset} AS __temp{%%rand4}.file
CONVERT __temp{%%rand4}.file TO file(param.relativedate) AS __temp_{%%rand5}.file
CONVERT __temp_{%%rand5}.file TO xml(structured) AS __temp_{%%rand6}.xml
CONVERT __temp_{%%rand6}.xml TO dataset.dbunit(dataset) AS __expected_{%%rand7}.dbu

LOAD {filter} AS __filter_{%%rand8}.file
CONVERT __filter_{%%rand8}.file TO filter.dbunit(filter) AS __filter_{%%rand9}.filter

VERIFY __actual_{%%rand3}.dbu IS equal THE __expected_{%%rand7}.dbu USING __filter_{%
→˓%rand9}.filter

> Input :

• {database} : The name (in the context) of the database to use (database type target).

• {dataset} : A flat xml dbunit dataset file.

• {config} : A configuration file for DbUnit (‘.properties’). It should be a ‘conf.dbunit’ TA resource.

• {filter} : A DbUnit filter xml file. It should be a ‘filter.dbunit’ TA resource.

Remark : If the file designed by {dataset} contains formulas of date calculation (See the converter From file to
file via param.relativedate), those ones are calculated and replaced by the value.

Example :

VERIFY_DBUNIT TARGET my_database EQUALS path/to/my_dataset.xml WITH CONFIG
path/to/my_dbunit_config.properties AND FILTER path/to/my_dbunit_filter.xml

6.2.5 Database Plugin - Advanced Users

6.2. Database Plugin 211

Squash Keyword Framework Documentation

Database Plugin - Converters

Contents :

• From file . . .

– . . . to conf.dbunit

– . . . to conf.dbunit.ppk

– . . . to parameter.indexed.sql

– . . . to parameter.named.sql

– . . . to query.sql

– . . . to script.sql

• From directory to dataset.dbunit

• From properties to conf.dbunit.ppk

• From result.sql to dataset.dbunit

• From xml . . .

– . . . to dataset.dbunit

– . . . to filter.dbunit

From file . . .

. . . to conf.dbunit

Category-Name : structured

What ?

This structured converter will convert a file type resource to a conf.dbunit type resource.

CONVERT {resourceToConvert<Res:file>} TO conf.dbunit (structured) AS {converted<Res:conf.dbunit>}

> Input :

• resourceToConvert<Res:file> : The name (in the context) of the resource which references a config-
uration file for DbUnit. This file must be a .properties file (list of properties key / value using ‘=’ like
separator).

> Output :

212 Chapter 6. SKF Plugins

Squash Keyword Framework Documentation

• converted<Res:conf.dbunit> : The name of the converted resource (conf.dbunit type resource).

Example :

LOAD path/to/dbunit-configuration.properties AS dbunit-conf.file
CONVERT dbunit-conf.file TO conf.dbunit (structured) AS conf

The DbUnit “features & properties” supported are : (See DbUnit documentation)

Batched statements :

SKF name squashtest.ta.dbunit.batchedStatements
DbUnit name http://www.dbunit.org/features/batchedStatements
Default value false
Meaning Enable or disable the use of batch JDBC requests.

Case sensitive table names :

SKF name squashtest.ta.dbunit.caseSensitiveTableNames
DbUnit
name

http://www.dbunit.org/features/caseSensitiveTableNames

Default
value

false

Meaning Enable or disable the case sensitivity of table names. When this property is activ, table names are
considered case sensitive.

Qualified table names :

SKF
name

squashtest.ta.dbunit.qualifiedTableNames

DbUnit
name

http://www.dbunit.org/features/qualifiedTableNames

De-
fault
value

false

Mean-
ing

Enable or disable the possibility of taking in charge simultaneously several schemas. When this property
is enabled tables names are preceded by the schema name to which they belong : SCHEME.TABLE.

Table types :

SKF name squashtest.ta.dbunit.tableType
DbUnit name http://www.dbunit.org/properties/tableType
Default value String[]{“TABLE”}
Meaning Permits to configure the type of known tables.

Datatype factory (Cf. issue 789) :

6.2. Database Plugin 213

http://www.dbunit.org/properties.html
http://www.dbunit.org/features/batchedStatements
http://www.dbunit.org/features/caseSensitiveTableNames
http://www.dbunit.org/features/qualifiedTableNames
http://www.dbunit.org/properties/tableType

Squash Keyword Framework Documentation

SKF name squashtest.ta.dbunit.datatypeFactory
DbUnit name http://www.dbunit.org/properties/datatypeFactory
Default value org.dbunit.dataset.datatype.DefaultDataTypeFactory
Meaning Some datas types are specific to the management of re-

lational database.
To allow DbUnit to manage this kind of datas, it’s nec-
essary to specify the “Datas types Factory” he must use.
The following factories are available in DbUnit :

• org.dbunit.ext.db2.Db2DataTypeFactory
• org.dbunit.ext.h2.H2DataTypeFactory
• org.dbunit.ext.hsqldb.HsqldbDataTypeFactory
• org.dbunit.ext.mckoi.MckoiDataTypeFactory
• org.dbunit.ext.mssql.MsSqlDataTypeFactory
• org.dbunit.ext.mysql.MySqlDataTypeFactory
• org.dbunit.ext.oracle.OracleDataTypeFactory
• org.dbunit.ext.oracle.Oracle10DataTypeFactory
• org.dbunit.ext.postgresql.PostgresqlDataTypeFactory
• org.dbunit.ext.netezza.NetezzaDataTypeFactory

Batch size :

SKF name squashtest.ta.dbunit.batchSize
DbUnit
name

http://www.dbunit.org/properties/batchSize

Default
value

100

Meaning Integer representing the requests number in a batch requests
(Only when the property batchedStatements is active)

Metadata handler :

SKF name squashtest.ta.dbunit.metadataHandler
DbUnit name http://www.dbunit.org/properties/metadataHandler
Default value org.dbunit.database.DefaultMetadataHandler
Meaning The way of metadatas management of the base can dif-

fer according to the SGBDR.
The following handlers are available :

• org.dbunit.ext.db2.Db2MetadataHandler
• org.dbunit.ext.mysql.MySqlMetadataHandler
• org.dbunit.ext.netezza.NetezzaMetadataHandler

For others SGBDR, default handler is enough.

Escape pattern :

214 Chapter 6. SKF Plugins

http://www.dbunit.org/properties/datatypeFactory
http://www.dbunit.org/properties/batchSize
http://www.dbunit.org/properties/metadataHandler

Squash Keyword Framework Documentation

SKF
name

squashtest.ta.dbunit.escapePattern

DbUnit
name

http://www.dbunit.org/properties/escapePattern

De-
fault
value

none

Mean-
ing

Allows schema, table and column names escaping.

Ex-
am-
ple

squashtest.tf.dbunit.escapePattern=‘
The property above will permit to escape the table name and column names in the following query.
insert into ‘person‘ (‘id‘, ‘name‘, ‘unique‘) values (1, ‘Doe’, true);
This query will succeed even though “unique” is a SQL key word and is not normally allowed.

Remark

The DbUnit property: http://www.dbunit.org/properties/primaryKeyFilter exist via the category of SKF resource:
conf.dbunit.ppk.

. . . to conf.dbunit.ppk

Category-Name : structured

What ?

This structured converter will convert a file type resource to a‘‘conf.dbunit.ppk‘‘ type resource.

CONVERT {resourceToConvert<Res:file>} TO conf.dbunit.ppk (structured) AS {con-
verted<Res:conf.dbunit.ppk>}

> Input :

• resourceToConvert<Res:file> : The name (in the context) of the resource which references a config-
uration file to define the pseudo primary keys. This configuration file must be of type .properties (for each
property, the key is the name of a Table, the value is the name of a column or a list of columns separated with
comma and the ‘=’ character is used like separator).

> Output :

• converted<Res:conf.dbunit.ppk> : The name of the converted resource (Resource of type conf.
dbunit.ppk).

Example :

6.2. Database Plugin 215

http://www.dbunit.org/properties/escapePattern
http://www.dbunit.org/properties/primaryKeyFilter

Squash Keyword Framework Documentation

LOAD path/to/valid_ppk.properties AS ppk.file
CONVERT ppk.file TO properties (structured) AS ppk.properties
CONVERT ppk.properties TO conf.dbunit.ppk (from.properties) AS ppk

. . . to parameter.indexed.sql

Category-Name : from.text

What ?

This from.text converter will convert a file type resource to a parameter.indexed.sql type resource.

CONVERT {resourceToConvert<Res:file>} TO parameter.indexed.sql (from.text) AS {con-
verted<Res:parameter.indexed.sql>}

> Input :

• resourceToConvert<Res:file> : The name (in the context) of the resource which references a file
which each line defines the value of a sql query parameter. Each line contains two character strings separated
with the character ‘=’ :

– The first character string corresponds to the parameter position in the SQL query.

– The Second one corresponds to the value.

Remark

None of the two character strings can be empty.

> Output :

• converted<Res:parameter.indexed.sql> : The name of the converted resource (parameter.
indexed.sql type resource).

Example :

LOAD path/to/parameter-indexed_value.properties AS value.file
CONVERT value.file TO parameter.indexed.sql (from.text) AS value.properties

216 Chapter 6. SKF Plugins

Squash Keyword Framework Documentation

. . . to parameter.named.sql

Category-Name : from.text

What ?

This from.text converter will convert a file type resource to a parameter.named.sql type resource.

CONVERT {resourceToConvert<Res:file>} TO parameter.named.sql (from.text) AS {con-
verted<Res:parameter.named.sql>}

> Input :

• resourceToConvert<Res:file> : The name (in the context) of the resource which references a file
which each line defines the value of a sql query parameter. Each line contains two character strings separated
with the character ‘=’ :

– The first character string corresponds to the parameter name in the SQL query.

– The Second one corresponds to the value.

Remark

None of the two character strings can be empty but the name can be constituted with only space characters.

> Output :

• converted<Res:parameter.named.sql> : The name of the converted resource (parameter.
named.sql type resource).

Example :

LOAD path/to/parameter-named_value.properties AS value.file
CONVERT value.file TO parameter.named.sql (from.text) AS value.properties

. . . to query.sql

Category-Name : query

What ?

This query converter will convert a file type resource to a query.sql type resource.

CONVERT {resourceToConvert<Res:file>} TO query.sql (query) AS {converted<Res:query.sql>}

6.2. Database Plugin 217

Squash Keyword Framework Documentation

> Input :

• resourceToConvert<Res:file> : The name (in the context) of the resource which references a file
which respects the following rules :

– The file must contain only one query.

– The query can be written on one or several lines.

– The query end with the character ‘;’.

– Comments at SQL format can be inserted in the file.

> Output :

• converted<Res:query.sql> : The name of the converted resource (query.sql type resource).

Example :

LOAD sql/my_query.sql AS my.file
CONVERT my.file TO query.sql (query) AS my.query

. . . to script.sql

Category-Name : script

What ?

This script converter will convert a file type resource to a script.sql type resource. It is possible to add an
option for the encoding as well as the SQL block delimiter.

CONVERT {resourceToConvert<Res:file>} TO script.sql (script) AS {converted<Res:script.sql>} [USING {en-
coding}, {delimiter}]

> Input :

• resourceToConvert<Res:file> : The name (in the context) of the resource which references a file
whose content is an SQL script.

• Optional - encoding : Parameter representing the query file encoding. Default value : “UTF-8”.

• Optional - delimiter : Parameter representing the SQL block delimiter. Default value : “@@”. It can
be used in conjunction with encoding or by itself - in which case encoding will take its value by default.

> Output :

• converted<Res:script.sql> : The name of the converted resource (script.sql type resource).

218 Chapter 6. SKF Plugins

Squash Keyword Framework Documentation

Example :

LOAD path/to/my_script.sql AS my_script.file
CONVERT my_script.file TO script.sql (script) AS script [USING str_encoding, str_delimiter]

Remarks

• In your SQL script the delimiter should enclose any block of code that should be stored and passed in it’s entirety
to the database server.

Example :

• Creating a MySQL procedure :

DROP PROCEDURE IF EXISTS `some_procedure`;
@@
CREATE PROCEDURE `some_procedure`(...)
BEGIN
...
END;
@@

• Creating a PL/pgSQL function :

@@
CREATE OR REPLACE FUNCTION somefunc() RETURNS ... AS $$
DECLARE
...
BEGIN
...

DECLARE
...
BEGIN
...
END;

RETURN ...;

END;
$$ LANGUAGE plpgsql;@@

• Calling a stored PL/SQL procedure with delimiter set to “<DELIMITER>” :

<DELIMITER>
BEGIN

some_procedure;
END;
<DELIMITER>

• In case of nested SQL blocks you only need to englobe the top level block with the delimiter.

• Comments : refrain from using comments at the end of a line of code because it might induce a malfunction if
it contains certain characters.

6.2. Database Plugin 219

Squash Keyword Framework Documentation

From directory to dataset.dbunit

Category-Name : dataset

What ?

This dataset converter will convert a directory type resource to a dataset.dbunit type resource.

CONVERT {resourceToConvert<Res:directory>} TO dataset.dbunit (dataset) AS {con-
verted<Res:dataset.dbunit>}

> Input :

resourceToConvert<Res:directory> : The name (in the context) of the resource which ref-
erences a directory (directory type resource). This directory must contain at the root a file named
table-ordering.txt which contains an ordered list of tables to add to the dataset. Each line of the
file is a relative path to the root directory towards the csv file containing the table.

> Output :

• converted<Res:dataset.dbunit> : The name of the converted resource (dataset.dbunit type
resource).

Example :

LOAD csv/csv1 AS csv1.file
CONVERT csv1.file TO directory (filesystem) AS csv1.dir
CONVERT csv1.dir TO dataset.dbunit (dataset) AS csv1.dataset

From properties to conf.dbunit.ppk

Category-Name : from.properties

What ?

This from.properties converter will convert a properties type resource to a conf.dbunit.ppk type resource.

CONVERT {resourceToConvert<Res:properties>} TO conf.dbunit.ppk (from.properties) AS {con-
verted<Res:conf.dbunit.ppk>}

> Input :

220 Chapter 6. SKF Plugins

Squash Keyword Framework Documentation

• resourceToConvert<Res:properties> : The name (in the context) of the resource which references
a .properties file (properties type resource). For each property, the key is a Table name, the value is a
column or columns list separated with comma.

> Output :

• converted<Res:conf.dbunit.ppk> : The name of the converted resource (conf.dbunit.ppk type
resource).

Example :

LOAD path/to/valid-ppk.properties AS ppk.file
CONVERT ppk.file TO properties (structured) AS ppk.properties
CONVERT ppk.properties TO conf.dbunit.ppk (from.properties) AS ppk

From result.sql to dataset.dbunit

Category-Name : dataset

What ?

This dataset converter will convert a result.sql type resource to a dataset.dbunit type resource.

CONVERT {resourceToConvert<Res:result.sql>} TO dataset.dbunit (dataset) AS {con-
verted<Res:dataset.dbunit>} USING {config<Res:file>}

> Input :

• resourceToConvert<Res:result.sql> : The name (in the context) of the resource which references
a result.sql resource. It corresponds to the result of a SQL query SELECT.

• config<Res:file> : The name of the complementary resource which references a configuration file which
contains only one key / value : tablename separated of the value with the character ‘:’. It’s mandatory and
can be define with an inline instruction. A result.sql resource does not have Table name and to transform
a result.sql in dataset.dbunit we need a Table name.

> Output :

• converted<Res:dataset.dbunit> : The name of the converted resource (Resource of type dataset.
dbunit).

Example :

CONVERT insertion_query.resultset TO dataset.dbunit (dataset) USING $(tablename : <name_Table>) AS dataset

6.2. Database Plugin 221

Squash Keyword Framework Documentation

From xml . . .

. . . to dataset.dbunit

Category-Name : dataset

What ?

This dataset converter will convert an xml type resource to a dataset.dbunit type resource.

CONVERT {resourceToConvert<Res:xml>} TO dataset.dbunit (dataset) AS {converted<Res:dataset.dbunit>}

> Input :

• resourceToConvert<Res:xml> : The name (in the context) of the resource which references an xml file.
The content of the file must be at the format of FlatXMLDataset of DbUnit. Each line of a table is represented
by an XML element :

– The tag name corresponds of the name table.

– Each column of the table is represented by an attribut :

* The attribute name corresponds to the column name.

* The attribute value corresponds to the column value in the represented line.

> Output :

• converted<Res:dataset.dbunit> : The name of the converted resource (dataset.dbunit type
resource).

Example of XML file :

<?xml version="1.0" encoding="UTF-8"?>
<dataset>

<table1 colonne0="row 0 col 0" colonne1="row 0 col 1" />
<table1 colonne0="row 1 col 0" colonne1="row 1 col 0" />
<table1 colonne0="row 2 col 0" colonne1="row 2 col 0" />
<table2 colonne0="row 0 col 0" />
<table3 />

</dataset>

Remarks

• If in the initial resource the attribute value is the sring character [NULL], the corresponding column will have
the value null in the converted ressource (dataset.dbunit type resource).

• During the conversion, table columns are determined from the attributs of the first element corresponding to this
table in the initial ressource (xml type resource). For instance, if an xml resource contains ‘T’ elements :

222 Chapter 6. SKF Plugins

http://www.dbunit.org/apidocs/org/dbunit/dataset/xml/FlatXmlDataSet.html

Squash Keyword Framework Documentation

– Case 1 : Attribute of the first ‘T’ element not present but present after :

If :

– The first element ‘T’ doesn’t contain ‘C’ attribute and

– A ‘T’ element following contains a ‘C’ attribute

Then :

– The ‘C’ attribute will be ignored during the conversion. That means no ‘C’ column in the
converted resource.

– Case 2 :

If :

– The first ‘T’ element contains a ‘C’ attribute and

– A ‘T’ element following doesn’t contain a ‘C’ attribute

Then :

– There will be a ‘C’ column in the converted resource. In lines corresponding to the elements
which doesn’t contain the ‘C’ attribute, the ‘C’ column will have the value ‘null’.

Example :

LOAD path/to/dataset.xml AS dataset.file
CONVERT dataset.file TO xml (structured) AS my_xml_file
CONVERT my_xml_file TO dataset.dbunit (dataset) AS dataset.dbu

. . . to filter.dbunit

Category-Name : filter

What ?

This filter converter will convert an xml type resource to a filter.dbunit type resource.

CONVERT {resourceToConvert<Res:xml>} TO filter.dbunit (filter) AS {converted<Res:filter.dbunit>}

> Input :

• resourceToConvert<Res:xml> : The name (in the context) of the resource which references a xml file.
This xml file looks like :

– For a Table exclusion :

6.2. Database Plugin 223

Squash Keyword Framework Documentation

<?xml version="1.0" encoding="UTF-8"?>
<filter>
<tableExclude tableRegex="table_name"/>

</filter>

– For a column exclusion :

<?xml version="1.0" encoding="UTF-8"?>
<filter>
<tableInclude tableRegex="table_name">

<columnExclude>column_name</columnExclude>
</tableInclude>

</filter>

> Output :

• converted<Res:dataset.dbunit> : The name of the converted resource (dataset.dbunit type
resource).

Example :

LOAD path/to/column_exclude.xml AS filter_dbunit.file
CONVERT filter_dbunit.file TO filter.dbunit (filter) AS filter_dbunit

Database Plugin - Commands

Contents :

• ‘execute’ ‘query.sql’ on ‘database’

• ‘execute’ ‘query.sql’ on ‘database’ via ‘parameter.indexed.sql’

• ‘execute’ ‘query.sql’ on ‘database’ via ‘parameter.named.sql’

• ‘execute’ ‘script.sql’ on ‘database’

• ‘get.all’ on ‘database’

• ‘insert’ ‘dataset.dbunit’ on ‘database’

• ‘delete’ ‘dataset.dbunit’ on ‘database’

‘execute’ ‘query.sql’ on ‘database’

What ?

224 Chapter 6. SKF Plugins

Squash Keyword Framework Documentation

This command executes a SQL query represented by a query.sql resource on the specified database target.

EXECUTE execute WITH {query<Res:query.sql>} ON {<Tar:database>} AS {result<Res:result.sql>}

> Input :

• query<Res:query.sql> : The name (in the context) of the resource which references a SQL query
(query.sql type resource).

• <Tar:database> : The name (in the context) of the database to use (database type target).

> Output :

• result<Res:result.sql> : The name of the resource which contains the result of the SQL query
(result.sql type resource).

Example :

LOAD path/to/my_query.sql AS query.file
CONVERT query.file TO query.sql (query) AS query1

EXECUTE execute WITH query1 ON mydatabase-db AS my_query_result

‘execute’ ‘query.sql’ on ‘database’ via ‘parameter.indexed.sql’

What ?

This command executes a SQL query represented by a query.sql resource on the specified database target via
indexed parameters.

EXECUTE execute WITH {query<Res:query.sql>} ON {<Tar:database>} AS {result<Res:result.sql>} USING
{config<Res:parameter.indexed.sql>}

> Input :

• query<Res:query.sql> : The name (in the context) of the resource which references a SQL query
(query.sql type resource).

• <Tar:database> : The name (in the context) of the database to use (database type target).

• config<Res:parameter.indexed.sql> : The name of the resource which contains indexed parame-
ters for the SQL query (parameter.indexed.sql type resource).

> Output :

6.2. Database Plugin 225

Squash Keyword Framework Documentation

• result<Res:result.sql> : The name of the resource which contains the result of the SQL query
(result.sql type resource).

Example :

LOAD path/to/my_query.sql AS query.file
CONVERT query.file TO query.sql (query) AS query1

LOAD path/to/parameter-indexed_value.properties AS value.file
CONVERT value.file TO parameter.indexed.sql (from.text) AS value.properties

EXECUTE execute WITH query1 ON mydatabase-db AS my_query_result USING value.properties

‘execute’ ‘query.sql’ on ‘database’ via ‘parameter.named.sql’

What ?

This command executes a SQL query represented by a query.sql resource on the specified database target via
named parameters.

EXECUTE execute WITH {query<Res:query.sql>} ON {<Tar:database>} AS {result<Res:result.sql>} USING
{config<Res:parameter.named.sql>}

> Input :

• query<Res:query.sql> : The name (in the context) of the resource which references a SQL query
(query.sql type resource).

• <Tar:database> : The name (in the context) of the database to use (database type target).

• config<Res:parameter.named.sql> : The name of the resource which contains named parameters for
the SQL query (parameter.named.sql type resource).

> Output :

• result<Res:result.sql> : The name of the resource which contains the result of the SQL query
(result.sql type resource).

Example :

226 Chapter 6. SKF Plugins

Squash Keyword Framework Documentation

LOAD path/to/my_query.sql AS query.file
CONVERT query.file TO query.sql (query) AS query1
LOAD path/to/parameter-named_value.properties AS value.file
CONVERT value.file TO parameter.named.sql (from.text) AS value.properties
EXECUTE execute WITH query1 ON mydatabase-db AS my_query_result USING value.properties

‘execute’ ‘script.sql’ on ‘database’

What ?

This command executes a SQL script represented by a script.sql resource on the specified database target.

EXECUTE execute WITH {script<Res:script.sql>} ON {<Tar:database>} AS $() [USING $(keep.separator:
<keepSeparator>)]

> Input :

• script<Res:script.sql> : The name (in the context) of the resource which references a SQL script
(script.sql type resource).

• <Tar:database> : The name (in the context) of the database on which the SQL script should be used
(database type target).

• <keepSeparator> : Indicate to the command to keep or remove the separator (“;”) at the end of each SQL
query of the script. This parameter can take one of two values : “true” or “false”. By default this parameter is
set to “true”.

Example 1 :

LOAD path/to/my_script.sql AS script.file
CONVERT script.file TO script.sql (script) AS script1

EXECUTE execute WITH script1 ON mydatabase-db AS $()

Example 2 :

EXECUTE execute WITH script1 ON mydatabase-db AS $() USING $(keep.separator:false)

6.2. Database Plugin 227

Squash Keyword Framework Documentation

‘get.all’ on ‘database’

What ?

This command allows to create a DbUnit dataset from a specific database.

EXECUTE get.all WITH $() ON {<Tar:database>} AS {result<Res:dataset.dbunit>} [USING
[{<Res:conf.dbunit>}],[{<Res:conf.dbunit.ppk>}]]

> Input :

• <Tar:database> : The name (in the context) of the database to use (database type target).

• <Res:conf.dbunit> : This resource contains DbUnit configuration properties.

• <Res:conf.dbunit.ppk> : The name of the resource which references a configuration file to define the
pseudo primary keys.

Remarks

1. If for a table a primary key and a pseudo primary key are defined, the pseudo primary key override the primary
key.

2. If for a table a pseudo primary key is defined with one or more non existent columns, the command fails.

> Output :

• result<Res:dataset.dbunit> : The name of the resource which contains the DbUnit dataset of all the
database.

Example 1 :

EXECUTE get.all WITH $() ON myDatabase-db AS myDataset

Example 2 :

LOAD path/to/dbunit-conf.properties AS conf.file
CONVERT conf.file TO conf.dbunit (structured) AS conf.dbu

EXECUTE get.all WITH $() ON my_Database-db USING conf.dbu AS my_dataset

228 Chapter 6. SKF Plugins

Squash Keyword Framework Documentation

‘insert’ ‘dataset.dbunit’ on ‘database’

What ?

This command insert a DbUnit dataset on the specified database target.

EXECUTE insert WITH {dataset<Res:dataset.dbunit>} ON {<Tar:database>} AS $() [USING [$(operation :
<type>)],[{<Res:conf.dbunit>}],[{<Res:conf.dbunit.ppk>}]]

> Input :

• dataset<Res:dataset.dbunit> : The name of the resource which references a DbUnit
dataset (Resource of type dataset.dbunit).

• <Tar:database> : The name (in the context) of the database to use (database type target).

• <type> : 4 values are possible for this parameter :

– INSERT : for a simple operation of insert. This operation assumes that table data does not exist
in the target database and fails if this is not the case.

– CLEAN_INSERT : a ‘delete all’ is realised before the ‘insert’ operation.

– UPDATE : this operation assumes that table data already exists in the target database and fails
if this is not the case.

– REFRESH : data of existing rows are updated and non-existing row get inserted. Any rows
which exist in the database but not in dataset stay unaffected.

Remark

If “$(operation : <type>)” is not defined, property is by default CLEAN_INSERT.

• <Res:conf.dbunit> : This resource contains DbUnit configuration properties.

• <Res:conf.dbunit.ppk> : The name of the resource which references a configuration file to
define the pseudo primary keys.

Remark

1. If for a table a primary key and a pseudo primary key are defined, the pseudo primary key override
the primary key.

2. If for a table a pseudo primary key is defined with one or more non existents columns, the command
fails.

Example :

6.2. Database Plugin 229

Squash Keyword Framework Documentation

LOAD path/to/dataset_to_insert.xml AS dataset_file
CONVERT dataset_file TO xml (structured) AS dataset_xml
CONVERT dataset_xml TO dataset.dbunit (dataset) AS dataset_dbu

LOAD path/to/dbunit-conf.properties AS conf_file
CONVERT conf_file TO conf.dbunit (structured) AS conf_dbu

EXECUTE insert WITH dataset_dbu ON my_database-db USING conf_dbu,$(operation : INSERT) AS $()

‘delete’ ‘dataset.dbunit’ on ‘database’

What ?

This command delete a DbUnit Dataset on the specified database target.

EXECUTE delete WITH {dataset<Res:dataset.dbunit>} ON {<Tar:database>} AS $() [USING [$(operation :
<type>)],[{<Res:conf.dbunit>}],[{<Res:conf.dbunit.ppk>}]]

> Input :

• dataset<Res:dataset.dbunit> : The name of the resource which references a DbUnit
dataset (dataset.dbunit type resource).

• <Tar:database> : The name (in the context) of the database to use (database type target).

• <type> : 2 values are possible for this parameter :

– DELETE : This operation deletes only the dataset contents from the database. This operation
does not delete the entire table contents but only data that are present in the dataset.

– DELETE_ALL : Deletes all rows of tables present in the specified dataset. If the dataset does
not contains a particular table, but that table exists in the database, the database table is not
affected. Table are truncated in reverse sequence.

Remark

If “$(operation : <type>)” is not defined, property is by default DELETE_ALL.

• <Res:conf.dbunit> : This resource contains DbUnit configuration properties.

• <Res:conf.dbunit.ppk> : The name of the resource which references a configuration file to
define the pseudo primary keys.

230 Chapter 6. SKF Plugins

Squash Keyword Framework Documentation

Remarks

1. If for a table a primary key and a pseudo primary key are defined, the pseudo primary key override
the primary key.

2. If for a table a pseudo primary key is defined with one or more non existents columns, the command
fails.

Example :

LOAD path/to/dataset_to_insert.xml AS dataset_file
CONVERT dataset_file TO xml (structured) AS dataset_xml
CONVERT dataset_xml TO dataset.dbunit (dataset) AS dataset_dbu

LOAD path/to/dbunit-conf.properties AS conf_file
CONVERT conf_file TO conf.dbunit (structured) AS conf_dbu

EXECUTE delete WITH dataset_dbu ON my_database-db USING conf_dbu,$(operation : DELETE) AS $()

Database Plugin - Asserts

Contents :

• ‘dataset.dbunit’ does ‘contain’ ‘dataset.dbunit’

• ‘dataset.dbunit’ is ‘equal’ ‘dataset.dbunit’

‘dataset.dbunit’ does ‘contain’ ‘dataset.dbunit’

What ?

Asserts that the first dataset contains the second one.

ASSERT {dataset1<Res:dataset.dbunit>} DOES contain THE {dataset2<Res:dataset.dbunit>} [USING
[{<Res:filter.dbunit>}],[{<Res:conf.dbunit.ppk>}]]
VERIFY {dataset1<Res:dataset.dbunit>} DOES contain THE {dataset2<Res:dataset.dbunit>} [USING
[{<Res:filter.dbunit>}],[{<Res:conf.dbunit.ppk>}]]

6.2. Database Plugin 231

Squash Keyword Framework Documentation

> Input :

• dataset1<Res:dataset.dbunit> : The name of the resource which references the first DbUnit dataset
(dataset.dbunit type resource).

• dataset2<Res:dataset.dbunit> : The name of the resource which references the second DbUnit
dataset (dataset.dbunit type resource).

• <Res:filter.dbunit> (Optional) : This resource contains a filter DbUnit (filter.dbunit type re-
source).

• <Res:conf.dbunit.ppk> (Optional) : The name of the resource which references a configuration file to
define the pseudo primary keys (conf.dbunit.ppk type resource).

Example :

LOAD path/to/dataset1.xml AS dataset1_file
CONVERT dataset1_file TO xml (structured) AS dataset1_xml
CONVERT dataset1_xml TO dataset.dbunit (dataset) AS dataset1_dbu

LOAD path/to/dataset1.xml AS dataset2_file
CONVERT dataset2_file TO xml (structured) AS dataset2_xml
CONVERT dataset2_xml TO dataset.dbunit (dataset) AS dataset2_dbu

// Get the pseudo primary keys
LOAD path/to/my_ppk.properties AS ppk_file
CONVERT ppk_file TO properties (structured) AS ppk_properties
CONVERT ppk_properties TO conf.dbunit.ppk (from.properties) AS ppk_dbu

// Load the DbUnit filter
LOAD path/to/filter-name.xml AS filter_file
CONVERT filter_file TO filter.dbunit AS filter_dbu

// Compare the two datasets
ASSERT dataset1_dbu DOES contain THE dataset2_dbu USING ppk_dbu,filter_dbu

Remarks

• During the assertion, if the first or the second dataset contains primary keys they are used for the assertion.

• If for a given table, a primary key and a pseudo primary key are defined, pseudo primary key overrides the
primary key.

• If for a given table, a pseudo primary key has one or several columns excluded from the assertion by a DbUnit
filter, the command fails.

232 Chapter 6. SKF Plugins

Squash Keyword Framework Documentation

‘dataset.dbunit’ is ‘equal’ ‘dataset.dbunit’

What ?

Asserts that the first dataset is equal to the second one (same number of tables, for each table same number of lines /
columns and same data).

ASSERT {dataset1<Res:dataset.dbunit>} IS equal THE {dataset2<Res:dataset.dbunit>} [USING
[{<Res:filter.dbunit>}],[{<Res:conf.dbunit.ppk>}]]
VERIFY {dataset1<Res:dataset.dbunit>} IS equal THE {dataset2<Res:dataset.dbunit>} [USING
[{<Res:filter.dbunit>}],[{<Res:conf.dbunit.ppk>}]]

> Input :

• dataset1<Res:dataset.dbunit> : The name of the resource which references the first DbUnit
dataset.(dataset.dbunit type resource).

• dataset2<Res:dataset.dbunit> : The name of the resource which references the second DbUnit
dataset.(dataset.dbunit type resource).

• <Res:filter.dbunit> (Optional) : This resource contains a filter DbUnit (filter.dbunit type re-
source).

• <Res:conf.dbunit.ppk> (Optional) : The name of the resource which references a configuration file to
define the pseudo primary keys.(conf.dbunit.ppk type resource).

Example :

6.2. Database Plugin 233

Squash Keyword Framework Documentation

LOAD path/to/dataset1.xml AS dataset1_file
CONVERT dataset1_file TO xml (structured) AS dataset1_xml
CONVERT dataset1_xml TO dataset.dbunit (dataset) AS dataset1_dbu

LOAD path/to/dataset1.xml AS dataset2_file
CONVERT dataset2_file TO xml (structured) AS dataset2_xml
CONVERT dataset2_xml TO dataset.dbunit (dataset) AS dataset2_dbu

// Get the pseudo primary keys
LOAD path/to/my_ppk.properties AS ppk_file
CONVERT ppk_file TO properties (structured) AS ppk_properties
CONVERT ppk_properties TO conf.dbunit.ppk (from.properties) AS ppk_dbu

// Load the DbUnit filter
LOAD path/to/filter-name.xml AS filter_file
CONVERT filter_file TO filter.dbunit AS filter_dbu

// Compare the two datasets
ASSERT dataset1_dbu IS equal THE dataset2_dbu USING ppk_dbu,filter_dbu

Remarks

• During the assertion, if the first or the second dataset contains primary keys they are used for the assertion.

• If for a given table, a primary key and a pseudo primary key are defined, pseudo primary key overrides the
primary key.

• If for a given table, a pseudo primary key has one or several columns excluded from the assertion by a DbUnit
filter, the command fails.

This section will give you further details about the engine components (converters, commands or asserts) of the SKF
which are used by the macros of this plugin.

This plugin provides all the elements needed to interact with a database.

234 Chapter 6. SKF Plugins

Squash Keyword Framework Documentation

6.3 Filechecker Plugin

6.3.1 Filechecker Plugin - Resources

Contents :

• fixed.field.file

• fixed.field.file.descriptor

• fixed.field.file.queries

fixed.field.file

Category-name : fixed.field.file

What ?

fixed.field.file is a resource type that represents a fixed field file (aka FFF).

fixed.field.file.descriptor

Category-name : fixed.field.file.descriptor

What ?

fixed.field.file.descriptor is a resource type that represents the descriptor of fixed field file. This descriptor defines the
structure of the fixed field file.

6.3. Filechecker Plugin 235

Squash Keyword Framework Documentation

fixed.field.file.queries

Category-name : fixed.field.file.queries

What ?

fixed.field.file.queries is a resource type that represents a file which contains a list of queries. Each query is an assertion
against a fixed field file.

6.3.2 Filechecker Plugin - Macros

Contents :

• # LOAD_FFF {fixed_field_file_path} USING {fixed_field_file_descriptor_path} AS {fixed_field_file}

• # ASSERT_FFF {fff} HAS EXPECTED CONTENT USING {fff_queries_path}

LOAD_FFF {fixed_field_file_path} USING {fixed_field_file_descriptor_path} AS {fixed_field_file}

What ?

This macro will load the fixed field file descriptor and the fixed field file. It will then verify that the fixed field file is
valid by using the fixed field file descriptor. Finally it will check that the fixed field file has the expected autonumbers.
The macro will also convert the fixed field file into a resource of type fixed.fileld.file.

Underlying instructions :

LOAD {fixed_field_file_descriptor_path} AS __temp{%%rand1}.file
CONVERT __temp{%%rand1}.file TO fixed.field.file.descriptor(descriptor) AS __temp_{%
→˓%rand2}.fff.descriptor

LOAD {fixed_field_file_path} AS __temp{%%rand3}.file
CONVERT __temp{%%rand3}.file TO fixed.field.file(structured) USING __temp_{%%rand2}.
→˓fff.descriptor AS {fixed_field_file}

ASSERT {fixed_field_file} IS valid
ASSERT {fixed_field_file} HAS expected.autonumbers

> Input :

• {fixed_field_file_path} : The path to the fixed field file (relative to the root of the repository).

• {fixed_field_file_descriptor_path} : The path to the fixed field file descriptor (relative to the
root of the repository).

> Output :

• {fixed_field_file} : The name (in the context) of the fixed field file.

236 Chapter 6. SKF Plugins

Squash Keyword Framework Documentation

Example :

LOAD_FFF repo/fff/data.txt USING repo/descriptor/my_descriptor.xml AS fixed_field_file.fff

Fixed Field File to process :

Descriptor xml file to process (partial) :

The project’s doctree showing the resources directory (containing the fff and descriptor xml file) to
process :

SKF script :

Result output on success :

To get a clearer view of the functionnality offered by the LOAD_FFF macro we can create a deliberate
error in the fixed field file.

We add an empty line between the end of the first leaf record and the start of the second :

Result output on failure :

ASSERT_FFF {fff} HAS EXPECTED CONTENT USING {fff_queries_path}

What ?

This macro allows to valid the content of a fixed field file using a fixed field file query file.

6.3. Filechecker Plugin 237

Squash Keyword Framework Documentation

238 Chapter 6. SKF Plugins

Squash Keyword Framework Documentation

6.3. Filechecker Plugin 239

Squash Keyword Framework Documentation

Underlying instructions :

LOAD {fff_queries_path} AS __temp{%%rand1}.file
CONVERT __temp{%%rand1}.file TO fixed.field.file.queries(query) AS __temp_{%%rand2}.
→˓fff.queries
ASSERT {fff} HAS expected.content USING __temp_{%%rand2}.fff.queries

> Input :

• {fff} : The path to the fixed field file (relative to the root of the repository).

• {fff_queries_path} : The path to the query file (relative to the root of the repository).

Example :

ASSERT_FFF repo/fff/data.txt HAS EXPECTED CONTENT USING repo/queries/my_queries.xml

This example is based on the previous one. For more details, please check here.

Queries file to process :

The project’s doctree showing the resources directory (containing the fff, descriptor xml file and
now queries file) to process :

240 Chapter 6. SKF Plugins

Squash Keyword Framework Documentation

SKF script :

Result output on success :

To get a clearer view of the functionnality offered by the ASSERT_FFF macro we can create a deliberate
error in the queries file :

Result output on failure :

6.3.3 Filechecker Plugin - Specifications for the Fixed Field Files

Contents :

• Functionalities

• Terminology about the FFF

– Leafrecords

– Composite records

• FFF Descriptor

– Structure of the FFF descriptor

6.3. Filechecker Plugin 241

Squash Keyword Framework Documentation

* <root> element

* <sequences> and <sequence> elements

* LeafRecord

* Composite Record

* Succession of the composite Record’s children

· ‘AND’ Clause

· ‘or’ Clause

· ‘repeat’ Clause

· Combination of the ‘and’, ‘or’ and ‘repeat’ clauses

– Validation of the FFF descriptor

Functionalities

The Filechecker plugin allows to :

• Read a FFF (Fixed Field File) in the two kinds of format : binary or text.

• Identify leafrecords / composite records of a FFF.

• Validate fields syntax and validate the structure of a FFF.

• Verify the value of the fields.

To accomplish the first 3 points, an XML file named ‘FFF descriptor’ is needed. In addition, an Xpath queries file is
used to verify the value of the fields.

Terminology about the FFF

Leafrecords

A FFF file is built of leafrecords and each leafrecord is built of fields. For instance :

Textual FFF (a FFF of type text) have one record per line (records are separated with a word wrap character) so the
records access is sequential. Within a record, the position and the number of characters for each field is known. In our
example, the civility field is built of 3 characters whereas the name and the first name are built of 10 characters.

Remarks :

242 Chapter 6. SKF Plugins

Squash Keyword Framework Documentation

Fig. 1: This file is built of 2 leafrecord and each leafrecord constituted of 3 fields.

• It’s the same for a binary file. All record have the same bytes number which allows distinguishing them from
each other. And inside a record, the position and the number of bytes for each field is known.

• In a FFF file, if all records are built of the same type (as our example, we speak about mono-recording file). If
the file is built of several kinds of records, we speak about multi-recording file and each record has one or more
identifier fields. For instance :

Fig. 2: In this example of a multi-recording file, the field ‘00’ allows identifying a physical person and the field ‘01’
allows identifying a moral person.

• If a file is built of only leafrecords we speak about ‘Flat File’.

Composite records

When a suite of leafrecords form an unity, we speak about composite records. For instance :

In this example, each composite record is built of 3 leafrecords :

• The leafrecord ‘00’ for the civility.

• The leafrecord ‘01’ for the adress.

• The leafrecord ‘02’ for the phone number.

Among the leafrecords composing a composite record, we can distinguish 3 kinds of leafrecords :

• The opening record which indicates the first leafrecord of a composite record.

• The closing record which indicates the last leafrecord of a composite record. It allows to detect the end of a
composite record but they’re not mandatory (in the previous example, there is no closing records).

6.3. Filechecker Plugin 243

Squash Keyword Framework Documentation

• Others leafrecords are named children leafrecords.

Remark : Generally the suite of leafrecords of a composite record are subject to management rules. For instance, a
person must have a civil status AND a phone number.

FFF Descriptor

Structure of the FFF descriptor

A FFF descriptor is a XML file which has the following structure :

<?xml version="1.0" encoding="UTF-8"?>
<root>

<sequences>...</sequences>
<records>

</leaves>...</leaves>
<composites>...</composites>

</records>
</root>

The <ROOT> tag is the root element of the FFF descriptor. It allows to :

• State the schema to use to validate the FFF descriptor.

• Describe the general characteristics of the FFF to verify.

It contains 2 tags :

• The <sequences> tag (Optional) : It contains sequences definition used for the auto-incremental fields.

• The <records> tag : It contains the records description of the file and is built with :

– A <leaves> tag which contains n <leafRecord> tags (they describe the leafrecords type of the FFF to
verify).

– A <composites> tag which contains n <compositeRecord> tags (they describe the composite records type
of the FFF to verify).

<root> element

The <root> tag must have the following attibutes :

<fff:root name="LISTING" binary="true" encoding="Cp1047" bytesPerLine="62"
xmlns = "http://www.squashtest.org/SquashTA/FFFDescriptorSchema"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation=
"http://www.squashtest.org/SquashTA/FFFDescriptorSchema http://www.squashtest.org/
→˓docta/schemas/FFFDescriptorSchema_1.1.xsd">

We’re going to explain the different attributes of the <root> tag :

xmlns= "http://www.squashtest.org/SquashTA/FFFDescriptorSchema"

244 Chapter 6. SKF Plugins

Squash Keyword Framework Documentation

The ‘xmlns’ attribute allows to declare the URL of the dafault namespace. It means that the XML elements used in
the FFF descriptor must have been defined in this namespace.

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

This namespace has several attributes which allows to declare the schema to use to validate the file.

xsi:schemaLocation=
"http://www.squashtest.org/SquashTA/FFFDescriptorSchema
http://www.squashtest.org/docta/schemas/FFFDescriptorSchema_1.1.xsd"

The attribute ‘schema location’ of the namespace “http://www.w3.org/2001/XMLSchema-instance” allows to de-
clare the XSD schema to use for the validation and to associate it with the previous namespace.

The others attributes of the <root> tag are used to describe the general characteristics of the FFF to verify :

• The 'name' attribute : It indicates the name of the file to use.

• The 'binary' attribute : A boolean specifying if the FFF is a binary or not.

• The 'encoding' attribute : It allows to specify the encoding of the file. Using names to design the encoding
are those of the java class ‘java.nio.charset.Charset’. For a binary file, this attribute is mandatory whereas for a
text file it’s optional because if not specified it’s the encoding of the Java Virtual Machine who’s used.

• The 'bytesPerLine' attribute : It allows for a binary file to specify the amount of bytes per record.

<sequences> and <sequence> elements

The <sequences> tag contains a list of <sequence> tags. Sequences are counters. They are used to incremente fields
of ‘autonumber’ type.

<sequences>
<sequence id="No" start="1" increment="1" />

<sequences>

With :

• id : The attribute identifying the sequence.

• start : The number from which the sequence begin.

• increment : The incrementation step of the sequence.

LeafRecord

Each <leafRecord> tag decribes a leafRecord and inside each <leafRecord> tag we have <fields> and <field> tags
which describe the fields of each leafrecord.

For instance :

6.3. Filechecker Plugin 245

Squash Keyword Framework Documentation

<leafRecord> elements :

• A 'name' attribute : It designs the record name of the leaf.

• a <label> tag (Optional) : It contains the wording of the leafRecord.

• a <fields> tag which contains n <field> tags (One for each field of the leafRecord).

<field> elements :

• a <label> tag (Optional) : It contains the wording of the field.

• a <description> tag (Optional) : It contains a description of the field.

• a 'type' attribute : It indicates the type of the field.

• a 'start' attribute : It describes the position of the first character / byte inside the record (It begins at 1).

• a 'length' attribute which describes the characters / bytes number of the field.

• Depending of the field type, other attributes are available (See the fields types description section).

Composite Record

The <compositeRecord> tag contains 3 tags :

• The <openingRecord> tag which defines the opening leafRecord. The text of this tag must be linked to the
value of the attribute name of the <leafRecord> tag corresponding.

• The <closingRecord> tag which defines the closing leafRecord. The text of this tag must be linked to the
value of the attribute name of the <leafRecord> tag corresponding.

• The <children> tag which contains the list of the children records.

Example 1 : Composite record with closingRecord

<?xml version="1.0" encoding="UTF-8"?>
<root...>

<records>
<leaves>
...

<leafRecord name="leafRecord00">
...
</leafRecord>
<leafRecord name="leafRecord99">
...

(continues on next page)

246 Chapter 6. SKF Plugins

Squash Keyword Framework Documentation

(continued from previous page)

</leafRecord>
...
</leaves>
<composites>

<compositeRecord name="personne">
<label>Coordonnées d’une personne</label>
<openingRecord>leafRecord00</openingRecord>
<closingRecord> leafRecord99</closingRecord>
<children>

...
</children>

</compositeRecord>
</composites>
...

Example 2 : Composite Record without closingRecord

<?xml version="1.0" encoding="UTF-8"?>
<root...>

<records>
<leaves>

<leafRecord name="leafRecord00">
...
</leafRecord>
...

</leaves>
<composites>

<compositeRecord name="personne">
<label>Coordonnées d’une personne</label>
<openingRecord>leafRecord00</openingRecord>
<children>

...
</children>

</compositeRecord>
</composites>

Succession of the composite Record’s children

The succession of the composite Record’s children is defined with the help of a pattern built by combining ‘and’, ‘or’
and ‘repeat’ clauses.

‘AND’ Clause

The ‘and’ clause is used to indicate that a A-type leafRecord AND a B-type leafRecord (AND a C-type leafRecord. . .)
must be present. The number of records included in an ‘and’ clause must be higher or equal to 2.

Example: :

...
<compositeRecord name="personne">
<label>Détail d’une personne<label>
<openingRecord>leafRecord00<openingRecord>
<closingRecord>leafRecord 99<closingRecord>

(continues on next page)

6.3. Filechecker Plugin 247

Squash Keyword Framework Documentation

(continued from previous page)

<children>
<and>

<record>leafRecord01<record>
<record>leafRecord02<record>
<record>leafRecord03<record>

<and>
<children>

<compositeRecord>
...

‘or’ Clause

The ‘or’ clause is used to indicate that a A-type leafRecord OR a B-type leafRecord (OR a C-type leafRecord. . .)
must be present. The number of records included in an ‘or’ clause must be higher or equal to 2.

Example :

...
<compositeRecord name="personne">
<label>Détail d’une personne<label>
<openingRecord>leafRecord00<openingRecord>
<closingRecord>leafRecord 99<closingRecord>
<children>
<or>

<record>leafRecord01<record>
<record>leafRecord02<record>
<record>leafRecord03<record>

<or>
<children>

<compositeRecord>
...

‘repeat’ Clause

The ‘repeat’ clause is used to indicate that leafRecord must be present a number of times, between a minimal and a
maximal defined value (min>=0, min<max<unbounded).

Example :

...
<compositeRecord name="personne">

<label>Détail d’une personne</label>
<openingRecord>leafRecord00</openingRecord>
<closingRecord>leafRecord99</closingRecord>
<children>

<repeat min="1" max="unbounded">
<record>leafRecord01</record>

</repeat>
</children>

</compositeRecord>
...

248 Chapter 6. SKF Plugins

Squash Keyword Framework Documentation

Combination of the ‘and’, ‘or’ and ‘repeat’ clauses

The ‘and’, ‘or and ‘repeat’ clauses can be recursively combined.

Example :

...
<compositeRecord name="evenement">

<label>Evenement</label>
<openingRecord>100</openingRecord>
<children>

<and>
<record>101</record>
<record>102</record>
<repeat min="1" max="8">

<and>
<or>

<record>103A</record>
<record>103D</record>
<record>103S</record>

</or>
<record>105</record>

</and>
</repeat>

</and>
</children>

</compositeRecord>
...

Validation of the FFF descriptor

A FFF descriptor loaded by the FileChecker must be validated. Its structure is validated by the declared XSD schema
and other additionnal validations used to ensure the functionnal coherence of the file.

6.3.4 Filechecker Plugin - Advanced Users

Filechecker Plugin - Converters

Contents :

• From file To fixed.field.file.descriptor

• From file to fixed.field.file

• From file to fixed.field.file.queries

6.3. Filechecker Plugin 249

Squash Keyword Framework Documentation

From file To fixed.field.file.descriptor

Category-name : descriptor

What ?

This descriptor converter will convert a file type resource to a fixed.field.file.descriptor type re-
source. This converter verifies that the resource is a well formed descriptor (structure + content).

CONVERT {resourceToConvert<Res:file>} TO fixed.field.file.descriptor (descriptor) AS {con-
verted<Res:fixed.field.file.descriptor>}

> Input :

• {resourceToConvert<Res:file>} : The name of the resource to convert (file type resource). This
ressource should reference a fixed field file descriptor.

> Output :

• {converted<Res:fixed.field.file.descriptor>} : The name of the converted resource
(fixed.field.file.descriptor type resource).

Example :

LOAD path/to/fixed_field_file_descriptor.txt AS fff_descriptor.file
CONVERT fff_descriptor.file TO fixed.field.file.descriptor (descriptor) AS fff_descriptor.fffd

From file to fixed.field.file

Category-name : structured

What ?

This structured converter will convert a file type resource to a fixed.field.file type resource by using
fixed.field.file.descriptor.

CONVERT {fffToConvert<Res:file>} TO fixed.field.file (structured) USING {fffDescrip-
tor<Res:fixed.field.file.descriptor>} AS {converted<Res:fixed.field.file>}

> Input :

• {fffToConvert<Res:file>} : The name (in the context) of the resource to convert (file type resource).
This ressource should reference a fixed field file (e.g. by using a LOAD instruction on the fixed field file path).

• {fffDescriptor<Res:fixed.field.file.descriptor>} : The name (in the context) of the de-
scriptor resource (fixed.field.file.descriptor type resource).

250 Chapter 6. SKF Plugins

Squash Keyword Framework Documentation

> Output :

• {converted<Res:fixed.field.file>} : The name of the converted resource (fixed.field.
file type reqsource).

Example :

LOAD path/to/fixed_field_file_descriptor.txt :keywords:‘AS fff_descriptor.file
CONVERT fff_descriptor.file TO fixed.field.file.descriptor (descriptor) AS fff_descriptor.fffd
LOAD path/to/fixed_field_file.txt AS fixed_field_file.file
CONVERT fixed_field_file.file TO fixed.field.file (structured) USING fff_descriptor.fffd AS fixed_field_file.fff

From file to fixed.field.file.queries

Category-name : query

What ?

This query converter will convert a file type resource to a fixed.field.file.queries type resource.

CONVERT {queriesToConvert<Res:file>} TO fixed.field.file.queries (query) AS {con-
verted<Res:fixed.field.file.queries>}

> Input :

• {{queriesToConvert<Res:file>} : The name (in the context) of the resource to convert (file type
resource). This ressource should reference a fixed field file queries (e.g. by using a LOAD instruction on the
fixed field file queries path).

> Output :

• {converted<Res:fixed.field.file.queries>} : The name of the converted resource (fixed.
field.file.queries type resource).

Example :

LOAD path/to/fixed_field_file_queries.txt AS fff_queries.file
CONVERT fff_queries.file TO fixed.field.file.queries (query) AS fff_query.fffq

Filechecker Plugin - Asserts

6.3. Filechecker Plugin 251

Squash Keyword Framework Documentation

Contents :

• ‘file’ does ‘contain’ {regex}

• ‘file’ does ‘not.contain’ {regex}

• ‘fixed.field.file’ is ‘valid’

• ‘fixed.field.file’ has ‘expected.autonumbers’

• ‘fixed.field.file’ has ‘expected.content’

‘file’ does ‘contain’ {regex}

What ?

This assertion searches a pattern inside a file resource. If the pattern is not found, the assertion fails.

ASSERT {resource<file>} DOES contain THE $(<pattern>)

Note : For differences between ASSERT and VERIFY assertion mode see this page this page.

> Input :

• {resource<Res:file>} : The name (in the context) of the file resource (file type resource).

• {<pattern>} : The regular expression searched in the file.

Note : If you want to check for special characters used in the regular expression formalism, you will have to escape
them with a backslash (” \ “).

Example :

LOAD filechecker/FFF_txt_test.txt AS fixed_field_file.file
ASSERT fixed_field_file.file DOES contain THE $(Hello)

‘file’ does ‘not.contain’ {regex}

What ?

This assertion verifies that a pattern is not present inside a file resource. If the pattern is found, the assertion fails.

252 Chapter 6. SKF Plugins

Squash Keyword Framework Documentation

ASSERT {resource<Res:file>} DOES not.contain THE $(<pattern>)

Note : For differences between ASSERT and VERIFY assertion mode see this page.

> Input :

• {resource<Res:file>} : The name (in the context) of the file resource (file type resource).

• {<pattern>} : The regular expression searched in the file.

Note : If you want to check for special characters used in the regular expression formalism, you will have to escape
them with a backslash (” \ “).

Example :

LOAD filechecker/FFF_txt_test.txt AS fixed_field_file.file
ASSERT fixed_field_file.file DOES not.contain THE $(Hello)

‘fixed.field.file’ is ‘valid’

What ?

This assertion verifies that a fixed.field.file resource is valid (structure and syntax).

ASSERT {fffResource<Res:fixed.field.file>} IS valid

Note : For differences between ASSERT and VERIFY assertion mode see this page.

> Input :

• {fffResource<Res:fixed.field.file>} : The name (in the context) of the fixed field file resource
to validate (fixed.field.file type resource).

Example :

LOAD filechecker/descriptor_txt_test.xml AS fixed_field_file_descriptor.file
CONVERT fixed_field_file_descriptor.file TO fixed.field.file.descriptor (descriptor) AS
fixed_field_file_descriptor.descriptor
LOAD filechecker/FFF_txt_test.txt AS fixed_field_file.file
CONVERT fixed_field_file.file TO fixed.field.file (structured) USING fixed_field_file_descriptor.descriptor AS
fixed_field_file.fff
ASSERT fixed_field_file.fff IS valid

6.3. Filechecker Plugin 253

Squash Keyword Framework Documentation

‘fixed.field.file’ has ‘expected.autonumbers’

What ?

This assertion verifies that a fixed.field.file resource has the expected auto numbers.

ASSERT {fffResource<Res:fixed.field.file>} HAS expected.autonumbers

Note : For differences between ASSERT and VERIFY assertion mode see this page.

> Input :

• {fffResource<Res:fixed.field.file>} : The name of the fixed field file resource to verify
(fixed.field.file type resource).

Example :

LOAD filechecker/descriptor_txt_test.xml AS fixed_field_file_descriptor.file
CONVERT fixed_field_file_descriptor.file TO fixed.field.file.descriptor (descriptor) AS
fixed_field_file_descriptor.descriptor
LOAD filechecker/FFF_txt_test.txt AS fixed_field_file.file
CONVERT fixed_field_file.file TO fixed.field.file (structured) USING fixed_field_file_descriptor.descriptor AS
fixed_field_file.fff
ASSERT fixed_field_file.fff HAS expected.autonumbers

‘fixed.field.file’ has ‘expected.content’

What ?

This assertion verifies a fixed.field.file resource has the expected content. The expected content is defined in
the fixed field file queries resource provided in the USING clause.

ASSERT {fffResource<Res:fixed.field.file>} HAS expected.content USING {fff-
Queries<Res:fixed.field.file.queries>}

Note : For differences between ASSERT and VERIFY assertion mode see this page.

> Input :

• {fffResource<Res:fixed.field.file>} : The name (in the context) of the fixed field file resource
to verify (fixed.field.file type resource).

• {fffQueries<Res:fixed.field.file.queries>} : The name (in the context) of the fixed field file
queries which contains the expected contents (fixed.field.file.queries type resource).

254 Chapter 6. SKF Plugins

Squash Keyword Framework Documentation

Example :

LOAD filechecker/descriptor_txt_test.xml AS fixed_field_file_descriptor.file
CONVERT fixed_field_file_descriptor.file TO fixed.field.file.descriptor (descriptor) AS
fixed_field_file_descriptor.descriptor
LOAD filechecker/FFF_txt_test.txt AS fixed_field_file.file
CONVERT fixed_field_file.file TO fixed.field.file (structured) USING fixed_field_file_descriptor.descriptor AS
fixed_field_file.fff
LOAD filechecker/FFF_queries_txt_test.xml AS fixed_field_file_queries.file
CONVERT fixed_field_file_queries.file TO fixed.field.file.queries (query) AS fixed_field_file_queries.query
ASSERT fixed_field_file.fff HAS expected.content USING fixed_field_file_queries.query

This section will give you further details about the engine components (converters, commands or asserts) of the SKF
which are used by the macros of this plugin.

This plugin provides all the elements needed to use the Filechecker tool (only for fixed field file currently) in SKF.
Fixed Field Files are files whose position and length of different fields are known.

To use Filechecker in your Squash-TF project, you should provide the following ressources :

• The file to process and its descriptor file.

• A query file if you want to do content test on the file to process.

6.4 FTP Plugin

6.4.1 FTP Plugin - Repository

What ?

Will download your resources from a FTP.

Category-name : ftp.repository

Configuration : A simple .properties file dropped in the ‘repositories’ directory of your test project. It must contain
AT LEAST : ‘squashtest.ta.ftp.host’.

Available properties :

• squashtest.ta.ftp.host : Supply the host name (mandatory).

• squashtest.ta.ftp.username : The username to log to.

• squashtest.ta.ftp.password : The corresponding password.

• squashtest.ta.ftp.port : An alternate command port.

6.4. FTP Plugin 255

Squash Keyword Framework Documentation

• squashtest.ta.ftp.filetype : The default files type. Currently supported : ascii or binary (either uppercase or
lowercase).

• squashtest.ta.ftp.system : The host system type. Currently supported : unix, vms, windows, os/2, os/400, as/400,
mvs, l8, netware, macos (either uppercase or lowercase).

• squashtest.ta.ftp.useCache : Tells if the repository must cache its resource to increase performances. Default is
false.

Example : valid configuration file

squashtest.ta.ftp.host = myhost
squashtest.ta.ftp.username = tester
squashtest.ta.ftp.password = _tester
squashtest.ta.ftp.port = 50000
squashtest.ta.ftp.filetype = ascii
squashtest.ta.ftp.system = os/400
squashtest.ta.ftp.useCache = true

6.4.2 FTP Plugin - Target

What ?

A ftp target is exactly what you think it is.

Category-name : ftp.target

Configuration : A simple .properties file dropped in the ‘targets’ directory of your test project. The file must include
the shebang on the very first line : ‘#!ftp’. It must also contain AT LEAST : ‘squashtest.ta.ftp.host’.

Available properties :

• squashtest.ta.ftp.host : Supply the host name (mandatory).

• squashtest.ta.ftp.username : The username to log to.

• squashtest.ta.ftp.password : The corresponding password.

• squashtest.ta.ftp.port : An alternate command port.

• squashtest.ta.ftp.filetype : The default files type. Currently supported : ascii or binary (either uppercase or
lowercase).

• squashtest.ta.ftp.system : The host system type. Currently supported : unix, vms, windows, os/2, os/400, as/400,
mvs, l8, netware, macos (either uppercase or lowercase).

Example of valid configuration file :

#!ftp
squashtest.ta.ftp.host = myhost
squashtest.ta.ftp.username = tester
squashtest.ta.ftp.password = _tester
squashtest.ta.ftp.port = 50000
squashtest.ta.ftp.filetype = ascii
squashtest.ta.ftp.system = os/400

256 Chapter 6. SKF Plugins

Squash Keyword Framework Documentation

Remark

During the download from / upload on the FTP server :

• If the property ‘squashtest.ta.ftp.filetype’ has the value ‘binary’, the file is identicaly transfered.

• If the property has the ‘ascii’ value, the file is converted during the transfer (encoding, end-lines and end-
file characters). The transfer mode ‘ascii’ allows to transfer files between heterogeneous systems. The server
converts the file from its original format to a standard ‘8-bit NVT-ASCII’ format. The client then converts the
‘8-bit NVT-ASCII’ format file to the output format. Consequently when a binary file is transferred in ‘ascii’
mode, generally it’s corrupted during the transfer.

6.4.3 FTP Plugin - Macros

Contents:

• # FTP_DOWNLOAD {remotePath} FROM {FTPserverTarget} AS {downloadedResourceName}

• # FTP_DOWNLOAD ASCII FILE {remotePath} FROM {FTPserverTarget} AS {downloadedResourceName}

• # FTP_DOWNLOAD BINARY FILE {remotePath} FROM {FTPserverTarget} AS {downloadedResource-
Name}

• # FTP_UPLOAD {localResourcePath} ONTO {FTPserverTarget} USING REMOTE PATH {remotePath}

• # FTP_UPLOAD ASCII FILE {localResourcePath} ONTO {FTPserverTarget} USING REMOTE PATH {re-
motePath}

• # FTP_UPLOAD BINARY FILE {localResourcePath} ONTO {FTPserverTarget} USING REMOTE PATH
{remotePath}

• # FTP_DELETE {remotePathOfFileToDelete} FROM {FTPserverTarget}

• # FTP_DELETE_IF_EXISTS {remotePathOfFileToDelete} FROM {FTPserverTarget}

FTP_DOWNLOAD {remotePath} FROM {FTPserverTarget} AS {downloadedResourceName}

What ?

This macro will download a resource from a FTP server.

Underlying instruction :

EXECUTE get WITH $() ON {FTPserverTarget} USING $(remotepath : {remotePath}) AS
→˓{downloadedResourceName}

6.4. FTP Plugin 257

Squash Keyword Framework Documentation

> Input :

• {remotePath} : It corresponds to the file path on the FTP server, relatively to the home directory of the file
you want to get.

• {FTPserverTarget} : The name (in the context) of the FTP server to use (ftp.target type target).

• {downloadResourceName} : The name of the resource which references the file you download on the FTP
server (file type resource).

Example :

FTP_DOWNLOAD path/to/example.txt FROM my-ftp-server AS example.file

.properties file which contains FTP information :

.properties must be in “targets” folder of your project :

SKF script :

FTP confirms that the example.txt has been downloaded :

258 Chapter 6. SKF Plugins

Squash Keyword Framework Documentation

You can see the downloaded file in SQUASH_TA temporary files folder :

Here is the downloaded file :

FTP_DOWNLOAD ASCII FILE {remotePath} FROM {FTPserverTarget} AS {downloadedResource-
Name}

What ?

This macro will download an ASCII type resource from a FTP server.

Underlying instruction :

EXECUTE get WITH $() ON {FTPserverTarget} USING $(remotepath : {remotePath},filetype
→˓: ascii) AS {downloadedResourceName}

> Input :

• {remotePath} : It corresponds to the file path on the FTP server, relatively to the home directory of the file
you want to get.

• {FTPserverTarget} : The name (in the context) of the FTP server to use (ftp.target type target).

6.4. FTP Plugin 259

Squash Keyword Framework Documentation

• {downloadResourceName} : The name of the resource which references the file you download on the FTP
server (file type resource).

Example :

FTP_DOWNLOAD ASCII FILE path/to/example.txt FROM my-ftp-server AS example.file

This example is based on the first one. For more details, please check here.

SKF script :

FTP transfer mode is set to ASCII :

FTP_DOWNLOAD BINARY FILE {remotePath} FROM {FTPserverTarget} AS {downloadedResource-
Name}

What ?

This macro will download a binary type resource from a FTP server.

Underlying instruction :

EXECUTE get WITH $() ON {FTPserverTarget} USING $(remotepath : {remotePath},filetype
→˓: binary) AS {downloadedResourceName}

> Input :

• {remotePath} : It corresponds to the file path on the FTP server, relatively to the home directory of the file
you want to get.

• {FTPserverTarget} : The name (in the context) of the FTP server to use (ftp.target type target).

• {downloadResourceName} : The name of the resource which references the file you download on the FTP
server (file type resource).

Example :

260 Chapter 6. SKF Plugins

Squash Keyword Framework Documentation

FTP_DOWNLOAD BINARY FILE path/to/example.bin FROM my-ftp-server AS example.file

This example is based on the first one. For more details, please check here.

SKF script :

FTP_UPLOAD {localResourcePath} ONTO {FTPserverTarget} USING REMOTE PATH {remotePath}

What ?

This macro will upload a resource on a FTP server.

Underlying instructions :

LOAD {localResourcePath} AS __temp_{%%rand1}.file
EXECUTE put WITH __temp_{%%rand1}.file ON {FTPserverTarget} USING $(remotepath :
→˓{remotePath}) AS {{whocares}}

> Input :

• {localResourcePath} : The path of the file you want to upload on the FTP server.

• {FTPserverTarget} : The name (in the context) of the FTP server to use (ftp.target type target)

• {remotePath} : It corresponds to the file path on the FTP server, relatively to the home directory of the file
you want to put.

Example :

FTP_UPLOAD path/to/example.txt ONTO my-ftp-server USING REMOTE PATH
abc/name.txt

File to upload :

File location :

6.4. FTP Plugin 261

Squash Keyword Framework Documentation

.properties file which contains FTP information :

.properties must be in “targets” folder of your project :

SKF script :

FTP confirms that the uploadExample.txt has been uploaded :

FTP_UPLOAD ASCII FILE {localResourcePath} ONTO {FTPserverTarget} USING REMOTE PATH
{remotePath}

What ?

This macro will upload an ASCII type resource on a FTP server.

Underlying instruction :

LOAD {localResourcePath} AS __temp_{%%rand1}.file
EXECUTE put WITH __temp_{%%rand1}.file ON {FTPserverTarget} USING $(remotepath :
→˓{remotePath},filetype : ascii) AS {{whocares}}

262 Chapter 6. SKF Plugins

Squash Keyword Framework Documentation

6.4. FTP Plugin 263

Squash Keyword Framework Documentation

> Input :

• {localResourcePath} : The path of the file you want to upload on the FTP server.

• {FTPserverTarget} : The name (in the context) of the FTP server to use (ftp.target type target)

• {remotePath} : It corresponds to the file path on the FTP server, relatively to the home directory of the file
you want to put.

Example :

FTP_UPLOAD ASCII FILE path/to/example.txt ONTO my-ftp-server USING REMOTE PATH
abc/name.txt

This example is based on the previous one. For more details, please check here.

SKF script :

FTP transfer mode is set to ASCII :

FTP_UPLOAD BINARY FILE {localResourcePath} ONTO {FTPserverTarget} USING REMOTE PATH
{remotePath}

What ?

This macro will upload a binary type resource on a FTP server.

Underlying instruction :

LOAD {localResourcePath} AS __temp_{%%rand1}.file
EXECUTE put WITH __temp_{%%rand1}.file ON {FTPserverTarget} USING $(remotepath :
→˓{remotePath},filetype : binary) AS {{whocares}}

> Input :

264 Chapter 6. SKF Plugins

Squash Keyword Framework Documentation

• {localResourcePath} : The path of the file you want to upload on the FTP server.

• {FTPserverTarget} : The name (in the context) of the FTP server to use (ftp.target type target)

• {remotePath} : It corresponds to the file path on the FTP server, relatively to the home directory of the file
you want to put.

Example :

FTP_UPLOAD BINARY FILE path/to/example.bin ONTO my-ftp-server USING REMOTE PATH
abc/name.bin

This example is based on the previous one. For more details, please check here.

SKF script :

FTP_DELETE {remotePathOfFileToDelete} FROM {FTPserverTarget}

What ?

This macro will delete a file on a FTP server.

Underlying instruction :

EXECUTE delete WITH $() ON {FTPserverTarget} USING $(remotepath :
→˓{remotePathOfFileToDelete}) AS {{whocares}}

> Input :

• {remotePathOfFileToDelete} : It corresponds to the file path on the FTP server, relatively to the home
directory of the file you want to delete.

• {FTPserverTarget} : The name (in the context) of the FTP server to use (ftp.target type target).

Example :

FTP_DELETE distant/path/example.txt FROM my-ftp-server

.properties file which contains FTP information :

.properties must be in “targets” folder of your project :

SKF script :

6.4. FTP Plugin 265

Squash Keyword Framework Documentation

266 Chapter 6. SKF Plugins

Squash Keyword Framework Documentation

FTP confirms that the file has been deleted :

FTP_DELETE_IF_EXISTS {remotePathOfFileToDelete} FROM {FTPserverTarget}

What ?

This macro will delete a resource on a FTP server. If the file doesn’t exist, the macro doesn’t fail.

Underlying instruction :

EXECUTE delete WITH $() ON {FTPserverTarget} USING $(remotepath :
→˓{remotePathOfFileToDelete},failIfDoesNotExist:false) AS {{whocares}}

> Input :

• {remotePathOfFileToDelete} : It corresponds to the file path on the FTP server, relatively to the home
directory of the file you want to delete.

• {FTPserverTarget} : The name (in the context) of the FTP server to use (ftp.target type target).

Example :

FTP_DELETE_IF_EXISTS distant/path/example.txt FROM my-ftp-server

This example is similar to the previous one. For more details, please check here.

6.4.4 FTP Plugin - Advanced Users

FTP Plugin - Commands

6.4. FTP Plugin 267

Squash Keyword Framework Documentation

Contents :

• ‘put’ ‘file’ on ‘ftp’

• ‘put’ ‘folder’ on ‘ftp’

• ‘get’ ‘file’ on ‘ftp’

• ‘get’ ‘folder’ on ‘ftp’

• ‘delete’ ‘file’ on ‘ftp’

• ‘delete’ ‘folder’ on ‘ftp’

‘put’ ‘file’ on ‘ftp’

What ?

This command allows to put a file on a FTP server.

EXECUTE put WITH {<Res:file>} ON {<Tar:ftp.target>} AS $() USING $(remotepath : <distantPath> [,filetype
: <FileType>])

> Input :

• {<Res:file>} : The name of the resource (in the context) which references the file to put on the FTP server
(file type resource).

• {<Tar:ftp.target>} : The name (in the context) of the FTP server to use (ftp.target type target).

• {<distantPath>} : It corresponds to the file path on the FTP server, relatively to the home directory.

• {<fileType>} : It allows to decribe the type of your file. 2 values are possible : ‘ascii’ or ‘binary’.

Remarks :

• If in the path {<distantPath>} some directories don’t exist on the server so they are created.

• If the property {<filetype>} is indicated in the configuration file of the FTP target and via the instruction,
the value defined in the instruction prime.

Example :

LOAD path/to/my_file_to_put.txt AS my_file_to_put.file
EXECUTE put WITH my_file_to_put.file ON myFTP-server USING $(remotepath : path/to/put/distant_name.txt)
AS $()

268 Chapter 6. SKF Plugins

Squash Keyword Framework Documentation

‘put’ ‘folder’ on ‘ftp’

What ?

This command allows to put a folder on a FTP server.

EXECUTE putFolder WITH {<Res:directory>} ON {<Tar:ftp.target>} AS {void} USING $(remotepath : <dis-
tantPath>)

> Input :

• {<Res:directory>} : The name of the resource (in the context) which references the folder to put on the
FTP server (directory type resource).

• {<Tar:ftp.target>} : The name (in the context) of the FTP server to use (ftp.target type target).

• {<distantPath>} : It corresponds to the folder path on the FTP server, relatively to the home directory.

Remarks :

• If in the path {<distantPath>} some directories don’t exist on the server so they are created.

Example :

LOAD path/my_folder_to_put AS my_folder_to_put.file
CONVERT my_folder_to_put.file TO directory AS my_folder_to_put.dir
EXECUTE putFolder WITH my_folder_to_put.dir ON myFTP-server USING $(remotepath :
path/to/put/distant_folder_name) AS {void}

‘get’ ‘file’ on ‘ftp’

What ?

This command allows to get a file from a FTP server.

EXECUTE get WITH $() ON {<Tar:ftp.target>} AS {result<Res:file>} USING $(remotepath : <distantPath>
[,filetype : <FileType>])

> Input :

• {<Tar:ftp.target>} : The name (in the context) of the FTP server to use. (ftp.target type target)

• {<distantPath>} : It corresponds to the file path on the FTP server, relatively to the home directory of the
file you want to get.

• {<fileType>} : It allows to decribe the type of your file. 2 values are possible : ‘ascii’ or ‘binary’.

• {result<Res:file>} : The name of the resource which references the file you get from the FTP server
(file type resource).

6.4. FTP Plugin 269

Squash Keyword Framework Documentation

Remark : If the property {<fileType>} is indicated in the configuration file of the FTP target and via the instruc-
tion, the value defined in the instruction predominates.

Example :

EXECUTE get WITH $() ON myFTP-server USING $(remotepath : path/to/get/FileToGet) AS getFile.file

‘get’ ‘folder’ on ‘ftp’

What ?

This command allows to get a folder (with all its content) from a FTP server.

EXECUTE getFolder WITH {void} ON {<Tar:ftp.target>} AS {result<Res:directory>} USING $(remotepath :
<distantPath>)

> Input :

• {<Tar:ftp.target>} : The name (in the context) of the FTP server to use. (ftp.target type target)

• {<distantPath>} : It corresponds to the folder path on the FTP server, relatively to the home directory of
the folder you want to get.

• {result<Res:directory>} : The name of the resource which references the folder you get from the FTP
server (directory type resource).

Example :

EXECUTE getFolder WITH {void} ON myFTP-server USING $(remotepath : path/to/get/FolderToGet) AS get-
Folder.dir

‘delete’ ‘file’ on ‘ftp’

What ?

This command allows to delete a file located on a FTP server.

EXECUTE delete WITH $() ON {<Tar:ftp.target>} AS $() USING $(remotepath : <distantPath> [,failIfDoesNo-
tExist : false])

> Input :

• {<Tar:ftp.target>} : The name (in the context) of the FTP server to use. (ftp.target type target)

270 Chapter 6. SKF Plugins

Squash Keyword Framework Documentation

• {<distantPath>} : It corresponds to the file path on the FTP server, relatively to the home directory of the
file you want to delete.

• 'failIfDoesNotExist: false' : It allows to specify to Squash TF that the test must not fail if the
file we’re trying to delete doesn’t exist.

Example :

EXECUTE delete WITH $() ON myFTP-server USING $(remotepath : path/to/myfile.txt, failIfDoesNotExist:
false) AS $()

‘delete’ ‘folder’ on ‘ftp’

What ?

This command allows to delete a directory with its content located on a FTP server.

EXECUTE deleteFolder WITH {void} ON {<Tar:ftp.target>} AS {void} USING $(remotepath : <distantPath>
[,failIfDoesNotExist : false])

> Input :

• {<Tar:ftp.target>} : The name (in the context) of the FTP server to use. (ftp.target type target)

• {<distantPath>} : It corresponds to the folder’s path on the FTP server, relatively to the home directory of
the folder you want to delete.

• 'failIfDoesNotExist: false' : It allows to specify to Squash TF that the test must not fail if the
folder we’re trying to delete doesn’t exist.

Example :

EXECUTE deleteFolder WITH {void} ON myFTP-server USING $(remotepath : path/to/myFolder, failIfDoes-
NotExist: false) AS {void}

This section will give you further details about the engine components (converters, commands or asserts) of the SKF
which are used by the macros of this plugin.

This plugin provides all the elements needed to interact with a FTP server.

6.4. FTP Plugin 271

Squash Keyword Framework Documentation

6.5 JUnit Plugin

6.5.1 JUnit Plugin - Resources

Contents :

• script.junit5

• result.junit5

script.junit5

Category-name : script.junit5

What ?

script.junit5 is a resource type used by JUnit related components. It references a java code bundle, including resources
and compiled java classes.

result.junit5

Category-name : result.junit5

What ?

result.junit5 is a resource holding the result of any JUnit command.

6.5.2 JUnit Plugin - Macros

Contents :

• # EXECUTE_JUNIT_TEST {displayName} FROM {qualifiedClass} IN {bundlePath}

272 Chapter 6. SKF Plugins

Squash Keyword Framework Documentation

• # EXECUTE_JUNIT_TEST {displayName} FROM {qualifiedClass} IN {bundlePath} WITH COMPILE OP-
TIONS {options}

EXECUTE_JUNIT_TEST {displayName} FROM {qualifiedClass} IN {bundlePath}

What ?

This macro will execute a JUnit test and verify that the result is a success.

Underlying instructions :

LOAD {bundlePath} AS junit5{%%r1}.file
CONVERT junit5{%%r1}.file TO script.java(compile) AS junit5{%%r1}.bundle
CONVERT junit5{%%r1}.bundle TO script.junit5(structured) AS junit5{%%r1}.script
EXECUTE execute WITH junit5{%%r1}.script AS junit5{%%1}.result USING
→˓$(qualifiedClassName:{qualifiedClass},displayName:{displayName})
ASSERT junit5{%%1}.result IS success

> Input :

• {qualifiedClass} : The qualified name of the class containing the test to execute.

• {displayName} : The name of the test to execute.

– For a JUnit4 test, specify the name of the method being tested (without parentheses).

– For a JUnit5 test, you can also specify the name of the method being tested (with parentheses), but you
have to use the display name of the method if you tagged it with ‘@DisplayName’. Make sure the display
name of the test is unique in the class being tested.

• {bundlePath} : The path to the java code bundle, including resources and compiled java classes.

Example :

JUnit4 : # EXECUTE_JUNIT_TEST testSelenium2JUnit4 FROM org.squashtest.Selenium2JUnit4 IN
selenium
JUnit5 : # EXECUTE_JUNIT_TEST testSelenium2JUnit5() FROM org.squashtest.Selenium2JUnit5
IN selenium
JUnit5 (DisplayName) : # EXECUTE_JUNIT_TEST Test_Selenium_2_JUnit_5 FROM
org.squashtest.Selenium2JUnit5 IN selenium

File to process :

6.5. JUnit Plugin 273

Squash Keyword Framework Documentation

The folder containing the resources to process :

SKF script :

274 Chapter 6. SKF Plugins

Squash Keyword Framework Documentation

EXECUTE_JUNIT_TEST {displayName} FROM {qualifiedClass} IN {bundlePath} WITH COMPILE
OPTIONS {options}

What ?

This macro will execute a JUnit test, with compile options, and verify that the result is a success.

Underlying instructions :

LOAD {bundlePath} AS junit5{%%r1}.file
CONVERT junit5{%%r1}.file TO script.java(compile) USING {options} AS junit5{%%r1}.
→˓bundle
CONVERT junit5{%%r1}.bundle TO script.junit5(structured) AS junit5{%%r1}.script
EXECUTE execute WITH junit5{%%r1}.script AS junit5{%%1}.result USING
→˓$(qualifiedClassName:{qualifiedClass},displayName:{displayName})
ASSERT junit5{%%1}.result IS success

> Input :

• {qualifiedClass} : The qualified name of the class containing the test to execute.

• {displayName} : The name of the test to execute.

– For a JUnit4 test, specify the name of the method being tested (without parentheses).

– For a JUnit5 test, you can also specify the name of the method being tested (with parentheses), but you
have to use the display name of the method if you tagged it with ‘@DisplayName’. Make sure the diplay
name of the test is unique in the class being tested.

• {bundlePath} : The path to the java code bundle, including resources and compiled java classes.

• {options} : The name of the configuration resource. It represents a configuration file containing java compi-
lation options (possible options are those of the Java compiler present on the machine). In this file options can
be written :

– In line separated with a space character

– One option per line

– A mix of both

Example :

JUnit4 : # EXECUTE_JUNIT_TEST testSelenium2JUnit4 FROM org.squashtest.Selenium2JUnit4 IN
selenium WITH COMPILE OPTIONS compile.options.file
JUnit5 : # EXECUTE_JUNIT_TEST testSelenium2JUnit5() FROM org.squashtest.Selenium2JUnit5
IN selenium WITH COMPILE OPTIONS compile.options.file
JUnit5 (DisplayName) : # EXECUTE_JUNIT_TEST Test_Selenium_2_JUnit_5 FROM
org.squashtest.Selenium2JUnit5 IN selenium WITH COMPILE OPTIONS compile.options.file

First file to process :

6.5. JUnit Plugin 275

Squash Keyword Framework Documentation

Second file to process :

The folder containing the resources to process :

SKF script :

276 Chapter 6. SKF Plugins

Squash Keyword Framework Documentation

6.5.3 JUnit Plugin - Advanced Users

JUnit Plugin - Converters

From script.java to script.junit5

Category-Name : structured

What ?

This structured converter will convert a script.java type resource to a script.junit5 type resource.

CONVERT {resourceToConvert<Res:script.java>} TO script.junit5 (structured) AS {con-
verted<Res:script.junit5>}

> Input :

• resourceToConvert<Res:script.java> : The name of the resource which references a java code
bundle, including resources and compiled java classes (script.java type resource).

> Output :

• converted<Res:script.junit5> : The name of the converted resource (script.junit5 type re-
source).

Example :

LOAD path/to/java-bundle AS java-bundle.file
CONVERT java-bundle.file TO script.java (compile) AS java-bundle.script.java
CONVERT java-bundle.script.java TO script.junit5 (structured) AS java-bundle.script.junit5

6.5. JUnit Plugin 277

Squash Keyword Framework Documentation

JUnit Plugin - Commands

execute

What ?

Command to execute any Junit test using the JUnit5 framework.

EXECUTE execute WITH {<Res:script.junit5>} AS {<Res:result.junit5>} USING $({configuration})

> Input :

• {<Res:script.junit5>} : The name (in the context) of the resource which references the java code
bundle, including resources and compiled java classes (script.junit5 type resource).

• {configuration} :

– The qualified display name of the test to execute, using qualifiedClassName:<Specify
name>,displayName:<Specify name>.

– Or the unique Id of the test, provided by the JUnit engine, using uniqueId:<specify Id>.

Note 1 : These two possible configuration contents are mutually exclusive. Meaning that one has to choose how one
wants to select the test to execute. Either using its qualified display name or using its unique Id, but not both.

Note 2 : If you use the qualified display name, make sure it is unique in the class being tested, or the execution will
result in a failure.

> Output :

• {<Res:result.junit5>} : The name (in the context) of the resource holding the result of the command
(script.junit5 type resource).

Exemple with the qualified display name :

278 Chapter 6. SKF Plugins

Squash Keyword Framework Documentation

JUnit Plugin - Asserts

‘result.junit5’ is ‘success’

What ?

This assertion verifies that the result of the execution of a JUnit test is a success. If the assertion is verified the test
continues, else the test fails.

ASSERT {resourceToAssert<Res:result.junit5>} IS success

> Input :

• {resourceToAssert<Res:result.junit5>} : The name of the resource to assert (result.
junit5 type resource).

Example :

6.5. JUnit Plugin 279

Squash Keyword Framework Documentation

LOAD selenium AS bundle.file
CONVERT bundle.file TO script.java (compile) AS bundle.script.java
CONVERT bundle.script.java TO script.junit5 (structured) AS bundle.script.junit5
EXECUTE execute WITH bundle.script.junit5 AS bundle.result.junit5 USING $(qualifiedClass-
Name:org.squashtest.Selenium2JUnit4,displayName:testSelenium2JUnit4)
ASSERT bundle.result.junit5 IS success

This section will give you further details about the engine components (converters, commands or asserts) of the SKF
which are used by the macros of this plugin.

This plugin provides all the elements needed to execute JUnit (4 & 5) tests in SKF.

6.6 Local process Plugin

6.6.1 Local process Plugin - Resources

Contents:

• process

• query.shell

• result.shell

process

Category-name : process

What ?

The process resource category encapsulates a process handle to allow operations on processes. Currently only one
command operates on this kind of resource: the cleanup (process) command that is designed to kill the process (this is
mainly associated with environment management).

280 Chapter 6. SKF Plugins

Squash Keyword Framework Documentation

query.shell

Category-name : query.shell

What ?

query.shell represents a resource which contains one or several shell command lines.

Attributes : The command line supports an optional timeout attribute that specifies how long to wait before timing out
during its execution. The time is measured in milliseconds (range : strictly positive up to 2^31-1 (around 2 billions)).

result.shell

Category-name : result.shell

What ?

result.shell is a resource type that represents the result of a shell command execution (exit code, output streams. . .).

6.6.2 Local process Plugin - Macros

Local process Plugin - Execute Macros

Contents :

• # EXECUTE $({command_content}) LOCALLY AS {result}

• # EXECUTE $({command_content}) LOCALLY AS {result} WITHIN {timeout} ms

• # EXECUTE SCRIPT {command_content} LOCALLY AS {result}

• # EXECUTE SCRIPT {command_content} LOCALLY AS {result} WITHIN {timeout_in_seconds} s

• # EXECUTE SCRIPT {command_content} LOCALLY AS {result} WITH STREAMLENGTH {length}

• # EXECUTE SCRIPT {command_content} LOCALLY AS {result} WITH STREAMLENGTH {length} WITHIN
{timeout_in_seconds} s

6.6. Local process Plugin 281

Squash Keyword Framework Documentation

EXECUTE $({command_content}) LOCALLY AS {result}

What ?

This macro will execute an inline command on the local system and check if the result is a success.

Underlying instructions :

DEFINE $({command_content}) AS __command{%%rand1}
CONVERT __command{%%rand1} TO query.shell AS __commandLine{%%rand2}
EXECUTE local WITH __commandLine{%%rand2} AS {result}
ASSERT {result} IS success

> Input :

• {command_content} : The shell command to execute, preceded by a call to the shell (“cmd.exe /C” for
Windows, “/bin/sh -c” for Linux).

> Output :

• {result} : The name of the resource which references the result of the command (result.shell type
resource).

Example :

EXECUTE $(cmd.exe /C echo “hello world”) LOCALLY AS result

EXECUTE $({command_content}) LOCALLY AS {result} WITHIN {timeout} ms

What ?

This macro will execute an inline command on the local system, within a timeframe, and check if the result is a
success.

Underlying instructions :

DEFINE $({command_content}) AS __command{%%rand1}
CONVERT __command{%%rand1} TO query.shell AS __commandLine{%%rand2} USING $(timeout:
→˓{timeout})
EXECUTE local WITH __commandLine{%%rand2} AS {result}
ASSERT {result} IS success

> Input :

• {command_content} : The shell command to execute, preceded by a call to the shell (“cmd.exe /C” for
Windows, “/bin/sh -c” for Linux).

• {timeout} : Maximal time authorized for the command execution (in milliseconds).

282 Chapter 6. SKF Plugins

Squash Keyword Framework Documentation

> Output :

• {result} : The name of the resource which references the result of the command (result.shell type
resource).

Example :

EXECUTE $(cmd.exe /C echo “hello world”) LOCALLY AS result WITHIN 15000 ms

EXECUTE SCRIPT {command_content} LOCALLY AS {result}

What ?

This macro will execute a script on the local system and check if the result is a success.

Underlying instructions :

LOAD {command_content} AS __command{%%rand1}
CONVERT __command{%%rand1} TO query.shell AS __commandLine{%%rand2}
EXECUTE local WITH __commandLine{%%rand2} AS {result}
ASSERT {result} IS success

> Input :

• {command_content} : The script file containing the shell commands to execute, preceded by a call to the
shell (“cmd.exe /C” for Windows, “/bin/sh -c” for Linux).

> Output :

• {result} : The name of the resource which references the result of the command (result.shell type
resource).

Example :

EXECUTE SCRIPT command.bat LOCALLY AS result

File to process (Windows) :

The folder containing the resources to process :

6.6. Local process Plugin 283

Squash Keyword Framework Documentation

SKF script :

EXECUTE SCRIPT {command_content} LOCALLY AS {result} WITHIN {timeout_in_seconds} s

What ?

This macro will execute a script on the local system, within a timeframe, and check if the result is a success.

Underlying instructions :

LOAD {command_content} AS __command{%%rand1}
CONVERT __command{%%rand1} TO query.shell USING $(timeout:{timeout_in_seconds}000) AS
→˓__commandLine{%%rand2}
EXECUTE local WITH __commandLine{%%rand2} AS {result}
ASSERT {result} IS success

> Input :

• {command_content} : The script file containing the shell commands to execute, preceded by a call to the
shell (“cmd.exe /C” for Windows, “/bin/sh -c” for Linux).

• {timeout_in_seconds} : Maximal time authorized for the command execution (in seconds).

> Output :

• {result} : The name of the resource which references the result of the command (result.shell type
resource).

Example :

EXECUTE SCRIPT command.bat LOCALLY AS result WITHIN 5 s

284 Chapter 6. SKF Plugins

Squash Keyword Framework Documentation

File to process (Windows) :

The folder containing the resources to process :

SKF script :

EXECUTE SCRIPT {command_content} LOCALLY AS {result} WITH STREAMLENGTH {length}

What ?

This macro will execute a script on the local system, with the length of the stream specified, and check if the result is
a success.

Underlying instructions :

LOAD {command_content} AS __command{%%rand1}
CONVERT __command{%%rand1} TO query.shell USING $(streamlength:{length}) AS __
→˓commandLine{%%rand2}
EXECUTE local WITH __commandLine{%%rand2} AS {result}
ASSERT {result} IS success

> Input :

• {command_content} : The script file containing the shell commands to execute, preceded by a call to the
shell (“cmd.exe /C” for Windows, “/bin/sh -c” for Linux).

6.6. Local process Plugin 285

Squash Keyword Framework Documentation

• {length} : An integer that represents stream length (number of characters). Specifying “full” allows to have
the entire stream.

> Output :

• {result} : The name of the resource which references the result of the command (result.shell type
resource).

Example :

EXECUTE SCRIPT command.bat LOCALLY AS result WITH STREAMLENGTH 200

File to process (Windows), with an error :

The folder containing the resources to process :

SKF script :

Warning: Streamlength (with a value of n) will shorten both the STDOUT and the STDERR,
keeping only the n last characters, possibly rendering the debug harder :

286 Chapter 6. SKF Plugins

Squash Keyword Framework Documentation

EXECUTE SCRIPT {command_content} LOCALLY AS {result} WITH STREAMLENGTH {length}
WITHIN {timeout_in_seconds} s

What ?

This macro will execute a script on the local system, with the length of the stream specified and within a timeframe,
and check if the result is a success.

Underlying instructions :

LOAD {command_content} AS __command{%%rand1}
CONVERT __command{%%rand1} TO query.shell USING $(timeout:{timeout_in_seconds}000,
→˓streamlength:{length}) AS __commandLine{%%rand2}
EXECUTE local WITH __commandLine{%%rand2} AS {result}
ASSERT {result} IS success

> Input :

• {command_content} : The script file containing the shell commands to execute, preceded by a call to the
shell (“cmd.exe /C” for Windows, “/bin/sh -c” for Linux).

• {length} : An integer that represents stream length (number of characters). Specifying “full” allows to have
the entire stream.

6.6. Local process Plugin 287

Squash Keyword Framework Documentation

• {timeout_in_seconds} : Maximal time authorized for the command execution (in seconds).

> Output :

• {result} : The name of the resource which references the result of the command (result.shell type
resource).

Example :

EXECUTE SCRIPT command.bat LOCALLY AS result WITH STREAMLENGTH 200 WITHIN
5 s

File to process (Windows), with an error :

The folder containing the resources to process :

SKF script :

Warning: Streamlength (with a value of n) will shorten both the STDOUT and the STDERR,
keeping only the n last characters, possibly rendering the debug harder :

288 Chapter 6. SKF Plugins

Squash Keyword Framework Documentation

Local process Plugin - Assert Macros

Contents :

• # ASSERT {result} IS FAILURE WITH EXIT CODE {exitCode}

• # ASSERT {result} STDOUT CONTAINS {regex}

• # ASSERT {result} STDOUT DOES NOT CONTAIN {regex}

• # ASSERT {result} STDERR CONTAINS {regex}

• # ASSERT {result} STDERR DOES NOT CONTAIN {regex}

ASSERT {result} IS FAILURE WITH EXIT CODE {exitCode}

What ?

This macro will verify that the result of a failed execution command contains the expected exit code.

6.6. Local process Plugin 289

Squash Keyword Framework Documentation

Underlying instruction :

ASSERT {result} IS failure WITH $({exitCode})

> Input :

• {result} : The resource file that contains the result of a shell execution command (result.shell type
resource).

• {exitCode} : The expected return code of the command execution.

Example :

ASSERT result IS failure WITH exit code 2

SKF script :

Console output :

ASSERT {result} STDOUT CONTAINS {regex}

What ?

This macro will verify that the standard outflow resulting of a shell command execution contains a specific character
string.

Underlying instruction :

ASSERT {result} DOES contain WITH $({regex}) USING $(out)

> Input :

• {result} : The resource file that contains the result of a shell execution command (result.shell type
resource).

• {regex} : The searched character string.

Example :

290 Chapter 6. SKF Plugins

Squash Keyword Framework Documentation

ASSERT result STDOUT CONTAINS hello world

SKF script :

ASSERT {result} STDOUT DOES NOT CONTAIN {regex}

What ?

This macro will verify that the standard outflow resulting of a shell command execution does not contain a specific
character string.

Underlying instruction :

ASSERT {result} DOES not.contain WITH $({regex}) USING $(out)

> Input :

• {result} : The resource file that contains the result of a shell execution command (result.shell type
resource).

• {regex} : The searched character string.

Example :

ASSERT result STDOUT DOES NOT CONTAIN hello world

SKF script :

6.6. Local process Plugin 291

Squash Keyword Framework Documentation

Console output :

ASSERT {result} STDERR CONTAINS {regex}

What ?

This macro will verify that the error outflow resulting of a shell command execution contains a specific character
string.

Underlying instruction :

ASSERT {result} DOES contain WITH $({regex}) USING $(err)

> Input :

• {result} : The resource file that contains the result of a shell execution command (result.shell type
resource).

• {regex} : The searched character string.

Example :

ASSERT result STDERR CONTAINS Fichier introuvable

SKF script :

292 Chapter 6. SKF Plugins

Squash Keyword Framework Documentation

ASSERT {result} STDERR DOES NOT CONTAIN {regex}

What ?

This macro will verify that the error outflow resulting of a shell command execution does not contain a specific
character string.

Underlying instruction :

ASSERT {result} DOES not.contain WITH $({regex}) USING $(err)

> Input :

• {result} : The resource file that contains the result of a shell execution command (result.shell type
resource).

• {regex} : The searched character string.

Example :

ASSERT result STDERR DOES NOT CONTAIN Fichier introuvable

SKF script :

Console output :

6.6.3 Local process Plugin - Advanced Users

Local process Plugin - Converters

6.6. Local process Plugin 293

Squash Keyword Framework Documentation

From file to query.shell

Category-name : query

What ?

This query converter will convert a file type resource to a query.shell type resource.

CONVERT {resourceToConvert<Res:file>} TO query.shell (query) AS {converted<Res:query.shell>} [USING
{config<Res:file>}]

> Input :

• {resourceToConvert<Res:file>} : The name of the file which includes one or several shell command
lines. Commands can be on one line separated by the character ‘;’ or on several lines (in this case the ‘;’ is
optional) and comments beginning with ‘#’ are authorized.

• {config<Res:file> (Optional)} : The name of the resource which references a configuration file
which contains only one key / value :

– ‘timeout : An integer that represents time in milliseconds. It’s the time to wait before the command
execution times out. It can also be defined via an inline instruction : $(timeout : . . .).

– ‘streamlength : An integer that represents the stream length (number of characters). An option “full”
allows to have the entire stream. It can also be defined via an inline instruction : $(streamlength : . . .).
Streamlength property is available since 1.8.0 version.

> Output :

• {converted<Res:query.shell>} : The name of the converted resource (query.shell type re-
source).

Example :

LOAD shell/shell_command_03.txt AS command.file
CONVERT command.file TO query.shell USING $(timeout:15000, streamlength:600) AS commandLine
LOAD shell/shell_command_03.txt AS command.file
CONVERT command.file TO query.shell USING $(streamlength:full) AS commandLine

Local process Plugin - Commands

Contents :

• cleanup

• ‘local’ ‘query.shell’

294 Chapter 6. SKF Plugins

Squash Keyword Framework Documentation

cleanup

What ?

It allows killing a processus, mainly for ecosystem environment management.

EXECUTE cleanup WITH <Res:process> AS $()

> Input :

• <Res:process> : The name of the resource which references the processus to kill (process type resource).

‘local’ ‘query.shell’

What ?

Command to execute a command line on the local system.

EXECUTE local WITH {query<Res:query.shell>} USING $(timeout:<n>,streamlength:<n’>) AS {re-
sult<Res:Result.shell>}

> Input :

• {query<Res:query.shell>} : The name of the resource referencing a file which includes one (and one
only) command line (query.shell type resource).

• <n> : An integer that represents time in milliseconds. It is the time the command execution will wait before
crashing.

• <n’> : An integer that represents the stream length (number of characters). An option “full” allows to have the
entire stream. It can be define via an inline instruction : $(streamlength : . . .). Streamlength property is available
since 1.8.0 version.

Note 1 : If the timeout property is not defined here, we use the timeout property of query.shell resource (set to
5s by default).

Note 2 : Be careful : Local process is not equivalent to a console, it only executes programs. So if you want to use it
as a console, you should specify which shell you want to use in your command line. Most of the time :

• For windows, start your command line with : “cmd.exe /C” (first line).

• For linux, start your command with : /bin/sh -c (according to the distribution this may be useless).

Note 3 : As local process use the underlying OS, the TA scripts which use it are platform dependent.

Note 4 : if the streamlength property is not defined here, we use the streamlength property by default (set to 300
characters).

> Output :

6.6. Local process Plugin 295

Squash Keyword Framework Documentation

• {result<Res:result.shell>} : The name of the resource which contains the shell command result
(result.shell type resource).

Example (Linux) :

DEFINE $(echo hello world) AS command.file
CONVERT command.file TO query.shell USING $(timeout:15000, streamlength:600) AS commandLine
EXECUTE local WITH commandLine AS result
ASSERT result DOES contain WITH $(hello world) USING $(out)

Note : To execute several command lines, you will need to execute a batch. You must then either give the absolute
path of your batch or its relative path from your project’s root in the DEFINE instruction.

Example (Windows) :

LOAD command.bat AS command.file
CONVERT command.file TO query.shell AS commandLine
EXECUTE local WITH commandLine USING $(timeout:15000, streamlength:full) AS result
ASSERT result DOES contain WITH $(hello world) USING $(out)
ASSERT result DOES contain WITH $(nice day) USING $(out)

command.bat :

cmd.exe /C
echo hello world
echo have a nice day

Local process Plugin - Asserts

Contents :

• ‘result.shell’ is ‘success’

• ‘result.shell’ is ‘failure’ with {expected return code}

• ‘result.shell’ does ‘contain’ {regex}

• ‘result.shell’ does ‘not.contain’ {regex}

‘result.shell’ is ‘success’

What ?

Asserts that the result of the command execution is success.

296 Chapter 6. SKF Plugins

Squash Keyword Framework Documentation

ASSERT {result<Res:result.shell>} IS success
VERIFY {result<Res:result.shell>} IS success

Note : For differences between ASSERT and VERIFY assertion mode see this page.

> Input :

• {result<Res:result.shell>} : The name of the resource which references a resource that contains the
result of a shell execution command (result.shell type resource).

Example :

LOAD shell/shell_command.txt AS command.file
CONVERT command.file TO query.shell USING $(timeout:15000) AS commandLine
EXECUTE execute WITH commandLine ON ssh_server AS result
ASSERT result IS success

‘result.shell’ is ‘failure’ with {expected return code}

What ?

Asserts that the return code of a command execution who failed is the expected code.

ASSERT {result<Res:result.shell>} IS failure WITH $(<expectedCode>)
VERIFY {result<Res:result.shell>} IS failure WITH $(<expectedCode>)

Note : For differences between ASSERT and VERIFY assertion mode see this page.

> Input :

• {result<Res:result.shell>} : The name of the resource which references a resource that contains the
result of a shell execution command (result.shell type resource).

• <expectedCode> : The expected return code of the command execution.

Example :

ASSERT result IS failure WITH $(1)

6.6. Local process Plugin 297

Squash Keyword Framework Documentation

‘result.shell’ does ‘contain’ {regex}

What ?

Asserts that a stream (standard exit stream or error stream) resulting of an execution command contains a character
string.

ASSERT {result<Res:result.shell>} DOES contain WITH $(<searchPattern>) USING $(<streamType>)
VERIFY {result<Res:result.shell>} DOES contain WITH $(<searchPattern>) USING $(<streamType>)

Note : For differences between ASSERT and VERIFY assertion mode see this page.

> Input :

• {result<Res:result.shell>} : The resource that contains the result of an execution command
(result.shell type resource).

• <searchPattern> : The regular expression searched in the stream.

• <streamType> : The kind of stream in which we are searching the character string. 2 values are possible :

– out : To search inside a standard output stream.

– err : To search inside the error stream.

Note : If you want to check for special characters used in the regular expression formalism, you will have to escape
them with a backslash (” \ “).

Example :

EXECUTE execute WITH commandLine ON ssh-server AS result
ASSERT result DOES contain WITH $(hello world) USING $(err)

‘result.shell’ does ‘not.contain’ {regex}

What ?

Asserts that a stream (standard exit stream or error stream) resulting of an execution command does not contain a
specific character string.

ASSERT {result<Res:result.shell>} DOES not.contain WITH $(<searchPattern>) USING $(<streamType>)
VERIFY {result<Res:result.shell>} DOES not.contain WITH $(<searchPattern>) USING $(<streamType>)

Note : For differences between ASSERT and VERIFY assertion mode see this page.

> Input :

298 Chapter 6. SKF Plugins

Squash Keyword Framework Documentation

• {result<Res:result.shell>} : The resource that contains the result of an execution command
(result.shell type resource).

• <searchPattern> : The regular expression searched in the stream.

• <streamType> : The kind of stream in which we are searching the character string. 2 values are possible :

– out : To search inside a standard output stream.

– err : To search inside the error stream.

Note : If you want to check for special characters used in the regular expression formalism, you will have to escape
them with a backslash (” \ “).

Example :

EXECUTE execute WITH commandLine ON ssh-server AS result
ASSERT result DOES not.contain WITH $(hello world) USING $(err)

This section will give you further details about the engine components (converters, commands or asserts) of the SKF
which are used by the macros of this plugin.

This plugin enables the possibility to execute processes on the local system.

Note : Be careful, as local process use the underlying OS, the TA scripts which use it are platform dependent.

6.7 MEN XML Checker Plugin

6.7.1 MEN XML Checker Plugin - Resources

xsd

Category-name : xsd

What ?

xsd is a resource representing a xml schema type file.

6.7.2 MEN XML Checker Plugin - Macros

6.7. MEN XML Checker Plugin 299

Squash Keyword Framework Documentation

Contents :

• # ASSERT_XML {xml_path} IS VALID USING XSD {xsd_path}

• # ASSERT_XML {actual_file} SIMILAIRE TO {expected_file_path} USING {config}

ASSERT_XML {xml_path} IS VALID USING XSD {xsd_path}

What ?

This macro will verify if an xml file is valid according to a schema (xsd type file).

Underlying instructions :

LOAD {xsd_path} AS __{%%r1}.xsdfile

LOAD {xml_path} AS __xml_{%%r2}.file
CONVERT __xml_{%%r2}.file TO file(param.relativedate) AS __temp_{%%r3}.file
CONVERT __temp_{%%r3}.file TO xml (structured) AS __temp_{%%r4}.xmlfile

ASSERT __temp_{%%r4}.xmlfile IS valid USING __{%%r1}.xsdfile

> Input :

• {xsd_path} : The name of the schema (xsd type file).

• {xml_path} : The name of the xml file to verify (xml type file).

Example :

ASSERT_XML sample-dataset.xml IS VALID USING XSD reference-file.xsd

First file to process :

300 Chapter 6. SKF Plugins

Squash Keyword Framework Documentation

Second file to process :

The folder containing the resources to process :

SKF script :

ASSERT_XML {actual_file} SIMILAIRE TO {expected_file_path} USING {config}

6.7. MEN XML Checker Plugin 301

Squash Keyword Framework Documentation

What ?

This macro will verify if an xml file matches another xml. A config file can be used to change the comparison engine.

Underlying instructions :

LOAD {actual_file} AS __actual_{%%r1}.file
LOAD {expected_file_path} AS __expected_{%%r1}.file
CONVERT __expected_{%%r1}.file TO file(param.relativedate) AS __expected_{%%r2}.file
CONVERT __expected_{%%r2}.file TO xml (structured) AS __expected_{%%r3}.xmlfile

CONVERT __actual_{%%r1}.file TO xml (structured) AS __actual_{%%r4}.xmlfile

ASSERT __expected_{%%r3}.xmlfile IS similaire WITH __actual_{%%r4}.xmlfile USING
→˓{config}

> Input :

• {actual_file} : The name of the file to compare (xml type file).

• {expected_file_path} : The name of the file to be compared to (xml type file).

• {config} : The name of the loaded configuration resource (file type resource). It can be used to
change the default comparison engine from jaxb to xmlunit, through a ‘comparateur:xmlunit’ entry.
The default comparator can also be changed directly with $(comparateur:xmlunit). A xsd resource
can be specified here if using the jaxb comparator.

If you are using jaxb (not xmlunit), which is also the default comparator used by the macro if you have
not defined the USING clause, a few more steps are necessary.

You need to load and convert an .xsd file and add it to the using clause :

TEST:
LOAD schema.xsd AS schema
CONVERT schema TO xsd(structured) AS convertedSchema
#ASSERT_XML base.xml SIMILAIRE TO to_be_compared.xml USING
→˓$(comparateur:jaxb),convertedSchema

Example :

ASSERT_XML sample-dataset-1.xml SIMILAIRE TO sample-dataset-2.xml USING config-
resource.file

First file to process :

302 Chapter 6. SKF Plugins

Squash Keyword Framework Documentation

Second file to process :

Third file to process :

The folder containing the resources to process :

6.7. MEN XML Checker Plugin 303

Squash Keyword Framework Documentation

SKF script :

Console output in DEBUG mode :

6.7.3 MEN XML Checker Plugin - Advanced Users

MEN XML Checker Plugin - Converters

From File to XSD

Category-Name : structured

What ?

This structured converter will convert a file type resource to a xsd type resource.

CONVERT {resourceToConvert<Res:file>} TO xsd (structured) AS {converted<Res:xsd>}

> Input :

• resourceToConvert<Res:file>: The name of the resource to convert (file type resource).

> Output :

• converted<Res:xsd>: The name of the converted resource (xsd type resource).

Example :

LOAD schema.xsd AS schema-resource.file
CONVERT schema-resource.file TO xsd (structured) AS schema-resource.xsd

304 Chapter 6. SKF Plugins

Squash Keyword Framework Documentation

MEN XML Checker Plugin - Asserts

Contents :

• ‘file.xml’ is ‘valid’

• ‘file1.xml’ is ‘similaire’ with ‘file2.xml’

‘file.xml’ is ‘valid’

What ?

This assertion verifies if a xml file is valid. If the assertion is verified the test continues, else the test fails.

ASSERT {resourceToAssert<Res:xml>} IS valid

> Input :

• {resourceToAssert<Res:xml>} : The name of the resource to assert (xml type resource).

Example :

LOAD schema.xsd AS schema-resource.file
LOAD sample.xml AS sample-resource.file
CONVERT sample-resource.file TO file (param.relativedate) AS sample-resource-relative-date.file
CONVERT sample-resource-relative-date.file TO xml (structured) AS sample-resource-relative-date.xml
ASSERT sample-resource-relative-date.xml IS valid USING schema-resource.file

‘file1.xml’ is ‘similaire’ with ‘file2.xml’

What ?

This assertion verifies if a xml file matches another xml file. If the assertion is verified the test continues, else the test
fails.

ASSERT {resourceToAssert<Res:xml>} IS similaire WITH {resourceToCompareTo<Res:xml>} USING {config}

> Input :

6.7. MEN XML Checker Plugin 305

Squash Keyword Framework Documentation

• {resourceToAssert<Res:xml>} : The name of the resource to assert (xml type resource).

• {resourceToCompareTo<Res:xml>} : The name of the resource to compare to (xml type resource).

• {config} : The name of the loaded configuration resource (file type resource). It can be used to change the
default comparison engine from jaxb to xmlunit, through a ‘comparateur:xmlunit’ entry. The defalut comparator
can also be changed directly with $(comparateur:xmlunit). A xsd resource can be specified here if using the
jaxb comparator.

Example :

LOAD actual.xml AS actual-resource.file
CONVERT actual-resource.file TO xml (structured) AS actual-resource.xml
LOAD expected.xml AS expected-resource.file
CONVERT expected-resource.file TO file (param.relativedate) AS expected-resource-relative-date.file
CONVERT expected-resource-relative-date.file TO xml (structured) AS expected-resource-relative-date.xml
ASSERT actual-resource.xml IS similaire WITH expected-resource-relative-date.xml USING $(compara-
teur:xmlunit)

This section will give you further details about the engine components (converters, commands or asserts) of the SKF
which are used by the macros of this plugin.

This plugin allows xml validation and comparison.

6.8 SAHI Plugin

6.8.1 SAHI Plugin - Resources

Contents :

• script.sahi

• result.sahi

script.sahi

Category-name : script.sahi

What ?

script.sahi is a resource type that represents a script for Sahi robot which is designed to test Web GUI. This resource
can be used for standalone sahi scripts but also for sahi scripts with dependencies (e.g. on other sahi script or file to
download).

306 Chapter 6. SKF Plugins

Squash Keyword Framework Documentation

result.sahi

Category-name : result.sahi

What ?

result.sahi is a resource type that represents the status of a Sahi script. Sahi scripts usually embed their own assertions
and their results are fed back to SKF using this resource. It allows further processing once the script is over while
holding the results in memory.

6.8.2 SAHI Plugin - Macros

Contents :

• # EXECUTE_SAHI {script} ON {server} USING {conf}

• # EXECUTE_SAHI_BUNDLE {bundlepath} WITH MAIN SCRIPT {scriptpath} ON {server} USING {conf}

EXECUTE_SAHI {script} ON {server} USING {conf}

What ?

This macro will load a sahi script and a sahi configuration file. Then it will execute the script against the server using
the configuration. Finally it will test if the result of the operation is a success. Note that the given sahi script must be
standalone : it must not depend on any other files, e.g. script includes or files to be uploaded. When this is the case,
you must use the following shortcut instead.

Underlying instructions :

LOAD {script} AS __temp{%%rand1}.file
CONVERT __temp{%%rand1}.file TO file(param.relativedate) AS __temp{%%rand2}.file
CONVERT __temp{%%rand2}.file TO script.sahi(script) AS __temp{%%rand3}.sahi

LOAD {conf} AS __temp{%%rand4}.file

(continues on next page)

6.8. SAHI Plugin 307

Squash Keyword Framework Documentation

(continued from previous page)

EXECUTE execute WITH __temp{%%rand3}.sahi ON {server} USING __temp{%%rand4}.file AS __
→˓temp{%%rand5}.result
ASSERT __temp{%%rand5}.result IS success

> Input :

• {script} : The path to the sahi script to execute relative to the root of the repository (standalone script).

• {server} : The name (in the context) of the target which corresponding to the SUT (http type target).

• {conf} : The path to the sahi configuration file relative to the root of the repository.

Example :

#EXECUTE_SAHI gui-test/sahi/main/test1.sah ON SUT_website USING gui-test/sahi/conf/basic-conf.properties

EXECUTE_SAHI_BUNDLE {bundlepath} WITH MAIN SCRIPT {scriptpath} ON {server} USING {conf}

What ?

This macro executes a sahi script using a sahi configuration file and against a server, just like above. The difference is
the script is now allowed to have dependencies (dependencies should be provided).

Underlying instructions :

LOAD {bundlepath} AS __temp_{%%r1}.file
CONVERT __temp_{%%r1}.file TO file(param.relativedate) AS __temp_{%%r2}.file
CONVERT __temp_{%%r2}.file TO script.sahi AS __temp_{%%r3}.bundle USING $(mainpath :
→˓{scriptpath})

LOAD {conf} AS __temp_{%%r4}.file
CONVERT __temp_{%%r4}.file to properties(structured) AS __temp_{%%r5}.properties

EXECUTE execute WITH __temp_{%%r3}.bundle ON {server} USING __temp_{%%r5}.properties
→˓AS __temp_{%%r6}.result
ASSERT __temp_{%%r6}.result IS success

> Input :

• {bundlepath} : The path to the root directory of the bundle relative to the root of the repository (see bundle
resource in commons component reference documentation). This root directory should contain in the script and
all its dependencies.

• {scriptpath} : The path to the main script in the bundle (RELATIVE to the bundle path).

• {server} : The name (in the context) of the target corresponding to the SUT (http type target).

• {conf} : The path to the sahi configuration file relative to the root of the repository.

308 Chapter 6. SKF Plugins

Squash Keyword Framework Documentation

Example :

#EXECUTE_SAHI_BUNDLE gui-test/sahi WITH MAIN SCRIPT main/test1.sah ON SUT_website USING gui-
test/sahi/conf/basic-conf.properties

6.8.3 SAHI Plugin - Advanced Users

SAHI Plugin - Converters

Contents :

• From file to script.sahi

– Standalone Sahi script

– Sahi script with dependencies

From file to script.sahi

Category-name : script

What ?

This script converter will convert a file type resource to a script.sahi type resource.

Two cases :

Standalone Sahi script

In the case of a standalone script, it doesn’t depend on other files (e.g. other sahi script to be included or files to be
downloaded). The initial resource references the sahi script. You could use the syntax below :

CONVERT {scriptToConvert<Res:file>} TO script.sahi (script) AS {converted<Res:script.sahi>}

> Input :

• {scriptToConvert<Res:file>} : The name of the resource to convert (file type resource). This
ressource references a sahi script (e.g. by using a LOAD instruction on the sahi script path).

> Output :

• {converted<Res:scipt.sahi>} : The name of the converted resource (script.sahi type resource).

6.8. SAHI Plugin 309

Squash Keyword Framework Documentation

Example :

LOAD path/to/sahi_script.sah AS sahi_script.file
CONVERT sahi_script.file TO script.sahi (script) AS sahi_script.sahi

Sahi script with dependencies

In the case of a script which depends on other file, you have to use the syntax below. The initial resource references
a directory. This directory should contains in its tree the whole resources needed by the main sahi script. You also
have to define where is the main sahi script to execute (mainScriptPath of the USING clause). This path should be
RELATIVE to the directory referenced by the initial resource.

CONVERT {rootDirectory<Res:file>} TO script.sahi (script) AS {converted<Res:script.sahi>} USING {main-
ScriptPath<Res:file>}

> Input :

• {rootDirectory<Res:file>} : Name of the resource which references the root directory. This root
directory should contain the whole files needed to execute the sahi script.

• {mainScriptPath<Res:file>} : Name of the configuration resource. The content of the file should be :
‘mainpath:relativePathToMainSahiScript’ (Note : you could use an inline definition). This path to main sahi
script should be relative to the directory given as rootDirectory.

> Output :

• {converted<Res:scipt.sahi>} : The name of the converted resource (script.sahi type resource).

Example :

LOAD path/to/rootDirectory AS root_directory.file
CONVERT root_directory.file TO script.sahi (script) AS sahi_script.sahi USING $(main-
path:relative/path/to/main/sahi_script.sah)

SAHI Plugin - Command

‘execute’ ‘script.sahi’ on ‘http’

What ?

310 Chapter 6. SKF Plugins

Squash Keyword Framework Documentation

This command will execute a sahi script againt an http SUT using a configuration file.

EXECUTE execute WITH {sahiScript<Res:script.sahi>} ON {server<Tar:http>} USING {sahiConf<Res:file>},
[{mainPath<Res:file>}] AS {sahiResult<Res:result.sahi>}

> Input :

• {sahiScript<Res:script.sahi>} : The name (in the context) which references either a sahi script or
a bundle containing a test or a test suite to execute (script.sahi type resource)

• {sahiConf<Res:file>} : The name of the sahi configuration file (file type resource). The instruction
supports to receive directly a file type resource instead of a converted resource in ‘properties’. It’s mandatory
and can be defined via an inline instruction. The referenced file contains a list of key / value separated with the
character ‘=’ and one property per line. Possible keys are :

– browserType (mandatory) : name of the browser. It should reference the “name” of a browser-
Type define in the file browser_types.xml of the sahi proxy. You can found this file in
SAHI_PROXY_HOME/userdata/config (The proxy should have been launched at least one time in order
to the file exist). It’s also possible to retrieve the content of the file through a web browser by using the url :
http://SAHI_HOST:SAHI_PORT/_s_/dyn/ConfigureUI_readFile?fileName=config/browser_types.xml

– sahi.proxy.host (optional) : Name of the machine where is the sahi proxy. Default value is localhost.

– sahi.proxy.port (optional) : Port used by the sahi proxy. Default value is 9999.

– sahi.thread.nb (optional) : Number of browser instance to launch in parallel. Default value is 1.

– report.format (optional) : Report type. Default value is html. The other possible value is junit.

– timeout (since version 1.7.0 - optional) : The time, in milliseconds, Squash TF should wait before giving
up the execution. Default value is set to 60 seconds (was 30s before version 1.7.2).

• {mainPath<Res:file>} (optional) : This file type resource is necessary to the instruction when the
script.sahi type resource is a bundle. It can also be defined via an inline instruction. It contains only one
key / value separated with the character ‘:’ and with ‘mainpath’ as the key. It corresponds to the path, relatively
to the bundle root to the sahi file defining the sahi test suite.

• {server<Tar:http>} : The name in (the context) of the target corresponding to the SUT (http type
target).

> Output :

• {sahiResult<Res:result.sahi>} : The name of the resource which contains the result of the sahi
command execution (sahi.result type resource).

Example :

LOAD sahi-scripts/test.sah AS sahi-script.file
CONVERT sahi-script.file TO script.sahi (script) AS test.script
LOAD configuration/sahi-conf.properties AS conf
EXECUTE execute WITH test.script ON Connexion-gui USING conf AS result

Remark : In the case where the script.sahi type resource is a bundle, the instruction need the configuration key
‘mainpath’. It can be obtained via the USING clause or via a script.sahi type resource. This configuration key
is optional in both instructions but must be defined in one of them. If its defined in both, so the value indicated in the
command instruction prime.

6.8. SAHI Plugin 311

http://SAHI_HOST:SAHI_PORT/_s_/dyn/ConfigureUI_readFile?fileName=config/browser_types.xml

Squash Keyword Framework Documentation

SAHI Plugin - Asserts

‘result.sahi’ is ‘success’

What ?

This assertion verifies if a sahi execution succeed. If the assertion is verified the test continues else the test failed.

ASSERT {sahiResult<Res:result.sahi>} IS success
VERIFY {sahiResult<Res:result.sahi>} IS success

Note : For differences between ASSERT and VERIFY assertion mode see this page.

> Input :

• {sahiResult<Res:result.sahi>} : The name of the resource which contains the result of a sahi exe-
cution command (result.sahi type resource).

Example :

LOAD sahi-scripts/test.sah AS sahi-script.file
CONVERT sahi-script.file TO script.sahi (script) AS test.script
LOAD configuration/sahi-conf.properties AS conf
EXECUTE execute WITH test.script ON Connexion-gui USING conf AS result
ASSERT result IS success

This section will give you further details about the engine components (converters, commands or asserts) of the SKF
which are used by the macros of this plugin.

The Sahi plugin is part of the base package shipped with SKF. It is automatically installed if you choose the default
project configuration for your test project. However, as it is packaged as a seperate plugin, you can exclude it from the
test project (and avoid downloading and installing its dependencies).

This plugin provides all the elements needed to execute a sahi script in SKF.

Overview :

To use sahi script in your Squash TF project, you have to :

• Create the sahi script and integrate it (and all its dependencies) in the resources directory of your
Squash TF project. If you have a sahi script with dependencies you will have to create a file to
define the path to your script. More details below.

312 Chapter 6. SKF Plugins

Squash Keyword Framework Documentation

• Put a sahi_config.properties file in this resources directory (the name of this file has no importance).
This file should contain the definition of the browser you want to use to execute the script.

Example of sahi_config.properties file content :

// For firefox your file should contain :

browserType=firefox

// For Internet explorer your file should contain :

browserType=ie

• Define the http Target which represents your SUT.

6.9 Selenium Plugin

6.9.1 Selenium Plugin - Introduction

Contents :

• Overview

• Organizing selenium-related files in your Squash TF project

• Importing legacy Selenium tests

Overview

The Selenium plugin for SKF currently allows the integration of the following types of java Selenium Tests :

• Selenium 2

– jUnit 3-based tests

– jUnit 4-based tests

Selenium Tests must be included in the test project as java sources, and their non-selenium dependencies (if any)
packaged as maven2 dependencies and declared in the squash-ta-mavin-plugin dependencies. The source code and
resources are compiled each time before the test is executed. For more details, see the Converters section.

If you are looking for information on how to import your existing selenium tests, see the importing legacy tests section.

NB : A working installation of the target browser is required on the machine where the tests are run.

6.9. Selenium Plugin 313

Squash Keyword Framework Documentation

Organizing selenium-related files in your Squash TF project

‘File to script.java.selenium2’ converter works from a file resource that is in fact a bundle (a group of files). This
group of files may contain java sources and various resources. All sources and resources used by the test must be
included in the file bundle.

This means that they must be all grouped in a directory that will be loaded as a file resource, and then converted to
a script.java.selenium2 resource.

As in usual java code and resources, the directory structure defines packages in which the classes and resources
are located. As in the maven convention, source files will be searched for in the ‘<base>/java’ directory, and any
directory under ‘<base>/java’ will define a package level. Resources will be searched for in the same way under
‘<base>/resources’.

Regarding binary dependencies (as opposed to helper source code, which must be included in the selenium test re-
source directory), they must be provided as maven jars included in the plugin dependencies like so :

Extract from test project pom.xml file

...
<plugin>

<groupId>org.squashtest.ta</groupId>
<artifactId>squash-ta-maven-plugin</artifactId>
<version>1.1.0</version>

<dependencies>
...
<!-- example of a Selenium test dependency -->

<dependency>
<groupId>net.sourceforge.javacsv</groupId>
<artifactId>javacsv</artifactId>
<version>2.0</version>

</dependency>
...
</dependencies>
...

</plugin>
...

Importing legacy Selenium tests

To import your Selenium tests into your Squash TF test projects, just copy your test source tree (with code AND
resources) under a single subdirectory in the ‘squashTA/resources’ directory. For example, if your test source code
and resources where under ‘src/test/java’ and ‘src/test/resources’ respectively, you just have to copy the java and test
directories in the ‘squashTA/resources/seleniumTests’ subdirectory :

314 Chapter 6. SKF Plugins

Squash Keyword Framework Documentation

Now, you just have to load ‘seleniumTests’ as a resource to use it in your test.

6.9.2 Selenium Plugin - Resources

Contents :

• script.java.selenium2

• result.selenium

script.java.selenium2

Category-name : script.java.selenium2

What ?

script.java.selenium2 is a resource type that is a Selenium 2 test written in the java language. This is basically a
bundle containing the test code compiled from its sources and the associated resources. It may be used by ‘execute’
‘script.java.selenium2’ command.

Here are the supported parameters :

• mainpath : as in the bundle resource, it defines the path to the main file from the base of the bundle (the base
directory of your selenium tests). For more details, see the Converters section.

6.9. Selenium Plugin 315

Squash Keyword Framework Documentation

result.selenium

Category-name : result.selenium

What ?

result.selenium is a resource type that holds the result of a Selenium test execution. It defines a Selenium execution
status (success / failure), and in case of failure an attached failure report (an HTML file that follows the surefire
format). This resource may be used by a specialized success assertion. For more details, see the Assert section.

6.9.3 Selenium Plugin - Macros

EXECUTE_SELENIUM2 {bundlePath} WITH MAIN CLASS {mainClassName}

What ?

This macro will compile the selenium 2 test suite contained in the specified bundle and execute the specified test suite
(main class) from the bundle.

Underlying instructions :

LOAD {bundlePath} AS __temp_{%%rand1}.file
CONVERT __temp_{%%rand1}.file TO script.java(compile) AS __temp_{%%rand2}.compiled
CONVERT __temp_{%%rand2}.compiled TO script.java.selenium2(script) USING $(
→˓{mainClassName}) AS __temp_{%%rand3}.selenium
EXECUTE execute WITH __temp_{%%rand3}.selenium AS __temp_{%%rand4}.result
ASSERT __temp_{%%rand4}.result IS success

> Input :

• {bundlePath} : The path to the selenium bundle to execute relative to the resources repository. You have to
point to the folder containing the java folder.

• {mainClassName} : The qualified name of the main class.

Example :

EXECUTE_SELENIUM2 path/to/selenium2 WITH MAIN CLASS
com.example.selenium.TestSuite

Selenium bundle location :

SKF script :

Main class :

316 Chapter 6. SKF Plugins

Squash Keyword Framework Documentation

6.9. Selenium Plugin 317

Squash Keyword Framework Documentation

package seleniumExample;

import org.junit.After;
import org.junit.Before;
import org.junit.Test;
import org.junit.Assert;
import org.openqa.selenium.By;
import org.openqa.selenium.WebDriver;
import org.openqa.selenium.chrome.ChromeDriver;
import org.openqa.selenium.firefox.FirefoxDriver;
import org.openqa.selenium.support.PageFactory;
import org.openqa.selenium.support.ui.ExpectedConditions;
import org.openqa.selenium.support.ui.WebDriverWait;

import java.util.concurrent.TimeUnit;

public class SeleniumExample {

WebDriver driver;
WebDriverWait wait;

@Before
public void setUp(){

try{
driver = new FirefoxDriver();
driver.get("https://www.bbc.com/news");

}
catch(Exception e){

System.err.println(e.getMessage());
}
driver.manage().timeouts().pageLoadTimeout(30, TimeUnit.SECONDS);
wait = new WebDriverWait(driver,30);

}

@Test
public void randomTest() throws InterruptedException {

driver.findElement(By.xpath("//input[@id='orb-search-q']")).sendKeys(
→˓"selenium");

String value = driver.findElement(By.xpath("//button[@id=
→˓'orb-search-button']")).getText();

Assert.assertTrue("The search button doesn't exist", value.equals(
→˓"Search the BBC"));

}

@After
public void tearDown(){

//driver.quit();
}

}

6.9.4 Selenium Plugin - Advanced Users

318 Chapter 6. SKF Plugins

Squash Keyword Framework Documentation

Selenium Plugin - Converters

From script.java to script.java.selenium2

Category-name : script

What ?

This script converter create a selenium test resource (script.java.selenium2 type resource) which can be uses
by the ‘execute’ ‘script.java.selenium2’ command from a script.java resource.

CONVERT {resourceToConvert<Res:script.java>} TO script.java.selenium2 (script) USING {conf<Res:file>} AS
{converted<Res:script.java.selenium2>}

> Input :

• {resourceToConvert<Res:script.java>} : The name (in the context) of the resource which refer-
ences a java bundle which contains the source code, the compiled code and the resources of a selenium2 test
suite.

• {conf<Res:file>} (optional) : The name of the resource which references a configuration file which can
contain only one key :

– mainClass : The qualified name of the main java class. The configuration must be supplied as a text
file with one line containing the qualified name. If you give more, the last read line becomes the main
class name. This parameter may be used if you have only one selenium test suite. On the other hand, if
your selenium test bundle contains several test suite sharing helper code resources and dependencies, you
may omit the main class name and rather give that parameter in the configuration of your various execute
commands. It can be defined via an inline instruction.

> Output :

• {converted<Res:script.java.selenium2>} : The name of the converted resource (script.
java.selenium2 type resource).

Example :

LOAD selenium AS seleniumTestSource
CONVERT seleniumTestSource TO script.java (compile) AS seleniumTestCompiled
CONVERT seleniumTestCompiled TO script.java.selenium2 (script) USING
$(org.squashtest.Selenium2JUnit4WithResourceDependency) AS seleniumTest

Selenium Plugin - Commands

6.9. Selenium Plugin 319

Squash Keyword Framework Documentation

‘execute’ ‘script.java.selenium2’

What ?

This command executes selenium 2 tests referenced as script.java.selenium2 resources.

EXECUTE execute WITH {selenium2Tests<Res:script.java.selenium2>} USING {conf<Res:file>} AS {re-
sult<Res:result.selenium>}

> Input :

• {selenium2Tests<Res:script.java.selenium2>} : The name (in the context) of the resource
which references the java bundle containing the tests to execute (script.java.selenium2 type resource).

• {conf<Res:file>} (optional) : The name of the resource which references a configuration file which can
contain only one key :

– mainclass : The qualified name of the main java class. The configuration must be supplied as a text file
with one line containing the qualified name. If you give more, the last read line becomes the main class
name. It can be defined via an inline instruction. The format is <key>:<value>.

Note : The command needs this key. The command can retrieve it via the USING clause of the instruction or via the
script.java.selenium2 type resource (See the From script.java to script.java.selenium2 converter).

This configuration key is optional in each instruction (command and conversion) but it must be defined in at least one
instruction. If the key is defined in the convert instruction and in the command instruction, the key in the command
instruction prime.

> Output :

• {result<Res:result.selenium>} : The result of the test execution (result.selenium type re-
source).

Example :

LOAD selenium AS seleniumTestSource
CONVERT seleniumTestSource TO script.java (compile) AS seleniumTestCompiled
CONVERT seleniumTestCompiled TO script.java.selenium2 (script) USING $(org.squashtest.Selenium2JUnit4)
AS seleniumTest
EXECUTE execute WITH seleniumTest AS seleniumResult

Selenium Plugin - Assert

‘result.selenium’ is ‘success’

What ?

320 Chapter 6. SKF Plugins

Squash Keyword Framework Documentation

This assertion checks that the selenium test suite execution was successful. If not, it gives the list of failed selenium
tests in the failure message, and attaches the execution report in the surefire format produced by the selenium test suite
execution as failure context resource.

ASSERT {seleniumResult<Res:result.selenium>} IS success
VERIFY {seleniumResult<Res:result.selenium>} IS success

Note : For differences between ASSERT and VERIFY assertion mode see this page.

> Input :

• {seleniumResult<Res:result.selenium>} : The name of the resource (In the context) which con-
tains the result of a selenium execution command (result.selenium type resource).

Example :

LOAD selenium AS seleniumTestSource
CONVERT seleniumTestSource TO script.java (compile) AS seleniumTestCompiled
CONVERT seleniumTestCompiled TO script.java.selenium2 (script) USING
$(org.squashtest.Selenium2JUnit3WithMvnDependency) AS seleniumTest
EXECUTE execute WITH seleniumTest AS seleniumResult
ASSERT seleniumResult IS success

This section will give you further details about the engine components (converters, commands or asserts) of the SKF
which are used by the macros of this plugin.

The Selenium plugin is part of the base package shipped with SKF. It is automatically installed if you choose the
default project configuration for your test project. However, as it is packaged as a separate plugin, you can exclude it
from the test project (and avoid downloading and installing its dependencies).

This plugin provides all the elements needed to execute selenium 2 and 3 tests in SKF.

If you need to execute selenium 1 tests, please check the Selenium Plugin Legacy.

6.10 Selenium Plugin Legacy

6.10.1 Selenium Plugin Legacy - Introduction

Contents :

• Overview

• How to use the Selenium Legacy Plugin

• Managing your selenium server in ecosystem environment scripts

• Organizing selenium-related files in your Squash-TF project

• Importing legacy Selenium tests

6.10. Selenium Plugin Legacy 321

../selenium-legacy/plugin-selenium-legacy.html

Squash Keyword Framework Documentation

Overview

The Selenium Plugin Legacy for SKF currently allows the integration of the following types of java Selenium Tests :

• Selenium 1

– jUnit 3-based tests

– jUnit 4-based tests

Selenium Tests must be included in the test project as java sources, and their non-selenium dependencies (if any)
packaged as maven2 dependencies and declared in the squash-ta-mavin-plugin dependencies. The source code and
resources are compiled each time before the test is executed. For more details, see the Converters section.

For Selenium 1 tests, you may at your convenience use the included selenium server management system (see Manag-
ing your selenium server in ecosystem environment scripts section), or use a selenium server already available in your
testing environment.

If you are looking for information on how to import your existing selenium tests, see see the importing legacy tests
section.

NB : a running installation of the browser used by your test is of course required on the machine your selenium RC
server runs on.

How to use the Selenium Legacy Plugin

In order to be able to use the Selenium Legacy Plugin, you will need to add the following dependency inside your
project pom.xml :

...
<plugin>

<groupId>org.squashtest.ta</groupId>
<artifactId>squash-ta-maven-plugin</artifactId>
<version>${project.version}</version>

<dependencies>
...
<dependency>

<groupId>org.squashtest.ta.plugin</groupId>
<artifactId>squash-ta-plugin-selenium-one-legacy</artifactId>
<version>${project.version}</version>

</dependency>
...

</dependencies>
...

</plugin>
...

322 Chapter 6. SKF Plugins

Squash Keyword Framework Documentation

Managing your selenium server in ecosystem environment scripts

To launch and kill your selenium server as part of the ecosystem environment management, proceed as follows :

• In your ecosystem setup.ta script, insert the following code :

LOAD seleniumConf.properties AS seleniumConf.file CONVERT seleniumConf.file TO configura-
tion.selenium AS seleniumConf EXECUTE launch WITH seleniumConf AS seleniumServer

• In your ecosystem teardown.ta script, insert the following code :

EXECUTE cleanup WITH seleniumServer AS ignoredResource

NB : Remember, resources defined in the ecosystem setup and teardown scripts can only be seen in these scripts, not
in test scripts. However, a resource defined in the ecosystem setup script will be seen in the corresponding ecosystem
teardown script, as the ‘seleniumServer’ resource above.

• Create the ‘seleniumConf.properties’ file in your test resources. The minimal content is as follows :

squashtest.ta.selenium=yes

NB : Any value is accepted as long as this key exists. See the configuration.selenium resource type docu-
mentation for useful parameters.

Organizing selenium-related files in your Squash-TF project

‘File to script.java.selenium1’ converter works from a file resource that is in fact a bundle (a group of files). This
group of files may contain java sources and various resources. All sources and resources used by the test must be
included in the file bundle.

This means that they must be all grouped in a directory that will be loaded as a file resource, and then converted to
a script.java.selenium1 resource.

As in usual java code and resources, the directory structure defines packages in which the classes and resources
are located. As in the maven convention, source files will be searched for in the ‘<base>/java’ directory, and any
directory under ‘<base>/java’ will define a package level. Resources will be searched for in the same way under
‘<base>/resources’.

Regarding binary dependencies (as opposed to helper source code, which must be included in the selenium test re-
source directory), they must be provided as maven jars included in the plugin dependencies like so :

Extract from test project pom.xml file

6.10. Selenium Plugin Legacy 323

Squash Keyword Framework Documentation

...
<plugin>

<groupId>org.squashtest.ta</groupId>
<artifactId>squash-ta-maven-plugin</artifactId>
<version>1.1.0</version>

<dependencies>
...
<!-- example of a Selenium test dependency -->

<dependency>
<groupId>net.sourceforge.javacsv</groupId>
<artifactId>javacsv</artifactId>
<version>2.0</version>

</dependency>
...
</dependencies>
...

</plugin>
...

Importing legacy Selenium tests

To import your Selenium tests into your Squash TF test projects, just copy your test source tree (with code AND
resources) under a single subdirectory in the ‘squashTA/resources’ directory. For example, if your test source code
and resources where under ‘src/test/java’ and ‘src/test/resources’ respectively, you just have to copy the java and test
directories in the ‘squashTA/resources/seleniumTests’ subdirectory :

Now, you just have to load ‘seleniumTests’ as a resource to use it in your test.

6.10.2 Selenium Plugin Legacy - Resources

324 Chapter 6. SKF Plugins

Squash Keyword Framework Documentation

Contents :

• configuration.selenium

• script.html.selenium

• script.java.selenium1

• result.selenium

configuration.selenium

Category-name : configuration.selenium

What ?

configuration.selenium is the configuration for the Selenium Server used by ‘launch’ ‘configuration.selenium’ com-
mand.

Here are the most usefull parameters :

• squashtest.ta.selenium (mandatory) : The value doesn’t matter.

• squashtest.ta.selenium.port : if you don’t use the default 4444 port.

• squashtest.ta.selenium.probe.interval : how many milliseconds between two queries to check if the Selenium
Server is online.

• squashtest.ta.selenium.probe.attempts : how many check queries before deciding that the server startup failed
and putting the launch command in error.

script.html.selenium

Category-name : script.html.selenium

What ?

script.html.selenium is a resource type that is a Selenium 1 test “selenese”. This is basically a bundle.

6.10. Selenium Plugin Legacy 325

Squash Keyword Framework Documentation

script.java.selenium1

Category-name : script.java.selenium1

What ?

script.java.selenium1 is a resource type that is a Selenium 1 test written in the java language. This is basically a
bundle containing the test code compiled from its sources and the associated resources. It may be used by ‘execute’
‘script.java.selenium1’ command.

Here are the supported parameters :

• mainpath : as in the bundle resource, it defines the path to the main file from the base of the bundle (the base
directory of your selenium tests). For more details, see the Converters section.

result.selenium

This resource is the same than the one used in the main Selenium Plugin. For more informations, please read the
following page.

6.10.3 Selenium Plugin Legacy - Macros

EXECUTE_SELENIUM1 {bundlePath} WITH MAIN CLASS {mainClassName}

What ?

This macro will compile the selenium 1 test suite contained in the specified bundle and execute the specified test suite
(main class) from the bundle

Underlying instructions :

LOAD {bundlePath} AS __temp_{%%rand1}.file
CONVERT __temp_{%%rand1}.file TO script.java(compile) AS __temp_{%%rand2}.compiled
CONVERT __temp_{%%rand2}.compiled TO script.java.selenium1(script) USING $(
→˓{mainClassName}) AS __temp_{%%rand3}.selenium
EXECUTE execute WITH __temp_{%%rand3}.selenium AS __temp_{%%rand4}.result
ASSERT __temp_{%%rand4}.result IS success

> Input :

326 Chapter 6. SKF Plugins

Squash Keyword Framework Documentation

• {bundlePath} : The path to the selenium1 bundle to execute relative to the root of the repository.

• {mainClassName} : The qualified name of the main class.

Example :

EXECUTE_SELENIUM1 path/to/selenium1 WITH MAIN CLASS com.example.selenium.TestSuite

6.10.4 Selenium Plugin Legacy - Advanced Users

Selenium Plugin Legacy - Converters

Contents :

• From file . . .

– . . . to configuration.selenium

– . . . to script.html.selenium

• From script.java to script.java.selenium1

From file . . .

. . . to configuration.selenium

Category-name : configuration.selenium

What ?

This converter creates a configuration.selenium resource which can be used to launch a Selenium Server for
selenium RC tests.

CONVERT {resourceToConvert<Res:file>} TO configuration.selenium (configuration.selenium) AS {con-
verted<Res:configuration.selenium>}

> Input :

• {resourceToConvert<Res:file>} : The name (in the context) of the resource which references a con-
figuration file for a Selenium sever (‘.properties’).

6.10. Selenium Plugin Legacy 327

Squash Keyword Framework Documentation

> Output :

• {converted<Res:configuration.selenium>} : The name of the converted resource
(configuration.selenium type resource).

Example :

LOAD selenium/selenium-conf.properties AS selenium-conf.file
CONVERT selenium-conf.file TO configuration.selenium AS selenium-conf

. . . to script.html.selenium

Category-name : script

What ?

This script converter will convert a file type resource to a script.html.selenium type resource.

CONVERT {resourceToConvert<Res:file>} TO script.html.selenium (script) USING {conf<Res:file>} AS {con-
verted<Res:script.html.selenium>}

> Input :

• {resourceToConvert<Res:file>} : The name (in the context) of the resource which ref-
erences the root directory containing the sources needed for a selenium test suite at the format
“selenese”.

• {conf<Res:file>} : The name of the resource which references a configuration file which can
contain two keys :

– mainpath : The path (relative to the root directory of the bundle) to the html file containing the
test suite.

– browser : The browser to use (to retrieve the list of possible values see : http://stackoverflow.
com/questions/1317055/how-to-run-google-chrome-with-selenium-rc)

It can be defined via an inline instruction.

> Output :

• {converted<Res:script.html.selenium>} : The name of the converted resource (script.
html.selenium type resource).

Example :

LOAD path/to/rootDirectory AS directory
CONVERT directory TO script.html.selenium (script) USING (mainpath:relative/path/to/suite.html) AS sele-
nese.bundle

328 Chapter 6. SKF Plugins

http://stackoverflow.com/questions/1317055/how-to-run-google-chrome-with-selenium-rc
http://stackoverflow.com/questions/1317055/how-to-run-google-chrome-with-selenium-rc

Squash Keyword Framework Documentation

From script.java to script.java.selenium1

Category-name : script

What?

This script converter create a selenium test resource (script.java.selenium1 type resource) which can be used
by the ‘execute’ ‘script.java.selenium1’ command from a script.java resource.

CONVERT {resourceToConvert<Res:script.java>} TO script.java.selenium1‘(:converter-name:‘script) USING
{conf<Res:file>} AS {converted<Res:script.java.selenium1>}

> Input :

• {resourceToConvert<Res:script.java>} : The name (in the context) of the resource which refer-
ences a java bundle which contains the source code, the compiled code and the resources of a selenium1 test
suite.

• {conf<Res:file>} (optional) : The name of the resource which references a configuration file which can
contain only one key :

– mainClass : The qualified name of the main java class. The configuration must be supplied as a text
file with one line containing the qualified name. If you give more, the last read line becomes the main
class name. This parameter may be used if you have only one selenium test suite. On the other hand, if
your selenium test bundle contains several test suite sharing helper code resources and dependencies, you
may omit the main class name and rather give that parameter in the configuration of your various execute
commands. It can be defined via an inline instruction.

> Output :

• {converted<Res:script.java.selenium1>} : The name of the converted resource (script.
java.selenium1 type resource).

Example :

LOAD selenium AS seleniumTestSource
CONVERT seleniumTestSource TO script.java (compile) AS seleniumTestCompiled
CONVERT seleniumTestCompiled TO script.java.selenium1 (script) USING $(org.squashtest.Selenium1JUnit3)
AS seleniumTest

Selenium Plugin Legacy - Commands

6.10. Selenium Plugin Legacy 329

Squash Keyword Framework Documentation

Contents :

• ‘execute’ ‘script.html.selenium’

• ‘execute’ ‘script.java.selenium1’

• ‘launch’ ‘configuration.selenium’

‘execute’ ‘script.html.selenium’

What ?

This command executes HTML format Selenium Suites (“selenese” format).

EXECUTE execute WITH {seleneseTest<Res:script.html.selenium>} ON {webSUT<Tar:http>} USING
{conf<Res:file>} AS {result<Res:result.selenium>}

> Input :

• {seleneseTest<Res:script.html.selenium>} : The name (in the context) of the re-
source which references the selenium test to execute (script.html.selenium type resource).

• {webSUT<Tar:http>} : The name in (the context) of the target corresponding to the SUT
(http type target).

• {conf<Res:file>} (optional) : The name of the resource which references a configuration file
which can contain two keys separated with comma :

– mainpath : The path (relative to the root directory of the bundle) to the html file containing the
test suite.

– browser : The browser to use (http://stackoverflow.com/questions/1317055/
how-to-run-google-chrome-with-selenium-rc).

It can be define via an inline instruction. The format is <key>:<value>.

Note : The command needs the two keys (mainpath and browser). The command can retrieve them via the USING
clause of the instruction or via script.html.selenium type resource (see the From file to script.html.selenium
converter).

Those two configuration keys are optional in each instruction (command and conversion) but each one must be defined
in at least one instruction. If a key is defined in the convert instruction and in the command instruction, the key in the
command instruction predominates.

> Output :

• {result<Res:result.selenium>} : The result of the test execution (result.selenium type re-
source).

Example :

EXECUTE execute WITH seleneseTest ON TargetWeb USING conf-file AS result

330 Chapter 6. SKF Plugins

http://stackoverflow.com/questions/1317055/how-to-run-google-chrome-with-selenium-rc
http://stackoverflow.com/questions/1317055/how-to-run-google-chrome-with-selenium-rc

Squash Keyword Framework Documentation

‘execute’ ‘script.java.selenium1’

What ?

This command executes selenium 1 tests referenced as script.java.selenium1 resources.

EXECUTE execute WITH {selenium1Tests<Res:script.java.selenium1>} USING {conf<Res:file>} AS {re-
sult<Res:result.selenium>}

> Input :

• {selenium1Tests<Res:script.java.selenium1>} : The name (in the context) of the resource
which references the java bundle containing the tests to execute (script.java.selenium1 type resource).

• {conf<Res:file>} (optional) : The name of the resource which references a configuration file which can
contain only one key :

– mainclass : The qualified name of the main java class. The configuration must be supplied as a text file
with one line containing the qualified name. If you give more, the last read line becomes the main class
name. It can be defined via an inline instruction. The format is <key>:<value>.

Note : The command needs this key. The command can retrieve it via the USING clause of the instruction or via
script.java.selenium1 type resource (See the From script.java to script.java.selenium1 converter). This con-
figuration key is optional in each instruction (command and conversion) but it must be defined in at least one instruc-
tion. If the key is defined in the convert instruction and in the command instruction, the key in the command instruction
prime.

> Output :

• {result<Res:result.selenium>} : The result of the test execution.(result.selenium type re-
source).

Example :

LOAD selenium AS seleniumTestSource
CONVERT seleniumTestSource TO script.java (compile) AS seleniumTestCompiled
CONVERT seleniumTestCompiled TO script.java.selenium1 (script) USING $(org.squashtest.Selenium1JUnit4)
AS seleniumTest
EXECUTE execute WITH seleniumTest AS seleniumResult

6.10. Selenium Plugin Legacy 331

Squash Keyword Framework Documentation

‘launch’ ‘configuration.selenium’

What ?

To execute a selenium1 test at java format a selenium server can be started. This command launches a Selenium Server
instance (formerly SeleniumRC server) following the configuration described by a configuration.selenium
resource. This command produces a process type resource which can be used with the cleanup command to kill it.

EXECUTE launch WITH {seleniumServerConfig<Res:configuration.selenium>} AS {seleniumServerPro-
cess<Res:process>}

> Input :

• {seleniumServerConfig<Res:configuration.selenium>} : The name (in the context) of the
resource which references a configuration file permitting to start a Selenium server (configuration.
selenium type resource).

> Output :

• {seleniumServerProcess<Res:process>} : The name (in the context) of the resource which refer-
ences a processus linked to the Selenium Server (process type resource).

Example :

LOAD selenium/selenium-rc-conf.properties AS selenium-rc-conf.file
CONVERT selenium-rc-conf.file TO configuration.selenium AS selenium-rc-conf
EXECUTE launch WITH selenium-rc-conf AS seleniumServer

Selenium Plugin Legacy - Assert

‘result.selenium’ is ‘success’

The Selenium Plugin Legacy uses the same assert than the main Selenium Plugin. For more informations, please read
the following page.

This section will give you further details about the engine components (converters, commands or asserts) of the SKF
which are used by the macros of this plugin.

The main Selenium Plugin handles Selenium 2 and 3 but not Selenium 1 anymore. If you need the integration of
Selenium 1 tests into SKF, you can use Selenium Plugin Legacy which is an add-on of the main Selenium Plugin
allowing the integration of thoses tests.

332 Chapter 6. SKF Plugins

Squash Keyword Framework Documentation

This plugin excludes the Selenium 3 dependency from the main Selenium Plugin and uses a Selenium 2 dependency
which handles Selenium 1 and 2.

This plugin provides all the elements needed to execute selenium 1 tests in SKF.

Caution: If you use the legacy plugin, you won’t be able to execute Selenium 1 and Selenium 3 in the same
project.

6.11 SoapUI Plugin

6.11.1 SoapUI Plugin - Resources

Contents :

• script.soapui

• result.soapui

script.soapui

Category-name : script.soapui

What ?

script.soapui is a resource type that represents a SoapUI workspace. This resource can reference either a single xml
workspace file as produced by SoapUI or (since 1.7) a bundle that contains an xml workspace.

result.soapui

Category-name : result.soapui

What ?

result.soapui is a resource type that represents the result of the execution of SoapUI tests. It is produced by the
‘execute’ ‘script.soapui’ command.

6.11. SoapUI Plugin 333

Squash Keyword Framework Documentation

6.11.2 SoapUI Plugin - Macros

Contents :

• # EXECUTE_SOAPUI {soapui_script}

• # EXECUTE_SOAPUI {soapui_script} WITH TEST_SUITE {testsuites}

• # EXECUTE_SOAPUI {soapui_script} WITH TEST_SUITE {testsuites} AND TEST_CASE {testcases}

• # EXECUTE_SOAPUI_BUNDLE {soapui_bundle} WITH PROJECT {projectpath}

• # EXECUTE_SOAPUI_BUNDLE {soapui_bundle} WITH PROJECT {projectpath} AND TEST_SUITE {test-
suites}

• # EXECUTE_SOAPUI_BUNDLE {soapui_bundle} WITH PROJECT {projectpath} AND TEST_SUITE {test-
suites} AND TEST_CASE {testcases}

EXECUTE_SOAPUI {soapui_script}

What ?

This macro loads and executes a {soapui_script}. It then verifies the success of the execution.

Underlying instructions :

LOAD {soapui_script} AS __soapui_script{%%rand1}.file
CONVERT __soapui_script{%%rand1}.file TO script.soapui(structured) AS __soapui_script{
→˓%%rand2}.soapui

EXECUTE execute WITH __soapui_script{%%rand2}.soapui AS __exec{%%rand3}.result
ASSERT __exec{%%rand3}.result IS success

> Input :

• {soapui_script} : path to a SoapUI xml workspace file. It will be converted to a soapui.script
resource.

Example :

EXECUTE_SOAPUI path/to/soapui-script.xml

SoapUI Project as a .xml file in the resources directory :

SKF script :

Result output on error in the SKF script :

In this example we misspelled the name of the SoapUI project in the macro.

334 Chapter 6. SKF Plugins

Squash Keyword Framework Documentation

Result output on failure of a test case in the SoapUI project :

EXECUTE_SOAPUI {soapui_script} WITH TEST_SUITE {testsuites}

What ?

This macro loads the {soapui_script} and executes the given {testsuites}. It then verifies the success of the execution.

Underlying instructions :

LOAD {soapui_script} AS __soapui_script{%%rand1}.file
CONVERT __soapui_script{%%rand1}.file TO script.soapui(structured) AS __soapui_script{
→˓%%rand2}.soapui

EXECUTE execute WITH __soapui_script{%%rand2}.soapui USING $(soapui.test.suites:
→˓{testsuites};soapui.test.cases:{testcases}) AS __exec{%%rand5}.result
ASSERT __exec{%%rand5}.result IS success

> Input :

• {soapui_script} : path to a SoapUI xml workspace file. It will be converted to a soapui.script
resource.

• {testsuites} : names of the test suites of the SoapUI workspace to execute. It could be one test suite or a
list of comma separated test suites to execute.

Example :

6.11. SoapUI Plugin 335

../../_static/plugin-soapui/doc-soapui-project.png
../../_static/plugin-soapui/doc-soapui-macro-execute.png
../../_static/plugin-soapui/doc-soapui-macro-execute-skf-error.png

Squash Keyword Framework Documentation

EXECUTE_SOAPUI path/to/soapui-script.xml WITH TEST_SUITE testsuite_name

SKF script with 2 test suites :

EXECUTE_SOAPUI {soapui_script} WITH TEST_SUITE {testsuites} AND TEST_CASE {testcases}

What ?

This macro loads a SoapUI xml workspace and executes the given test case(s). The macro then verifies the success of
the execution.

Underlying instructions :

LOAD {soapui_script} AS __soapui_script{%%rand1}.file
CONVERT __soapui_script{%%rand1}.file TO script.soapui(structured) AS __soapui_script{
→˓%%rand2}.soapui

EXECUTE execute WITH __soapui_script{%%rand2}.soapui USING $(soapui.test.suites:
→˓{testsuites};soapui.test.cases:{testcases}) AS __exec{%%rand5}.result
ASSERT __exec{%%rand5}.result IS success

> Input :

• {soapui_script} : path to a SoapUI xml workspace file. It will be converted to a soapui.script
resource.

• {testsuites} : names of test suites of SoapUI workspace to execute. It could be one test suite or a list of
comma separated test suites to execute.

• {testcases} : names of test cases to execute in the test suite. It could be only one test case or a comma
separated list of test cases.

336 Chapter 6. SKF Plugins

../../_static/plugin-soapui/doc-soapui-macro-execute-soap-fail.png
../../_static/plugin-soapui/doc-soapui-macro-execute-with.png

Squash Keyword Framework Documentation

Example :

EXECUTE_SOAPUI path/to/soapui-script.xml WITH TEST_SUITE issueServiceTest AND
TEST_CASE retrieveIssue,issueExists

SKF script :

EXECUTE_SOAPUI_BUNDLE {soapui_bundle} WITH PROJECT {projectpath}

What ?

This macro executes a SoapUI script embedded in a bundle. The macro then verifies the success of the execution.

Underlying instructions :

LOAD {soapui_bundle} AS __soapui_bundle{%%rand1}.file
CONVERT __soapui_bundle{%%rand1}.file TO script.soapui(structured) AS __soapui_bundle{
→˓%%rand2}.soapui

EXECUTE execute WITH __soapui_bundle{%%rand2}.soapui USING $(soapui.project.path:
→˓{projectpath}) AS __exec{%%rand3}.result
ASSERT __exec{%%rand3}.result IS success

> Input :

• {soapui_bundle} : path to the SoapUI bundle to load.

• {projectpath} : path to the SoapUI xml workspace file (relative to the root of the bundle).

Example :

EXECUTE_SOAPUI_BUNDLE soapui WITH PROJECT soapui-integration-tests.xml

6.11. SoapUI Plugin 337

../../_static/plugin-soapui/doc-soapui-macro-execute-with-and.png

Squash Keyword Framework Documentation

EXECUTE_SOAPUI_BUNDLE {soapui_bundle} WITH PROJECT {projectpath} AND TEST_SUITE
{testsuites}

What ?

This macro executes the given test suites of the loaded SoapUI bundle. The macro then verifies the success of the
execution.

Underlying instructions :

LOAD {soapui_bundle} AS __soapui_bundle{%%rand1}.file
CONVERT __soapui_bundle{%%rand1}.file TO script.soapui(structured) AS __soapui_bundle{
→˓%%rand2}.soapui

EXECUTE execute WITH __soapui_bundle{%%rand2}.soapui USING $(soapui.project.path:
→˓{projectpath};soapui.test.suites:{testsuites}) AS __exec{%%rand5}.result
ASSERT __exec{%%rand5}.result IS success

> Input :

• {soapui_bundle} : path to SoapUI bundle to load.

• {projectpath} : path to SoapUI xml workspace file (relative to the root of the bundle).

• {testcases} : names of testsuites of soapui workspace to execute. It could be one test suite or a list of
comma separated test suites to execute.

Example :

EXECUTE_SOAPUI_BUNDLE soapui WITH PROJECT soapui-integration-tests.xml AND TEST_SUITE is-
sueServiceTest

EXECUTE_SOAPUI_BUNDLE {soapui_bundle} WITH PROJECT {projectpath} AND TEST_SUITE
{testsuites} AND TEST_CASE {testcases}

What ?

This macro loads a SoapUI bundle and executes the given test cases. The macro then verifies the success of the
execution.

Underlying instructions :

LOAD {soapui_bundle} AS __soapui_bundle{%%rand1}.file
CONVERT __soapui_bundle{%%rand1}.file TO script.soapui(structured) AS __soapui_bundle{
→˓%%rand2}.soapui

(continues on next page)

338 Chapter 6. SKF Plugins

Squash Keyword Framework Documentation

(continued from previous page)

EXECUTE execute WITH __soapui_bundle{%%rand2}.soapui USING $(soapui.project.path:
→˓{projectpath};soapui.test.suites:{testsuites};soapui.test.cases:{testcases}) AS __
→˓exec{%%rand5}.result
ASSERT __exec{%%rand5}.result IS success

> Input :

• {soapui_bundle} : path to the SoapUI bundle to load.

• {projectpath} : path to SoapUI xml workspace file (relative to the root of the bundle).

• {testsuites} : names of test suites of SoapUI workspace to execute. It could be one test suite or a list of
comma separated test suites to execute.

• {testcases} : names of test cases to execute in the test suite. It could be only one test case or a comma
separated list of test cases.

Example :

EXECUTE_SOAPUI_BUNDLE soapui WITH PROJECT soapui-integration-tests.xml AND TEST_SUITE is-
sueServiceTest AND TEST_CASE retrieveIssue,issueExists

6.11.3 SoapUI Plugin - Advanced Users

SoapUI Plugin - Converters

From ‘file’ to ‘script.soapui’

Category-name : structured

What ?

This structured script converter will convert xml file resources to script.soapui resources. The converted
resource is then ready for execution through the ‘execute’ ‘script.soapui’ command.

CONVERT {xmlSoapUI<Res:file>} TO script.soapui (script) [USING $(soa-
pui.project.path:<soapui.project.path>)] AS {converted<Res:script.soapui>}

> Input :

• {xmlSoapui<Res:file>} : The name of the resource to convert (file type resource). This resource
references a single xml workspace file as produced by SoapUI or (since 1.7) a bundle containing such a file.

• soapui.project.path (since 1.7) : In case xmlSoapui is a bundle, we can indicate here the path to the
xml workspace file relatively to the bundle’s root.

> Output :

6.11. SoapUI Plugin 339

Squash Keyword Framework Documentation

• {converted<Res:script.soapui>} : The name of the converted resource (script.soapui type
resource).

Note :

• If script.soapui is a bundle, we must indicate the path of the xml workspace file either in the convert or
the command instruction.

• If the path is indicated in both, the command instruction prevails.

• If it is not indicated, the test will fail.

Example :

LOAD path/to/soapui_script.xml AS soapui_script.file
CONVERT soapui_script.file TO script.soapui (structured) AS soapui_script.soapui

SoapUI Plugin - Command

‘execute’ ‘script.soapui’

What ?

This command executes the test suite defined by the script.soapui resource given as input. It is executed on the
(implicit) void target because the SUT target is defined by the SoapUI workspace and cannot be overriden.

EXECUTE execute WITH {soapuiScript<Res:script.soapui>} AS {soapuiResult<Res:result.soapui>} [USING
$(<soapui.test.suites>;<soapui.test.cases>;<soapui.project.path>)]

> Input :

• {soapuiScript<Res:script.soapui>} : This resource references a single xml workspace file as pro-
duced by SoapUI, or (since 1.7) a bundle containing such a file (script.soapui type resource).

• soapui.test.suites : Expected value is the comma separated list of test suite names to execute. If this
key is not defined or if it is an empty string, then all test suites are selected.

• soapui.test.cases : Expected value is the comma separated list of the test case names to execute in the
selected test suites. If this key is not defined or if its value is an empty string, then all test cases are selected.

• soapui.project.path (since 1.7) : In case script.soapui is a bundle, we can indicate here the path
to the xml workspace file relatively to the bundle’s root.

> Output :

• {soapuiResult<Res:result.soapui>} : The name of the resource which contains the result of the
SoapUI command execution (soapui.result type resource).

Note :

340 Chapter 6. SKF Plugins

Squash Keyword Framework Documentation

• If script.soapui is a bundle, we must indicate the path of the xml workspace file either in the convert or
the command instruction.

• If the path is indicated in both, the command instruction prevails.

• If it is not indicated, the test will fail.

Example :

LOAD path/to/soapui_script.xml AS soapui_script.file
CONVERT soapui_script.file TO script.soapui (structured) AS soapui_script.soapui
EXECUTE execute WITH soapui_script.soapui USING $(soapui.test.suites=suite1,suite2;soapui.test.cases=tc1,tc2)
AS result

SoapUI Plugin - Assert

‘result.soapui’ is ‘success’

What ?

This assertion verifies if a soapUI execution is a success. If the assertion is verified then the test continues. In the other
case, the test fails.

ASSERT {soapuiResult<Res:result.soapui>} IS success
VERIFY {soapuiResult<Res:result.soapui>} IS success

Note : For differences between ASSERT and VERIFY assertion mode see this page.

> Input :

• {soapuiResult<Res:result.soapui>} : The name of the resource which contains the result of a
soapUI execution command (result.soapui type resource).

Example :

LOAD path/to/soapui_script.xml AS soapui_script.file
CONVERT soapui_script.file TO script.soapui (structured) AS soapui_script.soapui
EXECUTE execute WITH soapui_script.soapui USING $(soapui.test.suites=suite1,suite2;soapui.test.cases=tc1,tc2)
AS soapuiResult
ASSERT soapuiResult IS success

6.11. SoapUI Plugin 341

Squash Keyword Framework Documentation

This section will give you further details about the engine components (converters, commands or asserts) of the SKF
which are used by the macros of this plugin.

The SoapUI plugin is part of the base package shipped with SKF. It is automatically installed if you choose the default
project configuration for your test project. However, as it is packaged as a separate plugin, you can exclude it from the
test project (and avoid downloading and installing its dependencies).

This plugin includes all the necessary components to execute test cases from SoapUI workspaces as part of a
Squash TF test project.

6.12 SSH/SFTP Plugin

6.12.1 SSH/SFTP Plugin - Target

SSH

Category-name : ssh.target

What ?

The ssh.target represents a ssh server used for the execution of commands. This is mainly used as SUT specification
for batch testing.

Configuration : A simple .properties file dropped in the targets directory of your test project. To tag the file as an
ssh configuration file, the first line must have the following shebang mark : #!ssh. All keys in this file begin with the
prefix squashtest.ta.ssh.

Available parameters :

• squashtest.ta.ssh.hostname (mandatory) : Host to connect to.

• squashtest.ta.ssh.port : Port to connect to. This parameter is optional, if it is ommitted or empty the default SSH
port will be used.

• squashtest.ta.ssh.username (mandatory) : Username to use for connection.

• squashtest.ta.ssh.password (mandatory) : Password to use for connection.

Example of valid configuration file :

342 Chapter 6. SKF Plugins

Squash Keyword Framework Documentation

#!ssh
squashtest.ta.ssh.hostname=integrationBox
squashtest.ta.ssh.username=tester
squashtest.ta.ssh.password=tester

6.12.2 SSH/SFTP Plugin - Resources

Contents:

• query.shell

• result.shell

query.shell

Category-name : query.shell

@See : Since Squash TA 1.7.0, this resource moved to Local Process Plugin.

result.shell

Category-name : result.shell

@See : Since Squash TA 1.7.0, this resource moved to Local Process Plugin.

6.12.3 SSH/SFTP Plugin - Macros

Contents :

• # EXECUTE_SSH $({command_content}) ON {target} AS {result}

• # EXECUTE_SSH $({command_content}) ON {target} AS {result} WITHIN {timeout} ms

6.12. SSH/SFTP Plugin 343

Squash Keyword Framework Documentation

• # EXECUTE_SSH_SCRIPT {script} ON {target} AS {result}

• # EXECUTE_SSH_SCRIPT {script} ON {target} AS {result} WITHIN {timeout} ms

EXECUTE_SSH $({command_content}) ON {target} AS {result}

What ?

This macro will execute an inline command on a SSH server

Underlying instructions :

DEFINE $({command_content}) AS __command{%%rand1}
CONVERT __command{%%rand1} TO query.shell AS __commandLine{%%rand2}
EXECUTE execute WITH __commandLine{%%rand2} ON {target} AS {result}
ASSERT {result} IS success

> Input :

• {command_content} : It corresponds to the text of the shell command to execute.

• {target} : The name (in the context) of the SSH server to use. (ssh.target type target).

> Output :

• {result} : The name of the resource which references the result of the command.(result.shell type
resource).

Example :

EXECUTE_SSH $(echo “hello world”) ON ssh-server AS result

EXECUTE_SSH $({command_content}) ON {target} AS {result} WITHIN {timeout} ms

What ?

This macro will execute an inline command on a SSH server.

Underlying instructions :

344 Chapter 6. SKF Plugins

Squash Keyword Framework Documentation

DEFINE $({command_content}) AS __command{%%rand1}
CONVERT __command{%%rand1} TO query.shell AS __commandLine{%%rand2}
EXECUTE execute WITH __commandLine{%%rand2} ON {target} USING $(timeout:{timeout}) AS
→˓{result}
ASSERT {result} IS success

> Input :

• {target} : The name (in the context) of the SSH server to use (ssh.target type target).

• {command_content} : It corresponds to the text of the shell command to execute.

• {timeout} : Maximal time authorized for the command execution (in milliseconds).

> Output :

• {result} : The name of the resource which references the result of the command(result.shell type
resource).

Example :

EXECUTE_SSH $(echo “hello world”) ON ssh-server AS result WITHIN 15000 ms

EXECUTE_SSH_SCRIPT {script} ON {target} AS {result}

What ?

This macro will execute a shell script on a SSH server.

Underlying instructions :

LOAD {script} AS __{%%r1}.file
CONVERT __{%%r1}.file TO file(param.relativedate) AS __{%%r2}.file
CONVERT __{%%r2}.file TO query.shell AS __{%%r3}.script
EXECUTE execute WITH __{%%r3}.script ON {target} AS {result}
ASSERT {result} IS success

> Input :

• {target} : The name (in the context) of the SSH server to use (ssh.target type target).

• {script} : It corresponds to the path of the shell script to execute.

> Output :

• {result} : The name of the resource which references the result of the command (result.shell type
resource).

Example :

EXECUTE_SSH_SCRIPT shell/shell-script.txt ON ssh-server AS result

6.12. SSH/SFTP Plugin 345

Squash Keyword Framework Documentation

EXECUTE_SSH_SCRIPT {script} ON {target} AS {result} WITHIN {timeout} ms

What ?

This macro will execute a shell script on a SSH server.

Underlying instructions :

LOAD {script} AS __{%%r1}.file
CONVERT __{%%r1}.file TO file(param.relativedate) AS __{%%r2}.file
CONVERT __{%%r2}.file TO query.shell AS __{%%r3}.script
EXECUTE execute WITH __{%%r3}.script ON {target} USING $(timeout:{timeout}) AS
→˓{result}
ASSERT {result} IS success

> Input :

• {target} : The name (in the context) of the SSH server to use (ssh.target type target).

• {script} : It corresponds to the path of the shell script to execute.

• {timeout} : Maximal time authorized for the command execution (in milliseconds).

> Output :

• {result} : The name of the resource which references the result of the command(result.shell type
resource).

Example :

EXECUTE_SSH_SCRIPT shell/shell-script.txt ON ssh-server AS result WITHIN 15000 ms

6.12.4 SSH/SFTP Plugin - Advanced Users

SSH/SFTP Plugin - Converter

From file to query.shell

Category-name : query

@See : Since Squash TA 1.7.0, this converter moved to Local Process Plugin.

346 Chapter 6. SKF Plugins

Squash Keyword Framework Documentation

SSH/SFTP Plugin - Commands

Contents :

• ‘execute’ ‘query.shell’ on ‘ssh’

• ‘put’ ‘file’ on ‘SFTP’

• ‘get’ ‘file’ on ‘SFTP’

• ‘delete’ ‘file’ on ‘SFTP’

‘execute’ ‘query.shell’ on ‘ssh’

What ?

It allows to execute a command line over SSH.

EXECUTE execute WITH {query<Res:query.shell>} ON {<Tar:ssh.target>} AS {result<Res:Result.shell>} [US-
ING $(timeout : <n>)]

> Input :

• {query<Res:query.shell>} : The name of the resource referencing a file which includes one or several
shell command lines (query.shell type resource).

• {<Tar:ssh.target>} : The name (in the context) of the SSH server to use (ssh.target type target).

• <n> : An integer that represents time in milliseconds. It’s the time to wait before the command execution times
out. It can be defined via an inline instruction : $(timeout : . . .)

Note : If the timeout property is not defined here, we use the timeout property of query.shell resource (set to 5s
by default).

> Output :

• {result<Res:result.shell>} : The name of the resource which contains the shell commands result
(result.shell type resource).

Example :

LOAD shell/shell_command.txt AS command.file
CONVERT command.file TO query.shell USING $(timeout:15000) AS commandLine
EXECUTE execute WITH commandLine ON ssh_server AS result

6.12. SSH/SFTP Plugin 347

Squash Keyword Framework Documentation

‘put’ ‘file’ on ‘SFTP’

What ?

This command allows to put a file on a SFTP server.

EXECUTE put WITH {<Res:file>} ON {<Tar:ssh.target>} AS $() USING $(remotepath : <distantPath>)

> Input :

• {<Res:file>} : The name of the resource which references the file to put on the SFTP server (file type
resource).

• {<Tar:ssh.target>} : The name (in the context) of the SFTP server to use (ssh.target type target).

• <distantPath> : It corresponds to the file path on the SFTP server, relatively to the home directory.

Remark : If in <distantPath> some directories don’t exist on the server, they are then created.

Example :

LOAD path/toto.xml AS toto
EXECUTE put WITH toto ON SFTP-server USING $(remotepath : toto.xml) AS $()

‘get’ ‘file’ on ‘SFTP’

What ?

This command allows to get a file from a SFTP server.

EXECUTE get WITH $() ON {<Tar:ssh.target>} AS {result<Res:file>} USING $(remotepath : <distantPath>)

> Input :

• {<Tar:ssh.target>} : The name (in the context) of the SFTP server to use (ssh.target type target).

• <distantPath> : It corresponds to the file path on the SFTP server, relatively to the home directory of the
file you want to get.

> Output :

• {result<Res:file>} : The name of the resource which references the file you get from the SFTP server
(file type resource).

Example :

EXECUTE get WITH $() ON SFTP-server USING $(remotepath :sample.zip) AS zip

348 Chapter 6. SKF Plugins

Squash Keyword Framework Documentation

‘delete’ ‘file’ on ‘SFTP’

What ?

This command allows to delete a file on a SFTP server.

EXECUTE delete WITH $() ON {<Tar:ssh.target>} AS $() USING $(remotepath : <distantPath> [,failIfDoesNo-
tExist : false])

> Input :

• {<Tar:ssh.target>} : The name (in the context) of the SFTP server to use (ssh.target type target).

• <distantPath> : It corresponds to the file path on the SFTP server, relatively to the home directory of the
file you want to delete.

• 'failIfDoesNotExist : false' : It allows to specify to SKF that the test must not fail if the resource
we’re trying to delete doesn’t exist.

> Output :

• {result<Res:file>} : The name of the resource which references the file you get from the SFTP server
(file type resource).

Remarks :

• <distantPath> can indicate a file OR a directory. To represent a directory, the path should end with the
character ‘/’.

• The deletion of a directory is recursive : deletion of all sub-directories and files.

EXECUTE delete WITH $() ON SFTP-server USING $(remotepath : path/to/myfile.txt, failIfDoesNotExist: false)
AS $()

SSH/SFTP Plugin - Asserts

Contents :

• ‘result.shell’ is ‘success’

• ‘result.shell’ is ‘failure’ with {expected return code}

• ‘result.shell’ does ‘contain’ {regex}

• ‘result.shell’ does ‘not.contain’ {regex}

6.12. SSH/SFTP Plugin 349

Squash Keyword Framework Documentation

‘result.shell’ is ‘success’

@See : Since Squash TA 1.7.0, this resource moved to Local Process Plugin.

‘result.shell’ is ‘failure’ with {expected return code}

@See : Since Squash TA 1.7.0, this resource moved to Local Process Plugin.

‘result.shell’ does ‘contain’ {regex}

@See : Since Squash TA 1.7.0, this resource moved to Local Process Plugin.

‘result.shell’ does ‘not.contain’ {regex}

@See : Since Squash TA 1.7.0, this resource moved to Local Process Plugin.

This section will give you further details about the engine components (converters, commands or asserts) of the SKF
which are used by the macros of this plugin.

This plugin provides all the elements needed to interact with an SSH server.

6.13 XML Functions Plugin

6.13.1 XML Functions Plugin - Resources

350 Chapter 6. SKF Plugins

Squash Keyword Framework Documentation

xslt

Category-name : xslt

What ?

xslt is a resource representing a styling document allowing xml transformations.

6.13.2 XML Functions Plugin - Macros

XML Functions Plugin - Macros - Create File

Contents :

• # CREATE FILE {output} FROM {input} BY APPLYIN XSLT {stylesheet}

• # CREATE FILE {output} FROM {input} BY APPLYIN XSLT {stylesheet} USING {xslt_config}

• # CREATE FILE {output} FROM XML RESOURCE {input} BY APPLYIN XSLT {stylesheet}

• # CREATE FILE {output} FROM XML RESOURCE {input} BY APPLYIN XSLT {stylesheet} USING
{xslt_config}

CREATE FILE {output} FROM {input} BY APPLYIN XSLT {stylesheet}

What ?

This macro applies a stylesheet to a xml file in order to create a file resource and logs the result in the console at
DEBUG level.

Underlying instructions :

LOAD {input} AS __input{%%r1}.xml.file
CONVERT __input{%%r1}.xml.file TO xml(structured) AS __input{%%r1}.xml

LOAD {stylesheet} AS __stylesheet{%%r1}.xslt.file
CONVERT __stylesheet{%%r1}.xslt.file TO xml(structured) AS __stylesheet{%%r1}.xslt.xml
CONVERT __stylesheet{%%r1}.xslt.xml TO xslt AS __stylesheet{%%r1}.xslt

CONVERT __input{%%r1}.xml TO file(xslt) USING __stylesheet{%%r1}.xslt AS {output}
EXECUTE log WITH {output} USING $(logLevel: DEBUG,multiline: yes) AS $()

> Input :

6.13. XML Functions Plugin 351

Squash Keyword Framework Documentation

• {input} : The name of the file to convert (xml type file).

• {stylesheet} : The name of the stylesheet file (xslt type file).

> Output :

• {output} : The name of the converted resource (file type resource).

Example :

CREATE FILE sample-dataset-resource.xml FROM sample-dataset.xml BY APPLYIN XSLT ta-
ble1n2sorted.xslt

Resources :

SKF script :

Console output in DEBUG mode :

CREATE FILE {output} FROM {input} BY APPLYIN XSLT {stylesheet} USING {xslt_config}

What ?

352 Chapter 6. SKF Plugins

Squash Keyword Framework Documentation

This macro applies a stylesheet and a config resource to a xml file in order to create a file resource and logs the result
in the console at DEBUG level. Additional configurations can be done with a config file.

Underlying instructions :

LOAD {input} AS __input{%%r1}.xml.file
CONVERT __input{%%r1}.xml.file TO xml(structured) AS __input{%%r1}.xml

LOAD {stylesheet} AS __stylesheet{%%r1}.xslt.file
CONVERT __stylesheet{%%r1}.xslt.file TO xml(structured) AS __stylesheet{%%r1}.xslt.xml
CONVERT __stylesheet{%%r1}.xslt.xml TO xslt AS __stylesheet{%%r1}.xslt

CONVERT __input{%%r1}.xml TO file(xslt) USING __stylesheet{%%r1}.xslt,{xslt_config}
→˓AS {output}
EXECUTE log WITH {output} USING $(logLevel: DEBUG,multiline: yes) AS $()

> Input :

• {input} : The name of the file to convert (xml type file).

• {stylesheet} : The name of the stylesheet file (xslt type file).

• {xslt_config} : The name of the loaded configuration resource (file type resource, from a
properties type file). It can be used to normalize the output (normalize = true).

> Output :

• {output} : The name of the converted resource (file type resource).

Example :

CREATE FILE sample-dataset-resource.xml FROM sample-dataset.xml BY APPLYIN XSLT ta-
ble1n2sorted.xslt USING config-resource.file

Resources :

SKF script :

6.13. XML Functions Plugin 353

Squash Keyword Framework Documentation

Console output in DEBUG mode :

CREATE FILE {output} FROM XML RESOURCE {input} BY APPLYIN XSLT {stylesheet}

What ?

This macro applies a stylesheet to a loaded xml resource in order to create a file resource and logs the result in the
console at DEBUG level.

Underlying instructions :

LOAD {stylesheet} AS __stylesheet{%%r1}.xslt.file
CONVERT __stylesheet{%%r1}.xslt.file TO xml(structured) AS __stylesheet{%%r1}.xslt.xml
CONVERT __stylesheet{%%r1}.xslt.xml TO xslt AS __stylesheet{%%r1}.xslt

CONVERT {input} TO file(xslt) USING __stylesheet{%%r1}.xslt AS {output}
EXECUTE log WITH {output} USING $(logLevel: DEBUG,multiline: yes) AS $()

> Input :

• {input} : The name of the loaded resource to convert (xml type resource).

• {stylesheet} : The name of the stylesheet file (xslt type file).

> Output :

• {output} : The name of the converted resource (file type resource).

Example :

CREATE FILE sample-dataset-resource-output.xml FROM XML RESOURCE sample-dataset-
resource.xml BY APPLYIN XSLT table1n2sorted.xslt

Resources :

354 Chapter 6. SKF Plugins

Squash Keyword Framework Documentation

SKF script :

In the SETUP phase, we load the sample-dataset.xml and replace all the occurrences of
‘${hello}’ by ‘Goodbye’ with a SUBSTITUTE KEYS macro. The resulting resource is then
converted to a xml type resource and used in the CREATE FILE macro.

Console output in DEBUG mode :

CREATE FILE {output} FROM XML RESOURCE {input} BY APPLYIN XSLT {stylesheet} USING
{xslt_config}

What ?

This macro applies a stylesheet and a config resource to a loaded xml resource in order to create a file resource and
logs the result in the console at DEBUG level. Additional configurations can be done with a config file.

Underlying instructions :

6.13. XML Functions Plugin 355

Squash Keyword Framework Documentation

LOAD {stylesheet} AS __stylesheet{%%r1}.xslt.file
CONVERT __stylesheet{%%r1}.xslt.file TO xml(structured) AS __stylesheet{%%r1}.xslt.xml
CONVERT __stylesheet{%%r1}.xslt.xml TO xslt AS __stylesheet{%%r1}.xslt

CONVERT {input} TO file(xslt) USING __stylesheet{%%r1}.xslt,{xslt_config} AS {output}
EXECUTE log WITH {output} USING $(logLevel: DEBUG,multiline: yes) AS $()

> Input :

• {input} : The name of the loaded resource to convert (xml type resource).

• {stylesheet} : The name of the stylesheet resource (xslt type file).

• {xslt_config} : The name of the loaded configuration resource (file type resource, from a
properties type file). It can be used to normalize the output (normalize = true).

> Output :

• {output} : The name of the converted resource (file type resource).

Example :

CREATE FILE sample-dataset-resource-output.xml FROM XML RESOURCE sample-dataset-
resource.xml BY APPLYIN XSLT table1n2sorted.xslt USING config-resource.file

Resources :

SKF script :

In the SETUP phase, we load the sample-dataset.xml and replace all the occurrences of
‘${hello}’ by ‘Goodbye’ with a SUBSTITUTE KEYS macro. The resulting resource is then
converted to a xml type resource and used in the CREATE FILE macro.

356 Chapter 6. SKF Plugins

Squash Keyword Framework Documentation

Console output in DEBUG mode :

XML Functions Plugin - Macros - Check XML

Contents :

• # CHECK IF XML FILE {actual} FILTERED BY {xslt_filter} EQUALS {expected}

• # CHECK IF XML {actual} FILTERED BY {xslt_filter} EQUALS {expected}

• # CHECK IF XML {actual} FILTERED BY {xslt_filter} EQUALS {expected} USING {config}

CHECK IF XML FILE {actual} FILTERED BY {xslt_filter} EQUALS {expected}

What ?

This macro apply a xslt filter to an actual and an expected xml file and then checks if the resulting resources match.

Underlying instructions :

LOAD {xslt_filter} AS __xslt_filter{%%r1}.file
CONVERT __xslt_filter{%%r1}.file TO xml(structured) AS __xslt_filter{%%r1}.xml
CONVERT __xslt_filter{%%r1}.xml TO xslt AS __xslt_filter{%%r1}.xslt

LOAD {actual} AS __actual{%%r1}.file
CONVERT __actual{%%r1}.file TO xml(structured) AS __actual{%%r1}.xml
CONVERT __actual{%%r1}.xml TO xml(xslt) USING __xslt_filter{%%r1}.xslt,
→˓$(normalize:true) AS __filtered_actual{%%r1}.xml

LOAD {expected} AS __expected{%%r1}.file
CONVERT __expected{%%r1}.file TO xml(structured) AS __expected{%%r1}.xml
CONVERT __expected{%%r1}.xml TO xml(xslt) USING __xslt_filter{%%r1}.xslt,
→˓$(normalize:true) AS __filtered_expected{%%r1}.xml

ASSERT __filtered_expected{%%r1}.xml IS similaire WITH __filtered_actual{%%r1}.xml
→˓USING $(comparateur:xmlunit)

> Input :

6.13. XML Functions Plugin 357

Squash Keyword Framework Documentation

• {xslt_filter} : The name of the filter to apply (xslt type file).

• {actual} : The name of the file to compare (xml type file).

• {expected} : The name of the file to be compared to (xml type file).

Example :

CHECK IF XML FILE sample-dataset-1.xml FILTERED BY table1n2sorted.xslt EQUALS sample-
dataset-2.xml

Resources :

SKF script :

CHECK IF XML {actual} FILTERED BY {xslt_filter} EQUALS {expected}

What ?

358 Chapter 6. SKF Plugins

Squash Keyword Framework Documentation

This macro apply a xslt filter to an actual and an expected loaded xml resources and then checks if the resulting
resources match.

Underlying instructions :

LOAD {xslt_filter} AS __xslt_filter{%%r1}.file
CONVERT __xslt_filter{%%r1}.file TO xml(structured) AS __xslt_filter{%%r1}.xml
CONVERT __xslt_filter{%%r1}.xml TO xslt AS __xslt_filter{%%r1}.xslt

CONVERT {expected} TO xml(xslt) USING __xslt_filter{%%r1}.xslt,$(normalize:true) AS __
→˓filtered_expected{%%r1}.xml

CONVERT {actual} TO xml(xslt) USING __xslt_filter{%%r1}.xslt,$(normalize:true) AS __
→˓filtered_actual{%%r1}.xml

ASSERT __filtered_actual{%%r1}.xml IS similaire WITH __filtered_expected{%%r1}.xml
→˓USING $(comparateur:xmlunit)

> Input :

• {xslt_filter} : The name of the filter to apply (xslt type file).

• {actual} : The name of the loaded resource to compare (xml type resource).

• {expected} : The name of the loaded resource to be compared to (xml type resource).

Example :

CHECK IF XML sample-dataset-1-modified-resource.xml FILTERED BY table1n2sorted.xslt
EQUALS sample-dataset-2-resource.xml

Resources :

6.13. XML Functions Plugin 359

Squash Keyword Framework Documentation

SKF script :

In the SETUP phase, we load the sample-dataset-1.xml and replace all the occurrences of
‘${hello}’ by ‘Goodbye’ with a SUBSTITUTE KEYS macro. The resulting resource is then
converted to a xml type resource and used in the CHECK IF XML macro.

CHECK IF XML {actual} FILTERED BY {xslt_filter} EQUALS {expected} USING {config}

What ?

This macro apply a xslt filter to an actual and an expected loaded xml resources and then checks if the resulting
resources match. Additional configurations can be done with a config file.

Underlying instructions :

LOAD {xslt_filter} AS __xslt_filter{%%r1}.file
CONVERT __xslt_filter{%%r1}.file TO xml(structured) AS __xslt_filter{%%r1}.xml
CONVERT __xslt_filter{%%r1}.xml TO xslt AS __xslt_filter{%%r1}.xslt

CONVERT {expected} TO xml(xslt) USING __xslt_filter{%%r1}.xslt,$(normalize:true) AS __
→˓filtered_expected{%%r1}.xml

CONVERT {actual} TO xml(xslt) USING __xslt_filter{%%r1}.xslt,$(normalize:true) AS __
→˓filtered_actual{%%r1}.xml

LOAD {config} AS config.file
CONVERT config.file TO properties(structured) AS config.properties

DEFINE $(comparateur=xmlunit) AS default_comparator
CONVERT default_comparator TO properties(structured) AS default_comparator.properties
DEFINE $(comparateur:${comparateur}) AS comparateur.pattern
CONVERT comparateur.pattern TO file(param) AS comparateur.conf.in USING config.
→˓properties
CONVERT comparateur.conf.in TO file(param) AS comparateur.conf USING default_
→˓comparator.properties

ASSERT __filtered_actual{%%r1}.xml IS similaire WITH __filtered_expected{%%r1}.xml
→˓USING comparateur.conf,config.properties

> Input :

360 Chapter 6. SKF Plugins

Squash Keyword Framework Documentation

• {xslt_filter} : The name of the filter to apply (xslt type resource).

• {actual} : The name of the loaded resource to compare (xml type resource).

• {expected} : The name of the loaded resource to be compared to (xml type resource).

• {config} : The name of the configuration file. It can be used to change the default comparison engine from
xmlunit to jxb, through a ‘comparateur = jaxb’ entry, or to give a name to the actual and expected resource
(actualName = <put name here>, expectedName = <put name here>).

Example :

CHECK IF XML sample-dataset-1-resource.xml FILTERED BY table1n2sorted.xslt EQUALS
sample-dataset-2-resource.xml USING config.properties

Resources :

SKF script :

In the SETUP phase, we load the sample-dataset-1.xml and replace all the occurrences of
‘${hello}’ by ‘Goodbye’ with a SUBSTITUTE KEYS macro. The resulting resource is then
converted to a xml type resource and used in the CHECK IF XML macro.

6.13. XML Functions Plugin 361

Squash Keyword Framework Documentation

Console output in DEBUG mode :

6.13.3 XML Functions Plugin - Advanced Users

XML Functions Plugin - Converters

Contents:

• From XML . . .

– . . . to XSLT

– . . . to File

– . . . to XML

From XML . . .

. . . to XSLT

Category-Name : structured.xslt

What ?

This structured.xslt converter will convert a xml type resource to a xslt type resource.

CONVERT {resourceToConvert<Res:xml>} TO xslt (structured.xslt) AS {converted<Res:xslt>}

> Input :

• resourceToConvert<Res:xml> : The name of the resource to convert (xml type resource).

362 Chapter 6. SKF Plugins

Squash Keyword Framework Documentation

> Output :

• converted<Res:xslt> : The name of the converted resource (xslt type resource).

Example :

LOAD stylesheet.xslt AS stylesheet-resource.file
CONVERT stylesheet-resource.file TO xml (structured) AS stylesheet-resource.xml
CONVERT stylesheet-resource.xml TO xslt (structured.xslt) AS stylesheet-resource.xslt

. . . to File

Category-Name : xslt

What ?

This xslt converter will convert a xml type resource to a file type resource. A stylesheet can be applied to the xml
resource.

CONVERT {resourceToConvert<Res:xml>} TO file (xslt) [USING {config<Res:xslt>}] AS {con-
verted<Res:file>}

> Input :

• resourceToConvert<Res:xml> : The name of the resource to convert (xml type resource).

• config<Res:xslt> : The name of the configuration resource (xslt type resource).

> Output :

• converted<Res:file> : The name of the converted resource (file type resource).

Example :

LOAD sample.xml AS sample-resource.file
CONVERT sample-resource.file TO xml (structured) AS sample-resource.xml
LOAD stylesheet.xslt AS stylesheet-resource.file
CONVERT stylesheet-resource.file TO xml (structured) AS stylesheet-resource.xml
CONVERT stylesheet-resource.xml TO xslt (structured.xslt) AS stylesheet-resource.xslt
CONVERT sample-resource.xml TO file (xslt) USING stylesheet-resource.xslt AS final-sample-resource.file

6.13. XML Functions Plugin 363

Squash Keyword Framework Documentation

. . . to XML

Category-Name : xslt

What ?

This xslt converter will convert a xml type resource to another xml type resource. A stylesheet can be applied to the
xml resource.

CONVERT {resourceToConvert<Res:xml>} TO xml (xslt) [USING {config<Res:xslt>}] AS {con-
verted<Res:xml>}

> Input :

• resourceToConvert<Res:xml> : The name of the resource to convert (xml type resource).

• config<Res:xslt> : The name of the configuration resource (xslt type resource).

> Output :

• converted<Res:xml> : The name of the converted resource (xml type resource).

Example :

LOAD sample.xml AS sample-resource.file
CONVERT sample-resource.file TO xml (structured) AS sample-resource.xml
LOAD stylesheet.xslt AS stylesheet-resource.file
CONVERT stylesheet-resource.file TO xml (structured) AS stylesheet-resource.xml
CONVERT stylesheet-resource.xml TO xslt (structured.xslt) AS stylesheet-resource.xslt
CONVERT sample-resource.xml TO xml (xslt) USING stylesheet-resource.xslt AS final-sample-resource.xml

This section will give you further details about the engine components (converters, commands or asserts) of the SKF
which are used by the macros of this plugin.

This plugin provides the possibility to apply XSL transformations to XML type resources.

364 Chapter 6. SKF Plugins

CHAPTER 7

Tutorials

7.1 Automated Tests Rudiments

7.1.1 Good Practices

Contents :

• Simplicity

• Functionnal Unicity

• Independence

• Static Data Test

• Dynamic Data Test

• Maintenance

Automated tests progress is nearly similar to the one of manual tests. Nevertheless, automation has specificities
conditioning the way which automated tests are designed and realized.

365

Squash Keyword Framework Documentation

Simplicity

An automated test must be as simple as possible : easy to write, easy to read and easy to understand. The writing of
complex tests increases the risk of error and so of false positive (test fail although the tested application isn’t involved).

Functionnal Unicity

In the case of a manual acceptance test, it’s common to follow long test procedures who are verifying a lot of func-
tionalities of the tested system in one scenario.

It’s necessary due to the specifics constraints of manual acceptance tests : in order to test the application, the tester has
to set-up pre-requisites and verify post-conditions. Several system functions are tested like this with only one test.

Automated tests allow getting rid of those constraints because the setting-up of pre-requisites and verifications can be
done without the tested application.

Each automated test can test only one function of the SUT (System Under Test).

This method has many advantages :

• Tests are shorter and easier.

• The qualification of a function doesn’t depend on the good functioning of another function.

• During a campaign test, it’s possible to test only parts of function of the SUT.

Independence

The two steps of setting-up the pre-requisites and cleaning-up the environment must assure that test cases are strictly
independant from each other.

The execution of a test case should never depend of the previous test case’s result.

This rule is essential for those reasons :

• Campaign layout : for each campaign, it must be possible to choose which tests and in which sequence they
must be executed.

• Results interpretation : when tests depend on each other, it’s more complicated to interpret causes of failure.
The failure of one test can lead to the failure of the next test. It’s impossible to know if they failed because of
the first test’s failure or because of real issues.

366 Chapter 7. Tutorials

Squash Keyword Framework Documentation

Static Data Test

An automated test must be able to be replayed as many times as necessary and obtain each time the same result.

To make it possible, the simplest solution is to use identic data from one execution to another. This is particularly true
for non-regression tests which are valid only if they are executed in strictly identical conditions.

This is possible thanks to the setting-up and cleaning-up steps of the environement.

Dynamic Data Test

There are 2 exceptions to the previous rule. Some data tests can’t be determined a priori because they depend on the
context in which the test case is executed. Among those data, there are dates and data generated by the application.

1. DATES

All dataset containing dates is subject to expiration. For example, a contract which was active when tests were realized
can expire after a certain period of time. This can lead to the failure of the tests who are using this data set.

To handle this problem, 2 strategies are possible :

• The first one is to upgrade frequently test cases. This solution requires to set-up a follow-up proce-
dure of datasets maintenance which could be expensive.

• It’s preferable to set-up a mechanism which allows to define the dates at the moment of the test
execution, relatively to the day date (for example, the first Monday of the month, the first open-day
of the year, the previous month. . .).

2. DATA GENERATED BY THE APPLICATION

Some data generated by the tested application can’t be determined a priori, for example, identifiers or timestamps
generated at the execution. Sometimes data in output of a test case must be used as input of the next test case. When
it happens, it’s necessary to store those data in order to use them later.

Maintenance

One of the main brakes to automation tests stands in the need of maintaining them. That’s why automated tests concern
stable functions of the tested system which are little set to expand.

Despite those precautions, features of the SUT are going to need maintenance. So we need to anticipate the features
during the realization of the tests in order to minimize the maintenance charge.

1. DATA TEST CENTRALIZATION

7.1. Automated Tests Rudiments 367

Squash Keyword Framework Documentation

Sometimes, because of the evolution of the data model for example, a test case must be revalued.

To minimize the maintenance charge, the data of a test must be centralized. Concretely, it means that the data of a test
are replaced by parameters whose values are saved in one or several parameters file(s).

In the case of a test case reevaluation, only these parameters files are modified and not the totality of the test cases.

2. COMMON PARTS POOLING

The common steps of several test cases must be shared. So if a modification of the SUT affects a common step to
several cases, corrections must be made at only one place. This implies :

• To create shared modules from which test cases will be built.

• To configure data of the shared parts in order to valorize them differently according to test cases.

7.1.2 Proceeding a Test Case / a Test Campagne

Contents :

• Pre-conditions

• Test Steps

• Post-conditions Checking

• Cleaning Up

• Results Storage

• Test Campaign

Pre-conditions

Just as manual tests, automated tests generally begin with a step of setting up pre-requisites before execution of test
steps. Nevertheless the way to do it is slightly different between manual tests and automated tests.

In the case of a manual test, the acceptance tester often needs to use the tested application to set-up the pre-requisites
of the test. In the example of a Man/Machine Interface permitting to create and consult users accounts : before being
able to test the consultation function, we need to create a user account. This method has a major inconvenient : the
qualification of a function depends directly of the good functioning of another function.

In the previous example, if the creation function has a blocking issue, consultation function can’t be tested.

Unlike manual tests, automated tests allow to set-up pre-requisites of the test case without going through the tested
application. In the previous example, it’s possible to create the account directly in the database before consulting it
with the application. So, the consultation function can be tested, even if the creation function doesn’t work.

368 Chapter 7. Tutorials

Squash Keyword Framework Documentation

Test Steps

Test steps progress is similar for manual tests and automated tests. For each test step, the acceptance tester or automa-
ton interact with the SUT (System Under Test) and compare obtained result with expected result.

Post-conditions Checking

In some test cases, the execution of test steps is not enough to verify the good functioning of the SUT. The state of the
system after the test steps progress must be verified too.

Most of the time it consists in verifying persistent data test inside a database or inside a file.

During a manual test, postconditions are often difficult to verify. Just as the setting-up of pre-requisites, the acceptance
tester must use the tested application. In the previous example, the only way for the acceptance tester to verify the
account creation is using the tested Man/Machine Interface.

In an automated test, verification of post-conditions can be done independently of the tested application. The account
creation will be verified consulting directly the database. It is then possible to test a creation function even if the
consultation function doesn’t work.

In this way, automated tests never use the tested application to verify post-conditions.

Cleaning Up

In some cases, the test can also have a step of system cleaning after post-conditions verification. It allows to be sure
that the tested system is reseted before the execution of the next test case.

This step can be omitted when the step of setting-up pre-requisites is enough to guarantee the state of the SUT. When
this step exists, it is executed whatever the test result is (success, failure, error).

7.1. Automated Tests Rudiments 369

Squash Keyword Framework Documentation

Results Storage

The result of each test case is saved after the execution.

3 kind of results are possible for an automated test :

• Success

• Failure : an assertion step failed (it obtained a result different than the expected result)

• Error : an error occured during the test execution.

In the two last cases, saved result has a short explanatory message that allows to identify where the test crashed and if
possible, the reason of the crash.

Test Campaign

Some test preconditions are common to all test cases and don’t need to be implemented between each test. Those
conditions are set-up once for all at the begining of a campaign. After that all test cases are executed. And after the
campaign execution, it can be necessary to clean-up the test environment (clean-up the database, stop server programs
needed for the tests execution. . .).

At the end of an execution campaign, an execution report is created from tests results. This report describe the result
of each test case : success, failure or error with an explanatory message in the two last cases.

Here is a figure showing the different steps of an automated tests campaign execution :

7.1.3 Glossary

Capture/Playback tool : A type of test execution tool where inputs are recorded during manual testing in order to
generate automated test scripts that can be executed later (i.e. replayed). These tools are often used to support
automated regression testing.

Driver : A software component or test tool that replaces a component that takes care of the control and/or the calling
of a component or system.

DSL : Domain Specific Language. It’s a language specifically created for a domain area.

Expected result : The behavior predicted by the specification, or another source, of the component or system under
specified conditions.

Failure : Deviation of the component or system from its expected delivery, service or result.

False-fail (false-positive) result : A test result in which a defect is reported although no such defect actually exists in
the test object.

370 Chapter 7. Tutorials

Squash Keyword Framework Documentation

7.1. Automated Tests Rudiments 371

Squash Keyword Framework Documentation

Project Automation Modules : Squash TF components are grouped together as functionnal modules (Sahi module,
Selenium module. . .). This modules are plugins, they can be added or removed of the framework based on functionnal
needs.

Post-condition : Environmental and state conditions that must be fulfilled after the execution of a test or test procedure.

Pre-condition : Environmental and state conditions that must be fulfilled before the component or system can be
executed with a particular test or test procedure.

Regression testing : Testing sof a previously tested program following modification to ensure that defects have not
been introduced or uncovered in unchanged areas of the software, as a result of the changes made. It is performed
when the software or its environment is changed.

Requirement : Extracted from the design documentation and business administration rules they come from, the re-
quirements describe the application expected behaviors.

Step : Phase of the functional path set up in a script. Each step verifies an expected result.

SUT : System Under Test.

Test case : Functional path to execute in order to verify the conformity of functions. The test case is defined by a data
set to determine, a script to execute and expected detailed results.

Test suite : A set of several test cases for a component or system under test, where the post condition of one test is
often used as the precondition for the next one.

Test execution automation : The use of software, e.g. capture/playback tools, to control the execution of tests, the
comparison of actual results to expected results, the setting up of test preconditions, and other test control and reporting
functions.

• Overview

• A small example to illustrate

• SKF benefits

SKF (aka Squash Keyword Framework) is a Keyword oriented framework for test automation.

372 Chapter 7. Tutorials

CHAPTER 8

Overview

Here’s a quick overview of our framework :

• A test script is written with a composition of keywords

• A keyword is an action written in (nearly) natural language. It’s implemented by a macro

• A macro (also known as “shortcut” in SKF) is made of :

– A hook : It’s the signature of the macro. It describes how other macros and test scripts can call it

– An expansion : It contains a list of instructions that’ll be executed by the macro.

• An instruction can refer to different elements.

– It can be :

* An user-defined macro

* A framework’s builtin macro

* (If needed a framework’s low level instruction)

– It can also have some inputs and/or outputs that corresponds to :

* Input : The target / SUT definition, test data, testing scripts (ex : SQL query, SoapUI project,
Selenium Java project, . . .)

* Output : An element used for assertion or as input for other instructions

373

Squash Keyword Framework Documentation

374 Chapter 8. Overview

CHAPTER 9

A small example to illustrate

Let’s have a look at a small example

>> Here is a SKF test script :

This SKF test script is composed of three steps and use two keywords :

• # I have {number_of_pets} black cats in stock (Used two times)

• # User logs in with login {user_login} and password {user_password}, buy
{number_of_cats} black cats and logs out

In order to make this SKF test script work we have to implement two macros.

>> The # I have {number_of_pets} black cats in stock macro :

This macro has two instructions in its expansion :

375

Squash Keyword Framework Documentation

• The first instruction is a macro provided by the framework in the database plugin (builtin macro). It has 2 input
parameters and 1 output parameter:

– Input :

* db/query_black_cat_stock.sql : A file with a SQL query

* myDb : A database named “myDb”

– Output :

* query_result : Wrapped result of the query

• The second instruction is also a macro but it needs to be implemented. This instruction has 2 inputs :

– query_result : Resource produced by the previous instruction

– number_of_pets : Test data

>> The # User logs in with login {user_login} and password {user_password}, buy
{number_of_cats} black cats and logs out macro :

In this second macro the expansion is composed of two macros provided by the framework.

Note: Screenshots come from IntelliJ IDEA combined with our plugin for coloration and autocompletion

376 Chapter 9. A small example to illustrate

CHAPTER 10

SKF benefits

• The framework has been built with the separation of concerns principle in mind. This leads us to a multi layer
approach :

– Top level : Test script in natural language

– Middle level(s) : Test implementation

– Ground level : The framework with its modular architecture and resources

• Separating test scripts from their implementation brings more test robustness : test implementation changes
whereas test script doesn’t.

• The use of natural language for test scripts makes them more readable and easy to write. This makes the
writing of SKF test scripts by QA tester possible.

• Implementation of keywords still requires technical skills (and you need to know how to use the targeted robot).
However this aspect is reduced with the builtin macros provided by the framework.

• SKF is built on a modular architecture using plugins : one plugin for each type of test / robot. Each plugin
brings the macros (and their associated low level instructions) needed to ease the implementation work. Our
aim is to provide the widest set of builtin macro so that the user never have to use low level instructions.

• Its modular architecture gives the possibility to extend the capacity of the framework by creating new plugins.

• The writing, for either test scripts or macros, is eased with our IDE plugins (coloration and completion):

– IntelliJ IDEA plugin

– Eclipse tools

Note: Squash Keyword Framework (SKF) had a first life as Squash TA framework. The rebranding decision was
taken when we decided to focus on the keyword approach. (You will surely find some reference to TA at some places).
The changes accompanying this new approach is still a work in progress. Our first focus is a new IntelliJ IDEA plugin
to ease the writing of test scripts.

377

https://squash-tf.readthedocs.io/projects/intellij-plugin/en/doc-stable/
https://squash-tf.readthedocs.io/en/latest/development-tools/toolbox-eclipse.html

	Getting started
	An example to begin with
	An example to go further

	Introduction to Squash Keyword Framework (SKF)
	Automated Project Structure
	Test Case
	Macros

	Create a new SKF automation Project
	Create a Squash TF Project with IntelliJ
	Create a Squash TF Project with Squash TA Toolbox
	Create a Squash TF Project using a command line
	Default SKF automation project pom.xml

	Writing tests
	Sections
	Resource Components
	Macros
	Ecosystem
	Writing tests - Advanced Users

	Execution and Reporting
	Logging
	Tests Execution and Reporting
	List tests in an SKF project
	Check TF metadata in project

	SKF Plugins
	Commons component plugin
	Database Plugin
	Filechecker Plugin
	FTP Plugin
	JUnit Plugin
	Local process Plugin
	MEN XML Checker Plugin
	SAHI Plugin
	Selenium Plugin
	Selenium Plugin Legacy
	SoapUI Plugin
	SSH/SFTP Plugin
	XML Functions Plugin

	Tutorials
	Automated Tests Rudiments

	Overview
	A small example to illustrate
	SKF benefits

