

SQRL Server

This module supports Python-based web servers in processing SQRL [https://www.grc.com/sqrl/sqrl.htm] requests. It only does the core protocol work (signature validation, etc.). It leaves data representation, storage, and other platform-specific actions to the server.

The following terms are used throughout the documentation:

	user

	The human actor interacting with the system

	client

	The client software the user is using to interact

	server

	The web service that is wanting to support SQRL interaction

	library

	This code that supports the server in understanding SQRL interactions

Installation

Eventually it will be available via PyPi:

pip install sqrlserver

For now, download and install manually:

python setup.py test
python setup.py install

Requirements

This library only works with Python3. It requires the following external libraries to run:

	bitstring

	PyNaCl

Contribute

	Issue Tracker: <https://github.com/Perlkonig/sqrlserver-python/issues>

	Source Code: <https://github.com/Perlkonig/sqrlserver-python>

Licence

The project is licensed under the MIT licence.

Changelog

	04 Jul 2017

	
	Released v0.3.0

	SFN was removed from the spec, so removed from the code

	Tests and docs updated

	03 Jul 2017

	
	Released v0.2.0

	Added SFN check; SFN is now required with every request

	Tests and docs updated

	01 Jul 2017

	
	Initial release (v0.1.0)

Indices and tables

	Index

	Module Index

	Search Page

Usage

Summary

The core workflow is quite simple:

	Create a Url to generate the URLs that point clients to your SQRL endpoints.

	Create a Request object when a POST is made to those endpoints.

	Call the request’s Request.handle() method repeatedly until its state is COMPLETE.

	Call Request.finalize() to get a Response object and then return Response.toString() to the client.

Step 1: Generate a URL

SQRL endpoints are identified using a format detailed in the specification [LINK FORTHCOMING]. First create a Url object by passing it the authority part of the URL and your “server friendly name” or SFN.

You then Url.generate() the actual string by passing it the path, any additional query parameters your service expects, and some other data needed to produce the “nut” (what SQRL calls the nonce used with each and every interaction). The library includes a Nut class that will generate them for you and use them for validating later interactions.

Step 2: Receive a Request

When a request is POSTed to your endpoint, pass all that data, along with some verification information, to a new Request object.

The Request class acts as a simple state machine. Its state can be one of five strings:

	NEW (initial state, no processing has been done)

	WELLFORMED (initial well-formedness checks have been done and passed)

	VALID (initial validity tests have been done and passed; while in this state, the request will process client-submitted commands)

	ACTION (the server needs to provide additional information)

	COMPLETE (end state; finalize and return the response)

Step 3: Handle the Request

After the class is initialized, call Request.handle() to start the transition loop. It will never exit without the state being either ACTION or COMPLETE.

	ACTION means the library needs information from the server. In this state, the object will have a payload that explains what it needs (explained further below).

	COMPLETE means that all requested processing is done. You can finalize and return the response, which will include the necessary status codes for the client.

When the Request is in an ACTION state, the server should examine the object’s action attribute. It will be a list of tuples. Each should be processed in the order given. Each tuple will consist of at least one element, which will contain the verb. Depending on the verb, additional elements may be present. The server is responsible for correctly handling all the verbs. Once the server has all the requested information, it again calls the Request.handle() method, but this time passing in a dictionary containing the requested information.

The Request object will process that information and try again to move the request to a COMPLETE state. If you fail to pass required information, or pass malformed information, the class will raise an exception. If the server has correctly implemented all the verbs, this should never happen. Any errors that arise from the protocol itself will be signalled through the Response object. The server does not have to worry about this.

Verbs

auth

Asks the server to officially authenticate the given user.
If the user is not already recognized, then this should be
taken as a request to create a new account. In this case the
SUK and VUK must be present. The server saves the three
keys, creates the account, and authenticates the user.

Contains the following additional elements:

	String (required) representing the Identity Key (IDK)

	String or None (required) the Server Unlock Key (SUK)

	String or None (required) the Verify Unlock Key (VUK)

	String constant cps (optional) requesting
that the auth be handled as a “Client Provided
Session”

The subsequent call to Request.handle() expects the following dictionary:

	authenticated : (required) boolean

	If present and True, the handler will signal
success to the client.
If present and False, the handler will signal
an error.
If not provided, the handler will throw an exception.

	url : (optional) string

	If ‘cps’ was set, and the server supports it,
it can pass a path to a pre-authenticated endpoint
here (path only).

	disabled : (optional) ANY

	The presence of this key (regardless of value) means
the primary identity is recognized but that the user
disabled it. It cannot be used for authentication
until reenabled or rekeyed.

	suk : (dependent) string

	If the account is disabled, then you must provide
the Server Unlock Key. Failure to do so will raise
an exception.

btn

Means the request was accompanied by a ‘btn’ parameter.

Contains the following additional element:

	String : One of ‘1’, ‘2’, or ‘3’

This action has no requirements for subsequent calls to Request.handle().

confirm

Means there is an issue with the nut. The server must
confirm whether they wish to proceed. It’s important
to let the server decide because (a) it might be
expected that the IPs don’t match (cross-device login)
and (b) the “counter” part of the nut could be used to
store other types of information instead.

Contains the following additional element:

	
	Array of strings representing possible issues:

	
	ip: the ip addresses didn’t match

	time: the nut is older than the specified ttl

	counter: the counter did not pass requested sanity checks

The subsequent call to Request.handle() expects the following dictionary:

	confirmed : boolean

	If present and True, the handler will process
the request. In all other cases, the handler
will set the appropriate error codes and
terminate.

disable

Tells the server to disable this SQRL identity.

Contains the following additional element:

	String (required) representing the SQRL identity

The subsequent call to Request.handle() expects the following dictionary:

	deactivated : (required) boolean

	If present and True, the server is saying they have complied.
If present and False, the user will be notified that the command was
not completed.
If not present, an exception will be thrown.
True implies ‘found’ is also True.

	suk : (depends) string

	If ‘deactivated’ is True , you must provide the Server
Unlock Key. Failure to do so will raise an exception.

	found : (optional, recommended) boolean

	Only useful if ‘deactivated’ is False.
If present, signals whether the server recognizes this user.

enable

Tells the server to enable the given account.

Contains the following additional element:

	String (required) representing the SQRL identity

The subsequent call to Request.handle() expects the following dictionary:

	activated : (required) boolean

	If present and True, the server is saying they have complied.
If present and False, the user will be notified
that the command was not completed.
If not present, an exception will be thrown.
True implies ‘found’ is also True.

	found : (optional, recommended) boolean

	Only useful if ‘activated’ is False.
If present, signals whether the server recognizes this user.

find

Asks the server to locate the given keys in their user database.

Contains the following additional element:

	Array of strings representing SQRL identities.
This array will always at least contain the
primary identity. If a previous identities were
given by the client, they will also appear in
the list. The spec currently limits the number
of previous identities to one at a time (meaning
this array should never be longer than two
elements), but there’s no reason to enforce that
at this level. The server should simply check
all keys.

The subsequent call to Request.handle() expects the following dictionary:

	found : (required) array of booleans

	True indicates that the key is recognized.
False indicates that the key is not recognized.
The order should be the same as provided in
the action property.

	disabled : (optional) ANY

	The presence of this key (regardless of value)
means the primary identity is recognized but
that the user disabled it. It cannot be used
for authentication until reenabled or rekeyed.

	suk : (dependent) string

	If the account is disabled, then you must
provide the Server Unlock Key. Failure to do
so will raise an exception.

hardlock

Tells the server whether to enable or disable ‘hardlock’ on
the server side.

Contains the following additional element:

	Boolean (required) signalling whether the option
should be turned on or off.

The subsequent call to Request.handle() expects the following dictionary:

	hardlock: (optional) boolean

	If present and False, the handler will hard fail.
It will set codes 0x10 and 0x40 and abort.
In all other cases, the code will simply assume the
server has complied.

ins

Means the request was accompanied by a ‘ins’ parameter.

Contains the following additional element:

	String : The value of the ‘ins’ parameter

This action has no requirements for subsequent calls to Request.handle().

pins

Means the request was accompanied by a ‘pins’ parameter.

Contains the following additional element:

	String : The value of the ‘ins’ parameter

This action has no requirements for subsequent calls to Request.handle().

remove

Tells the server to remove the given account.

Contains the following additional element:

	String (required) representing the SQRL identity

The subsequent call to Request.handle() expects the following dictionary:

	removed : (required) boolean

	If present and True, the server is saying they have complied.
If present and False, the user will be notified
that the command was not completed.
If not present, an exception will be thrown.
True implies ‘found’ is also True.

	found : (optional, recommended) boolean

	Only useful if ‘removed’ is False.
If present, signals whether the server recognizes this user.

sqrlonly

Tells the server whether to enable or disable ‘sqrlonly’
on the server side.

Contains the following additional element:

	Boolean (required) signalling whether the option should
be turned on or off.

The subsequent call to Request.handle() expects the following dictionary:

	sqrlonly : (optional) boolean

	If present and False, the handler will hard fail.
It will set codes 0x10 and 0x40 and abort.
In all other cases, the code will simply assume
the server has complied.

suk

Tells the server to send the stored Server Unlock Key.

This action contains no additional elements.

The subsequent call to Request.handle() expects the following dictionary:

	suk : (optional) string

	If the server knows this user, it must return the
Server Unlock Key.

vuk

Tells the server to send the Verify Unlock Key. This is needed
for account recovery functions like ‘enable’ and ‘remove’.

This action contains no additional elements.

The subsequent call to Request.handle() expects the following dictionary:

	vuk : (required) string or None

	If None, then the server is asserting it doesn’t
have the VUK. A client error will be flagged.
Will raise an exception if ‘vuk’ is not present.

Requests

Additionally, the server can proactively request information
from the client. The spec currently supports two such features,
triggered by adding the following to the args argument
when calling the handler.

ask

Sends a message to the client. If the client sends a response, it will
make it available via the ‘btn’ action.

The value must be a dictionary containing at least
the key msg (string), containing the message to be sent.
It may also contain the key buttons, which, if present,
must consist of a tuple of one or two other tuples, each
representing a button. The first element must be the text
for the button. A second element, if present, will be
interpreted as a URL to associate with the button. The library
will inject a well-formed ‘ask’ parameter into the
finalized response.

can

Injects a cancellation URL into any response.

The value must be a valid URL path, with parameters,
if desired.

sin

Completes the requested command but also sends a value to
the client to be encrypted. The client would then hopefully
reply with the INS and possibly PINS
encrypted values.

The value must be a string.

Step 4: Finalize & Return the Response

The Request.finalize() method does the final steps to prepare the Response. You must pass it either a Nut you manually generated or the data needed to autogenerate a new one for you. It also finalizes the URL you want the client to respond to with its next request.

This method does not affect the Request object in any way. You can safely call this method multiple times with different parameters.

It will return to you a valid Response object.

At this point it’s a simple matter of calling Response.toString() and returning that in the body of your response to the client’s POST.

For optimum security, you should also store the results of Response.hmac() with the session data and pass it to the new Request object you create when the client responds.

Examples

The library is pretty thoroughly unit tested. See the tests folder for those.

Here are very basic examples.

Step 1: Generate a URL:

import sqrlserver
import nacl.utils

key = nacl.utils.random(32)
url = sqrlserver.Url('example.com', 'Example Site')
urlstr = u.generate('/auth/sqrl')
#urlstr = 'sqrl://example.com/auth/sqrl?nut=XXXXX&sfn=RXhhbXBsZSBTaXRl'

Step 2: Receive a Request:

req = Request(key, 'Example Site', postparams) #let's assume a basic ``query`` command
assert req.state == 'NEW'

Step 3: Handle the Request:

req.handle()
assert req.state == 'ACTION'
assert req.action == [('find', ['TLpyrowLhWf9-hdLLPQOA-7-xplI9LOxsfLXsyTccVc'])]

req.handle({'found': [True]})
assert req.state == 'COMPLETE'

Step 4: Finalize & Return the Response:

response = req.finalize(counter=101) #will use last URL for 'qry'
#store ``response.hmac(key)`` to the session data
#return ``response.toString()`` to the client

Divergences

The spec is still in flux. These are the known divergences/caveats related to how this library represents the spec.

	Status code 0x100 is not currently used. If IDs ever get rolled into the nut, then this could change.

	The spec is unclear about how to handle unsupported options. For now, the library leaves it up to the server to decide whether to hard or soft fail an option request. Hard fail will result in setting TIF codes 0x10 and 0x80 and aborting any requested actions. A soft fail will result in the command being successfully concluded without any notice to the user, unless the server chooses to use the ASK feature.

sqrlserver

	sqrlserver package
	Submodules
	sqrlserver.nut module

	sqrlserver.request module

	sqrlserver.response module

	sqrlserver.url module

	sqrlserver.utils module

	Module contents

sqrlserver package

Submodules

	sqrlserver.nut module

	sqrlserver.request module

	sqrlserver.response module

	sqrlserver.url module

	sqrlserver.utils module

Module contents

sqrlserver.nut module

	
class sqrlserver.nut.Nut(key)

	Bases: object

A class encompassing SQRL nuts.

The server should not need to use this class directly, but of course
it may. It is designed to work as follows:

	Construct the object with the 32-byte key.

	If generating a new nut, use generate() followed by
toString().

	If validating an existing nut, use load(), then validate(),
then look at the various attributes to determine if any errors were found.

	
key

	bytes – 32 bytes used to encrypt the nut.

	
ipmatch

	bool – Whether the last validation found matching IPs.

	
fresh

	bool – Whether the last validation found the nut to be fresh.

	
countersane

	bool – Whether the last validation found the
counter to be within limits. Default is False, even if counter
checking was disabled.

	
isqr

	bool – Set when loading a nut. States whether it’s a QR nut.

	
islink

	bool – Set when loading a nut. States whether it’s a link nut.

	
generate(ipaddr, counter, timestamp=None)

	Generates a unique nut using the technique described in the spec (LINK)

	Parameters:	
	ipaddr (string) – The string representation of a valid
IPv4 or IPv6 address.

	counter (uint) – An incremental counter. Used for sanity checking.

	Keyword Arguments:

	 	timestamp (uint) – Unix timestamp (seconds only). If None,
current time is used.

	Returns:	The populated Nut object.

	Return type:	Nut

	
load(nut)

	Decrypts the given nut and extracts its parts.

	Parameters:	nut (string) – A previously generated nut string

	Returns

	Nut

	
toString(flag)

	Converts the given nut to a base64url-encoded string

	Parameters:	flag (string) – One of qr, link, or raw.

Warning

While it is possible to do this to the “raw” nut, don’t! It has
not been encrypted.

	Returns:	b64u-encoded nut

	Return type:	string

	
validate(ipaddr, ttl, maxcounter=None, mincounter=0)

	Validates the currently loaded nut.

The nut must be generated or loaded first. It is the user’s
responsiblity to keep a list of valid nuts and reject repeats,
to avoid replay attacks. This routine only validates the data
encoded into the nut.

	Parameters:	
	ipaddr (string) – The string representation of a valid
IPv4 or IPv6 address.

	ttl (uint) – Number of seconds old the nut is allowed to be.

	Keyword Arguments:

	 	
	maxcounter (uint) – Current counter. If None, then no
upper-bound checking will occur.

	mincounter (uint) – Smallest counter value you’re willing
to accept. If None, then no lower-bound checking will
occur

	Returns:	The user has to inspect the attributes ipmatch,
fresh, and countersane to determine if the nut fully
validated.

	Return type:	Nut

sqrlserver.request module

	
class sqrlserver.request.Request(key, params, **kwargs)

	Bases: object

Class encompassing SQRL client requests

The class acts as a simple state machine. The request can have one
of five states:

	NEW (initial state, no processing has been done)

	WELLFORMED (initial well-formedness checks have been done and passed)

	VALID (initial validity tests have been done and passed;
while in this state, the request will process client-
submitted commands)

	ACTION (the user needs to provide additional information)

	COMPLETE (end state; finalize and return the response)

After the class is initialized, call handle to start the
transition loop. It will never exit without the state being either
ACTION or COMPLETE.

	ACTION means the user needs to gather information. It is
accompanied by a payload that explains what it needs.

	COMPLETE means that all processing that can be done has been
done. You can finalize and return the response, which will
include the necessary status codes for the client.

Note

Errors in the **kwargs will result in a thrown
ValueError. Any other errors that arise not from client
input also result in thrown errors. All client-related
errors are communicated through the Response object.

	Parameters:	
	key (bytes) – 32-byte encryption key. Must be the same as
what you used to encrypt the nut.

	params (dict) – All the query parameters from the query string
and POST body.

The following parameters must exist:

	nut

	server

	client

	ids

Depending on the content of these, additional parameters
may also be needed. Missing or malformed parameters will
result in an error response.

	Keyword Arguments:

	 	
	ipaddr (string) – String representation of the valid IPv4
or IPv6 address the request came from. Defaults to
‘0.0.0.0’.

	ttl (uint) – Required. The maximum acceptable age in
seconds of the submitted nut. Defaults to 600 (10
minutes).

	maxcounter (uint) – The maximum acceptable counter value
in the submitted nut. Defaults to None, which disables
upper-limit checking of the counter.

	mincounter (uint) – The minimum acceptable counter value
in the submitted nut. Defaults to None, which disables
lower-limit checking of the counter.

	secure (bool) – Whether the request was received via SSL.
Defaults to True.

	hmac (string) – The response object emits a keyed MAC.
Because this library is stateless, the server has to be
responsible for storing this MAC if desired (recommended).
It would need to be stored and returned with each repeated
query in the same client session. If present, the validity
check will verify that the MAC is valid. It is keyed by
the master key passed at object instantiation. Unless that
key is relatively stable, this check may not be useful.

	
finalize(**kwargs)

	Finalizes and returns the internal Response object.

This function has no side effects. It can be called multiple
times without issue. SFN is injected automatically.

	Keyword Arguments:

	 	
	counter (uint) – 32-byte integer to encode as the
counter value in the new nut. Must be provided if you
want the object to generate the nut for you.

	ipaddr (string) – The IPv4 or IPv6 address you want encoded
into the new nut. If not provided, it will use the ipaddress
saved in the Request object.

	nut (Nut) – A pre-generated nut. If provided, this nut will
be injected into the response. Otherwise a new nut will
be generated and injected for you.

	params (dict) – A dictionary of name-value pairs that will be
sent to the client, and that the client is supposed to
return untouched. You can also encode these values into
the qry.

	qry (string) – The URL the client should respond to. If
not provided,the last value sent will be used. This is a
good place to also encode any state information you want
the client to return to you (though see params below).
The scheme and netloc parts will be stripped, if given.
The nut (whether autogenerated or provided) will be
inserted into qry for you.

	timestamp (uint) – Unix timestamp (seconds only) to be encoded
into the new nut. If omitted, it will use the current
system time.

	Returns:	the finalized response object.

	Return type:	Response

	
handle(args={})

	The core request handler.

After each call, it will set the state property to either
ACTION or COMPLETE. The user is expected to keep
calling handle (with appropriate args) until
COMPLETE, at which point the response object can be
finalized and returned.

	Parameters:	args (dict) – Different action settings require
different information to resolve (documented below). Pass
that data here.

Notes

The goal of this library is to generalize as much as is
reasonable. That means this code has no idea how your
server runs or stores data. So to fulfil the request, it
may require additional information. That is gathered by
setting the state to ACTION and by setting the
action property.

The action property, if set, will be an array of
tuples. The actions should be resolved in the order
provided.

The first element of each tuple will be a keyword.
Depending on that keyword, additional elements may be
provided. You are expected to call handle again with
any requested information passed in a single dictionary.

For more details, please read the standalone docs.

sqrlserver.response module

	
class sqrlserver.response.Response(ver=1)

	Bases: object

Class encompassing a response to a SQRL request

	Keyword Arguments:

	 	ver (uint) – The version number for this response. Defaults to 1.

	
ver

	uint – The version of this response.

	
tif

	string – The hexadecimal status bits set in this response
in the string format required by the spec.

	
params

	dict – The name-value pairs currently set.

	
addParam(key, value)

	Adds/updates the given name-value pair

	
hmac(key)

	Computes the HMAC for the current state of the response

	
static load(ref)

	Loads an existing response into a new one

	
tif

	Converts the _tif property into the printable format required by the spec.

	
tifOff(*args)

	Turns off the given status bits, if not already off.

	
tifOn(*args)

	Turns on given status bits, if not already on.

	
toString()

	Converts to b64u encoded string

sqrlserver.url module

	
class sqrlserver.url.Url(authority, secure=True)

	Bases: object

Represents the SQRL URL that identifies SQRL endpoints

	Parameters:	
	authority (string) – The authority part of the url the SQRL
client will contact to authenticate. Includes the username,
password, domain, and port. See RFC 3986, Jan 2005, section
3.2 (https://tools.ietf.org/html/rfc3986#section-3.2)

	secure (bool) – If True, uses the sqrl scheme, otherwise
it uses qrl. Defaults to True.

	Returns:	The initial Url object

	Return type:	Url

	
generate(path, **kwargs)

	Generates the actual URL

	Parameters:	path (string) – The path portion of the URL. Must not contain
any query parameters and must be absolute.

	Keyword Arguments:

	 	
	counter (uint) – The counter you wish to encode into the new nut
(assuming you didn’t provide one). Required if a nut is to
be autogenerated.

	ext (uint) – The number of characters in the path that the SQRL
client should include as part of the formal server ID.
Default is 0.

	ipaddr (string) – The IPv4 or IPv6 you wish to encode into the
new nut (assuming you didn’t provide one). Defaults to ‘0.0.0.0’.

	key (bytes) – The 32-byte key with which to encrypt the new
nut (assuming you didn’t provide one). Required if a nut is
to be autogenerated.

	nut (Nut) – The nut you wish to embed in the URL. If omitted,
one will be generated for you.

	query (list) – Array of tuples, each representing additional
name-value pairs that will be appended to the SQRL url.

	timestamp (uint) – The UNIX timestamp (seconds only) you wish
to encode into the new nut (assuming you didn’t provide one).
Defaults to current system time.

	type (string) – Either ‘qr’ or ‘link’. Defaults to ‘qr’.
Used for setting the link type flag in the new nut.

	Returns:	A string representing a valid SQRL URL

	Return type:	string

sqrlserver.utils module

	
sqrlserver.utils.addquery(url, params)

	Adds/replaces query paramters to a url

For predictability and testing, they are sorted alphabetically.

	
sqrlserver.utils.delquery(url, *args)

	Removes requested query paramters from a url

For predictability and testing, they are sorted alphabetically.

	
sqrlserver.utils.depad(data)

	Removes padding characters from the end of b64u encoded strings

	
sqrlserver.utils.pad(data)

	Pads a string so the length is a multiple of 4

	
sqrlserver.utils.stripurl(url)

	Strips scheme and netloc from urls

 Python Module Index

 s

 		 	

 		
 s	

 	[image: -]
 	
 sqrlserver	

 	
 	
 sqrlserver.nut	

 	
 	
 sqrlserver.request	

 	
 	
 sqrlserver.response	

 	
 	
 sqrlserver.url	

 	
 	
 sqrlserver.utils	

Index

 A
 | C
 | D
 | F
 | G
 | H
 | I
 | K
 | L
 | N
 | P
 | R
 | S
 | T
 | U
 | V

A

 	
 	addParam() (sqrlserver.response.Response method)

 	
 	addquery() (in module sqrlserver.utils)

C

 	
 	countersane (sqrlserver.nut.Nut attribute)

D

 	
 	delquery() (in module sqrlserver.utils)

 	
 	depad() (in module sqrlserver.utils)

F

 	
 	finalize() (sqrlserver.request.Request method)

 	
 	fresh (sqrlserver.nut.Nut attribute)

G

 	
 	generate() (sqrlserver.nut.Nut method)

 	(sqrlserver.url.Url method)

H

 	
 	handle() (sqrlserver.request.Request method)

 	
 	hmac() (sqrlserver.response.Response method)

I

 	
 	ipmatch (sqrlserver.nut.Nut attribute)

 	
 	islink (sqrlserver.nut.Nut attribute)

 	isqr (sqrlserver.nut.Nut attribute)

K

 	
 	key (sqrlserver.nut.Nut attribute)

L

 	
 	load() (sqrlserver.nut.Nut method)

 	(sqrlserver.response.Response static method)

N

 	
 	Nut (class in sqrlserver.nut)

P

 	
 	pad() (in module sqrlserver.utils)

 	
 	params (sqrlserver.response.Response attribute)

R

 	
 	Request (class in sqrlserver.request)

 	
 	Response (class in sqrlserver.response)

S

 	
 	sqrlserver (module)

 	sqrlserver.nut (module)

 	sqrlserver.request (module)

 	
 	sqrlserver.response (module)

 	sqrlserver.url (module)

 	sqrlserver.utils (module)

 	stripurl() (in module sqrlserver.utils)

T

 	
 	tif (sqrlserver.response.Response attribute), [1]

 	tifOff() (sqrlserver.response.Response method)

 	
 	tifOn() (sqrlserver.response.Response method)

 	toString() (sqrlserver.nut.Nut method)

 	(sqrlserver.response.Response method)

U

 	
 	Url (class in sqrlserver.url)

V

 	
 	validate() (sqrlserver.nut.Nut method)

 	
 	ver (sqrlserver.response.Response attribute)

 _static/up.png

_static/down.png

_static/comment-close.png

_static/down-pressed.png

_static/ajax-loader.gif

_static/comment.png

_static/plus.png

nav.xhtml

 Table of Contents

 		SQRL Server

_static/minus.png

_static/up-pressed.png

_static/file.png

_static/comment-bright.png

