

sqlwhat

For an introduction to SCTs and how they use sqlwhat, visit the README [https://github.com/datacamp/sqlwhat].

This documentation features:

	A glossary with typical use-cases and corresponding SCT constructs.

	Reference documentation of all actively maintained sqlwhat functions.

	Some articles that gradually expose of sqlwhat’s functionality and best practices.

If you are new to writing SCTs for SQL exercises, start with the tutorial.
The glossary is good to get a quick overview of how all functions play together after you have a basic understanding.
The reference docs become useful when you grasp all concepts and want to look up details on how to call certain functions and specify custom feedback messages.

If you find yourself writing SCTs for more advanced SQL queries, you’ll probably venture into SCT functions that verify the AST representation of SQL queries.
When you do, make sure to keep the AST viewer [https://ast-viewer.datacamp.com] open; it is a great tool to
understand how different SQL statements are parsed and how to write your SCTs.

Glossary

	Glossary

Reference

	Result checks

	AST Checks

	Logic

	Electives

Articles

	Tutorial

	Result Checks

	AST Checks

For details, questions and suggestions, contact us.

Glossary

This article lists some example solutions. For each of these solutions, an SCT
is included, as well as some example student submissions that would pass and fail.
In all of these, a submission that is identical to the solution will evidently pass.

Note

These SCT examples are not golden bullets that are perfect for your situation.
Depending on the exercise, you may want to focus on certain parts of a statement, or be
more accepting for different alternative answers.

All of these examples come from the Intro to SQL for Data Science [https://https://www.datacamp.com/courses/intro-to-sql-for-data-science]
and Joining data in PostgreSQL [https://www.datacamp.com/courses/joining-data-in-postgresql] courses. You can have a look at their
respective GitHub sources:

	https://github.com/datacamp/courses-intro-to-SQL (public)

	https://github.com/datacamp/courses-joining-data-in-postgresql (DataCamp-only).

Selecting a column

-- solution query
SELECT title FROM films;

sct
Ex().check_correct(
 check_column('title').has_equal_value(),
 check_node('SelectStmt').multi(
 check_edge('target_list', 0).has_equal_ast(),
 check_edge('from_clause').has_equal_ast()
)
)

-- submissions that pass
SELECT title FROM films
SELECT id, title FROM films
SELECT id, title FROM films ORDER by id

-- submissions that fail
SELECT id FROM films
SELECT id FROM films LIMIT 5

Star argument

-- solution query
SELECT * FROM films;

sct
Ex().check_correct(
 check_all_columns().has_equal_value(),
 check_node('SelectStmt').multi(
 check_node('Star', missing_msg="Are you using `SELECT *` to select _all_ columns?"),
 check_edge('from_clause').has_equal_ast()
)
)

-- submissions that pass
SELECT * FROM films
SELECT id, title, <all_other_cols>, year FROM films
SELECT * FROM films ORDER by year

-- submissions that fail
SELECT id FROM films
SELECT id, title FROM films
SELECT * FROM films LIMIT 5

COUNT(*)

-- solution query
SELECT COUNT(*) FROM films;

sct
Ex().check_correct(
 check_column('count').has_equal_value(),
 check_node('SelectStmt').multi(
 check_node('Call').multi(
 check_edge('name').has_equal_ast(),
 check_edge('args').has_equal_ast()
),
 check_edge('from_clause').has_equal_ast()
)
)

-- submissions that pass
SELECT COUNT(*) FROM films
SELECT COUNT(id) FROM films

-- submissions that fail
SELECT * FROM films
SELECT COUNT(*) FROM films WHERE id < 100

WHERE clause

-- solution query
SELECT name, birthdate
FROM people
WHERE birthdate = '1974-11-11';

First check if the WHERE clause was correct
Ex().check_correct(
 has_nrows(),
 check_node('SelectStmt').multi(
 check_edge('from_clause').has_equal_ast(),
 check_edge('where_clause').has_equal_ast()
)
)

Next check if right columns were included
Ex().check_correct(
 check_all_columns().has_equal_value(),
 check_node('SelectStmt').check_edge('target_list').check_or(
 has_equal_ast(),
 has_equal_ast(sql = "birthdate, name")
)
)

ORDER BY

SELECT name
FROM people
ORDER BY name;

Check whether the right column was included
Ex().check_column('name')

Ex().check_correct(
 # Check whether the name column is correct (taking into account order)
 check_column('name').has_equal_value(ordered=True),
 check_node('SelectStmt').multi(
 check_edge('from_clause').has_equal_ast(),
 check_edge('order_by_clause').has_equal_ast()
)
)

Joins

SELECT *
FROM cities
INNER JOIN countries
ON cities.country_code = countries.code;

First check if the joining went well (through checking the number of rows)
Ex().check_correct(
 has_nrows(),
 check_node('SelectStmt').check_edge('from_clause').multi(
 check_edge('join_type').has_equal_ast(),
 check_edge('left').has_equal_ast(),
 check_edge('right').has_equal_ast(),
 check_edge('cond').check_or(
 has_equal_ast(),
 # the other way around should also work
 has_equal_ast(sql = 'countries.code = cities.country_code')
)
)
)

Check if all columns are included and correct
Ex().check_correct(
 check_all_columns().has_equal_value(),
 check_node('SelectStmt').check_node('Star')
)

Result checks

	
allow_error(state)

	Allow submission to pass, even if it originally caused a database error.

This function has been renamed.

Use Ex().allow_errors() in your SCT if the intent of the exercise is to
generate an error.

	
check_all_columns(state, allow_extra=True, too_many_cols_msg=None, expand_msg=None)

	Zoom in on the columns that are specified by the solution

Behind the scenes, this is using check_column() for every column that is in the solution query result.
Afterwards, it’s selecting only these columns from the student query result and stores them in a child
state that is returned, so you can use has_equal_value() on it.

This function does not allow you to customize the messages for check_column(). If you want to manually
set those, simply use check_column() explicitly.

	Parameters

	
	allow_extra – True by default, this determines whether students are allowed to have included
other columns in their query result.

	too_many_cols_msg – If specified, this overrides the automatically generated feedback message in
case allow_extra is False and the student’s query returned extra columns when
comparing the so the solution query result.

	expand_msg – if specified, this overrides the automatically generated feedback
message that is prepended to feedback messages that are thrown
further in the SCT chain.

	Example

	Consider the following solution and SCT:

solution
SELECT artist_id as id, name FROM artists

sct
Ex().check_all_columns()

passing submission
SELECT artist_id as id, name FROM artists

failing submission (wrong names)
SELECT artist_id, name FROM artists

passing submission (allow_extra is True by default)
SELECT artist_id as id, name, label FROM artists

	
check_column(state, name, missing_msg=None, expand_msg=None)

	Zoom in on a particular column in the query result, by name.

After zooming in on a column, which is represented as a single-column query result,
you can use has_equal_value() to verify whether the column in the solution query result
matches the column in student query result.

	Parameters

	
	name – name of the column to zoom in on.

	missing_msg – if specified, this overrides the automatically generated feedback
message in case the column is missing in the student query result.

	expand_msg – if specified, this overrides the automatically generated feedback
message that is prepended to feedback messages that are thrown
further in the SCT chain.

	Example

	Suppose we are testing the following SELECT statements

	solution: SELECT artist_id as id, name FROM artists

	student : SELECT artist_id, name FROM artists

We can write the following SCTs:

fails, since no column named id in student result
Ex().check_column('id')

passes, since a column named name is in student_result
Ex().check_column('name')

	
check_query(state, query, error_msg=None, expand_msg=None)

	Run arbitrary queries against to the DB connection to verify the database state.

For queries that do not return any output (INSERTs, UPDATEs, …),
you cannot use functions like check_col() and has_equal_value() to verify the query result.

check_query() will rerun the solution query in the transaction prepared by sqlbackend,
and immediately afterwards run the query specified in query.

Next, it will also run this query after rerunning the student query in a transaction.

Finally, it produces a child state with these results, that you can then chain off of
with functions like check_column() and has_equal_value().

	Parameters

	
	query – A SQL query as a string that is executed after the student query is re-executed.

	error_msg – if specified, this overrides the automatically generated feedback
message in case the query generated an error.

	expand_msg – if specified, this overrides the automatically generated feedback
message that is prepended to feedback messages that are thrown
further in the SCT chain.

	Example

	Suppose we are checking whether an INSERT happened correctly:

INSERT INTO company VALUES (2, 'filip', 28, 'sql-lane', 42)

We can write the following SCT:

Ex().check_query('SELECT COUNT(*) AS c FROM company').has_equal_value()

	
check_result(state)

	High level function which wraps other SCTs for checking results.

check_result()

	uses lowercase(), then

	runs check_all_columns() on the state produced by lowercase(), then

	runs has_equal_value on the state produced by check_all_columns().

	
check_row(state, index, missing_msg=None, expand_msg=None)

	Zoom in on a particular row in the query result, by index.

After zooming in on a row, which is represented as a single-row query result,
you can use has_equal_value() to verify whether all columns in the zoomed in solution
query result have a match in the student query result.

	Parameters

	
	index – index of the row to zoom in on (zero-based indexed).

	missing_msg – if specified, this overrides the automatically generated feedback
message in case the row is missing in the student query result.

	expand_msg – if specified, this overrides the automatically generated feedback
message that is prepended to feedback messages that are thrown
further in the SCT chain.

	Example

	Suppose we are testing the following SELECT statements

	solution: SELECT artist_id as id, name FROM artists LIMIT 5

	student : SELECT artist_id, name FROM artists LIMIT 2

We can write the following SCTs:

fails, since row 3 at index 2 is not in the student result
Ex().check_row(2)

passes, since row 2 at index 1 is in the student result
Ex().check_row(0)

	
lowercase(state)

	Convert all column names to their lower case versions to improve robustness

	Example

	Suppose we are testing the following SELECT statements

	solution: SELECT artist_id as id FROM artists

	student : SELECT artist_id as ID FROM artists

We can write the following SCTs:

fails, as id and ID have different case
Ex().check_column('id').has_equal_value()

passes, as lowercase() is being used
Ex().lowercase().check_column('id').has_equal_value()

	
has_equal_value(state, ordered=False, ndigits=None, incorrect_msg=None)

	Verify if a student and solution query result match up.

This function must always be used after ‘zooming’ in on certain columns or records (check_column, check_row or check_result).
has_equal_value then goes over all columns that are still left in the solution query result, and compares each column with the
corresponding column in the student query result.

	Parameters

	
	ordered – if set to False, the default, all rows are sorted (according
to the first column and the following columns as tie breakers).
if set to True, the order of rows in student and solution query have to match.

	ndigits – if specified, number of decimals to use when comparing column values.

	incorrect_msg – if specified, this overrides the automatically generated feedback
message in case a column in the student query result does not match
a column in the solution query result.

	Example

	Suppose we are testing the following SELECT statements

	solution: SELECT artist_id as id, name FROM artists ORDER BY name

	student : SELECT artist_id, name FROM artists

We can write the following SCTs:

passes, as order is not important by default
Ex().check_column('name').has_equal_value()

fails, as order is deemed important
Ex().check_column('name').has_equal_value(ordered=True)

check_column fails, as id is not in the student query result
Ex().check_column('id').has_equal_value()

check_all_columns fails, as id not in the student query result
Ex().check_all_columns().has_equal_value()

	
has_ncols(state, incorrect_msg="Your query returned a table with {{n_stu}} column{{'s' if n_stu > 1 else ''}} while it should return a table with {{n_sol}} column{{'s' if n_sol > 1 else ''}}.")

	Test whether the student and solution query results have equal numbers of columns.

	Parameters

	incorrect_msg – If specified, this overrides the automatically generated feedback message
in case the number of columns in the student and solution query don’t match.

	Example

	Consider the following solution and SCT:

solution
SELECT artist_id as id, name FROM artists

sct
Ex().has_ncols()

passing submission
SELECT artist_id as id, name FROM artists

failing submission (too little columns)
SELECT artist_id as id FROM artists

passing submission (two columns, even though not correct ones)
SELECT artist_id, label FROM artists

	
has_no_error(state, incorrect_msg='Your code generated an error. Fix it and try again!')

	Check whether the submission did not generate a runtime error.

Simply use Ex().has_no_error() in your SCT whenever you want to check for errors.
By default, after the entire SCT finished executing, sqlwhat will check
for errors before marking the exercise as correct. You can disable this behavior
by using Ex().allow_error().

	Parameters

	incorrect_msg – If specified, this overrides the automatically generated feedback message
in case the student’s query did not return a result.

	
has_nrows(state, incorrect_msg="Your query returned a table with {{n_stu}} row{{'s' if n_stu > 1 else ''}} while it should return a table with {{n_sol}} row{{'s' if n_sol > 1 else ''}}.")

	Test whether the student and solution query results have equal numbers of rows.

	Parameters

	incorrect_msg – If specified, this overrides the automatically generated feedback message
in case the number of rows in the student and solution query don’t match.

	
has_result(state, incorrect_msg='Your query did not return a result.')

	Checks if the student’s query returned a result.

	Parameters

	incorrect_msg – If specified, this overrides the automatically generated feedback message
in case the student’s query did not return a result.

AST Checks

	
check_edge(state, name, index=0, missing_msg='Check the {ast_path}. Could not find the {index}{field_name}.')

	Select an attribute from an abstract syntax tree (AST) node, using the attribute name.

	Parameters

	
	state – State instance describing student and solution code. Can be omitted if used with Ex().

	name – the name of the attribute to select from current AST node.

	index – entry to get from a list field. If too few entires, will fail with missing_msg.

	missing_msg – feedback message if attribute is not in student AST.

	Example

	If both the student and solution code are..

SELECT a FROM b; SELECT x FROM y;

then we can get the from_clause using

approach 1: with manually created State instance -----
state = State(*args, **kwargs)
select = check_node(state, 'SelectStmt', 0)
clause = check_edge(select, 'from_clause')

approach 2: with Ex and chaining ---------------------
select = Ex().check_node('SelectStmt', 0) # get first select statement
clause = select.check_edge('from_clause', None) # get from_clause (a list)
clause2 = select.check_edge('from_clause', 0) # get first entry in from_clause

	
check_node(state, name, index=0, missing_msg='Check the {ast_path}. Could not find the {index}{node_name}.', priority=None)

	Select a node from abstract syntax tree (AST), using its name and index position.

	Parameters

	
	state – State instance describing student and solution code. Can be omitted if used with Ex().

	name – the name of the abstract syntax tree node to find.

	index – the position of that node (see below for details).

	missing_msg – feedback message if node is not in student AST.

	priority – the priority level of the node being searched for. This determines whether to
descend into other AST nodes during the search. Higher priority nodes descend
into lower priority. Currently, the only important part of priority is that
setting a very high priority (e.g. 99) will search every node.

	Example

	If both the student and solution code are..

SELECT a FROM b; SELECT x FROM y;

then we can focus on the first select with:

approach 1: with manually created State instance
state = State(*args, **kwargs)
new_state = check_node(state, 'SelectStmt', 0)

approach 2: with Ex and chaining
new_state = Ex().check_node('SelectStmt', 0)

	
has_code(state, text, incorrect_msg='Check the {ast_path}. The checker expected to find {text}.', fixed=False)

	Test whether the student code contains text.

	Parameters

	
	state – State instance describing student and solution code. Can be omitted if used with Ex().

	text – text that student code must contain. Can be a regex pattern or a simple string.

	incorrect_msg – feedback message if text is not in student code.

	fixed – whether to match text exactly, rather than using regular expressions.

Note

Functions like check_node focus on certain parts of code.
Using these functions followed by has_code will only look
in the code being focused on.

	Example

	If the student code is..

SELECT a FROM b WHERE id < 100

Then the first test below would (unfortunately) pass, but the second would fail..:

contained in student code
Ex().has_code(text="id < 10")

the $ means that you are matching the end of a line
Ex().has_code(text="id < 10$")

By setting fixed = True, you can search for fixed strings:

without fixed = True, '*' matches any character
Ex().has_code(text="SELECT * FROM b") # passes
Ex().has_code(text="SELECT * FROM b") # fails
Ex().has_code(text="SELECT * FROM b", fixed=True) # fails

You can check only the code corresponding to the WHERE clause, using

where = Ex().check_node('SelectStmt', 0).check_edge('where_clause')
where.has_code(text = "id < 10)

	
has_equal_ast(state, incorrect_msg='Check the {ast_path}. {extra}', sql=None, start='expression', exact=None)

	Test whether the student and solution code have identical AST representations

	Parameters

	
	state – State instance describing student and solution code. Can be omitted if used with Ex().

	incorrect_msg – feedback message if student and solution ASTs don’t match

	sql – optional code to use instead of the solution ast that is zoomed in on.

	start – if sql arg is used, the parser rule to parse the sql code.
One of ‘expression’ (the default), ‘subquery’, or ‘sql_script’.

	exact – whether to require an exact match (True), or only that the
student AST contains the solution AST. If not specified, this
defaults to True if sql is not specified, and to False
if sql is specified. You can always specify it manually.

	Example

	Example 1 - Suppose the solution code is

SELECT * FROM cities

and you want to verify whether the FROM part is correct:

Ex().check_node('SelectStmt').from_clause().has_equal_ast()

Example 2 - Suppose the solution code is

SELECT * FROM b WHERE id > 1 AND name = 'filip'

Then the following SCT makes sure id > 1 was used somewhere in the WHERE clause.:

Ex().check_node('SelectStmt') \/
 .check_edge('where_clause') \/
 .has_equal_ast(sql = 'id > 1')

Logic

	
classmethod Ex.__call__(state=None)

	Returns the current code state as a Chain instance.

This allows SCTs to be run without including their 1st argument, state.

When writing SCTs on DataCamp, no State argument to Ex is necessary.
The exercise State is built for you.

	Parameters

	state – a State instance, which contains the student/solution code and results.

	Example

	code

How to write SCT on DataCamp.com
Ex().has_code(text="SELECT id")

Experiment locally - chain off of Ex(), created from state
state = SomeStateProducingFunction()
Ex(state).has_code(text="SELECT id")

Experiment locally - no Ex(), create and pass state explicitly
state = SomeStateProducingFunction()
has_code(state, text="SELECT id")

	
check_correct(state, check, diagnose)

	Allows feedback from a diagnostic SCT, only if a check SCT fails.

	Parameters

	
	state – State instance describing student and solution code. Can be omitted if used with Ex().

	check – An sct chain that must succeed.

	diagnose – An sct chain to run if the check fails.

	Example

	The SCT below tests whether students query result is correct, before running diagnostic SCTs..

Ex().check_correct(
 check_result(),
 check_node('SelectStmt')
)

	
check_not(state, *tests, msg)

	Run multiple subtests that should fail. If all subtests fail, returns original state (for chaining)

	This function is currently only tested in working with has_code() in the subtests.

	This function can be thought as a NOT(x OR y OR ...) statement, since all tests it runs must fail

	This function can be considered a direct counterpart of multi.

	Parameters

	
	state – State instance describing student and solution code, can be omitted if used with Ex()

	*tests – one or more sub-SCTs to run

	msg – feedback message that is shown in case not all tests specified in *tests fail.

	Example

	Thh SCT below runs two has_code cases..

Ex().check_not(
 has_code('INNER'),
 has_code('OUTER'),
 incorrect_msg="Don't use `INNER` or `OUTER`!"
)

If students use INNER (JOIN) or OUTER (JOIN) in their code, this test will fail.

	
check_or(state, *tests)

	Test whether at least one SCT passes.

If all of the tests fail, the feedback of the first test will be presented to the student.

	Parameters

	
	state – State instance describing student and solution code, can be omitted if used with Ex()

	tests – one or more sub-SCTs to run

	Example

	The SCT below tests that the student typed either ‘SELECT’ or ‘WHERE’ (or both)..

Ex().check_or(
 has_code('SELECT'),
 has_code('WHERE')
)

The SCT below checks that a SELECT statement has at least a WHERE c or LIMIT clause..

Ex().check_node('SelectStmt', 0).check_or(
 check_edge('where_clause'),
 check_edge('limit_clause')
)

	
disable_highlighting(state)

	Disable highlighting in the remainder of the SCT chain.

Include this function if you want to avoid that pythonwhat marks which part of the student submission is incorrect.

	
fail(state, msg='fail')

	Always fails the SCT, with an optional msg.

This function takes a single argument, msg, that is the feedback given to the student.
Note that this would be a terrible idea for grading submissions, but may be useful while writing SCTs.
For example, failing a test will highlight the code as if the previous test/check had failed.

	
multi(state, *tests)

	Run multiple subtests. Return original state (for chaining).

This function could be thought as an AND statement, since all tests it runs must pass

	Parameters

	
	state – State instance describing student and solution code, can be omitted if used with Ex()

	tests – one or more sub-SCTs to run.

	Example

	The SCT below checks two has_code cases..

Ex().multi(has_code('SELECT'), has_code('WHERE'))

The SCT below uses multi to ‘branch out’ to check that
the SELECT statement has both a WHERE and LIMIT clause..

Ex().check_node('SelectStmt', 0).multi(
 check_edge('where_clause'),
 check_edge('limit_clause')
)

Electives

	
allow_errors(state)

	Allow running the student code to generate errors.

This has to be used only once for every time code is executed or a different xwhat library is used.
In most exercises that means it should be used just once.

	Example

	The following SCT allows the student code to generate errors:

Ex().allow_errors()

	
has_chosen(state, correct, msgs)

	Verify exercises of the type MultipleChoiceExercise

	Parameters

	
	state – State instance describing student and solution code. Can be omitted if used with Ex().

	correct – index of correct option, where 1 is the first option.

	msgs – list of feedback messages corresponding to each option.

	Example

	The following SCT is for a multiple choice exercise with 2 options, the first
of which is correct.:

Ex().has_chosen(1, ['Correct!', 'Incorrect. Try again!'])

	
success_msg(state, msg)

	Changes the success message to display if submission passes.

	Parameters

	
	state – State instance describing student and solution code. Can be omitted if used with Ex().

	msg – feedback message if student and solution ASTs don’t match

	Example

	The following SCT changes the success message:

Ex().success_msg("You did it!")

Tutorial

sqlwhat uses the . to ‘chain together’ SCT functions. Every chain starts with the Ex() function call, which holds the exercise state.
This exercise state contains all the information that is required to check if an exercise is correct, which are:

	the student submission and the solution as text, and their corresponding parse trees.

	the result of running the solution query, as a dictionary of columns.

	the result of running the student’s query, as a dictionary of columns

	the errors that running the student’s query generated, if any.

As SCT functions are chained together with ., the Ex() exercise state is copied and adapted into ‘sub states’ to zoom in on particular parts of the state.
Before this theory blows your brains out, let’s have a look at some basic examples.

Example 1: query result

Assume we want to robustly check whether a student correctly selected the columns title from the table films:

SELECT title FROM films

The following SCT would verify this:

Ex().check_column('title').has_equal_value()

Let’s see what happens when the SCT runs:

	Ex() returns the ‘root state’, which contains a reference to the student query, the solution query,
the result of running the student’s query, and the result of running the solution query.

	check_column('title') looks at the result of running the student’s query and the solution query, and verifies that they are there.

	If the student had submitted SELECT title, year FROM films,
the query result will contain the column title, and the function will not fail.

	If the student had submitted SELECT year FROM films,
the query result will not contain the column title,
the function will fail, and sqlwhat will automatically generate a meaningful feedback message.

If check_column('title') runs without errors, it will return a sub-state of the root-state returned by Ex(),
that zooms in solely on the title column of the query result.
This means that Ex().check_column('title') will produce the same substate for the following student submissions:

SELECT title FROM films
SELECT title, year FROM films
SELECT * FROM films

	has_equal_value() will consider the state produced by check_column('title') and verify whether
the contents of the columns match between student and solution query result.

	If the student had submitted SELECT title FROM films,
the query result of the student submission an the solution will exactly match, and the function will pass.

	If the student had submitted SELECT title, year FROM films,
the title column of the student’s query result and the solution query result will still exactly match, and the function will pass.
Note: there are ways to be more restrictive about this, and making sure that the SCT fails if additonal columns were returned.

	If the student had submitted SELECT title FROM films LIMIT 5,
the query result of the student and solution submission will not match the title column in the student query result.
The function will fail, and slqhwat will automatically genearte a meaningful feedback message.

Example 2: AST-based checks

As another example, suppose we want to robustly check whether a student correctly selected the
id column from an artists table with a certain condition:

SELECT id FROM artists WHERE id > 100

In line with Example 1, the following SCT would robustly verify the result of the query:

Ex().check_column('id').has_equal_value()

If the student makes a mistake, this SCT will produce a feedback message in the direction of:
“Check the result of your query. Column id seems to be incorrect.”. Although this is valid feedback,
you’ll typically want to be more targeted about the actual mistake in the code of the student.
This is where the AST-based checks come in.

Where functions such as check_column() and has_equal_value() look at the result of your query,
AST-based checks will look at the query itself.
More specifically, they will look at the Abstract Syntax Tree representation of the query,
which enables us to robustly look and check for certain patterns and constructs.

To explore the AST representation of a SQL query, visit the AST viewer [https://ast-viewer.datacamp.com].
The AST for the SELECT statement above is:

[image: ../_images/ast_example.png]
Notice how the statement is neatly chopped up into its consituents: the SELECT statement is chopped up into three parts:
the target_list (which columns to select), the from_clause (from which table to select) and the where_clause (the condition that has to be satisfied).
Next, the where_caluse is a BinaryExpr that is further chopped up.

Similar to how check_column('title') zoomed in on only the title column of the student’s and solution query result, you can use the . operator
to chain together AST-verifying SCT functions that each zoom in on particular parts of the student’s submission and the solution.

Suppose you want to check whether students have correctly specified the table from which to select columns (the FROM artists part). This SCT script does that:

Ex().check_node("SelectStmt").check_edge("from_clause").has_equal_ast()

We’ll now explain step by step what happens when a student submits the following (incorrect) code:

SELECT id FROM producers WHERE id > 100

When the SCT executes:

	Ex() runs first, and fetches the root state that considers the entire student submission and solution:

-- solution
SELECT id FROM artists WHERE id > 100

-- student
SELECT id FROM producers WHERE id > 100

This is the corresponding AST of the solution.
This is the same tree as included earlier in this article.
The AST for the student submission will look very similar.

[image: ../_images/ast_example.png]

	Next, check_node() chains off of the state produced by Ex() and
produces a child state that focuses on the SelectStmt portion of the submission and solution:

-- solution
SELECT id FROM artists WHERE id > 100

-- student
SELECT id FROM producers WHERE id > 100

The corresponding AST of the solution is the following. Notice that although the textual representation is the same as Ex(),
the AST representation no longer includes the Script node. The AST for the student submission will look very similar.

[image: ../_images/ast_example2.png]

	Next, check_edge() chains off of the state produced by check_node() and zooms in on the from_clause branch of the AST:

-- solution
artists

-- student
producers

The corresponding ASTs for solution and student are as follows:

[image: ../_images/ast_example3_combi.png]

	Finally, has_equal_ast() chains off of the state produced by check_edge() and
checks whether the student submission and solution sub-ASTs correspond.
As the solution expects artists while the student specified producers the SCT fails
and sqlwhat will generate a meaningful feedback message.

Note

	check_node() is used to select a node of the AST tree (a circle in the image).

	check_edge() is used to walk down a branch of the AST tree (a line in the image).

Example 3: Combining result checks and AST checks

In general, you want to write flexible SCTs: if students get the end result right, you don’t want to be picky about how they got there.
However, when they do make a mistake, you want to be specific about the mistake they are making.
In other words, a good SCT is robust against different ways of solving a problem, but specific when something’s wrong.

Example 1 looked at the result of a query, which are perfect to match the flexibility requirement.
Example 2 looks at the AST representation of the code, which is good to dig deeper into the code a student submitted to see what’s going on.

With check_correct(), you can effectively combine these two seemingly conflicting approaches. Reiterating over the query of Example 2:

SELECT id FROM artists WHERE id > 100

we can write the following SCT, that is both flexible:

Ex().check_correct(
 check_column('id').has_equal_value(),
 check_node('SelectStmt').multi(
 check_edge('from_clause').has_equal_ast(),
 check_edge('where_clause').has_equal_ast()
)
)

Notice how check_correct() starts from Ex() and is passed two arguments.

The first argument is an SCT chain of result-based checks that starts from the state passed to check_correct() (Ex() in this case).
If this SCT chain passes when executed, the second argument of check_correct() is no longer executed.
If this SCT chain fails, the SCT does not fail and throw a feedback message. Instead, the second argument, an SCT of AST-based checks
is executed that also starts from the state passed to check_correct(). This chain will generate more detaild feedback.

Note

	check_correct() passes the state it chains off of to its arguments, the subchains.

	multi() is used to ‘split SCT chains’ from the state it chains off of, and passes this state to its arguments.

This SCT:

	is flexible if the student got the right end result.
For all of the following queries, the check_column(‘id’).has_equal_value() chain passes, so the check_node() chain does not run:

SELECT id FROM artists WHERE id > 100
SELECT id, name FROM artists WHERE id > 100 AND id < 0
SELECT id FROM artists WHERE id > 100 ORDER BY id DESC

	generates specific feedback if the student made a mistake:
Instead of the generic “Column id seems to be incorrect” message, there are more targeted messages:

SELECT id FROM labels WHERE id > 100 -- "Check the FROM clause."
SELECT id FROM artists WHERE id > 50 -- "Check the WHERE clause."
SELECT id FROM artists WHERE id > 100 LIMIT 5 -- "The column id seems to be incorrect."

Notice how for the last example here, all functions in the AST-based SCT chain passed.
In this case, the more generic message is still thrown in the end.

Have a look at the glossary for more examples of SCTs that nicely combine these two families of SCT functions.

For other guidelines on writing good SCTs, check out the ‘How to write good SCTs’ section on DataCamp’s
general SCT documentation page [https://authoring.datacamp.com/courses/exercises/technical-details/sct.html].

Result Checks

As you could read in the tutorial, there are two families of SCT functions in sqlwhat:

	result-based checks, that look at the result of the student’s query and the solution query

	AST-based checks, that look at the abstract syntax tree representation of the query and allow you to check for elements.

This article gives an overview of all result-based checks, that are typically used as the first argument to check_correct().

On the lowest level, you can have the SCT fail when the student query generated an error with has_no_error():

Ex().has_no_error()

Next, you can verify whether the student query actually returned a result with has_result().
Behind the scenes, this function first uses has_no_error(): if the query resulted in an error, it cannot return a result:

Ex().has_result()

More high-level, you can compare the number of rows of the student’s query result and the solution query result with has_nrows().
This is useful to check whether e.g. a WHERE or LIMIT clause was coded up correctly to only return a subset of results:

Ex().has_nrows()

Similarly, but less-used, you can also compare the number of columns the student’s query and solution query returned.
This function fails if the number of columns doesn’t match. It passes if they do match, even if the column names differ:

Ex().has_ncols()

With check_row(), you can zoom in on a particular record of the student and solution query result,
so you can compare there values later on with has_equal_value() (see further).
The example below zooms in on the third row (with index 2) of the student query result, returning a state
that only considers the data for the third row. It fails if the student query does not contain 3 rows.

Ex().check_row(2)

Similarly, and more often used than check_row(), you can use check_column() to zoom in on a particular column
in the student’s and solution query result by name. The function fails if the column cannot be found in the student query:

Ex().check_column('title')

Often, the solution selects multiple columns from a table. Writing a check_column() for every column in there would be tedious.
Therefore, there is a utility function, check_all_columns(), that behind the scenes runs check_column() for every
column that is found in the solution query result, after which it zooms in on these columns. Suppose you have a solution query
that returns three columns, named column1, column2 and column3. If you want to verify whether these columns are
also included in the student query result, you have different options:

verbose: use check_column thrice
Ex().multi(
 check_column('column1'),
 check_column('column2'),
 check_column('column3')
)

short: use check_all_columns()
Ex().check_all_columns()

As an extra in check_all_columns(), you can also set allow_extra to False, which causes the function
to fail if the student query contains columns that the solution column does not contain. allow_extra is True by default.

All of the functions above were about checking whether the number of rows/columns are correct, whether some rows/columns could be found in the query,
but none of them look at the actual contents of the returned table. For this, you can use has_equal_value(). The function simply
looks at the student’s query result and solution query result or a subset of them (if check_row, check_column or check_all_columns() were used):

compare entire query result (needs exact match)
Ex().has_equal_value()

compare records on row 3
Ex().check_row(2).has_equal_value()

compare columns title
Ex().check_column('title').has_equal_value()

zoom in on all columsn that are also in the solution and compare them
Ex().check_all_columns().has_equal_value()

By default, has_equal_value() will order the records, so that order does not matter. If you want order to matter, you can set ordered=True:

Ex().check_all_columns().has_equal_value(ordered = True)

Finally, there is a utility function called lowercase() that takes the state it is passed, and converts all column names in both
the student and solution query result to their lowercase versions. This increases the chance for ‘matches’ when using check_column() and check_all_columns().

Suppose the student did

SELECT Title FROM artists

while the solution expected

SELECT title FROM artists

Depending on the SCT you write, it will pass or fail:

SCT that will fail
Ex().check_column('title').has_equal_value()

SCT that will pass (because Title is converted to title)
Ex().check_column('Title').has_equal_value()

For advanced examples on how result-based checks are typically used in combination with check_correct(), check out the glossary!

AST Checks

As you could read in the tutorial, there are two families of SCT functions in sqlwhat:

	result-based checks, that look at the result of the student’s query and the solution query

	AST-based checks, that look at the abstract syntax tree representation of the query and allow you to check for elements.

This article gives an overview of all AST-based checks, that are typically used as the second argument to check_correct().

Warning

If a student submission cannot be parsed properly because of a syntax error,
all AST-based checks will not run! It is therefore vital that you include your
AST-based checks in the second argument of check_correct() so they can serve
as ‘diagnosing’ SCTs rather than as ‘correctness verifying’ SCTs.

Navigating the tree

The tutorial gave a gentle introduction into how the AST of a SQL query can be ‘walked’ as it were, using check_edge() and
check_node(). In addition to the state they start from, these functions take a couple of different arguments:

	name: the name of the node or field you want to zoom in on,

	index: an optional argument to specify which occurrence of the node or field to zoom in on,

	missing_msg: if specified, this overrides the automatically generated feedback message in case the node or field could not be found.

How to figure out which name to use? Navigate to the AST viewer [https://ast-viewer.datacamp.com] and in Editor mode,
paste the SQL query of the solution. This will produce a parse tree in the first box, and an Astract Syntax Tree in the second box.

For a full example of how this ‘walk down the tree’ works, read Example 2 of the tutorial.

As another example, suppose you want to check whether the ON part of an INNER JOIN is correct according to the following solution:

SELECT *
FROM cities
INNER JOIN countries
ON cities.country_code = countries.code;

The AST representation of this SQL query looks as follows:

[image: ../_images/ast_checks_ast.png]

To zoom in on the sub-tree that corresponds to the ON part, we have to:

	take the SelectStmt node (with check_node('SelectStmt'))

	walk down the from_clause edge (with check_edge('from_clause'))

	walk down the cond edge (with check_edge('cond'))

Ex(). \
 check_node('SelectStmt'). \
 check_edge('from_clause'). \
 check_edge('cond')

This SCT will focus on the following part of the solution query:

cities.country_code = countries.code

Suppose that the student made a mistake (using code twice), and submitted the following query:

SELECT *
FROM cities
INNER JOIN countries
ON cities.code = countries.code;

The SCT will focus on the following part of the student query:

cities.code = countries.code

Checking the tree

Once you’ve used a combination of check_node() and check_edge() to zoom in on a part of interest
you can use has_equal_ast() to verify whether the elements correspond.

Continuing from the INNER JOIN example, we can verify whether the snippets of SQL code that have been zoomed in have a matching AST representation:

Ex(). \
 check_node('SelectStmt'). \
 check_edge('from_clause'). \
 check_edge('cond'). \
 has_equal_ast()

You can supplement this with a check_or() call and a manually specified sql snippet if you want to allow for multiple ways of specifying the condition:

Ex(). \
 check_node('SelectStmt'). \
 check_edge('from_clause'). \
 check_edge('cond'). \
 check_or(
 has_equal_ast(),
 has_equal_ast(sql = "countries.code = cities.code")
)

Now, using either ON cities.code = countries.code or countries.code = cities.code will be accepted.

For a more complete and robust example of an INNER JOIN query, visit the glossary.

In addition to has_equal_ast(), you can also use has_code() to
look at the actual code of a part of the SQL query and verify it with a regular expression,
but you will rarely find yourself using it.

 Python Module Index

 p |
 s

 		 	

 		
 p	

 	[image: -]
 	
 protowhat	

 	
 	
 protowhat.checks.check_funcs	

 	
 	
 protowhat.checks.check_logic	

 	
 	
 protowhat.checks.check_simple	

 		 	

 		
 s	

 	[image: -]
 	
 sqlwhat	

 	
 	
 sqlwhat.checks.check_funcs	

 	
 	
 sqlwhat.checks.has_funcs	

Index

 _
 | A
 | C
 | D
 | F
 | H
 | L
 | M
 | P
 | S

_

 	
 	__call__() (protowhat.sct_syntax.Ex class method)

A

 	
 	allow_error() (in module sqlwhat.checks.check_funcs)

 	
 	allow_errors() (in module protowhat.checks.check_simple)

C

 	
 	check_all_columns() (in module sqlwhat.checks.check_funcs)

 	check_column() (in module sqlwhat.checks.check_funcs)

 	check_correct() (in module protowhat.checks.check_logic)

 	check_edge() (in module protowhat.checks.check_funcs)

 	check_node() (in module protowhat.checks.check_funcs)

 	
 	check_not() (in module protowhat.checks.check_logic)

 	check_or() (in module protowhat.checks.check_logic)

 	check_query() (in module sqlwhat.checks.check_funcs)

 	check_result() (in module sqlwhat.checks.check_funcs)

 	check_row() (in module sqlwhat.checks.check_funcs)

D

 	
 	disable_highlighting() (in module protowhat.checks.check_logic)

F

 	
 	fail() (in module protowhat.checks.check_logic)

H

 	
 	has_chosen() (in module protowhat.checks.check_simple)

 	has_code() (in module protowhat.checks.check_funcs)

 	has_equal_ast() (in module protowhat.checks.check_funcs)

 	has_equal_value() (in module sqlwhat.checks.has_funcs)

 	
 	has_ncols() (in module sqlwhat.checks.has_funcs)

 	has_no_error() (in module sqlwhat.checks.has_funcs)

 	has_nrows() (in module sqlwhat.checks.has_funcs)

 	has_result() (in module sqlwhat.checks.has_funcs)

L

 	
 	lowercase() (in module sqlwhat.checks.check_funcs)

M

 	
 	multi() (in module protowhat.checks.check_logic)

P

 	
 	protowhat.checks.check_funcs (module)

 	
 	protowhat.checks.check_logic (module)

 	protowhat.checks.check_simple (module)

S

 	
 	sqlwhat.checks.check_funcs (module)

 	
 	sqlwhat.checks.has_funcs (module)

 	success_msg() (in module protowhat.checks.check_simple)

 _static/comment-close.png

_static/comment.png

_static/comment-bright.png

_static/file.png

_static/down-pressed.png

_static/down.png

_static/minus.png

_static/plus.png

_images/ast_example2.png

_images/ast_example3_combi.png
artists producers

_images/ast_checks_ast.png
countries

cities

country_code

countries

_images/ast_example.png

_static/ajax-loader.gif

nav.xhtml

 Table of Contents

 		
 sqlwhat

 		
 Glossary

 		
 Selecting a column

 		
 Star argument

 		
 COUNT(*)

 		
 WHERE clause

 		
 ORDER BY

 		
 Joins

 		
 Result checks

 		
 AST Checks

 		
 Logic

 		
 Electives

 		
 Tutorial

 		
 Example 1: query result

 		
 Example 2: AST-based checks

 		
 Example 3: Combining result checks and AST checks

 		
 Result Checks

 		
 AST Checks

 		
 Navigating the tree

 		
 Checking the tree

_static/up-pressed.png

_static/up.png

