
pgreaper Documentation
Release 1.0.0

Vincent La

Oct 04, 2017

Contents:

1 PostgreSQL Default Settings 1

2 Uploading TXTs and CSVs to Postgres 3
2.1 Loading TXTs and CSVs to PostgreSQL . 3

3 Reading JSON 5
3.1 Loading JSON . 5

4 Reading From Compressed (ZIP) Files 7
4.1 Reading ZIP Archives . 7

5 The Table Data Structure 9
5.1 Creating and Loading Table Objects . 9

6 pandas Integration 11
6.1 Loading pandas DataFrames . 11
6.2 Benchmark/Example: pandas DataFrame COPY and UPSERT . 11

7 HTML Parsing 13
7.1 HTML Table Parsing . 13

8 Internals 15
8.1 PGReaper Internals: Schema Inference . 15
8.2 PGReaper Internals: Mappings . 16

9 Index 17

i

ii

CHAPTER 1

PostgreSQL Default Settings

Before uploading to Postgres, you may want to configure the default connection settings. If default settings are
provided, PGReaper can use these to create new databases so you won’t have to create them manually.

1

pgreaper Documentation, Release 1.0.0

2 Chapter 1. PostgreSQL Default Settings

CHAPTER 2

Uploading TXTs and CSVs to Postgres

Loading TXTs and CSVs to PostgreSQL

Details

Loading Large Files

To conserve memory, all CSVs are read in chunks.

Schema Inference

PGReaper uses a custom CSV parser (written in C++) which simultaneously determines sanitizes and analyzes CSV
files. It is capable of differentiating between strings, integers, and floats. The data type of an entire column is deter-
mined by this rule:

• If all values are integers, then the column type is bigint

• If all values are either floats or integers, then the column type is double precision

• Otherwise, the column type is text

Minor Caveats:

• Trailing and leading whitespace is ignored when determining data types, so * ” 3.14 ” is considered a
floating point number

• Quoted numeric fields are automatically unquoted (Postgres does not tolerate quoted numeric fields)

Corrections PGReaper Can Make

Not all CSV files are perfect, but PGReaper is capable of making some corrections:

• Sanitizing column names

3

pgreaper Documentation, Release 1.0.0

• Dropping rows that are too short or too long

• Unquoting numeric fields before copying

API

4 Chapter 2. Uploading TXTs and CSVs to Postgres

CHAPTER 3

Reading JSON

Loading JSON

From Files

PGReaper can load arbitrarily large JSON files assuming they are structured as collections of JSON objects, e.g.

[
{

"Name": "Julia",
"Age": 29,
"Occupation": "Database Administrator"

}, {
"Name": "Mark",
"Age": 30,
"Occupation": "Barista",
"Phone": 999-999-9999

}
]

Because it uses a custom JSON reader (which cuts up potentially large files), it is also capable of reading other variants
of JSON that Python’s json module can’t handle, such as newline delimited JSON.

Flattening

Currently, PGReaper can optionally flatten out JSON data by its outermost keys. In the example above, the resultant
table would have two rows with the columns “name”, “age”, “occupation”, and “phone”. The majority of this work is
done via Postgres’ JSON functions, which is much faster than anything done in pure Python.

API

5

pgreaper Documentation, Release 1.0.0

6 Chapter 3. Reading JSON

CHAPTER 4

Reading From Compressed (ZIP) Files

PGReaper is capable of copying specific files located in ZIP archives without decompressing them. (If you are in-
terested in reading in GZIP, BZIP, or LZMA compressed files, use the compression parameter on the copy_csv()
function.)

Reading ZIP Archives

PGReaper provides an intutive way to access files stored in ZIP archives. You can also pass the references to these
files to PGReaper’s normal reader functions like copy_csv().

Step 1: Read the ZIP Archive

Step 2: Get the Specific File

Notes: File Opening Safety

Opening a file within a ZIP archive using the methods above creates a ZipReader object. These objects are like any
other file-like objects in Python– supporting read() and readline() methods, but can only be used as context managers.

7

pgreaper Documentation, Release 1.0.0

8 Chapter 4. Reading From Compressed (ZIP) Files

CHAPTER 5

The Table Data Structure

PGReaper contains a two-dimensional data structure creatively named Table. These are lightweight structures which
are built on Python’s list containers but contain a lot of features for easily mapping them into SQL tables.

Creating and Loading Table Objects

Motivation

The Table is similar in concept to the DataFrame (either in R or in pandas) but is optimized for fast appends, iteration,
and copying into databases. Because they are structured as lists of lists, all of the Python methods for operating with
lists apply to Tables. Furthermore, Table objects provide their own set of specialized methods, with an API inspired
by R’s dplyr package.

The key difference between an R or pandas DataFrame and a pgreaper Table is that the Table is designed to be copied
into a SQL database, rather than attempt to replace its functionality. As such, most of the methods are geared towards
collecting, cleaning and restructuring data, rather than analyzing it.

Structure

Each list in a Table represents a row, while an item in each row represents a cell. If you had a table stored as–say–
world_gdp_data, then world_gdp_data[0] would return a list representing the first row and world_gdp_data[0][1]
would be the second column of the first row.

Type-Inference

Table objects keep track of the data types inserted into every column, and uses this information to determine the final
column type. By default, PGReaper will attempt to treat unrecognized data types as text columns. Currently, Table is
able to recognize text, integer, float, jsonb (list or dict), and datetime types as well as most numpy types.

9

pgreaper Documentation, Release 1.0.0

Brief Example: Creating and Loading Table Objects

from pgreaper import Table, table_to_pg

planes = Table(
name='planes',
col_names=['weight', 'length', 'wingspan', 'cost', 'manufacturer']

)

planes.append(...)

table_to_pg(planes, dbname='vehicles')

Full Reference: Creating and Modifying Tables

Slicing

Exotic Methods

These are methods which be handy for some edge cases

Operations Which Create New Tables

Groupby

Adding Rows to a Table

Since a Table is really just a nested list, you can use the append() method. However, Table objects will refuse to
add rows which are shorter or longer than the existing rows. This is motivated by the fact that a lot of input sources,
especially HTML tables, are not very clean and do not guarantee consistent record lengths even if they should.

If you want to intentionally extend a table, you can use the add_col() method to create a new column, or add_dict()
method which implicitly creates new columns.

Full Reference: Loading Tables to Postgres

Dumping to Files

It is also possible to dump the contents of Table objects into files instead of SQL databases.

Jupyter Notebooks

Table objects take advantage of Jupyter’s pretty HTML display.

10 Chapter 5. The Table Data Structure

CHAPTER 6

pandas Integration

Loading pandas DataFrames

By supporting both INSERTs and UPSERTs for DataFrames, when combined with pandas’ read_sql() functional-
ity, PGReaper turns any Postgres database into a robust store for your pandas-based projects. Compared with other
methods for loading DataFrames such as to_sql() or a combination of to_csv() and copy_from(), PGReaper provides:

• Automatic type inference for basic Python types and most numpy types

• Properly encoding jsonb (dict or list) and timestamp (datetime) objects

• Automatic correction of problematic column names, e.g. those that are Postgres keywords

• Support for composite primary keys

• Support for both INSERT OR REPLACE and UPSERT operations

– Faster UPSERT performance using SELECT unnest() rather than slower batched INSERTs

Benchmark/Example: pandas DataFrame COPY and UPSERT

COPY

Here, we’re going to use the excellent mimesis package to generate 500,000 rows of fake data to populate a pandas
DataFrame.

Note: For robustness, PGReaper uses both fake and real data in its test suite.

Structure

The resulting SQL table should have 4 text, 1 bigint, and 1 jsonb column.

11

pgreaper Documentation, Release 1.0.0

Results

And for the moment of truth...

1 loop, best of 1: 10.7 s per loop

UPSERT

Suppose now that we live in such an amazing economy that everybody past 50 has enough money to retire. This means
we’ll need to update our data to reflect this. As you can see for yourself, this operation will affect about 160,000 rows.

Results

1 loop, best of 1: 7.8 s per loop

Checking Our Work

50 rows affected.

Where’s the Bottleneck

Apparently it only takes Python about 2.5 seconds to create the 160,000 row UPSERT statement (which includes
properly encoding dicts, escaping quotes, and so on). Since psycopg2 (which PGReaper sends the UPSERT statement
to) is basically a C library with Python bindings, and we’re only sending one statement, the 5 remaining seconds is
most likely taken up primarily by Postgres itself.

1 loop, best of 3: 2.42 s per loop

12 Chapter 6. pandas Integration

CHAPTER 7

HTML Parsing

pgreaper contains a rich HTML parsing module featuring automated <table> parsing and Jupyter notebook integra-
tion. Because it is a large module on its own, it has its own documentation page.

HTML Table Parsing

Introduction

A lot of useful data is stored in HTML tables, but parsing HTML is an arduous task. Using Python’s standard library html.parser module, SQLify tries to simplify the task of parsing HTML tables by:

• Creating a list of separate HTML tables

• Trying to automatically find column headers

• Handling different table designs, i.e. handling

– <tbody> and <thead> tags

– rowspan and colspan attributes

Note: Using SQLify’s HTML parser in conjunction with Jupyter notebooks is recommended.

Step 1: Reading in HTML

There are two avenues for reading in HTML.

a) Locally Saved HTML Files

13

pgreaper Documentation, Release 1.0.0

b) From the Web

Step 2: Reviewing the Output

The functions above return TableBrowser objects, which are basically lists of HTML tables that were found. If
viewing in Jupyter Notebook, the code above will display every table with an index next to the name of the table, e.g.
[5] Players of the week.

Step 3: Cleaning the Tables

If the tables you wanted were parsed 100% correctly and don’t require any further processing steps, proceed to step 4.
Otherwise, read on.

As seen above, when using the indexing operator on a TableBrowser object, you will get a Table object back. Table
objects support a small set of data cleaning methods and contain attributes you may want to use or modify.

Step 4: Saving the Results

After you’ve cleaned the Table to your satisfaction, you can save the results as either a:

• CSV file

• JSON file

• PostgreSQL Table

PostgreSQL

When saving to a new PostgreSQL database, you can either manually create it, or tell SQLify your preferred default
database which should be used to create new databases.

14 Chapter 7. HTML Parsing

CHAPTER 8

Internals

Information for maintainers and forkers of pgreaper.

PGReaper Internals: Schema Inference

This page documents the interals of PGReaper. Unless you are developing, maintaining, forking, or just really curious
in PGReaper, this is not really going to be of interest to you.

ColumnList

Originally, the column names and types for a Table were stored as the col_names and col_types attributes respec-
tively. Simply being lists of strings, this approach–while simple–had many limitations. As PGReaper expanded its
capabilities, more and more were being demanded of these lists, such as:

• Making sure col_names and col_types were of the same length

• Returning SQL safe column names while somehow being to keep track of the original column names

• Validating primary keys, i.e. making sure they referred to columns that actually existed

• Comparing column lists to other column lists to see if one was a subset of another or not

– This comes up when performing UPSERTs against existing SQL tables

• Comparing column lists to other column lists to see if they were really the same columns in different
orders (a common problem with JSON parsing)

• Having a method to return the integer index corresponding to a column name

• Taking a list of column names and mapping to to their respective integer indices (again, comes up in
JSON parsing and also used to implement the add_dict() method

Adding all this code to the Table structure made it messy, confusing, and harder to test. Therefore, a
standalone class that managed column information was created.

15

pgreaper Documentation, Release 1.0.0

SQLType

The SQLType object is used to map Python types to SQL types.

PGReaper Internals: Mappings

16 Chapter 8. Internals

CHAPTER 9

Index

• genindex

• modindex

• search

17

	PostgreSQL Default Settings
	Uploading TXTs and CSVs to Postgres
	Loading TXTs and CSVs to PostgreSQL

	Reading JSON
	Loading JSON

	Reading From Compressed (ZIP) Files
	Reading ZIP Archives

	The Table Data Structure
	Creating and Loading Table Objects

	pandas Integration
	Loading pandas DataFrames
	Benchmark/Example: pandas DataFrame COPY and UPSERT

	HTML Parsing
	HTML Table Parsing

	Internals
	PGReaper Internals: Schema Inference
	PGReaper Internals: Mappings

	Index

