SQLAIchemy-Fixtures Documentation
Release 0.1

Konsta Vesterinen

Aug 11, 2017

Contents

1 QuickStart 3

2 Lazy values 5

SQLAIchemy-Fixtures Documentation, Release 0.1

SQLAIchemy-Fixtures is a python package that provides functional fixtures for SQLAIchemy based models.

Contents 1

SQLAIchemy-Fixtures Documentation, Release 0.1

2 Contents

CHAPTER 1

QuickStart

At the heart of SQLAlchemy-Fixtures there are two functions: fixture and last_fixture. Function fixture is used for
constructing fixtures from models and last_fixture is used for getting the last created fixture for given model.

Consider the following model definition:

import sqglalchemy as sa

from sglalchemy import create_engine

from sglalchemy.ext.declarative import declarative_base
from sglalchemy.orm import sessionmaker

engine = create_engine('sglite:///:memory:")
Base = declarative_base (engine)

Session = sessionmaker (bind=engine)

session = Session()

class User (Base) :
_ _tablename__ = 'user'

id = sa.Column(sa.BigInteger, autoincrement=True, primary_key=True)
name = sa.Column (sa.Unicode (100))
email = sa.Column (sa.Unicode (255))

Most of the time you will want your models to contain some default values. This can be achieved by using Fixtur-
eRegistry.set_defaults function

from sglalchemy fixture import FixtureRegistry, fixture, last_fixture
FixtureRegistry.set_defaults (User, {'name': 'someone'})

user = fixture (User)
user.name # someone

last_fixture (User) == user

SQLAIchemy-Fixtures Documentation,

Release 0.1

Sometimes you may want to create fixtures without adding them into session and committing the session.
SQLAIchemy-Fixtures provides a function called new for this:

from sglalchemy fixture import new

the following object is not save
user = new (User, name=u'someone',

d into database
email=u'johnCexample.com')

Chapter 1. QuickStart

CHAPTER 2

Lazy values

Lazy values provide a convenient way to generate values based on object attributes. In the following example our User
fixture will generate its email based on its name.

from sglalchemy fixture import FixtureRegistry, Lazy, fixture, last_fixture

FixtureRegistry.set_defaults (
User, {'email': Lazy(lambda obj: ' @example.com' % obj.name.lower())})

user = fixture (User, name=u'someone')
user.email # someonelexample.com

	QuickStart
	Lazy values

