
SQLAlchemy-Fixtures Documentation
Release 0.1

Konsta Vesterinen

Aug 11, 2017

Contents

1 QuickStart 3

2 Lazy values 5

i

ii

SQLAlchemy-Fixtures Documentation, Release 0.1

SQLAlchemy-Fixtures is a python package that provides functional fixtures for SQLAlchemy based models.

Contents 1

SQLAlchemy-Fixtures Documentation, Release 0.1

2 Contents

CHAPTER 1

QuickStart

At the heart of SQLAlchemy-Fixtures there are two functions: fixture and last_fixture. Function fixture is used for
constructing fixtures from models and last_fixture is used for getting the last created fixture for given model.

Consider the following model definition:

import sqlalchemy as sa
from sqlalchemy import create_engine
from sqlalchemy.ext.declarative import declarative_base
from sqlalchemy.orm import sessionmaker

engine = create_engine('sqlite:///:memory:')
Base = declarative_base(engine)
Session = sessionmaker(bind=engine)
session = Session()

class User(Base):
__tablename__ = 'user'

id = sa.Column(sa.BigInteger, autoincrement=True, primary_key=True)
name = sa.Column(sa.Unicode(100))
email = sa.Column(sa.Unicode(255))

Most of the time you will want your models to contain some default values. This can be achieved by using Fixtur-
eRegistry.set_defaults function

from sqlalchemy_fixture import FixtureRegistry, fixture, last_fixture

FixtureRegistry.set_defaults(User, {'name': 'someone'})

user = fixture(User)
user.name # someone

last_fixture(User) == user

3

SQLAlchemy-Fixtures Documentation, Release 0.1

Sometimes you may want to create fixtures without adding them into session and committing the session.
SQLAlchemy-Fixtures provides a function called new for this:

from sqlalchemy_fixture import new

the following object is not saved into database
user = new(User, name=u'someone', email=u'john@example.com')

4 Chapter 1. QuickStart

CHAPTER 2

Lazy values

Lazy values provide a convenient way to generate values based on object attributes. In the following example our User
fixture will generate its email based on its name.

from sqlalchemy_fixture import FixtureRegistry, Lazy, fixture, last_fixture

FixtureRegistry.set_defaults(
User, {'email': Lazy(lambda obj: '%s@example.com' % obj.name.lower())})

user = fixture(User, name=u'someone')
user.email # someone@example.com

5

	QuickStart
	Lazy values

