

SQLAlchemy-Continuum

SQLAlchemy-Continuum is a versioning extension for SQLAlchemy.

	Introduction
	Why?

	Features

	Installation

	Basics

	Versions and transactions

	Version objects
	Operation types

	Version traversal

	Changeset

	Version relationships

	Reverting changes
	Revert update

	Revert delete

	Revert relationships

	Queries
	How many transactions have been executed?

	Querying for entities of a class at a given revision

	Querying for transactions, at which entities of a given class changed

	Querying for versions of entity that modified given property

	Transactions
	Transaction

	UnitOfWork

	Workflow internals

	Native versioning
	Usage

	Schema migrations

	Plugins
	Using plugins

	Activity

	Flask

	PropertyModTracker

	TransactionChanges

	TransactionMeta

	Configuration
	Global and class level configuration

	Versioning strategies

	Column exclusion and inclusion

	Basic configuration options

	Customizing transaction user class

	Customizing versioned mappers

	Customizing versioned sessions

	Continuum Schema
	Version tables

	Transaction tables

	Using vacuum

	Schema tools

	Alembic migrations

	Utilities
	changeset

	count_versions

	get_versioning_manager

	is_modified

	is_modified_or_deleted

	is_session_modified

	is_versioned

	parent_class

	transaction_class

	version_class

	versioned_objects

	version_table

	License

Introduction

Why?

SQLAlchemy already has a versioning extension. This extension however is very limited. It does not support versioning entire transactions.

Hibernate for Java has Envers, which had nice features but lacks a nice API. Ruby on Rails has papertrail [https://github.com/airblade/paper_trail], which has very nice API but lacks the efficiency and feature set of Envers.

As a Python/SQLAlchemy enthusiast I wanted to create a database versioning tool for Python with all the features of Envers and with as intuitive API as papertrail. Also I wanted to make it _fast_ keeping things as close to the database as possible.

Features

	Does not store updates which don’t change anything

	Supports alembic migrations

	Can revert objects data as well as all object relations at given transaction even if the object was deleted

	Transactions can be queried afterwards using SQLAlchemy query syntax

	Querying for changed records at given transaction

	Querying for versions of entity that modified given property

	Querying for transactions, at which entities of a given class changed

	History models give access to parent objects relations at any given point in time

Installation

pip install SQLAlchemy-Continuum

Basics

In order to make your models versioned you need two things:

	Call make_versioned() before your models are defined.

	Add __versioned__ to all models you wish to add versioning to

import sqlalchemy as sa
from sqlalchemy_continuum import make_versioned

make_versioned(user_cls=None)

class Article(Base):
 __versioned__ = {}
 __tablename__ = 'article'

 id = sa.Column(sa.Integer, primary_key=True, autoincrement=True)
 name = sa.Column(sa.Unicode(255))
 content = sa.Column(sa.UnicodeText)

after you have defined all your models, call configure_mappers:
sa.orm.configure_mappers()

After this setup SQLAlchemy-Continuum does the following things:

	It creates ArticleHistory model that acts as version history for Article model

	Creates TransactionLog and TransactionChanges models for transactional history tracking

	Adds couple of listeners so that each Article object insert, update and delete gets recorded

When the models have been configured either by calling configure_mappers() or by accessing some of them the first time, the following things become available:

from sqlalchemy_continuum import version_class, parent_class

version_class(Article) # ArticleHistory class

parent_class(version_class(Article)) # Article class

Versions and transactions

At the end of each transaction SQLAlchemy-Continuum gathers all changes together and creates
version objects for each changed versioned entity. Continuum also creates one TransactionLog entity and
N number of TransactionChanges entities per transaction (here N is the number of affected classes per transaction).
TransactionLog and TransactionChanges entities are created for transaction tracking.

article = Article(name=u'Some article')
session.add(article)
session.commit()

article.versions[0].name == u'Some article'

article.name = u'Some updated article'

session.commit()

article.versions[1].name == u'Some updated article'

Version objects

Operation types

When changing entities and committing results into database Continuum saves the used
operations (INSERT, UPDATE or DELETE) into version entities. The operation types are stored
by default to a small integer field named ‘operation_type’. Class called ‘Operation’ holds
convenient constants for these values as shown below:

from sqlalchemy_continuum import Operation

article = Article(name=u'Some article')
session.add(article)
session.commit()

article.versions[0].operation_type == Operation.INSERT

article.name = u'Some updated article'
session.commit()
article.versions[1].operation_type == Operation.UPDATE

session.delete(article)
session.commit()
article.versions[2].operation_type == Operation.DELETE

Version traversal

first_version = article.versions[0]
first_version.index
0

second_version = first_version.next
assert second_version == article.versions[1]

second_version.previous == first_version
True

second_version.index
1

Changeset

Continuum provides easy way for getting the changeset of given version object. Each version contains a changeset
property which holds a dict of changed fields in that version.

article = Article(name=u'New article', content=u'Some content')
session.add(article)
session.commit(article)

version = article.versions[0]
version.changeset
{
'id': [None, 1],
'name': [None, u'New article'],
'content': [None, u'Some content']
}
article.name = u'Updated article'
session.commit()

version = article.versions[1]
version.changeset
{
'name': [u'New article', u'Updated article'],
}

session.delete(article)
version = article.versions[1]
version.changeset
{
'id': [1, None]
'name': [u'Updated article', None],
'content': [u'Some content', None]
}

SQLAlchemy-Continuum also provides a utility function called changeset. With this function
you can easily check the changeset of given object in current transaction.

from sqlalchemy_continuum import changeset

article = Article(name=u'Some article')
changeset(article)
{'name': [u'Some article', None]}

Version relationships

Each version object reflects all parent object relationships. You can think version object relations as ‘relations of parent object in given point in time’.

Lets say you have two models: Article and Category. Each Article has one Category. In the following example we first add article and category objects into database.

Continuum saves new ArticleVersion and CategoryVersion records in the background. After that we update the created article entity to use another category. Continuum creates new version objects accordingly.

Lastly we check the category relations of different article versions.

category = Category(name=u'Some category')
article = Article(
 name=u'Some article',
 category=category
)
session.add(article)
session.commit()

article.category = Category(name=u'Some other category')
session.commit()

article.versions[0].category.name # u'Some category'
article.versions[1].category.name # u'Some other category'

The logic how SQLAlchemy-Continuum builds these relationships is within the RelationshipBuilder class.

Relationships to non-versioned classes

Let’s take previous example of Articles and Categories. Now consider that only Article model is versioned:

class Article(Base):
 __tablename__ = 'article'
 __versioned__ = {}

 id = sa.Column(sa.Integer, autoincrement=True, primary_key=True)
 name = sa.Column(sa.Unicode(255), nullable=False)

class Category(Base):
 __tablename__ = 'tag'

 id = sa.Column(sa.Integer, autoincrement=True, primary_key=True)
 name = sa.Column(sa.Unicode(255))
 article_id = sa.Column(sa.Integer, sa.ForeignKey(Article.id))
 article = sa.orm.relationship(
 Article,
 backref=sa.orm.backref('categories')
)

Here Article versions will still reflect the relationships of Article model but they will simply return Category objects instead of CategoryVersion objects:

category = Category(name=u'Some category')
article = Article(
 name=u'Some article',
 category=category
)
session.add(article)
session.commit()

article.category = Category(name=u'Some other category')
session.commit()

version = article.versions[0]
version.category.name # u'Some other category'
isinstance(version.category, Category) # True

Dynamic relationships

If the parent class has a dynamic relationship it will be reflected as a property which returns a query in the associated version class.

class Article(Base):
 __tablename__ = 'article'
 __versioned__ = {}

 id = sa.Column(sa.Integer, autoincrement=True, primary_key=True)
 name = sa.Column(sa.Unicode(255), nullable=False)

class Tag(Base):
 __tablename__ = 'tag'
 __versioned__ = {}

 id = sa.Column(sa.Integer, autoincrement=True, primary_key=True)
 name = sa.Column(sa.Unicode(255))
 article_id = sa.Column(sa.Integer, sa.ForeignKey(Article.id))
 article = sa.orm.relationship(
 Article,
 backref=sa.orm.backref(
 'tags',
 lazy='dynamic'
)
)

article = Article()
article.name = u'Some article'
article.content = u'Some content'
session.add(article)
session.commit()

tag_query = article.versions[0].tags
tag_query.all() # return all tags for given version

tag_query.count() # return the tag count for given version

Reverting changes

One of the major benefits of SQLAlchemy-Continuum is its ability to revert changes.

Revert update

article = Article(name=u'New article', content=u'Some content')
session.add(article)
session.commit(article)

version = article.versions[0]
article.name = u'Updated article'
session.commit()

version.revert()
session.commit()

article.name
u'New article'

Revert delete

article = Article(name=u'New article', content=u'Some content')
session.add(article)
session.commit(article)

version = article.versions[0]
session.delete(article)
session.commit()

version.revert()
session.commit()

article lives again!
session.query(Article).first()

Revert relationships

Sometimes you may have cases where you want to revert an object as well as some of its relation to certain state. Consider the following model definition:

class Article(Base):
 __tablename__ = 'article'
 __versioned__ = {}

 id = sa.Column(sa.Integer, autoincrement=True, primary_key=True)
 name = sa.Column(sa.Unicode(255))

class Tag(Base):
 __tablename__ = 'tag'
 __versioned__ = {}

 id = sa.Column(sa.Integer, autoincrement=True, primary_key=True)
 name = sa.Column(sa.Unicode(255))
 article_id = sa.Column(sa.Integer, sa.ForeignKey(Article.id))
 article = sa.orm.relationship(Article, backref='tags')

Now lets say some user first adds an article with couple of tags:

article = Article(
 name=u'Some article',
 tags=[Tag(u'Good'), Tag(u'Interesting')]
)

session.add(article)
session.commit()

Then lets say another user deletes one of the tags:

tag = session.query(Tag).filter_by(name=u'Interesting')

session.delete(tag)
session.commit()

Now the first user wants to set the article back to its original state. It can be achieved as follows (notice how we use the relations parameter):

article = session.query(Article).get(1)
article.versions[0].revert(relations=['tags'])
session.commit()

Queries

You can query history models just like any other sqlalchemy declarative model.

from sqlalchemy_continuum import version_class

ArticleVersion = version_class(Article)

session.query(ArticleVersion).filter_by(name=u'some name').all()

How many transactions have been executed?

from sqlalchemy_continuum import transaction_class

Transaction = transaction_class(Article)

Transaction.query.count()

Querying for entities of a class at a given revision

In the following example we find all articles which were affected by transaction 33.

session.query(ArticleVersion).filter_by(transaction_id=33)

Querying for transactions, at which entities of a given class changed

In this example we find all transactions which affected any instance of ‘Article’ model. This query needs the TransactionChangesPlugin.

TransactionChanges = Article.__versioned__['transaction_changes']

entries = (
 session.query(Transaction)
 .innerjoin(Transaction.changes)
 .filter(
 TransactionChanges.entity_name.in_(['Article'])
)
)

Querying for versions of entity that modified given property

In the following example we want to find all versions of Article class which changed the attribute ‘name’. This example assumes you are using
PropertyModTrackerPlugin.

ArticleVersion = version_class(Article)

session.query(ArticleHistory).filter(ArticleVersion.name_mod).all()

Transactions

Transaction

For each committed transaction SQLAlchemy-Continuum creates a new Transaction record.

Transaction can be queried just like any other sqlalchemy declarative model.

from sqlalchemy_continuum import transaction_class
Transaction = transaction_class(Article)

find all transactions
session.query(Transaction).all()

UnitOfWork

For each database connection SQLAlchemy-Continuum creates an internal UnitOfWork object.
Normally these objects are created at before flush phase of session workflow. However you can also
force create unit of work before this phase.

uow = versioning_manager.unit_of_work(session)

Transaction objects are normally created automatically at before flush phase. If you need access
to transaction object before the flush phase begins you can do so by calling the create_transaction method
of the UnitOfWork class.

transaction = uow.create_transaction(session)

The version objects are normally created during the after flush phase but you can also force create those at any time by
calling make_versions method.

uow.make_versions(session)

Workflow internals

Consider the following code snippet where we create a new article.

article = Article()
article.name = u'Some article'
article.content = u'Some content'
session.add(article)
session.commit()

This would execute the following SQL queries (on PostgreSQL)

	
	INSERT INTO article (name, content) VALUES (?, ?)

	params: (‘Some article’, ‘Some content’)

	
	INSERT INTO transaction (issued_at) VALUES (?)

	params: (datetime.utcnow())

	
	INSERT INTO article_version (id, name, content, transaction_id) VALUES (?, ?, ?, ?)

	params: (<article id from query 1>, ‘Some article’, ‘Some content’, <transaction id from query 2>)

Native versioning

As of version 1.1 SQLAlchemy-Continuum supports native versioning for PostgreSQL dialect.
Native versioning creates SQL triggers for all versioned models. These triggers keep track of changes made to versioned models. Compared to object based versioning, native versioning has

	Much faster than regular object based versioning

	Minimal memory footprint when used alongside create_tables=False and create_models=False configuration options.

	More cumbersome database migrations, since triggers need to be updated also.

Usage

For enabling native versioning you need to set native_versioning configuration option as True.

make_versioned(options={'native_versioning': True})

Schema migrations

When making schema migrations (for example adding new columns to version tables) you need to remember to call sync_trigger in order to keep the version trigger up-to-date.

from sqlalchemy_continuum.dialects.postgresql import sync_trigger

sync_trigger(conn, 'article_version')

Plugins

Using plugins

from sqlalchemy.continuum.plugins import PropertyModTrackerPlugin

versioning_manager.plugins.append(PropertyModTrackerPlugin())

versioning_manager.plugins # <PluginCollection [...]>

You can also remove plugin

del versioning_manager.plugins[0]

Activity

The ActivityPlugin is the most powerful plugin for tracking changes of
individual entities. If you use ActivityPlugin you probably don’t need to use
TransactionChanges nor TransactionMeta plugins.

You can initalize the ActivityPlugin by adding it to versioning manager.

activity_plugin = ActivityPlugin()

make_versioned(plugins=[activity_plugin])

ActivityPlugin uses single database table for tracking activities. This table
follows the data structure in activity stream specification [http://www.activitystrea.ms], but it comes
with a nice twist:

	Column

	Type

	Description

	id

	BigInteger

	The primary key of the activity

	verb

	Unicode

	Verb defines the action of the activity

	data

	JSON

	Additional data for the activity in JSON format

	transaction_id

	BigInteger

	The transaction this activity was associated
with

	object_id

	BigInteger

	The primary key of the object. Object can be
any entity which has an integer as primary key.

	object_type

	Unicode

	The type of the object (class name as string)

	object_tx_id

	BigInteger

	The last transaction_id associated with the
object. This is used for efficiently fetching
the object version associated with this
activity.

	target_id

	BigInteger

	The primary key of the target. Target can be
any entity which has an integer as primary key.

	target_type

	Unicode

	The of the target (class name as string)

	target_tx_id

	BigInteger

	The last transaction_id associated with the
target.

Each Activity has relationships to actor, object and target but it also holds
information about the associated transaction and about the last associated
transactions with the target and object. This allows each activity to also have
object_version and target_version relationships for introspecting what those
objects and targets were in given point in time. All these relationship
properties use generic relationships [https://sqlalchemy-utils.readthedocs.io/en/latest/generic_relationship.html] of the SQLAlchemy-Utils package.

Limitations

Currently all changes to parent models must be flushed or committed before
creating activities. This is due to a fact that there is still no dependency
processors for generic relationships. So when you create activities and assign
objects / targets for those please remember to flush the session before
creating an activity:

article = Article(name=u'Some article')
session.add(article)
session.flush() # <- IMPORTANT!
first_activity = Activity(verb=u'create', object=article)
session.add(first_activity)
session.commit()

Targets and objects of given activity must have an integer primary key
column id.

Create activities

Once your models have been configured you can get the Activity model from the
ActivityPlugin class with activity_cls property:

Activity = activity_plugin.activity_cls

Now let’s say we have model called Article and Category. Each Article has one
Category. Activities should be created along with the changes you make on
these models.

article = Article(name=u'Some article')
session.add(article)
session.flush()
first_activity = Activity(verb=u'create', object=article)
session.add(first_activity)
session.commit()

Current transaction gets automatically assigned to activity object:

first_activity.transaction # Transaction object

Update activities

The object property of the Activity object holds the current object and the
object_version holds the object version at the time when the activity was
created.

article.name = u'Some article updated!'
session.flush()
second_activity = Activity(verb=u'update', object=article)
session.add(second_activity)
session.commit()

second_activity.object.name # u'Some article updated!'
first_activity.object.name # u'Some article updated!'

first_activity.object_version.name # u'Some article'

Delete activities

The version properties are especially useful for delete activities. Once the
activity is fetched from the database the object is no longer available (
since its deleted), hence the only way we could show some information about the
object the user deleted is by accessing the object_version property.

session.delete(article)
session.flush()
third_activity = Activity(verb=u'delete', object=article)
session.add(third_activity)
session.commit()

third_activity.object_version.name # u'Some article updated!'

Local version histories using targets

The target property of the Activity model offers a way of tracking changes of
given related object. In the example below we create a new activity when adding
a category for article and then mark the article as the target of this
activity.

session.add(Category(name=u'Fist category', article=article))
session.flush()
activity = Activity(
 verb=u'create',
 object=category,
 target=article
)
session.add(activity)
session.commit()

Now if we wanted to find all the changes that affected given article we could
do so by searching through all the activities where either the object or
target is the given article.

import sqlalchemy as sa

activities = session.query(Activity).filter(
 sa.or_(
 Activity.object == article,
 Activity.target == article
)
)

Flask

FlaskPlugin offers way of integrating Flask framework with
SQLAlchemy-Continuum. Flask-Plugin adds two columns for Transaction model,
namely user_id and remote_addr.

These columns are automatically populated when transaction object is created.
The remote_addr column is populated with the value of the remote address that
made current request. The user_id column is populated with the id of the
current_user object.

from sqlalchemy_continuum.plugins import FlaskPlugin
from sqlalchemy_continuum import make_versioned

make_versioned(plugins=[FlaskPlugin()])

PropertyModTracker

The PropertyModTrackerPlugin offers a way of efficiently tracking individual
property modifications. With PropertyModTrackerPlugin you can make efficient
queries such as:

Find all versions of model X where user updated the property A or property B.

Find all versions of model X where user didn’t update property A.

PropertyModTrackerPlugin adds separate modified tracking column for each
versioned column. So for example if you have versioned model called Article
with columns name and content, this plugin would add two additional boolean
columns name_mod and content_mod for the version model. When user commits
transactions the plugin automatically updates these boolean columns.

TransactionChanges

TransactionChanges provides way of keeping track efficiently which declarative
models were changed in given transaction. This can be useful when transactions
need to be queried afterwards for problems such as:

	Find all transactions which affected User model.

	Find all transactions which didn’t affect models Entity and Event.

The plugin works in two ways. On class instrumentation phase this plugin
creates a special transaction model called TransactionChanges. This model is
associated with table called transaction_changes, which has only only two
fields: transaction_id and entity_name. If for example transaction consisted
of saving 5 new User entities and 1 Article entity, two new rows would be
inserted into transaction_changes table.

	transaction_id

	entity_name

	233678

	User

	233678

	Article

TransactionMeta

TransactionMetaPlugin offers a way of saving key-value data for transations.
You can use the plugin in same way as other plugins:

meta_plugin = TransactionMetaPlugin()

versioning_manager.plugins.add(meta_plugin)

TransactionMetaPlugin creates a simple model called TransactionMeta. This class
has three columns: transaction_id, key and value. TransactionMeta plugin also
creates an association proxy between TransactionMeta and Transaction classes
for easy dictionary based access of key-value pairs.

You can easily ‘tag’ transactions with certain key value pairs by giving these
keys and values to the meta property of Transaction class.

from sqlalchemy_continuum import versioning_manager

article = Article()
session.add(article)

uow = versioning_manager.unit_of_work(session)
tx = uow.create_transaction(session)
tx.meta = {u'some_key': u'some value'}
session.commit()

TransactionMeta = meta_plugin.model_class
Transaction = versioning_manager.transaction_cls

find all transactions with 'article' tags
query = (
 session.query(Transaction)
 .join(Transaction.meta_relation)
 .filter(
 db.and_(
 TransactionMeta.key == 'some_key',
 TransactionMeta.value == 'some value'
)
)
)

Configuration

Global and class level configuration

All Continuum configuration parameters can be set on global level (manager level) and on class level. Setting an option at manager level affects all classes within the scope of the manager’s class instrumentation listener (by default all SQLAlchemy declarative models).

In the following example we set ‘transaction_column_name’ configuration option to False at the manager level.

make_versioned(options={'transaction_column_name': 'my_tx_id'})

As the name suggests class level configuration only applies to given class. Class level configuration can be passed to __versioned__ class attribute.

class User(Base):
 __versioned__ = {
 'transaction_column_name': 'tx_id'
 }

Versioning strategies

Similar to Hibernate Envers SQLAlchemy-Continuum offers two distinct versioning strategies ‘validity’ and ‘subquery’. The default strategy is ‘validity’.

Validity

The ‘validity’ strategy saves two columns in each history table, namely ‘transaction_id’ and ‘end_transaction_id’. The names of these columns can be configured with configuration options transaction_column_name and end_transaction_column_name.

As with ‘subquery’ strategy for each inserted, updated and deleted entity Continuum creates new version in the history table. However it also updates the end_transaction_id of the previous version to point at the current version. This creates a little bit of overhead during data manipulation.

With ‘validity’ strategy version traversal is very fast. When accessing previous version Continuum tries to find the version record where the primary keys match and end_transaction_id is the same as the transaction_id of the given version record. When accessing the next version Continuum tries to find the version record where the primary keys match and transaction_id is the same as the end_transaction_id of the given version record.

	Pros:

	
	Version traversal is much faster since no correlated subqueries are needed

	Cons:

	
	Updates, inserts and deletes are little bit slower

Subquery

The ‘subquery’ strategy uses one column in each history table, namely ‘transaction_id’. The name of this column can be configured with configuration option transaction_column_name.

After each inserted, updated and deleted entity Continuum creates new version in the history table and sets the ‘transaction_id’ column to point at the current transaction.

With ‘subquery’ strategy the version traversal is slow. When accessing previous and next versions of given version object needs correlated subqueries.

	Pros:

	
	Updates, inserts and deletes little bit faster than in ‘validity’ strategy

	Cons:

	
	Version traversel much slower

Column exclusion and inclusion

With exclude configuration option you can define which entity attributes you want to get versioned. By default Continuum versions all entity attributes.

class User(Base):
 __versioned__ = {
 'exclude': ['picture']
 }

 id = sa.Column(sa.Integer, primary_key=True)
 name = sa.Column(sa.Unicode(255))
 picture = sa.Column(sa.LargeBinary)

Basic configuration options

Here is a full list of configuration options:

	
	base_classes (default: None)

	A tuple defining history class base classes.

	
	table_name (default: ‘%s_version’)

	The name of the history table.

	
	transaction_column_name (default: ‘transaction_id’)

	The name of the transaction column (used by history tables).

	
	end_transaction_column_name (default: ‘end_transaction_id’)

	The name of the end transaction column in history table when using the validity versioning strategy.

	
	operation_type_column_name (default: ‘operation_type’)

	The name of the operation type column (used by history tables).

	
	strategy (default: ‘validity’)

	The versioning strategy to use. Either ‘validity’ or ‘subquery’

Example

class Article(Base):
 __versioned__ = {
 'transaction_column_name': 'tx_id'
 }
 __tablename__ = 'user'

 id = sa.Column(sa.Integer, primary_key=True, autoincrement=True)
 name = sa.Column(sa.Unicode(255))
 content = sa.Column(sa.UnicodeText)

Customizing transaction user class

By default Continuum tries to build a relationship between ‘User’ class and Transaction class. If you have differently named user class you can simply pass its name to make_versioned:

make_versioned(user_cls='MyUserClass')

If you don’t want transactions to contain any user references you can also disable this feature.

make_versioned(user_cls=None)

Customizing versioned mappers

By default SQLAlchemy-Continuum versions all mappers. You can override this behaviour by passing the desired mapper class/object to make_versioned function.

make_versioned(mapper=my_mapper)

Customizing versioned sessions

By default SQLAlchemy-Continuum versions all sessions. You can override this behaviour by passing the desired session class/object to make_versioned function.

make_versioned(session=my_session)

Continuum Schema

Version tables

By default SQLAlchemy-Continuum creates a version table for each versioned entity table. The version tables are suffixed with ‘_version’. So for example if you have two versioned tables ‘article’ and ‘category’, SQLAlchemy-Continuum would create two version tables ‘article_version’ and ‘category_version’.

By default the version tables contain these columns:

	id of the original entity (this can be more then one column in the case of composite primary keys)

	transaction_id - an integer that matches to the id number in the transaction_log table.

	end_transaction_id - an integer that matches the next version record’s transaction_id. If this is the current version record then this field is null.

	operation_type - a small integer defining the type of the operation

	versioned fields from the original entity

If you are using PropertyModTracker Continuum also creates one boolean field for each versioned field. By default these boolean fields are suffixed with ‘_mod’.

The primary key of each version table is the combination of parent table’s primary key + the transaction_id. This means there can be at most one version table entry for a given entity instance at given transaction.

Transaction tables

By default Continuum creates one transaction table called transaction. Many continuum plugins also create additional tables for efficient transaction storage. If you wish to query
efficiently transactions afterwards you should consider using some of these plugins.

The transaction table only contains two fields by default: id and issued_at.

Using vacuum

	
sqlalchemy_continuum.vacuum(session, model, yield_per=1000)

	When making structural changes to version tables (for example dropping
columns) there are sometimes situations where some old version records
become futile.

Vacuum deletes all futile version rows which had no changes compared to
previous version.

from sqlalchemy_continuum import vacuum

vacuum(session, User) # vacuums user version

	Parameters

	
	session – SQLAlchemy session object

	model – SQLAlchemy declarative model class

	yield_per – how many rows to process at a time

Schema tools

	
sqlalchemy_continuum.schema.update_end_tx_column(table, end_tx_column_name='end_transaction_id', tx_column_name='transaction_id', conn=None)

	Calculates end transaction columns and updates the version table with the
calculated values. This function can be used for migrating between subquery
versioning strategy and validity versioning strategy.

	Parameters

	
	table – SQLAlchemy table object

	end_tx_column_name – Name of the end transaction column

	tx_column_name – Transaction column name

	conn – Either SQLAlchemy Connection, Engine, Session or Alembic
Operations object. Basically this should be an object that can execute
the queries needed to update the end transaction column values.

If no object is given then this function tries to use alembic.op for
executing the queries.

	
sqlalchemy_continuum.schema.update_property_mod_flags(table, tracked_columns, mod_suffix='_mod', end_tx_column_name='end_transaction_id', tx_column_name='transaction_id', conn=None)

	Update property modification flags for given table and given columns. This
function can be used for migrating an existing schema to use property mod
flags (provided by PropertyModTracker plugin).

	Parameters

	
	table – SQLAlchemy table object

	mod_suffix – Modification tracking columns suffix

	end_tx_column_name – Name of the end transaction column

	tx_column_name – Transaction column name

	conn – Either SQLAlchemy Connection, Engine, Session or Alembic
Operations object. Basically this should be an object that can execute
the queries needed to update the property modification flags.

If no object is given then this function tries to use alembic.op for
executing the queries.

Alembic migrations

Each time you make changes to database structure you should also change the associated history tables. When you make changes to your models SQLAlchemy-Continuum automatically alters the history model definitions, hence you can use alembic revision –autogenerate just like before. You just need to make sure make_versioned function gets called before alembic gathers all your models.

Pay close attention when dropping or moving data from parent tables and reflecting these changes to history tables.

Utilities

changeset

	
sqlalchemy_continuum.utils.changeset(obj)

	Return a humanized changeset for given SQLAlchemy declarative object. With
this function you can easily check the changeset of given object in current
transaction.

from sqlalchemy_continuum import changeset

article = Article(name=u'Some article')
changeset(article)
{'name': [u'Some article', None]}

	Parameters

	obj – SQLAlchemy declarative model object

count_versions

	
sqlalchemy_continuum.utils.count_versions(obj)

	Return the number of versions given object has. This function works even
when obj has create_models and create_tables versioned settings
disabled.

article = Article(name=u'Some article')

count_versions(article) # 0

session.add(article)
session.commit()

count_versions(article) # 1

	Parameters

	obj – SQLAlchemy declarative model object

get_versioning_manager

	
sqlalchemy_continuum.utils.get_versioning_manager(obj_or_class)

	Return the associated SQLAlchemy-Continuum VersioningManager for given
SQLAlchemy declarative model class or object.

	Parameters

	obj_or_class – SQLAlchemy declarative model object or class

is_modified

	
sqlalchemy_continuum.utils.is_modified(obj)

	Return whether or not the versioned properties of given object have been
modified.

article = Article()

is_modified(article) # False

article.name = 'Something'

is_modified(article) # True

	Parameters

	obj – SQLAlchemy declarative model object

See also

is_modified_or_deleted()

See also

is_session_modified()

is_modified_or_deleted

	
sqlalchemy_continuum.utils.is_modified_or_deleted(obj)

	Return whether or not some of the versioned properties of given SQLAlchemy
declarative object have been modified or if the object has been deleted.

	Parameters

	obj – SQLAlchemy declarative model object

is_session_modified

	
sqlalchemy_continuum.utils.is_session_modified(session)

	Return whether or not any of the versioned objects in given session have
been either modified or deleted.

	Parameters

	session – SQLAlchemy session object

See also

is_versioned()

See also

versioned_objects()

is_versioned

	
sqlalchemy_continuum.utils.is_versioned(obj_or_class)

	Return whether or not given object is versioned.

is_versioned(Article) # True

article = Article()

is_versioned(article) # True

	Parameters

	obj_or_class – SQLAlchemy declarative model object or SQLAlchemy declarative model
class.

See also

versioned_objects()

parent_class

	
sqlalchemy_continuum.utils.parent_class(version_cls)

	Return the parent class for given version model class.

parent_class(ArticleVersion) # Article class

	Parameters

	model – SQLAlchemy declarative version model class

See also

version_class()

transaction_class

	
sqlalchemy_continuum.utils.transaction_class(cls)

	Return the associated transaction class for given versioned SQLAlchemy
declarative class or version class.

from sqlalchemy_continuum import transaction_class

transaction_class(Article) # Transaction class

	Parameters

	cls – SQLAlchemy versioned declarative class or version model class

version_class

	
sqlalchemy_continuum.utils.version_class(model)

	Return the version class for given SQLAlchemy declarative model class.

version_class(Article) # ArticleVersion class

	Parameters

	model – SQLAlchemy declarative model class

See also

parent_class()

versioned_objects

	
sqlalchemy_continuum.utils.versioned_objects(session)

	Return all versioned objects in given session.

	Parameters

	session – SQLAlchemy session object

See also

is_versioned()

version_table

	
sqlalchemy_continuum.utils.version_table(table)

	Return associated version table for given SQLAlchemy Table object.

	Parameters

	table – SQLAlchemy Table object

License

Copyright (c) 2012, Konsta Vesterinen

All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:

	Redistributions of source code must retain the above copyright notice, this
list of conditions and the following disclaimer.

	Redistributions in binary form must reproduce the above copyright notice,
this list of conditions and the following disclaimer in the documentation
and/or other materials provided with the distribution.

	The names of the contributors may not be used to endorse or promote products
derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS “AS IS” AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER BE LIABLE FOR ANY DIRECT,
INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE
OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

 Python Module Index

 s

 		 	

 		
 s	

 	[image: -]
 	
 sqlalchemy_continuum	

 	
 	
 sqlalchemy_continuum.model_builder	

 	
 	
 sqlalchemy_continuum.plugins.activity	

 	
 	
 sqlalchemy_continuum.plugins.flask	

 	
 	
 sqlalchemy_continuum.plugins.property_mod_tracker	

 	
 	
 sqlalchemy_continuum.plugins.transaction_changes	

 	
 	
 sqlalchemy_continuum.plugins.transaction_meta	

 	
 	
 sqlalchemy_continuum.relationship_builder	

 	
 	
 sqlalchemy_continuum.schema	

 	
 	
 sqlalchemy_continuum.table_builder	

 	
 	
 sqlalchemy_continuum.unit_of_work	

 	
 	
 sqlalchemy_continuum.utils	

 	
 	
 sqlalchemy_continuum.version	

Index

 A
 | B
 | C
 | G
 | H
 | I
 | M
 | N
 | O
 | P
 | R
 | S
 | T
 | U
 | V

A

 	
 	after_flush() (sqlalchemy_continuum.VersioningManager method)

 	append_association_operation() (sqlalchemy_continuum.VersioningManager method)

 	
 	apply_class_configuration_listeners() (sqlalchemy_continuum.VersioningManager method)

 	assign_attributes() (sqlalchemy_continuum.unit_of_work.UnitOfWork method)

 	association_subquery() (sqlalchemy_continuum.relationship_builder.RelationshipBuilder method)

B

 	
 	base_classes() (sqlalchemy_continuum.model_builder.ModelBuilder method)

 	before_flush() (sqlalchemy_continuum.VersioningManager method)

 	build_association_version_tables() (sqlalchemy_continuum.relationship_builder.RelationshipBuilder method)

 	
 	build_model() (sqlalchemy_continuum.model_builder.ModelBuilder method)

 	build_parent_relationship() (sqlalchemy_continuum.model_builder.ModelBuilder method)

 	build_transaction_relationship() (sqlalchemy_continuum.model_builder.ModelBuilder method)

C

 	
 	changeset (sqlalchemy_continuum.version.VersionClassBase attribute)

 	changeset() (in module sqlalchemy_continuum.utils)

 	clear() (sqlalchemy_continuum.VersioningManager method)

 	count_versions() (in module sqlalchemy_continuum.utils)

 	
 	create_association_versions() (sqlalchemy_continuum.unit_of_work.UnitOfWork method)

 	create_transaction() (sqlalchemy_continuum.unit_of_work.UnitOfWork method)

 	create_transaction_model() (sqlalchemy_continuum.VersioningManager method)

 	create_version_objects() (sqlalchemy_continuum.unit_of_work.UnitOfWork method)

G

 	
 	get_or_create_version_object() (sqlalchemy_continuum.unit_of_work.UnitOfWork method)

 	
 	get_versioning_manager() (in module sqlalchemy_continuum.utils)

H

 	
 	has_changes (sqlalchemy_continuum.unit_of_work.UnitOfWork attribute)

I

 	
 	index (sqlalchemy_continuum.version.VersionClassBase attribute)

 	inheritance_args() (sqlalchemy_continuum.model_builder.ModelBuilder method)

 	is_excluded_property() (sqlalchemy_continuum.VersioningManager method)

 	is_modified() (in module sqlalchemy_continuum.utils)

 	(sqlalchemy_continuum.unit_of_work.UnitOfWork method)

 	
 	is_modified_or_deleted() (in module sqlalchemy_continuum.utils)

 	is_session_modified() (in module sqlalchemy_continuum.utils)

 	is_versioned() (in module sqlalchemy_continuum.utils)

M

 	
 	make_versioned() (in module sqlalchemy_continuum)

 	make_versions() (sqlalchemy_continuum.unit_of_work.UnitOfWork method)

 	
 	many_to_many_criteria() (sqlalchemy_continuum.relationship_builder.RelationshipBuilder method)

 	many_to_one_criteria() (sqlalchemy_continuum.relationship_builder.RelationshipBuilder method)

 	ModelBuilder (class in sqlalchemy_continuum.model_builder)

N

 	
 	next (sqlalchemy_continuum.version.VersionClassBase attribute)

O

 	
 	one_to_many_criteria() (sqlalchemy_continuum.relationship_builder.RelationshipBuilder method)

 	
 	option() (sqlalchemy_continuum.VersioningManager method)

P

 	
 	parent_class() (in module sqlalchemy_continuum.utils)

 	positional_args_to_dict() (sqlalchemy_continuum.VersioningManager method)

 	previous (sqlalchemy_continuum.version.VersionClassBase attribute)

 	
 	process_after_flush() (sqlalchemy_continuum.unit_of_work.UnitOfWork method)

 	process_before_flush() (sqlalchemy_continuum.unit_of_work.UnitOfWork method)

 	process_operation() (sqlalchemy_continuum.unit_of_work.UnitOfWork method)

 	process_query() (sqlalchemy_continuum.relationship_builder.RelationshipBuilder method)

R

 	
 	reflected_relationship (sqlalchemy_continuum.relationship_builder.RelationshipBuilder attribute)

 	RelationshipBuilder (class in sqlalchemy_continuum.relationship_builder)

 	remove_class_configuration_listeners() (sqlalchemy_continuum.VersioningManager method)

 	
 	remove_operations_tracking() (sqlalchemy_continuum.VersioningManager method)

 	remove_session_tracking() (sqlalchemy_continuum.VersioningManager method)

 	reset() (sqlalchemy_continuum.unit_of_work.UnitOfWork method)

 	(sqlalchemy_continuum.VersioningManager method)

S

 	
 	sqlalchemy_continuum (module), [1]

 	sqlalchemy_continuum.model_builder (module)

 	sqlalchemy_continuum.plugins.activity (module)

 	sqlalchemy_continuum.plugins.flask (module)

 	sqlalchemy_continuum.plugins.property_mod_tracker (module)

 	sqlalchemy_continuum.plugins.transaction_changes (module)

 	
 	sqlalchemy_continuum.plugins.transaction_meta (module)

 	sqlalchemy_continuum.relationship_builder (module)

 	sqlalchemy_continuum.schema (module)

 	sqlalchemy_continuum.table_builder (module)

 	sqlalchemy_continuum.unit_of_work (module)

 	sqlalchemy_continuum.utils (module)

 	sqlalchemy_continuum.version (module)

T

 	
 	table_name (sqlalchemy_continuum.table_builder.TableBuilder attribute)

 	TableBuilder (class in sqlalchemy_continuum.table_builder)

 	track_association_operations() (sqlalchemy_continuum.VersioningManager method)

 	track_cloned_connections() (sqlalchemy_continuum.VersioningManager method)

 	track_deletes() (sqlalchemy_continuum.VersioningManager method)

 	
 	track_inserts() (sqlalchemy_continuum.VersioningManager method)

 	track_operations() (sqlalchemy_continuum.VersioningManager method)

 	track_session() (sqlalchemy_continuum.VersioningManager method)

 	track_updates() (sqlalchemy_continuum.VersioningManager method)

 	transaction_class() (in module sqlalchemy_continuum.utils)

U

 	
 	unit_of_work() (sqlalchemy_continuum.VersioningManager method)

 	UnitOfWork (class in sqlalchemy_continuum.unit_of_work)

 	
 	update_end_tx_column() (in module sqlalchemy_continuum.schema)

 	update_property_mod_flags() (in module sqlalchemy_continuum.schema)

 	update_version_validity() (sqlalchemy_continuum.unit_of_work.UnitOfWork method)

V

 	
 	vacuum() (in module sqlalchemy_continuum)

 	version_class() (in module sqlalchemy_continuum.utils)

 	version_table() (in module sqlalchemy_continuum.utils)

 	
 	version_validity_subquery() (sqlalchemy_continuum.unit_of_work.UnitOfWork method)

 	VersionClassBase (class in sqlalchemy_continuum.version)

 	versioned_objects() (in module sqlalchemy_continuum.utils)

 	VersioningManager (class in sqlalchemy_continuum)

API Documentation

	
sqlalchemy_continuum.make_versioned(mapper=<function mapper>, session=<class 'sqlalchemy.orm.session.Session'>, manager=<sqlalchemy_continuum.manager.VersioningManager object>, plugins=None, options=None, user_cls='User')

	This is the public API function of SQLAlchemy-Continuum for making certain
mappers and sessions versioned. By default this applies to all mappers and
all sessions.

	Parameters

	
	mapper – SQLAlchemy mapper to apply the versioning to.

	session – SQLAlchemy session to apply the versioning to. By default this is
sa.orm.session.Session meaning it applies to all Session subclasses.

	manager – SQLAlchemy-Continuum versioning manager.

	plugins – Plugins to pass for versioning manager.

	options – A dictionary of VersioningManager options.

	user_cls – User class which the Transaction class should have relationship to.
This can either be a class or string name of a class for lazy
evaluation.

Versioning Manager

	
class sqlalchemy_continuum.VersioningManager(unit_of_work_cls=<class 'sqlalchemy_continuum.unit_of_work.UnitOfWork'>, transaction_cls=None, user_cls=None, options={}, plugins=None, builder=None)

	VersioningManager delegates versioning configuration operations to builder
classes and the actual versioning to UnitOfWork class. Manager contains
configuration options that act as defaults for all versioned classes.

	Parameters

	
	unit_of_work_cls – The UnitOfWork class to use for initializing UnitOfWork objects for
versioning

	transaction_cls – Transaction class to use for versioning. If None, the default
Transaction class generated by TransactionFactory will be used.

	user_cls – User class which Transaction class should have relationship to. This
can either be a class or string name of a class for lazy evaluation.

	options – Versioning options

	plugins – Versioning plugins that listen the events invoked by the manager.

	builder – Builder object which handles the building of versioning tables and
models.

	
after_flush(session, flush_context)

	After flush listener for SQLAlchemy sessions. If this manager has
versioning enabled this listener gets the UnitOfWork associated with
session’s connections and invokes the process_after_flush method
of that object.

	Parameters

	session – SQLAlchemy session

	
append_association_operation(conn, table_name, params, op)

	Append history association operation to pending_statements list.

	
apply_class_configuration_listeners(mapper)

	Applies class configuration listeners for given mapper.

The listener work in two phases:

	
	Class instrumentation phase

	The first listeners listens to class instrumentation event and
handles the collecting of versioned models and adds them to
the pending_classes list.

	
	After class configuration phase

	The second listener listens to after class configuration event and
handles the actual history model generation based on list that
was collected during class instrumenation phase.

	Parameters

	mapper – SQLAlchemy mapper to apply the class configuration listeners to

	
before_flush(session, flush_context, instances)

	Before flush listener for SQLAlchemy sessions. If this manager has
versioning enabled this listener invokes the process before flush of
associated UnitOfWork object.

	Parameters

	session – SQLAlchemy session

	
clear(session)

	Simple SQLAlchemy listener that is being invoked after successful
transaction commit or when transaction rollback occurs. The purpose of
this listener is to reset this UnitOfWork back to its initialization
state.

	Parameters

	session – SQLAlchemy session object

	
create_transaction_model()

	Create Transaction class but only if it doesn’t already exist in
declarative model registry.

	
is_excluded_property(model, key)

	Returns whether or not given property of given model is excluded from
the associated history model.

	Parameters

	
	model – SQLAlchemy declarative model object.

	key – Model property key

	
option(model, name)

	Returns the option value for given model. If the option is not found
from given model falls back to default values of this manager object.
If the option is not found from this manager object either this method
throws a KeyError.

	Parameters

	
	model – SQLAlchemy declarative object

	name – name of the versioning option

	
positional_args_to_dict(op, statement, params)

	On some drivers (eg sqlite) generated INSERT statements use positional
args instead of key value dictionary. This method converts positional
args to key value dict.

	Parameters

	
	statement – SQL statement string

	params – tuple or dict of statement parameters

	
remove_class_configuration_listeners(mapper)

	Remove versioning class configuration listeners from specified mapper.

	Parameters

	mapper – mapper to remove class configuration listeners from

	
remove_operations_tracking(mapper)

	Remove listeners from specified mapper that track SQL inserts, updates
and deletes.

	Parameters

	mapper – mapper to remove the SQL operations tracking listeners from

	
remove_session_tracking(session)

	Remove listeners that track the operations (flushing, committing and
rolling back) of given session. This method should be used in
conjunction with remove_operations_tracking.

	Parameters

	session – SQLAlchemy session to remove the operations tracking from

	
reset()

	Resets this manager’s internal state.

This method should be used in test cases that create models on the fly.
Otherwise history_class_map and some other variables would be polluted
by no more used model classes.

	
track_association_operations(conn, cursor, statement, parameters, context, executemany)

	Track association operations and adds the generated history
association operations to pending_statements list.

	
track_cloned_connections(c, opt)

	Track cloned connections from association tables.

	
track_deletes(mapper, connection, target)

	Track object deletion operations. Whenever object is deleted it is
added to this UnitOfWork’s internal operations dictionary.

	
track_inserts(mapper, connection, target)

	Track object insert operations. Whenever object is inserted it is
added to this UnitOfWork’s internal operations dictionary.

	
track_operations(mapper)

	Attach listeners for specified mapper that track SQL inserts, updates
and deletes.

	Parameters

	mapper – mapper to track the SQL operations from

	
track_session(session)

	Attach listeners that track the operations (flushing, committing and
rolling back) of given session. This method should be used in
conjunction with track_operations.

	Parameters

	session – SQLAlchemy session to track the operations from

	
track_updates(mapper, connection, target)

	Track object update operations. Whenever object is updated it is
added to this UnitOfWork’s internal operations dictionary.

	
unit_of_work(session)

	Return the associated SQLAlchemy-Continuum UnitOfWork object for given
SQLAlchemy session object.

If no UnitOfWork object exists for given object then this method tries
to create one.

	Parameters

	session – SQLAlchemy session object

Builders

	
class sqlalchemy_continuum.table_builder.TableBuilder(versioning_manager, parent_table, model=None)

	TableBuilder handles the building of version tables based on parent
table’s structure and versioning configuration options.

	
table_name

	Returns the version table name for current parent table.

	
class sqlalchemy_continuum.model_builder.ModelBuilder(versioning_manager, model)

	VersionedModelBuilder handles the building of Version models based on
parent table attributes and versioning configuration.

	
base_classes()

	Returns all base classes for history model.

	
build_model(table)

	Build history model class.

	
build_parent_relationship()

	Builds a relationship between currently built version class and
parent class (the model whose history the currently build version
class represents).

	
build_transaction_relationship(tx_class)

	Builds a relationship between currently built version class and
Transaction class.

	Parameters

	tx_class – Transaction class

	
inheritance_args(cls, version_table, table)

	Return mapper inheritance args for currently built history model.

	
class sqlalchemy_continuum.relationship_builder.RelationshipBuilder(versioning_manager, model, property_)

	
	
association_subquery(obj)

	Returns an EXISTS clause that checks if an association exists for given
SQLAlchemy declarative object. This query is used by
many_to_many_criteria method.

Example query:

	EXISTS (

	SELECT 1
FROM article_tag_version
WHERE article_id = 3
AND tag_id = tags_version.id
AND operation_type != 2
AND EXISTS (

SELECT 1
FROM article_tag_version as article_tag_version2
WHERE article_tag_version2.tag_id = article_tag_version.tag_id
AND article_tag_version2.tx_id <=5
GROUP BY article_tag_version2.tag_id
HAVING

MAX(article_tag_version2.tx_id) =
article_tag_version.tx_id

)

)

	Parameters

	obj – SQLAlchemy declarative object

	
build_association_version_tables()

	Builds many-to-many association version table for given property.
Association version tables are used for tracking change history of
many-to-many associations.

	
many_to_many_criteria(obj)

	Returns the many-to-many query.

Looks up remote items through associations and for each item returns
returns the last version with a transaction less than or equal to the
transaction of obj. This must hold true for both the association and
the remote relation items.

Select all tags of article with id 3 and transaction 5

SELECT tags_version.*
FROM tags_version
WHERE EXISTS (

SELECT 1
FROM article_tag_version
WHERE article_id = 3
AND tag_id = tags_version.id
AND operation_type != 2
AND EXISTS (

SELECT 1
FROM article_tag_version as article_tag_version2
WHERE article_tag_version2.tag_id = article_tag_version.tag_id
AND article_tag_version2.tx_id <= 5
GROUP BY article_tag_version2.tag_id
HAVING

MAX(article_tag_version2.tx_id) =
article_tag_version.tx_id

)

)
AND EXISTS (

SELECT 1
FROM tags_version as tags_version_2
WHERE tags_version_2.id = tags_version.id
AND tags_version_2.tx_id <= 5
GROUP BY tags_version_2.id
HAVING MAX(tags_version_2.tx_id) = tags_version.tx_id

)
AND operation_type != 2

	
many_to_one_criteria(obj)

	Returns the many-to-one query.

Returns the item on the ‘one’ side with the highest transaction id
as long as it is less or equal to the transaction id of the obj.

Look up the Article of a Tag with article_id = 4 and
transaction_id = 5

SELECT *
FROM articles_version
WHERE id = 4
AND transaction_id = (

SELECT max(transaction_id)
FROM articles_version
WHERE transaction_id <= 5
AND id = 4

)
AND operation_type != 2

	
one_to_many_criteria(obj)

	Returns the one-to-many query.

For each item on the ‘many’ side, returns its latest version as long as
the transaction of that version is less than equal of the transaction
of obj.

Using the Article-Tags relationship, where we look for tags of
article_version with id = 3 and transaction = 5 the sql produced is

SELECT tags_version.*
FROM tags_version
WHERE tags_version.article_id = 3
AND tags_version.operation_type != 2
AND EXISTS (

SELECT 1
FROM tags_version as tags_version_last
WHERE tags_version_last.transaction_id <= 5
AND tags_version_last.id = tags_version.id
GROUP BY tags_version_last.id
HAVING

MAX(tags_version_last.transaction_id) =
tags_version.transaction_id

)

	
process_query(query)

	Process given SQLAlchemy Query object depending on the associated
RelationshipProperty object.

	Parameters

	query – SQLAlchemy Query object

	
reflected_relationship

	Builds a reflected one-to-many, one-to-one and many-to-one
relationship between two version classes.

UnitOfWork

	
class sqlalchemy_continuum.unit_of_work.UnitOfWork(manager)

	
	
assign_attributes(parent_obj, version_obj)

	Assign attributes values from parent object to version object.

	Parameters

	
	parent_obj – Parent object to get the attribute values from

	version_obj – Version object to assign the attribute values to

	
create_association_versions(session)

	Creates association table version records for given session.

	Parameters

	session – SQLAlchemy session object

	
create_transaction(session)

	Create transaction object for given SQLAlchemy session.

	Parameters

	session – SQLAlchemy session object

	
create_version_objects(session)

	Create version objects for given session based on operations collected
by insert, update and deleted trackers.

	Parameters

	session – SQLAlchemy session object

	
get_or_create_version_object(target)

	Return version object for given parent object. If no version object
exists for given parent object, create one.

	Parameters

	target – Parent object to create the version object for

	
has_changes

	Return whether or not this unit of work has changes.

	
is_modified(session)

	Return whether or not given session has been modified. Session has been
modified if any versioned property of any version object in given
session has been modified or if any of the plugins returns that
session has been modified.

	Parameters

	session – SQLAlchemy session object

	
make_versions(session)

	Create transaction, transaction changes records, version objects.

	Parameters

	session – SQLAlchemy session object

	
process_after_flush(session)

	After flush processor for given session.

Creates version objects for all modified versioned parent objects that
were affected during the flush phase.

	Parameters

	session – SQLAlchemy session object

	
process_before_flush(session)

	Before flush processor for given session.

This method creates a version session which is later on used for the
creation of version objects. It also creates Transaction object for the
current transaction and invokes before_flush template method on all
plugins.

If the given session had no relevant modifications regarding versioned
objects this method does nothing.

	Parameters

	session – SQLAlchemy session object

	
process_operation(operation)

	Process given operation object. The operation processing has x stages:

	Get or create a version object for given parent object

	Assign the operation type for this object

	Invoke listeners

	Update version validity in case validity strategy is used

	Mark operation as processed

	Parameters

	operation – Operation object

	
reset(session=None)

	Reset the internal state of this UnitOfWork object. Normally this is
called after transaction has been committed or rolled back.

	
update_version_validity(parent, version_obj)

	Updates previous version object end_transaction_id based on given
parent object and newly created version object.

This method is only used when using ‘validity’ versioning strategy.

	Parameters

	parent – SQLAlchemy declarative parent object

	Parem version_obj

	SQLAlchemy declarative version object

See also

version_validity_subquery()

	
version_validity_subquery(parent, version_obj, alias=None)

	Return the subquery needed by update_version_validity().

This method is only used when using ‘validity’ versioning strategy.

	Parameters

	parent – SQLAlchemy declarative parent object

	Parem version_obj

	SQLAlchemy declarative version object

See also

update_version_validity()

History class

	
class sqlalchemy_continuum.version.VersionClassBase

	
	
changeset

	Return a dictionary of changed fields in this version with keys as
field names and values as lists with first value as the old field value
and second list value as the new value.

	
index

	Return the index of this version in the version history.

	
next

	Returns the next version relative to this version in the version
history. If current version is the last version this method returns
None.

	
previous

	Returns the previous version relative to this version in the version
history. If current version is the first version this method returns
None.

Changelog

Here you can see the full list of changes between each SQLAlchemy-Continuum release.

1.3.6 (2018-07-30)

	Fixed ResourceClosedErrors from connections leaking when using an external transaction (#196, courtesy of vault)

1.3.5 (2018-06-03)

	Track cloned connections (#167, courtesy of netcriptus)

1.3.4 (2018-03-07)

	Exclude many-to-many properties from versioning if they are added in exclude parameter (#169, courtesy of fuhrysteve)

1.3.3 (2017-11-05)

	Fixed changeset when updating object in same transaction as inserting it (#141, courtesy of oinopion)

1.3.2 (2017-10-12)

	Fixed multiple schema handling (#132, courtesy of vault)

1.3.1 (2017-06-28)

	Fixed subclass retrieval for closest_matching_table (#163, courtesy of debonzi)

1.3.0 (2017-01-30)

	Dropped py2.6 support

	Fixed memory leaks with UnitOfWork instances (#131, courtesy of quantus)

1.2.4 (2016-01-10)

	Added explicit sequence names for Oracle (#118, courtesy of apfeiffer1)

1.2.3 (2016-01-10)

	Added use_module_name configuration option (#119, courtesy of kyheo)

1.2.2 (2015-12-08)

	Fixed some relationship changes not counted as modifications (#116, courtesy of tvuotila)

1.2.1 (2015-09-27)

	Fixed deep joined table inheritance handling (#105, courtesy of piotr-dobrogost)

	Fixed naive assumption of related User model always having id column (#107, courtesy of avilaton)

	Fixed one-to-many relationship reverting (#102, courtesy of sdorazio)

1.2.0 (2015-07-31)

	Removed generated changes attribute from version classes. This attribute can be accessed through transaction.changes

	Removed is_modified checking from insert operations

1.1.5 (2014-12-28)

	Added smart primary key type inspection for user class (#86, courtesy of mattupstate)

	Added support for self-referential version relationship reflection (#88, courtesy of dtheodor)

1.1.4 (2014-12-06)

	Fixed One-To-Many version relationship handling (#82, courtesy of dtheodor)

	Fixed Many-To-Many version relationship handling (#83, courtesy of dtheodor)

	Fixed inclusion and exclusion of aliased columns

	Removed automatic exclusion of auto-assigned datetime columns and tsvector columns (explicit is better than implicit)

1.1.3 (2014-10-23)

	Made FlaskPlugin accepts overriding of current_user_id_factory and remote_addr_factory

1.1.2 (2014-10-07)

	Fixed identifier quoting in trigger syncing

1.1.1 (2014-10-07)

	Fixed native versioning trigger syncing

1.1.0 (2014-10-02)

	Added Python 3.4 to test suite

	Added optional native trigger based versioning for PostgreSQL dialect

	Added create_models option

	Added count_versions utility function

	Fixed custom transaction column name handling with models using joined table inheritance

	Fixed subquery strategy support for models using joined table inheritance

	Fixed savepoint handling

	Fixed version model building when no versioned models were found (previously threw AttributeError)

	Replaced plugin template methods before_create_tx_object and after_create_tx_object with transaction_args to better cope with native versioning

1.0.3 (2014-07-16)

	Added __repr__ for Operations class

	Fixed an issue where assigning unmodified object’s attributes in user defined before flush listener would raise TypeError in UnitOfWork

1.0.2 (2014-07-11)

	Allowed easier overriding of PropertyModTracker column creation

	Rewrote join table inheritance handling schematics (now working with SA 0.9.6)

	SQLAlchemy-Utils dependency updated to 0.26.5

1.0.1 (2014-06-18)

	Fixed an issue where deleting an object with deferred columns would throw ObjectDeletedError.

	Made viewonly relationships with association tables not register the association table to versioning manager registry.

1.0 (2014-06-16)

	Added __repr__ for Transaction class, issue #59

	Made transaction_cls of VersioningManager configurable.

	Removed generic relationships from transaction class to versioned classes.

	Removed generic relationships from transaction changes class to versioned classes.

	Removed relation_naming_function (no longer needed)

	Moved get_bind to SQLAlchemy-Utils

	Removed inflection package from dependencies (no longer needed)

	SQLAlchemy-Utils dependency updated to 0.26.2

1.0b5 (2014-05-07)

	Added order_by mapper arg ignoring for version class reflection if other than string argument is used

	Added support for customizing the User class which the Transaction class should have relationship to (issue #53)

	Changed get_versioning_manager to throw ClassNotVersioned exception if first argument is not a versioned class

	Fixed relationship reflection from versioned classes to non versioned classes (issue #52)

	SQLAlchemy-Utils dependency updated to 0.25.4

1.0-b4 (2014-04-20)

	Fixed many-to-many unit of work inspection when using engine bind instead of collection bind

	Fixed various issues if primary key aliases were used in declarative models

	Fixed an issue where association versioning would not work with custom transaction column name

	SQLAlchemy-Utils dependency updated to 0.25.3

1.0-b3 (2014-04-19)

	Added support for concrete inheritance

	Added order_by mapper arg reflection to version classes

	Added support for column_prefix mapper arg

	Made model builder copy inheritance mapper args to version classes from parent classes

	Fixed end transaction id setting for join table inheritance classes. Now end transaction id is set explicitly to all tables in inheritance hierarchy.

	Fixed single table inheritance handling

1.0-b2 (2014-04-09)

	Added some schema tools to help migrating between different plugins and versioning strategies

	Added remove_versioning utility function, see issue #45

	Added order_by transaction_id default to versions relationship

	Fixed PropertyModTrackerPlugin association table handling.

	Fixed get_bind schematics (Flask-SQLAlchemy integration wasn’t working)

	Fixed a bug where committing a session without objects would result in KeyError

	SQLAlchemy dependency updated to 0.9.4

1.0-b1 (2014-03-14)

	Added new plugin architecture

	Added ActivityPlugin

	Naming conventions change: History -> Version (to be consistent throughout Continuum)

	Naming convention change: TransactionLog -> Transaction

	Rewritten reflected relationship model for version classes. Only dynamic relationships are now reflected as dynamic relationships. Other relationships return either lists or scalars.

	One-To-One relationship support for reflected version class relationships

	Removed tx_context context manager. Transaction objects can now be created manually and user has direct access to the parameters of this object.

	Removed tx_meta context manager. Transaction meta objects can now be created explicitly.

	Fixed association reverting when the relationship uses uselist=False

	Fixed one-to-many directed relationship reverting when the relationship uses uselist=False

	Fixed many-to-many relationship handling when multiple links were created during the same transaction

	Added indexes to operation_type, transaction_id and end_transaction_id columns of version classes

	Deprecated extensions

	SQLAlchemy-Utils dependency updated to 0.25.0

0.10.3 (2014-02-27)

	Fixed version next / previous handling

	SQLAlchemy dependency updated to 0.9.3

	Fixed column onupdate to history table reflection (issue #47)

0.10.2 (2014-02-10)

	Fixed MySQL support (issue #36)

	Added SQLite and MySQL to testing matrix

0.10.1 (2013-10-18)

	Added vacuum function

0.10.0 (2013-10-09)

	Validity versioning strategy

	Changeset supports custom transaction column names

	Reify -> Revert

	Fixed revert to support class level column exclusion

0.9.0 (2013-09-12)

	Ability to track property modifications

	New configuration options: track_property_modifications and modified_flag_suffix

0.8.7 (2013-09-04)

	Only autoincremented columns marked as autoincrement=False for history tables. This enables alembic migrations to generate without annoying explicit autoincrement=False args.

0.8.6 (2013-08-21)

	Custom database schema support added

0.8.5 (2013-08-01)

	TSVectorType columns not versioned by default (in order to avoid massive version histories)

0.8.4 (2013-07-31)

	Full MySQL and SQLite support added

0.8.3 (2013-07-29)

	Fixed UnitOfWork changed entities handling (now checks only for versioned attributes not all object attributes)

	Fixed UnitOfWork TransactionMeta object creation (now checks if actual modifications were made)

0.8.2 (2013-07-26)

	Fixed MySQL history table primary key generation (autoincrement=False now forced for transaction_id column)

0.8.1 (2013-07-25)

	Added support for SQLAlchemy-i18n

0.8.0 (2013-07-25)

	Added database independent transaction meta parameter handling (formerly supported postgres only)

0.7.13 (2013-07-24)

	Smarter is_modified handling for UnitOfWork (now understands excluded properties)

0.7.12 (2013-07-23)

	Fixed FlaskVersioningManager schematics when working outside of request context (again)

	Added possibility to use custom UnitOfWork class

0.7.11 (2013-07-23)

	Fixed FlaskVersioningManager schematics when working outside of request context

0.7.10 (2013-07-23)

	Fixed is_auto_assigned_date_column (again)

	Moved some core utility functions to SQLAlchemy-Utils

0.7.9 (2013-07-23)

	Fixed is_auto_assigned_date_column

	Inflection added to requirements

0.7.8 (2013-07-03)

	Removed Versioned base class (adding __versioned__ attribute and calling make_versioned() is sufficient for making declarative class versioned)

0.7.7 (2013-07-03)

	DateTime columns with defaults excluded by default from history classes

	Column inclusion added as option

0.7.6 (2013-07-03)

	Smarter changeset handling

0.7.5 (2013-07-03)

	Improved reify() speed

0.7.4 (2013-07-03)

	Fixed changeset when parent contains more columns than version class.

0.7.3 (2013-06-27)

	Transaction log and transaction changes records only created if actual net changes were made during transaction.

0.7.2 (2013-06-27)

	Removed last references for old revision versioning

0.7.1 (2013-06-27)

	Added is_versioned utility function

	Fixed before operation listeners

0.7.0 (2013-06-27)

	Version tables no longer have revision column

	Parent tables no longer need revision column

	Version tables primary key is now (parent table pks + transaction_id)

0.6.8 (2013-06-26)

	Make versioned join table inherited classes support multiple consecutive flushes per transaction

0.6.7 (2013-06-26)

	Fixed association versioning when using executemany

0.6.6 (2013-06-26)

	Improved transaction log changed_entities schematics

0.6.5 (2013-06-26)

	Added possibility to add lazy values in transaction context meta

0.6.4 (2013-06-25)

	Version tables no longer generated when versioning attribute of model set to False

0.6.3 (2013-06-25)

	Revision column not nullable in version classes

0.6.2 (2013-06-25)

	Fixed relationship building for non-versioned classes

0.6.1 (2013-06-25)

	Parent table primary keys remain not nullable in generated version table

0.6.0 (2013-06-25)

	Added database agnostic versioning (no need for PostgreSQL specific triggers anymore)

	Fixed version object relationships (never worked properly in previous versions)

	New configuration option versioning allows setting the versioning on and off per child class.

	Added column exclusion

0.5.1 (2013-06-20)

	Added improved context managing capabilities for transactions via VersioningManager.tx_context

0.5.0 (2013-06-20)

	Removed Versioned base class, versioned objects only need to have __versioned__ defined.

	Session versioning now part of make_versioned function

	Added meta parameter in TransactionLog

	TransactionChanges model for tracking changed entities in given transaction

	Added Flask extension

0.4.2 (2013-06-18)

	Alembic trigger syncing fixed for drop column and add column

0.4.1 (2013-06-18)

	Alembic trigger syncing fixed

0.4.0 (2013-06-18)

	Added support for multiple updates for same row within single transaction

	History tables have now own revision column

0.3.12 (2013-06-18)

	Not null constraints removed from all reflected columns

	Fixed reify when parent has not null constraints

	Added support for reifying deletion

0.3.11 (2013-06-18)

	Single table inheritance support added

0.3.10 (2013-06-18)

	Generated operation_type column not nullable by default

0.3.9 (2013-06-18)

	Added drop_table trigger synchronization

0.3.8 (2013-06-18)

	Autoincrementation automatically removed from reflected primary keys

0.3.7 (2013-06-18)

	Added identifier quoting for all column names

0.3.6 (2013-06-18)

	Identifier quoting for create_trigger_sql

0.3.5 (2013-06-12)

	Added alembic operations proxy class

0.3.4 (2013-06-12)

	VersioningManager now added in __versioned__ dict of each versioned class

0.3.3 (2013-06-12)

	Creating TransactionLog now checks if it already exists.

0.3.2 (2013-06-12)

	Added operation_type column to version tables.

0.3.1 (2013-06-12)

	Versioned mixin no longer holds lists of pending objects

	Added VersioningManager for more customizable versioning syntax

0.3.0 (2013-06-10)

	Model changesets

	Fixed previous and next accessors

	Updates generate versions only if actual changes occur

0.2.1 (2013-06-10)

	Added sanity check in all_affected_entities

0.2.0 (2013-06-10)

	Added backref relations to TransactionLog

	Added all_affected_entities property to TransactionLog

0.1.9 (2013-06-10)

	Renamed internal attribute __pending__ to __pending_versioned__ in order to avoid variable naming collisions.

0.1.8 (2013-06-10)

	Better checking of model table name in scenarios where model does not have __tablename__ defined.

0.1.7 (2013-06-07)

	Added make_versioned for more robust declaration of versioned mappers

0.1.6 (2013-06-07)

	Added PostgreSQLAdapter class

0.1.5 (2013-06-07)

	Made trigger procedures table specific to allow more fine-grained control.

0.1.4 (2013-06-06)

	Added column order inspection.

0.1.3 (2013-06-06)

	Removed foreign key dependency from version table and transaction table

0.1.2 (2013-06-06)

	Fixed packaging

0.1.1 (2013-06-06)

	Initial support for join table inheritance

0.1.0 (2013-06-05)

	Initial release

 _static/ajax-loader.gif

_static/comment-bright.png

_static/comment-close.png

_static/comment.png

nav.xhtml

 Table of Contents

 		
 SQLAlchemy-Continuum

 		
 Introduction

 		
 Why?

 		
 Features

 		
 Installation

 		
 Basics

 		
 Versions and transactions

 		
 Version objects

 		
 Operation types

 		
 Version traversal

 		
 Changeset

 		
 Version relationships

 		
 Relationships to non-versioned classes

 		
 Dynamic relationships

 		
 Reverting changes

 		
 Revert update

 		
 Revert delete

 		
 Revert relationships

 		
 Queries

 		
 How many transactions have been executed?

 		
 Querying for entities of a class at a given revision

 		
 Querying for transactions, at which entities of a given class changed

 		
 Querying for versions of entity that modified given property

 		
 Transactions

 		
 Transaction

 		
 UnitOfWork

 		
 Workflow internals

 		
 Native versioning

 		
 Usage

 		
 Schema migrations

 		
 Plugins

 		
 Using plugins

 		
 Activity

 		
 Limitations

 		
 Create activities

 		
 Update activities

 		
 Delete activities

 		
 Local version histories using targets

 		
 Flask

 		
 PropertyModTracker

 		
 TransactionChanges

 		
 TransactionMeta

 		
 Configuration

 		
 Global and class level configuration

 		
 Versioning strategies

 		
 Validity

 		
 Subquery

 		
 Column exclusion and inclusion

 		
 Basic configuration options

 		
 Customizing transaction user class

 		
 Customizing versioned mappers

 		
 Customizing versioned sessions

 		
 Continuum Schema

 		
 Version tables

 		
 Transaction tables

 		
 Using vacuum

 		
 Schema tools

 		
 Alembic migrations

 		
 Utilities

 		
 changeset

 		
 count_versions

 		
 get_versioning_manager

 		
 is_modified

 		
 is_modified_or_deleted

 		
 is_session_modified

 		
 is_versioned

 		
 parent_class

 		
 transaction_class

 		
 version_class

 		
 versioned_objects

 		
 version_table

 		
 License

_static/file.png

_static/down-pressed.png

_static/down.png

_static/up-pressed.png

_static/minus.png

_static/plus.png

_static/up.png

