

Blocks

[image: _images/blocks.gif]
Blocks provides a simple interface to read, organize, and manipulate structured data in files
on local and cloud storage

Install

pip install sq-blocks

To enable GCS support make sure to also install the Google Cloud SDK [https://cloud.google.com/sdk/docs/]

Features

import blocks

Load one or more files with the same interface
df = blocks.assemble('data.csv')
train = blocks.assemble('data/*[01].csv')
test = blocks.assemble('data/*[2-9].csv')

With direct support for files on GCS
df = blocks.assemble('gs://mybucket/data.csv')
df = blocks.assemble('gs://mybucket/data/*.csv')

The interface emulates the tools you’re used to from the command line, with full support for globbing and pattern
matching. And blocks can handle more complicated structures as your data grows in complexity:

	Layout

	Recipe

	[image: _images/both.png]

	blocks.assemble('data/**')``

	[image: _images/column.png]

	blocks.assemble('data/g1/*')

	[image: _images/row.png]

	blocks.assemble('data/*/part_01.pq')

	[image: _images/filtered.png]

	blocks.assemble('data/g[124]/part_01.pq')

Full Contents

	Quickstart
	Layout

	Read
	Assemble

	Iterate

	Partitioned

	Write
	Place

	Divide

	Examples
	Inspect Data

	Large Datasets

	Batch Training

	Combining

	Filesystem

	Core

	Filesystem

Quickstart

Layout

In the simplest case, you might want to read your data from a single file. This is pretty easy in
pandas, but blocks adds additional support for inferring file types and support cloud storage:

import pandas as pd
import blocks
df = blocks.assemble('data.pkl') # same as pd.read_pickle
df = blocks.assemble('gs://mybucket/data.parquet')

Many projects need to combine data stored in several files. To support this, blocks makes a few
assumptions about your data. You’ve split it up into blocks, either into groups of columns (cgroups)
or groups of rows (rgroups). You can read all this data into a single dataframe in memory with one
command:

import blocks
blocks.assemble('data/')

If all of your files are in one directory, then the rows will be concatenated:

data
├── part.00.pq
├── part.01.pq
└── part.02.pq

If your files actually contain the same rows but store different columns, you should place them in different folders with corresponding names:

data
├── g0
│ └── part.00.pq
├── g1
│ └── part.00.pq
└── g2
 └── part.00.pq

In the most general case you can do both, laying out your data in multiple cgroups and rgroups - where each rgroup should contain the same
logical rows (e.g. different attributes of the same event)

─ data
 ├── g0
 │ ├── part.00.pq
 │ ├── part.01.pq
 │ ├── part.02.pq
 │ └── part.03.pq
 ├── g1
 │ ├── part.00.pq
 │ ├── part.01.pq
 │ ├── part.02.pq
 │ └── part.03.pq
 ├── g2
 │ ├── part.00.pq
 │ ├── part.01.pq
 │ ├── part.02.pq
 │ └── part.03.pq
 └── g3
 ├── part.00.pq
 ├── part.01.pq
 ├── part.02.pq
 └── part.03.pq

This corresponds to the following dataframe structure:

[image: _images/blocks_layout.png]
This pattern generalizes very well when you start collecting data from multiple sources and with enough content that the
entire dataset won’t comfortably fit into memory at once.

Blocks supports multiple data formats, including csv, hdf5, pickle, and parquet. Reads from these files
are handled by pandas libraries, so they support all of the options you expect like headers, index columns, etc.
All of the blocks interfaces below support passing keyword args to the read functions for the files (see the docstrings).
The files can be local (referenced by normal paths) or on GCS (referenced by paths like gs://bucket).

Note that rgroups are combined by simple concatenation, and cgroups are combined by a “natural left join”:
any shared columns are considered join keys. Key-based merging only makes sense with named columns, so make sure
any CSVs you use have a column header if you want to join cgroups.

Read

Assemble

Assemble is the primary data reading command, and can handle any of the layouts above. You can select subsets of the data
using glob patterns or the cgroups and rgroups arguments:

	Layout

	Recipe

	[image: _images/both.png]

	blocks.assemble('data/')

	[image: _images/column.png]

	blocks.assemble('data/g1/*')
or
blocks.assemble('data/', cgroups=['g1'])

	[image: _images/row.png]

	blocks.assemble('data/*/part.01.pq')
or
blocks.assemble('data/', rgroups=['part.01.pq'])

	[image: _images/filtered.png]

	blocks.assemble('data/*/part.01.pq', cgroups=['g0', 'g1', 'g3'])
or
blocks.assemble(
 'data/',
 rgroups=['part.01.pq'],
 cgroups=['g0', 'g1', 'g3']
)

Iterate

Blocks also has an iterative option for performing operations on each of the blocks without loading them all
into memory at once:

import blocks

for cgroup, rgroup, df in blocks.iterate('data/'):
 print(df.shape)

iterate supports the same syntax and features as assemble above, but instead of returning a merged dataframe,
it returns an iterator of (rgroup, cgroup, dataframe) where the rgroup and cgroup are the names of the
groups ('g0' and 'part.00.pq' from above).

iterate can also operate on multiple axes - the default is to iterate over every block separately. But if you
specify axis=0, then iterate will combine cgroups and iterate over rgroups, and for axis=1 it will iterate
over the cgroups while combining any rgroups.

	Direction

	Recipe

	[image: _images/row_iter.png]

	# iterate over one dataframe per rgroup
for rgroup, df in blocks.iterate('gs://path/to/data', axis=0):
 print(df.shape)

	[image: _images/column_iter.png]

	# iterate over one dataframe per cgroup
for cgroup, df in blocks.iterate('gs://path/to/data', axis=1):
 print(df.shape)

Partitioned

Dask [http://dask.pydata.org/en/latest/] provides a great interface to a partitioned dataframe, and you can use blocks’ simple syntax to
build a dask.dataframe. Checkout the dask documentation for details on how to use the resulting object.

import blocks

need to have separately installed dask
dask_df = blocks.partitioned('data/*/part_0[1-4].pq')

dask_df.groupby('category').mean().compute()

Write

Place

If you want to put a dataframe into a single file, use place:

import blocks

blocks.place(df, 'data/part_00.pq')
blocks.place(df, 'gs://mybucket/data/part_00.pq')

Like with assemble for a single file, this is easy in pandas, but blocks infers the file
type and has support for cloud storage.

Divide

For paritioning your data, blocks also has a divide function. You’d use this to split up a single large dataframe
in memory into many rgroups and/or cgroups on disk, to help with parallelizing analysis. By default the blocks are
written as parquet files, but you can specify other extensions including .hdf5, .csv, and .pkl.

import blocks

divide into just row groups
blocks.divide(df, 'data/', n_rgroup=3)

data
├── part_00.pq
├── part_01.pq
└── part_02.pq

Divide can also handle column groups:

split into 10 rgroups and specific cgroups
cgroup_columns = {
 'g0': ['id', 'timestamp', 'metadata'],
 'g1': ['id', 'timestamp', 'feature0', 'feature1'],
 'g2': ['id', 'timestamp', 'feature2', 'feature3'],
 'g3': ['id', 'timestamp', 'feature4', 'feature5', 'feature6'],
}
blocks.divide(df, 'data/', 4, cgroup_columns=cgroup_columns)

─ data
 ├── g0
 │ ├── part.00.pq
 │ ├── part.01.pq
 │ ├── part.02.pq
 │ └── part.03.pq
 ├── g1
 │ ├── part.00.pq
 │ ├── part.01.pq
 │ ├── part.02.pq
 │ └── part.03.pq
 ├── g2
 │ ├── part.00.pq
 │ ├── part.01.pq
 │ ├── part.02.pq
 │ └── part.03.pq
 └── g3
 ├── part.00.pq
 ├── part.01.pq
 ├── part.02.pq
 └── part.03.pq

Examples

Inspect Data

You can use assemble to grab a small subset of your data

import blocks

df = blocks.assemble('data/*/part_00.pq')
df.describe()

This works great when dealing with data staged on GCS

import blocks

df = blocks.assemble('gs://bucket/*/part_00.pq')
df.describe()

Large Datasets

It’s common to end up with a dataset that won’t easily fit into memory. But you often still need to calculate
aggregate statistics on that data. For example, you might need to get a unique list of categories in one of your fields.

Iterate makes this easy:

import blocks

uniques = set()
for _, _, block in blocks.iterate('data/'):
 uniques |= set(block['feature'])

or maybe you want to parallelize the process

import blocks
from multiprocessing import Pool

def unique_f1(block):
 return set(block[-1]['feature'])

uniques_per_block = Pool(4).map(unique_f1, blocks.iterate('data/'))
uniques = reduce(lambda a, b: a | b, uniques_per_block)

And if you have dask installed the parallelization is even easier

import blocks

uniques = blocks.partitioned('data')['feature'].unique().compute()

Batch Training

If you’re working with a tool like Keras, you might want to train a model on an iterator of batches
without every loading more than one partition into memory:

import blocks

def batch_generator(path):
 for _, df in blocks.iterate(path, axis=0):
 while df.shape[0] >= nbatch:
 # Grab a sample and drop from original
 sub = df.sample(nbatch)
 df.drop(sub.index, inplace=True)
 yield sub.values

model.fit_generator(
 generator=batch_generator('train/'),
 validation_data=batch_generator('validate/'),
)

If you use an efficient file format like parquet, this simple code will be suprisingly fast. You should make
sure that you don’t use multiple cgroups in a situation like this, however, because merging can slow
down the process.

Combining

If you end up with a dataset with multiple column groups, say because you grabbed your data from multiple sources,
you may want to merge accross those groups. However it is expensive to do this by loading the whole dataset into memory.
If you use the blocks structure you can merge each row partition separately and then save to new files. You can
even subdivide those files into smaller row groups to ensure that they don’t grow too large:

import blocks

offset = 0
for _, df in blocks.iterate(path, axis=0):
 blocks.divide(df, 'combined/', n_rgroup=10, rgroup_offset=offset)
 rgroup_offset += 10

Filesystem

Blocks provide a default filesystem that supports local files and GCS files. If you need additional functionality,
you can create a custom filesystem instance:

import blocks
from blocks.filesystem import GCSFileSystem

fs = GCSFileSystem()
df = blocks.assemble('gs://bucket/data/', filesystem=fs)

The default filesystem has support for GCS, and you can implement your own FileSystem class by
inheriting from blocks.filesystem.FileSystem. This can be used to extend blocks to additional
cloud platforms, to support encryption/decryption, etc…

Core

	
blocks.core.assemble(path, cgroups=None, rgroups=None, read_args={}, cgroup_args={}, merge='inner', filesystem=<blocks.filesystem.GCSFileSystem object at 0x7ff5bbf79190>)

	Assemble multiple dataframe blocks into a single frame

Each file included in the path (or subdirs of that path) is combined into
a single dataframe by first concatenating over row groups and then merging
over cgroups. The merges are performed in the order of listed cgroups if
provided, otherwise in alphabetic order. Files are opened by a method inferred
from their extension

	Parameters

	
	pathstr

	The glob-able path to all datafiles to assemble into a frame
e.g. gs://example//, gs://example//part.0.pq, gs://example/c[1-2]/
See the README for a more detailed explanation

	cgroupslist of str, optional

	The list of cgroups (folder names) to include from the glob path

	rgroupslist of str, optional

	The list of rgroups (file names) to include from the glob path

	read_argsoptional

	Any additional keyword args to pass to the read function

	cgroup_args{cgroup: kwargs}, optional

	Any cgroup specific read arguments, where each key is the name
of the cgroup and each value is a dictionary of keyword args

	mergeone of ‘left’, ‘right’, ‘outer’, ‘inner’, default ‘inner’

	The merge strategy to pass to pandas.merge

	filesystemblocks.filesystem.FileSystem or similar

	A filesystem object that implements the blocks.FileSystem API

	Returns

	
	datapd.DataFrame

	The combined dataframe from all the blocks

	
blocks.core.divide(df, path, n_rgroup=1, rgroup_offset=0, cgroup_columns=None, extension='.pq', convert=False, filesystem=<blocks.filesystem.GCSFileSystem object at 0x7ff5bafa98d0>, prefix=None, **write_args)

	Split a dataframe into rgroups/cgroups and save to disk

Note that this splitting does not preserve the original index, so make sure
to have another column to track values

	Parameters

	
	dfpd.DataFrame

	The data to divide

	pathstr

	Path to the directory (possibly on GCS) in which to place the columns

	n_rgroupint, default 1

	The number of row groups to partition the data into
The rgroups will have approximately equal sizes

	rgroup_offsetint, default 0

	The index to start from in the name of file parts
e.g. If rgroup_offset=10 then the first file will be part_00010.pq

	cgroup_columns{cgroup: list of column names}

	The column lists to form cgroups; if None, do not make cgroups
Each key is the name of the cgroup, and each value is the list of columns to include
To reassemble later make sure to include join keys for each cgroup

	extensionstr, default .pq

	The file extension for the dataframe (file type inferred from this extension

	convertbool, default False

	If true attempt to coerce types to numeric. This can avoid issues with ambiguous
object columns but requires additional time

	filesystemblocks.filesystem.FileSystem or similar

	A filesystem object that implements the blocks.FileSystem API

	write_argsdict

	Any additional args to pass to the write function

	
blocks.core.iterate(path, axis=-1, cgroups=None, rgroups=None, read_args={}, cgroup_args={}, merge='inner', filesystem=<blocks.filesystem.GCSFileSystem object at 0x7ff5bafa9810>)

	Iterate over dataframe blocks

Each file include in the path (or subdirs of that path) is opened as a
dataframe and returned in a generator of (cname, rname, dataframe).
Files are opened by a method inferred from their extension

	Parameters

	
	pathstr

	The glob-able path to all datafiles to assemble into a frame
e.g. gs://example//, gs://example//part.0.pq, gs://example/c[1-2]/
See the README for a more detailed explanation

	axisint, default -1

	The axis to iterate along
If -1 (the default), iterate over both columns and rows
If 0, iterate over the rgroups, combining any cgroups
If 1, iterate over the cgroups, combining any rgroups

	cgroupslist of str, or {str: args} optional

	The list of cgroups (folder names) to include from the glob path

	rgroupslist of str, optional

	The list of rgroups (file names) to include from the glob path

	read_argsdict, optional

	Any additional keyword args to pass to the read function

	cgroup_args{cgroup: kwargs}, optional

	Any cgroup specific read arguments, where each key is the name
of the cgroup and each value is a dictionary of keyword args

	mergeone of ‘left’, ‘right’, ‘outer’, ‘inner’, default ‘inner’

	The merge strategy to pass to pandas.merge, only used when axis=0

	filesystemblocks.filesystem.FileSystem or similar

	A filesystem object that implements the blocks.FileSystem API

	Returns

	
	datagenerator

	A generator of (cname, rname, dataframe) for each collected path
If axis=0, yields (rname, dataframe)
If axis=1, yields (cname, dataframe)

	
blocks.core.partitioned(path, cgroups=None, rgroups=None, read_args={}, cgroup_args={}, merge='inner', filesystem=<blocks.filesystem.GCSFileSystem object at 0x7ff5bafa9850>)

	Return a partitioned dask dataframe, where each partition is a row group

The results are the same as iterate with axis=0, except that it returns a dask dataframe
instead of a generator. Note that this requires dask to be installed

	Parameters

	
	pathstr

	The glob-able path to all datafiles to assemble into a frame
e.g. gs://example//, gs://example//part.0.pq, gs://example/c[1-2]/
See the README for a more detailed explanation

	cgroupslist of str, or {str: args} optional

	The list of cgroups (folder names) to include from the glob path

	rgroupslist of str, optional

	The list of rgroups (file names) to include from the glob path

	read_argsdict, optional

	Any additional keyword args to pass to the read function

	cgroup_args{cgroup: kwargs}, optional

	Any cgroup specific read arguments, where each key is the name
of the cgroup and each value is a dictionary of keyword args

	mergeone of ‘left’, ‘right’, ‘outer’, ‘inner’, default ‘inner’

	The merge strategy to pass to pandas.merge, only used when axis=0

	filesystemblocks.filesystem.FileSystem or similar

	A filesystem object that implements the blocks.FileSystem API

	Returns

	
	datadask.dataframe

	A dask dataframe partitioned by row groups, with all cgroups merged

	
blocks.core.place(df, path, filesystem=<blocks.filesystem.GCSFileSystem object at 0x7ff5bafa9890>, **write_args)

	Place a dataframe block onto the filesystem at the specified path

	Parameters

	
	dfpd.DataFrame

	The data to place

	pathstr

	Path to the directory (possibly on GCS) in which to place the columns

	write_argsdict

	Any additional args to pass to the write function

	filesystemblocks.filesystem.FileSystem or similar

	A filesystem object that implements the blocks.FileSystem API

Filesystem

	
class blocks.filesystem.DataFile

	Bases: tuple

	Attributes

	
	handle

	Alias for field number 1

	path

	Alias for field number 0

Methods

	count()

	

	index()

	Raises ValueError if the value is not present.

	
handle

	Alias for field number 1

	
path

	Alias for field number 0

	
class blocks.filesystem.FileSystem

	Bases: object

The required interface for any filesystem implementation

See GCSFileSystem for a full implementation. This FileSystem is intended
to be extendable to support cloud file systems, encryption strategies, etc…

Methods

	access(self, paths)

	Access multiple paths as file-like objects

	ls(self, path)

	List files correspond to path, including glob wildcards

	store(self, bucket, files)

	Store multiple data objects

	
access(self, paths)

	Access multiple paths as file-like objects

This allows for optimization like parallel downloads

	Parameters

	
	paths: list of str

	The paths of the files to access

	Returns

	
	files: list of DataFile

	A list of datafile instances, one for each input path

	
ls(self, path)

	List files correspond to path, including glob wildcards

	Parameters

	
	pathstr

	The path to the file or directory to list; supports wildcards

	
store(self, bucket, files)

	Store multiple data objects

This allows for optimizations when storing several files

	Parameters

	
	bucketstr

	The GCS bucket to use to store the files

	fileslist of str

	The file names to store

	Returns

	
	datafilescontextmanager

	A contextmanager that will yield datafiles and place them
on the filesystem when finished

	
class blocks.filesystem.GCSFileSystem(parallel=True, quiet=True)

	Bases: blocks.filesystem.FileSystem

File system interface that supports both local and GCS files

This implementation uses subprocess and gsutil, which has excellent performance.
However this can lead to problems in very multi-threaded applications and might not be
as portable. For a python native implementation use GCSNativeFileSystem

Methods

	access(self, paths)

	Access multiple paths as file-like objects

	cp(self, sources, dest[, recursive])

	Copy the files in sources to dest

	local(self, path)

	Check if the path is available as a local file

	ls(self, path)

	List files correspond to path, including glob wildcards

	open(*args, **kwds)

	Access path as a file-like object

	rm(self, paths[, recursive])

	Remove the files at paths

	store(*args, **kwds)

	Create file stores that will be written to the filesystem on close

	
GCS = 'gs://'

	

	
access(self, paths)

	Access multiple paths as file-like objects

This allows for optimization like parallel downloads

	Parameters

	
	paths: list of str

	The paths of the files to access

	Returns

	
	files: list of DataFile

	A list of datafile instances, one for each input path

	
cp(self, sources, dest, recursive=False)

	Copy the files in sources to dest

	Parameters

	
	sourceslist of str

	The list of paths to copy

	deststr

	The destination for the copy of source(s)

	recursivebool

	If true, recursively copy any directories

	
local(self, path)

	Check if the path is available as a local file

	
ls(self, path)

	List files correspond to path, including glob wildcards

	Parameters

	
	pathstr

	The path to the file or directory to list; supports wildcards

	
open(*args, **kwds)

	Access path as a file-like object

	Parameters

	
	path: str

	The path of the file to access

	mode: str

	The file mode for the opened file

	Returns

	
	file: file

	A python file opened to the provided path (uses a local temporary copy that is removed)

	
rm(self, paths, recursive=False)

	Remove the files at paths

	Parameters

	
	pathslist of str

	The paths to remove

	recursivebool, default False

	If true, recursively remove any directories

	
store(*args, **kwds)

	Create file stores that will be written to the filesystem on close

This allows for optimizations when storing several files

	Parameters

	
	bucketstr

	The path of the bucket (on GCS) or folder (local) to store the data in

	fileslist of str

	The filenames to create

	Returns

	
	datafilescontextmanager

	A context manager that yields datafiles and when the context is closed
they are written to GCS

	
class blocks.filesystem.GCSNativeFileSystem(*args, **kwargs)

	Bases: blocks.filesystem.GCSFileSystem

File system interface that supports GCS and local files

This uses the native python cloud storage library for read and write, rather than gsutil.
The performance is significantly slower when doing any operations over several files (especially
copy), but is thread-safe for applications which are already parallelized. It stores the files
entirely in memory rather than using tempfiles.

Methods

	access(self, paths)

	Access multiple paths as file-like objects

	cp(self, sources, dest[, recursive])

	Copy the files in sources (recursively) to dest

	local(self, path)

	Check if the path is available as a local file

	ls(self, path)

	List all files at the specified path, supports globbing

	open(*args, **kwds)

	Access paths as a file-like object

	rm(self, paths[, recursive])

	Remove the files at paths

	store(*args, **kwds)

	Create file stores that will be written to the filesystem on close

	client

	

	copy_single

	

	is_dir

	

	rm_single

	

	
access(self, paths)

	Access multiple paths as file-like objects

This allows for optimization like parallel downloads. To help track which files
came from which objects, this returns instances of Datafile

	Parameters

	
	paths: list of str

	The paths of the files to access

	Returns

	
	files: list of DataFile

	A list of datafile instances, one for each input path

	
client(self)

	

	
copy_single(self, source, dest)

	

	
cp(self, sources, dest, recursive=False)

	Copy the files in sources (recursively) to dest

	Parameters

	
	sourceslist of str

	The list of paths to copy, which can be directories

	deststr

	The destination for the copy of source(s)

	recursivebool, default False

	If true, recursively copy directories

	
is_dir(self, path)

	

	
ls(self, path)

	List all files at the specified path, supports globbing

	
open(*args, **kwds)

	Access paths as a file-like object

	Parameters

	
	path: str

	The path of the file to access

	mode: str

	The file mode for the opened file

	Returns

	
	file: BytesIO

	A BytesIO handle for the specified path, works like a file object

	
rm(self, paths, recursive=False)

	Remove the files at paths

	Parameters

	
	pathslist of str

	The paths to remove

	recursivebool, default False

	If true, recursively remove any directories

	
rm_single(self, path)

	

	
store(*args, **kwds)

	Create file stores that will be written to the filesystem on close

This allows for optimizations when storing several files

	Parameters

	
	bucketstr

	The path of the bucket (on GCS) or folder (local) to store the data in

	fileslist of str

	The filenames to create

	Returns

	
	datafilescontextmanager

	A context manager that yields datafiles and when the context is closed
they are written to GCS

 Python Module Index

 b

 		 	

 		
 b	

 	[image: -]
 	
 blocks	

 	
 	
 blocks.core	

 	
 	
 blocks.filesystem	

Index

 A
 | B
 | C
 | D
 | F
 | G
 | H
 | I
 | L
 | O
 | P
 | R
 | S

A

 	
 	access() (blocks.filesystem.FileSystem method)

 	(blocks.filesystem.GCSFileSystem method)

 	(blocks.filesystem.GCSNativeFileSystem method)

 	
 	assemble() (in module blocks.core)

B

 	
 	blocks.core (module)

 	
 	blocks.filesystem (module)

C

 	
 	client() (blocks.filesystem.GCSNativeFileSystem method)

 	copy_single() (blocks.filesystem.GCSNativeFileSystem method)

 	
 	cp() (blocks.filesystem.GCSFileSystem method)

 	(blocks.filesystem.GCSNativeFileSystem method)

D

 	
 	DataFile (class in blocks.filesystem)

 	
 	divide() (in module blocks.core)

F

 	
 	FileSystem (class in blocks.filesystem)

G

 	
 	GCS (blocks.filesystem.GCSFileSystem attribute)

 	
 	GCSFileSystem (class in blocks.filesystem)

 	GCSNativeFileSystem (class in blocks.filesystem)

H

 	
 	handle (blocks.filesystem.DataFile attribute)

I

 	
 	is_dir() (blocks.filesystem.GCSNativeFileSystem method)

 	
 	iterate() (in module blocks.core)

L

 	
 	local() (blocks.filesystem.GCSFileSystem method)

 	ls() (blocks.filesystem.FileSystem method)

 	(blocks.filesystem.GCSFileSystem method)

 	(blocks.filesystem.GCSNativeFileSystem method)

O

 	
 	open() (blocks.filesystem.GCSFileSystem method)

 	(blocks.filesystem.GCSNativeFileSystem method)

P

 	
 	partitioned() (in module blocks.core)

 	
 	path (blocks.filesystem.DataFile attribute)

 	place() (in module blocks.core)

R

 	
 	rm() (blocks.filesystem.GCSFileSystem method)

 	(blocks.filesystem.GCSNativeFileSystem method)

 	
 	rm_single() (blocks.filesystem.GCSNativeFileSystem method)

S

 	
 	store() (blocks.filesystem.FileSystem method)

 	(blocks.filesystem.GCSFileSystem method)

 	(blocks.filesystem.GCSNativeFileSystem method)

 _images/filtered.png

_images/row.png

_images/column.png

_images/column_iter.png

_static/comment-bright.png

_images/row_iter.png
|

_static/ajax-loader.gif

_static/comment-close.png

_static/comment.png

_images/blocks.gif

_images/blocks_layout.png
rows: 0-10k

10k-20k

rows:

rows: 20k-25k

rows: 25k-35k

columns: A,B

columns: C - J

g1/part.00.pq

g1/part.01.pq

g1/part.02.pq

g1/part.03.pq

columns: K - P

columns: Q - W

_images/both.png

_static/down-pressed.png

nav.xhtml

 Table of Contents

 		
 Blocks

 		
 Quickstart

 		
 Layout

 		
 Read

 		
 Assemble

 		
 Iterate

 		
 Partitioned

 		
 Write

 		
 Place

 		
 Divide

 		
 Examples

 		
 Inspect Data

 		
 Large Datasets

 		
 Batch Training

 		
 Combining

 		
 Filesystem

 		
 Core

 		
 Filesystem

_static/file.png

_static/minus.png

_static/down.png

_static/up-pressed.png

_static/up.png

_static/plus.png

