spnav Documentation
Release 0.9

Stanley Seibert

February 04, 2012

CONTENTS

Documentation 3
L1 Setup . . . o o e e e e e e 3
1.2 Usage o o o e e e e e e e e e e e e e 4
1.3 Reference L e e e e 6
Development 7
Indices and tables 9

spnav Documentation, Release 0.9

The spnav module provides a Python interface to the 1ibspnav C library, which allows you to read events from a
Space Navigator 3D mouse on Linux systems. These input devices simultaneously report linear force and rotational
torque applied by the user to the device, along with button events. See:

http://www.3dconnexion.com/products/spacenavigator.html
for more information about the Space Navigator.

Any device supported by spacenavd is supported by the 1 ibspnav and therefore the spnav Python module. This
includes not only the current USB devices sold by 3dconnexion, but older serial-based devices that were sold under
many brand names.

For more information about spacenavd and 1ibspnav, see:

http://spacenav.sourceforge.net/

CONTENTS 1

http://www.3dconnexion.com/products/spacenavigator.html
http://spacenav.sourceforge.net/

spnav Documentation, Release 0.9

2 CONTENTS

CHAPTER
ONE

DOCUMENTATION

1.1 Setup

1.1.1 Prerequisites

To access a Space Navigator (or compatible) device in Linux, you need to run a daemon in the background. The
official 3dconnexion drivers provide such a server, but the open source spacenav project provides a vastly superior
daemon that I highly recommend.

spacenavd can communicate input events with client software using either the X11-based protocol supported by
the 3dconnexion drivers, or a local UNIX socket-based protocol. The 1ibspnav client library, also produced by the
spacenav project, can use either protocol.

If you are using Ubuntu 11.04, you can install spacenavd and 1ibspnav with the following command:

sudo apt—-get install spacenavd libspnavO0

Otherwise, you will need to download the sofware from:
http://spacenav.sourceforge.net

and install it manually.

1.1.2 Package Installation

The spnav Python module can installed from PyPI with the command:

sudo easy_install spnav

or installed from source by running the usual Python installation procedure:

sudo python setup.py install

The spnav module requires ct ypes, which is standard in Python 2.5 and later, although I have only tested spnav
with Python 2.7.

1.1.3 Tips

* spacenavd supports USB devices with no additional configuration file, but serial devices do need the port
name setin /etc/spnavrc.

http://spacenav.sourceforge.net/
http://spacenav.sourceforge.net
http://bitbucket.org/seibert/spnav/

spnav Documentation, Release 0.9

* Neither spacenavd nor the 3dconnexion damon support more than one Space Navigator device connected to
a single computer.

* Serial devices may have a different convention for the orientation of the y and z axes. You might need to flip
them in the configuration file.

* The X11-based protocol works automatically with X11 forwarding and SSH, allowing you to send input events
to software running on a remote computer. Note that 1ibspnav and the spnav Python module need to be
installed on the remote computer for this to work.

* If you experience strange permission problems when the spacenavd daemon is started automatically by the
Ubuntu boot scripts. If you are having trouble, stop the daemon:

sudo service spacenavd stop

and then start the daemon manually from a X terminal window:

sudo spacenavd

Alternatively, try using the direct UNIX socket protocol.

1.2 Usage

Reflecting the design of 1ibspnav, the spnav Python module can be used two ways, depending upon which proto-
col you use to communicate with the Space Navigator daemon. Both protocols emit the same event objects.

1.2.1 Space Navigator Events

Space Navigator events come in two varieties: motion and button.

Motion events result from the application of force to the 3D mouse controller. The strain gauges inside the controller
cap can simultaneously resolve both linear force and rotational torque, giving 6 degrees of freedom. The linear force
is reported as a signed integer 3-vector, corresponding to the X, y, and z components of the force. The rotational torque
is also reported as a signed integer 3-vector, with the components corresponding to torque around the x, y, and z axis.

Button events are generated when a button on the Space Navigator controller is pressed or released. They consist of a
button number and a boolean indicating the type of state transition (“pressed” or “released”).

See Event Classes for details on the event classes.

1.2.2 UNIX Socket Protocol

The UNIX socket protocol is suitable when the client and daemon process will coexist on the same computer. It also
allows for the creation of console applications that use the Space Navigator without an X Server.

First, the connection to the Space Navigator daemon must be opened:

>>> from spnav import =
>>> spnav_open ()

The open connection is to a single device and global to the process. An SpnavConnectionException will be
raised if the connection cannot be made.

Events are generated from device input by spacenavd and sent to all connected clients. To perform a blocking wait
for the next event, use:

4 Chapter 1. Documentation

spnav Documentation, Release 0.9

>>> event = spnav_wait_event ()

Warning: spnav_wait_event () blocks execution inside the underlying C function in 1ibspnav. As a
result, the user will not be able to interrupt your Python application with Ctrl-C. spnav_poll_event () is
almost always a better alternative.

To poll the library to see if an event is available, use:

>>> event = spnav_poll_event ()

If no event is available, the function returns None, otherwise it returns an event.

As long as a force is applied to the controller, spacenavd will continuously send events to all the clients. If your
client does even a moderate amount of computation in response to a Space Navigator event (like rendering a 3D scene,
for example), many events will queue up before the next event can be retrieved. This will give the appearance of lag,
as motions performed some time in the past are processed too late. In these situations, it is better to clear the event
queue after significant calculations:

>>> spnav_remove_events (SPNAV_EVENT_MOTION)

Typically, only motion events should be removed, although button events can be removed with the
SPNAV_EVENT_BUTTON argument, and both types of events can be removed from the queue with the
SPNAV_EVENT_ANY option.

When finished, the socket connection is closed with:

>>> spnav_close()

1.2.3 X11 Protocol

The X11 protocol was defined by 3dconnexion and is used by the official Space Navigator drivers, as well as
spacenavd. It uses the X server as a conduit to pass Space Navigator events wrapped up as XEvents to appli-
cations, similar to other input devices. This allows the Space Navigator to be used with remote applications via
SSH X-Forwarding. However, the X11 protocol can only be used with graphical applications, as will be seen in the
following example. If you are writing a console application, you must use the UNIX socket protocol described above.

I have been able to successfully use the X11 protocol with pygame, so the remainder of this usage tutorial will assume
you are using pygame in your application. Other windowing toolkits may work, and you can always fall back to the
UNIX socket protocol.

Once we initialize Pygame and create a window, we can obtain the window manager information and open the con-
nection:

>>> wm_info = pygame.display.get_wm_info ()
>>> gspnav_x11_open (wn_info[’display’], wm_info[’window’])

The X11 protocol communicates with XEvents of a type that are ignored by Pygame by default. Next, we need to
enable delivery of these events:

>>> pygame.event.set_allowed (pygame.SYSWMEVENT)

Now Space Navigator events will be returned in a Pygame event loop:

while True:
for event in pygame.event.get () :
spnav_event = spnav_xll_event (event.event)
if spnav_event is not None:
print ’'Space Navigator Event:’, spnav_event

1.2. Usage 5

http://pygame.org/

spnav Documentation, Release 0.9

Much the same as with the UNIX socket protocol, Space Navigator events can queue up during extended processing.
This creates a lag between current motion by the user and the arrival of those motion events to the front of the
queue. There is no spnav_remove_events () analog for the X11 protocol, as the queue is handled outside of
libspnav. However, one can adjust the previous event loop to only return the most recent Space Navigator event:

while True:
for event in pygame.event.get (pygame.SYSWMEVENT) [-1:] \
+ pygame.event.get () :
spnav_event = spnav_x1ll_event (event.event)
if spnav_event is not None:
print ’Space Navigator Event:’, spnav_event

When finished, the connection is closed with the same function as in the UNIX socket protocol:

>>> spnav_close ()

1.3 Reference

The spnav module interface exactly mirrors the C API of 1ibspnav, but the C union of event structs has been
replaced with Python classes.

1.3.1 Event Classes

Event types are identified by module constants:
spnav.SPNAV_EVENT_MOTION

Linear and rotation force applied to controller.
spnav.SPNAV_EVENT_BUTTON

Button pressed or released.

spnav.SPNAV_EVENT_ANY

Either motion or button event. Only used with spnav_remove_events.

class spnav.SpnavEvent (ev_type)
Space Navigator Event Base class

ev_type: int Type of events. Either SPANV_EVENT_MOTION or SPNAV_EVENT_BUTTON.

class spnav.SpnavMotionEvent (translation, rotation, period)
Space Navigator Motion Event class

translation: 3-tuple of ints Translation force X,Y,Z in arbitrary integer units
rotation: 3-tuple of ints Rotation torque around axes in arbitrary integer units
period: int Corresponds to spnav_event_motion.period in libspnav. No idea what the meaning of the field is.

class spnav.SpnavButtonEvent (bnum, press)
Space Navigator Button Event class

Button events are generated when a button on the controller is pressed and when it is released.
bnum: int Button number

press: bool If True, button pressed down, else button released.

6 Chapter 1. Documentation

spnav Documentation, Release 0.9

1.3.2 UNIX Socket Protocol

spnav.spnav_open ()
Open connection to the daemon via AF_UNIX socket.

The unix domain socket interface is an alternative to the original magellan protocol, and it is NOT compatible
with the 3D connexion driver. If you wish to remain compatible, use the X11 protocol (spnav_x11_open, see
below).

Raises SpnavConnectionException if connection cannot be established.

spnav.spnav_wait_event ()
Blocks waiting for Space Navigator events.

Note that the block happens inside the libspnav library, so you will not be able to interrupt this function with
Ctrl-C. It is almost always better to use spnav_poll_event () instead.

Returns: An instance of SpnavMot ionEvent or SpnavButtonEvent.

spnav.spnav_poll_event ()
Polls for waiting for Space Navigator events.

Returns: None if no waiting events, otherwise an instance of SpnavMotionEvent or
SpnavButtonEvent.

spnav.spnav_remove_events (event_type)
Removes pending Space Navigator events from the queue.

This function is useful to purge old events that may have queued up after a long calculation. It helps to keep
your application appearing more responsive.

event_type: int The type of events to remove. SPNAV_EVENT_MOTION or SPNAV_EVENT_BUTTON re-
moves just motion or button events, respectively. SPNAV_EVENT_ANY removes both types of events.

spnav.spnav_close ()
Closes connection to the daemon.

1.3.3 X11 Socket Protocol

spnav.spnav_x1l1l_open (display, window)
Opens a connection to the daemon, using the original magellan X11 protocol. Any application using this proto-
col should be compatible with the proprietary 3D connexion driver too.

display: PyCObject containing X11 Display struct X11 display pointer
window: int X11 window handle
Raises SpnavConnectionException if Space Navigator daemon cannot be contacted.

spnav.spnav_x1l1l_event (xevent)
Examines an arbitrary X11 event to see if it is a Space Navigator event.

Returns: None if not a Space Navigator event, otherwise an instance of SpnavMotionEvent or
SpnavButtonEvent is returned.

spnav.spnav_close ()
Closes connection to the daemon.

1.3. Reference 7

spnav Documentation, Release 0.9

1.3.4 Exceptions
exception spnav.SpnavException (msg)
Base class for all spnav exceptions.

exception spnav.SpnavConnectionException (msg)
Exception caused by failure to connect to source of spnav events.

exception spnav.SpnavWaitException (msg)

Exception caused by error while waiting for spnav event to arrive.

Chapter 1. Documentation

CHAPTER
TWO

DEVELOPMENT

The source repository for spnav is located at:
http://bitbucket.org/seibert/spnav/
You can download the source code with Mercurial:

hg clone http://bitbucket.org/seibert/spnav/

http://bitbucket.org/seibert/spnav/

spnav Documentation, Release 0.9

10 Chapter 2. Development

CHAPTER
THREE

* genindex
* modindex

INDICES AND TABLES

11

	Documentation
	Setup
	Usage
	Reference

	Development
	Indices and tables

