

Welcome to spline’s documentation!

Contents:

	Motivation

	Quickstart
	Usage

	Development

	Real Example
	Python and tox

	Quickstart

	Spline and matrix build

	The model

	The init part of the script

	The run part of the script

	Run the build (without matrix filtering)

	Run the build (with a matrix filter)

	Matrix build in Travis CI

	Some final notes

	The pipeline

	The Pipeline matrix
	Usage

	Parallelization

	Pipeline stages

	The Shell
	One line

	Multipe lines

	Jinja templating supported

	Tags

	“With” attribute

	Colors

	Conditional tasks

	The Python task

	The Model
	Introduction

	Nested templates

	The Environment Variables

	The Tasks
	Ordered tasks

	Parallel tasks

	Environment variables

	Variables on tasks

	The Docker Container Script
	Simple Example

	Specifying an image

	Using user labels

	How to find a Docker container

	Mounts

	Network

	“With” attribute

	Conditional tasks

	The Docker Image Script
	Simple example

	The option “unique”

	Dockerfile

	Conditional tasks

	The Packer Task
	Setup

	Simpe Example

	Important notes

	The Ansible(simple) Task
	Example

	Notes on Jinja Templating

	Hosts, ports, user and password

	Conditional Tasks
	Introduction

	Data sources

	Rules

	Examples

	Hooks
	The cleanup hook

	The include statement
	Basic Usage

	Notes

	The Even logging

	Command Line Options
	Dry run mode

	Debug

	Temporary Scripts Path

	Unicode

	The one file report
	Introduction

	Example

	Multiprocessing

	Refresh

	Development
	Python Development

	The spline-loc tool
	Purpose

	The usage

	About loc, com and ratio

	About comments

	Using average ratio only for valuation

Motivation

Working a longer time with tools like Jenkins and Travis CI you might find out that
you loose a lot of time because of try and error. You change the pipeline on a
feature branch, push it remote and then run the pipeline analyzing the results.
As an example you cannot easily use a Jenkinsfile locally since that Groovy code
does use a so called DSL accessing Jenkins and the plugin infrastructure in a running
Jenkins instance.

I have been seeking for a better solution where you can do most things already on
your own machine. Basically all concepts like matrix, stages and parallelism
should be available in a simple terminal (console).

Also it allows using this tool in different existing environments like
Jenkins and Travis CI where you can keep the Jenkinsfile (.travis.yml) very
simple and short while your pipeline definition yaml contains all.

Quickstart

Usage

That installs the spline tool including all of its dependencies:

pip install spline

When you have a pipeline definition (example: pipeline.yaml) then you can run it with:

spline --definition=pipeline.yaml

Some simple examples you can see in the example folder of
the project repository and also spline itself provides
that file (exception: Docker tests are skipped).

The minimum structure of a pipeline definition file should look
like following:

pipeline:
 - stage(Example):
 - tasks(ordered):
 - shell:
 script: echo "hello world!"

The output:

$ spline --definition=minimum.yaml
2017-11-18 11:24:25,875 - spline.application - Running with Python 2.7.13 (default, Jan 19 2017, 14:48:08) [GCC 6.3.0 20170118]
2017-11-18 11:24:25,883 - spline.application - Running on platform Linux-4.9.0-3-amd64-x86_64-with-debian-9.1
2017-11-18 11:24:25,884 - spline.application - Processing pipeline definition 'minimum.yaml'
2017-11-18 11:24:25,908 - spline.application - Schema validation for 'minimum.yaml' succeeded
2017-11-18 11:24:25,934 - spline.components.stage - Processing pipeline stage 'Example'
2017-11-18 11:24:25,934 - spline.components.tasks - Processing group of tasks
2017-11-18 11:24:25,934 - spline.components.tasks - Processing Bash code: start
2017-11-18 11:24:25,942 - spline.components.bash - Running script /tmp/pipeline-script-D3N3F9.sh
2017-11-18 11:24:25,948 - spline.components.tasks - | hello world!
2017-11-18 11:24:25,949 - spline.components.tasks - |
2017-11-18 11:24:25,950 - spline.components.bash - Exit code has been 0
2017-11-18 11:24:25,950 - spline.components.tasks - Processing Bash code: finished

Development

git clone https://github.com/Nachtfeuer/pipeline.git
cd pipeline
./unittests.sh
OR tox -e py35 OR tox -e py36 (see tox.ini)
tox -e py27

For the purpose to test a specific Python version that does not
exist on your system you can choose one of following commands:

spline --definition=pipeline.yaml --matrix-tags=py27
spline --definition=pipeline.yaml --matrix-tags=py33
spline --definition=pipeline.yaml --matrix-tags=py34
spline --definition=pipeline.yaml --matrix-tags=py35
spline --definition=pipeline.yaml --matrix-tags=py36
spline --definition=pipeline.yaml --matrix-tags=pypy
spline --definition=pipeline.yaml --matrix-tags=pypy3

If you leave away those tags it will run for all Python versions.
A special note on Python 3.6.x: I have provided two ways to deal
with it:

	init_py36_compile: A concrete package is downloaded and built.
You have to rename it to init_py36 to use it (rename the other).

	init_py36: It currently download ready made CentOS 7 packages;
you save time with it.

The init_py36 is the name that is constructed via the matrix so ensure
you have the one you prefer.

Real Example

Python and tox

Like for Java using Maven or Gradle or using CMake for C++ is tox a tool for Python.
It does simplify the support for multiple Python version and the quite comfortable
description of the commands and its environments. The spline project has a complete
demo project for Python in folder examples/python/primes.

Quickstart

You require spline >= 1.2. It’s possible to run tox without parameters
but then you need to have all listed Python versions installed.
I usually have Python 2.7.x and Pyton 3.5.x on my machine so I could test
the project like following: -e py27 -e py35.

pip install spline tox --upgrade
git clone https://github.com/Nachtfeuer/pipeline.git
cd pipeline/examples/python/primes
tox -e py27

The tox.ini covers:

	pep8 (tox -e pep8)

	pep257 (tox -e pep257)

	pylint (tox -e pylint)

	flake8 (tox -e flake8)

	radon (tox -e radon)

	nosetests (tox -e tests, tests with pyhamcrest, 100% coverage as limit)

	packaging (tox -e package wheel file)

Using commands like tox -e radon it does use the
Python version on your host.

Spline and matrix build

However the different Python versions will introduce different
behavior (often) so you constantly have to verify. The spline tool does help
you with this by isolating builds into Docker containers; with
this you can test even locally all Python version also you
have just one Python version on your machine.

So let’s start with the matrix definition:

matrix:
- name: Python 2.7
 env: {PYTHON_VERSION: py27}
 tags: ['py27']
- name: Python 3.5
 env: {PYTHON_VERSION: py35}
 tags: ['py35']

Keeping it simple (demo) I just defined a few Python versions
but with given examples it’s pretty easy to add more. The
given setup will inject the environment variable PYTHON_VERSION
to be used as filter for the templates in the model. The tags are
provided to allow filtering for one concrete Python version only.

The model

The next step is to define a model:

model:
 templates:
 init_py27: |
 yum -y install centos-release-scl yum-utils git
 yum-config-manager --enable rhel-server-rhscl-7-rpms
 yum -y install python27
 scl enable python27 "bash -c \"pip install setuptools --upgrade\""
 scl enable python27 "bash -c \"pip install tox\""
 scl enable python27 "bash -c \"{{ env.PIPELINE_BASH_FILE }} RUN\""

The Python 3.5 part is also contained (see pipeline.yaml).
The main point here to understand is that scl enable does use
a mechanism where you have to specify a script that is executed in context
of the specified environent (here: python27). The variable PIPELINE_BASH_FILE
is generated (injected) by the spline tool. You either can refer to by $ syntax (Bash way)
or using Jinja2 syntax (as done here).

The init part of the script

The Bash script that is calling your code running inside a Docker container is
called first time with the parameter INIT. The Bash case structure
handles that rendering the Python template we need for the currently running
matrix; so we have to fetch exactly that template from the model which
relates to current PYTHON_VERSION. Because the template also contains
Jinja2 code we have to apply the render filter passing the environment
variables. The template (last line of it) does call the build script again
but now with parameter RUN which gives you the possibility to implement
your build process inside the Docker container and inside the correct
Python environment.

- docker(container):
 mount: yes
 script: |
 case $1 in
 INIT)
 {{ model.templates['init_'+env.PYTHON_VERSION]|render(env=env) }}
 ;;
 RUN)
 echo "Running build with $(python -V)"
 ;;

The run part of the script

Of course we don’t print just the Python version (as shown before); the final
RUN case looks like following:

RUN)
 echo "Running build with $(python -V)"
 mkdir /build

 # copying all files under version into the container
 pushd /mnt/host/examples/python/primes
 tar cvzf /build/demo.tar.gz $(git ls-files)
 popd

 pushd /build
 # unpacking the copied sources files
 tar xvzf demo.tar.gz
 rm -f demo.tar.gz
 # running the build
 tox -e {{ env.PYTHON_VERSION }}
 popd
 ;;

We are inside the Docker container and also running in context
of a concrete Python version. Now a build folder will be generated
where we place the Python code. It’s not optimal to run directly on the
shared workspace (repository) because:

	The Docker standard user is root and generated files and folders
on the Docker host probably raise permission issues when it comes
to cleanup. Yes you can organize to be same user as in the host
but with some effort (my personal opinion: avoid it).

	If you run in parallel you share folders even when they are
temporary build output (my personal opinion: avoid it).

	On some systems the exchange of files and folders on those Docker
mounts is expensive.

That’s why I have choosen the variant to use Git since Git exactly knows
all files (and folders) under versions copying it into the build folder
of the Docker container. After unpacking you simply call tox -e {{ env.PYTHON_VERSION }}
and your build runs fully isolated inside the Docker container.

The last lines (I don’t print all - too many lines) look like following:

2017-12-10 11:50:06,230 - spline.components.tasks - | creating build/bdist.linux-x86_64/wheel/pipeline_demo_python_primes-1.0.dist-info/WHEEL
2017-12-10 11:50:06,230 - spline.components.tasks - | ___________________________________ summary ____________________________________
2017-12-10 11:50:06,230 - spline.components.tasks - | py27: commands succeeded
2017-12-10 11:50:06,230 - spline.components.tasks - | congratulations :)
...
2017-12-10 11:51:24,231 - spline.components.tasks - | creating build/bdist.linux-x86_64/wheel/pipeline_demo_python_primes-1.0.dist-info/WHEEL
2017-12-10 11:51:24,231 - spline.components.tasks - | ___________________________________ summary ____________________________________
2017-12-10 11:51:24,232 - spline.components.tasks - | py35: commands succeeded
2017-12-10 11:51:24,232 - spline.components.tasks - | congratulations :)

Run the build (without matrix filtering)

Remains to show how the matrix build is usually executed.
For the demo inside the spline repository you have
to be in the root of it (because git requires .git from mount):

spline --definition=examples/python/primes/pipeline.yaml

Run the build (with a matrix filter)

If you would like to run one Python version only you can use –matrix-tags.
It accepts a comma separated list of tag names. In given example we run the
whole pipeline for Python 3.5.x only.

spline --definition=examples/python/primes/pipeline.yaml --matrix-tags=py35

Here we run the whole pipeline for Python 2.7.x and Python 3.5.x:

spline --definition=examples/python/primes/pipeline.yaml --matrix-tags=py27,py35

Matrix build in Travis CI

The option –matrix-tags is also very probably of interest when using it
in matrix builds with Travis CI (extract of a .travis.yml file):

env:
 matrix:
 - PYTHON_VERSION=py27
 - PYTHON_VERSION=py33
 - PYTHON_VERSION=py34
 - PYTHON_VERSION=py35

script: spline --definition=pipeline.yaml --matrix-tags=${PYTHON_VERSION}

Some final notes

	For the moment it seems that the output of one Bash execution is passed back to
the called after finish of it which results in a delay until you see something.
I have filed an issue: #28: Asynchronous Bash execution. When I find a solution
then I will remove this point.

	If you copy back things into workspace (mount) keep in mind to use
chown -R ${UID}:${GID} <path or file>.

The pipeline

The pipeline is a list of stages. It also may have environment blocks.

pipeline:
- env:
 mode: test

- stage(one):
 - tasks(ordered):
 - shell:
 script: echo "{{ env.mode }}: script one"

- stage(two):
 - tasks(ordered):
 - shell:
 script: echo "{{ env.mode }}: script two"

The Pipeline matrix

Usage

A matrix basically has a name and assigned environment variables. The purpose is
to support that same pipeline can run for different parameters. Examples are
running with different compilers, interpreters or databases. In addition you can
specify tags which allow to filter for certain matrix runs.

matrix:
 - name: one
 env:
 mode: one
 tags:
 - first

 - name: two
 env:
 mode: two
 tags:
 - second

With this example you can filter for second matrix item like this:

pipeline --definition=example.yaml --matrix-tags=second

Parallelization

While matrix as well as matrix(ordered) are representing ordered pipeline execution
you also can specify matrix(parallel). Using parallel all specified matrix items (pipeines)
are running in parallel. Parallel matrixs and parallel tasks can be combined.

Be aware that parallelization works just as good as many cpu you have and as less competition.

Pipeline stages

Each stage is a list of tasks blocks. It also may have environment blocks.

- stage(one):
 - env:
 mode: test

 - tasks(ordered):
 - shell:
 script: echo "{{ env.mode }}: script one"

 - tasks(ordered):
 - shell:
 script: echo "{{ env.mode }}: script two"

The stage name in the round brackets can be any text. It’s assumed that a
stage should reflect the individual phases of the a CI/CD pipeline including (unordered):

	preparation

	build

	unittests

	static code analysis

	packaging

	integration/regression tests

	image creation (docker, AWS, …)

	deployment

The Shell

One line

The shell is a yaml definition for executing a Bash script.

- shell:
 script: echo "hello world!"

As an alternative when given script content is a valid path and filename
of an existing Bash script then those one will be taken. Please note
that the content of each script is copied into a temporary one and executed.

Multipe lines

You also can have multiple lines:

- shell:
 script: |
 echo "hello world 1!"
 echo "hello world 2!"

Jinja templating supported

Jinja templating is supported. Currently two variables
are available:

env

Gives you access to the environment variables as defined when the
spline tool has been started; in addition you can add environment
variables or overwrite existing ones. Please note that the value
is always a string.

model

The model is a dictionary (map) with keys and the values can be
any valid yaml construct that results in a valid Python data
hierarchy.

variables

You can specify a field variable on each shell and the output of the
Bash will be stored under the defined name. However a special note
on this: when you define a task block for parallel tasks then one task
cannot access a variable by another parallel task in same execution block;
but when such tasks are separated by an env entry each task after that
entry is able to use it also those run in parallel too. More on this you
can read in the chapter about tasks.

Here’s a simple example for the access:

- tasks:
 - env:
 count: "3"

 - shell:
 script: echo "{{ env.USER }}"
 variable: user

 - shell:
 script: |
 {% for c in range(env.count|int) %}
 echo "{{ c+1 }}:{{ env.message }}"
 {% endfor %}
 echo "USER={{ variables.user }}"
 echo "foo={{ model['foo'] }}"

More details on env and model you can see in a separate chapter.

Tags

Finally you can specify tags:

- shell:
 script: echo "hello world!"
 tags:
 - simple
- shell:
 script: echo "hello world!"
 tags:
 - test

Executing the spline tool you can specify –tags=test which
executes shells only with given tag. You also can specify a
comma separted list of tags to allow more shells: –tags=test,simple

One usecase might be to isolate a shell for testing purpose.

“With” attribute

Using the with attribute you can run same task as often as many entries you provide.
The entries are representing a list but the item can be any valid yaml structure; in the
example a dictionary is used:

- shell:
 script: |
 echo "{{ item.message }}: start"
 sleep {{ item.time }}
 echo "{{ item.message }}: done"
 with:
 - message: first
 time: 3
 - message: second
 time: 2
 - message: third
 time: 1

You also can use a rendered with like following when
you put the list of items into the model:

- shell:
 script: echo "{{ item }}"
 with: "{{ model.data }}"

Finally all generated tasks (shell or docker container) are added to the
list of tasks to be processed and it depends on the setup of the tasks
block whether those tasks are executed in order or in parallel.
Please have a look and try the example with.yaml in the repository.

Colors

Colors are working fine!

- shell:
 script: |
 echo -e "\e[31mRed World\e[0m"
 echo -e "\e[33mOrange World\e[0m"
 echo -e "\e[34mBlue World\e[0m"
 echo -e "\e[35mMagenta World\e[0m"

Conditional tasks

The field when allows you to define a condition; when evaluated as true then
the task is executed otherwise not. More details you can read in the separate
section Conditional Tasks.

The Python task

Python behaves pretty the same way as a normal bash script
except that the code goes through the Python interpreter
found in the search path:

model:
 message: 'hello world'

pipeline:
 - stage(Example):
 - tasks(ordered):
 - python:
 script: |
 import sys
 print(sys.version.replace("\n", ""))
 print("{{ model.message }}{{ item }}!")
 with:
 - 1
 - 2
 - 3

	Of course you can use Jinja2 templating accessing:

	
	the model

	and the environment variables

	optional the item variable when using the width field.

	optional you access a variable when generated by a previous task.
(already demonstrated when explaining the shell)

Also tags are allowed and you can specify a title for logging.

The Model

Introduction

The model is a flexible way to define data.
For the moment you can define it only once at
global level:

model:
 max-number: 100

pipeline:
 - stage(Calculate Primes):
 - tasks(ordered):
 - shell:
 script: |
 function is_prime() {
 n=$1
 if ["${n}" -lt 2]; then return; fi
 if ["$(($n % 2))" -eq 0]; then
 if ["${n}" == "2"]; then echo "yes"; fi
 return;
 fi
 d=$(echo "sqrt(${n})"|bc)
 for k in $(seq 3 2 ${d}); do
 if ["$(($n % $k))" -eq 0]; then return; fi
 done
 echo "yes"
 }

 for n in $(seq 0 {{ model['max-number'] }}); do
 if ["$(is_prime ${n})" == "yes"]; then
 echo -n "${n} ";
 fi
 done
 tags:
 - embedded

The output looks like following:

$ spline --definition=examples/primes.yaml --tags=embedded
2017-11-20 05:53:45,150 - spline.application - Running with Python 2.7.13 (default, Jan 19 2017, 14:48:08) [GCC 6.3.0 20170118]
2017-11-20 05:53:45,177 - spline.application - Running on platform Linux-4.9.0-3-amd64-x86_64-with-debian-9.1
2017-11-20 05:53:45,177 - spline.application - Processing pipeline definition 'examples/primes.yaml'
2017-11-20 05:53:45,210 - spline.application - Schema validation for 'examples/primes.yaml' succeeded
2017-11-20 05:53:45,214 - spline.components.stage - Processing pipeline stage 'Calculate Primes'
2017-11-20 05:53:45,214 - spline.components.tasks - Processing group of tasks
2017-11-20 05:53:45,215 - spline.components.tasks - Processing Bash code: start
2017-11-20 05:53:45,220 - spline.components.bash - Running script /tmp/pipeline-script-i6l5rx.sh
2017-11-20 05:53:46,261 - spline.components.tasks - | 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59 61 67 71 73 79 83 89 97
2017-11-20 05:53:46,261 - spline.components.bash - Exit code has been 0
2017-11-20 05:53:46,262 - spline.components.tasks - Processing Bash code: finished

As an alternative you also can do it like following:

model:
 max-number: 100

pipeline:
 - stage(Calculate Primes):
 - tasks(ordered):
 - shell:
 script: examples/primes.sh {{ model['max-number'] }}
 tags:
 - file

For completeness:

$ spline --definition=examples/primes.yaml --tags=file

Lists in yaml will be converted into Python lists and yaml dictionaries
will be converted into Python dictionaries. All basically as you would
expect.

Nested templates

The model also can be used for storing templates that can be injected into scripts.
You probably also would like to pass then the model and environment variables to it:

model:
 templates:
 script: |
 echo "{{ model.message }} {{ env.who }}!"
 message: "hello"

pipeline:
 - env:
 who: world

 - stage(Test):
 - tasks(ordered):
 - shell:
 script: "{{ model.templates.script|render(model=model, env=env) }}"

That’s just a very simple example.

The Environment Variables

pipeline:
- env:
 a: "hello"

- stage(Environment Variables):
 - env:
 b: "world"

 - tasks(ordered):
 - env:
 c: "for all"

 - shell:
 script: |
 echo "a=$a"
 echo "b=$b"
 echo "c=$c"

An extract from the output when running the pipeline:

2017-11-20 18:47:08,209 - spline.components.bash - Running script /tmp/pipeline-script-w2MUih.sh
2017-11-20 18:47:08,215 - spline.components.tasks - | a=hello
2017-11-20 18:47:08,215 - spline.components.tasks - | b=world
2017-11-20 18:47:08,216 - spline.components.tasks - | c=for all

All defined variables are merged together:

	first all environment variables on pipeline level are taken

	in the resulting dictionary all environment variables from stage level are used for updating. New variables
are added and existing variables are overwritten.

	in the resulting dictionary all environment variables from tasks level are used for updating. New variables
are added and existing variables are overwritten.

Please note: All values have to be strings.

In a Bash script you also can refer to the variables using
Jinja templating like {{ env.a }}.

The Tasks

It’s a list of tasks basically meaning a shell as Bash script or runnning
inside a Docker container. Tasks can be ordered or parallel.

Ordered tasks

Ordered tasks can written as - tasks: or as - tasks(ordered):
(the way you prefer). It means the same: one shell script is executed after the other:

- tasks(ordered):
 - shell:
 script: echo "hello world one!"
 - shell:
 script: echo "hello world two!"

Parallel tasks

All tasks are running in parallel as much as possible. The
Python module multiprocessing is used.

- tasks(parallel):
 - shell:
 script: echo "hello world one!"
 - shell:
 script: echo "hello world two!"

	Please note:

	
	It’s not a good idea to interrupt the pipeline with Ctrl-C
because multiprocessing is used.

	Example: When you have 4 cpus but more than 4 tasks it might happen
that the tasks do not finish in time constraints as you expect. It
seems that one task is assigned to one cpu only at a time.

	When one task fails the pipeline stops after all tasks has been
finished.

	When using multiple enviroment blocks tasks run in parallel only
between two of those “env” blocks.

Environment variables

Besides a tasks the list also may contain one or more blocks for environment variables.

- env:
 a: "hello"
 b: "world"

The last block overwrites the previous one; existing variables
are overwriten, new ones are added.

Variables on tasks

On shells, python scripts and docker container tasks you can specify a variable and
variables are stored at pipeline level. When a block of parallel tasks start all
variables before this time are passed to the tasks and while those are running new
variables cannot be evaluated. But a tasks block also may contain env entries
so you can split parallel tasks in two (or more) blocks. Each new block is able
to access last stored variables; here a rough example:

- tasks(parallel):
 # first block
 - shell:
 script: echo "hello"
 variable: one
 - shell:
 script: echo "world"
 variable: two

 - env:
 message: "a great"

 # second block
 - shell:
 script: echo "{{ env.message }} {{ variables.one }} {{ variables.two }}"
 - shell:
 script: echo "{{ env.message }} {{ variables.one }}"
 - shell:
 script: echo "{{ env.message }} {{ variables.two }}"

The two commented blocks are executed in order because of an env entry inbetween
but all tasks of one block are executed in parallel. When executing it looks like following:

$ spline --definition=examples/variables.yaml 2>&1 | grep "great"
2018-01-22 19:49:44,576 - spline.components.tasks.worker - | a great world
2018-01-22 19:49:44,577 - spline.components.tasks.worker - | a great hello
2018-01-22 19:49:44,581 - spline.components.tasks.worker - | a great hello world

When the tasks are ordered a previous variable by a previous task
can be evaluated immediately.

The Docker Container Script

Simple Example

The Docker container block is basically the same as the shell block with the exception
that a simple wrapper code is injected for Running the Docker container. Assume
following block as an example:

	it runs a Docker container.

	since no image is specified centos:7 is used (as default)

	after the injected Bash code has finished the Docker container will be automatically removed.

- docker(container):
 script: |
 yum -y install epel-release > /dev/null 2>&1
 yum -y install figlet > /dev/null 2>&1
 figlet -f standard "docker" | sed -e 's: :.:g'
 tags:
 - no-image

The code snippet you can find in the tests:

$ PYTHONPATH=$PWD python scripts/pipeline --definition=tests/pipeline-015.yaml --tags=no-image
2017-10-29 12:33:59,091 - pipeline.application - Running with Python 2.7.13 (default, Jan 19 2017, 14:48:08) [GCC 6.3.0 20170118]
2017-10-29 12:33:59,104 - pipeline.application - Running on platform Linux-4.9.0-3-amd64-x86_64-with-debian-9.1
2017-10-29 12:33:59,104 - pipeline.application - Processing pipeline definition 'tests/pipeline-015.yaml'
2017-10-29 12:33:59,135 - pipeline.application - Schema validation for 'tests/pipeline-015.yaml' succeeded
2017-10-29 12:33:59,137 - pipeline.components.stage - Processing pipeline stage 'test'
2017-10-29 12:33:59,137 - pipeline.components.tasks - Processing group of tasks
2017-10-29 12:33:59,138 - pipeline.components.tasks - Processing Bash code: start
2017-10-29 12:33:59,146 - pipeline.components.bash - Running script /tmp/pipeline-script-z3eXdd.sh
2017-10-29 12:34:16,404 - pipeline.components.tasks - |_............_.............
2017-10-29 12:34:16,404 - pipeline.components.tasks - | ..__|.|.___...___|.|._____._.__.
2017-10-29 12:34:16,405 - pipeline.components.tasks - | ./._`.|/._.\./.__|.|/./._.\.'__|
2017-10-29 12:34:16,405 - pipeline.components.tasks - | |.(_|.|.(_).|.(__|...<..__/.|...
2017-10-29 12:34:16,405 - pipeline.components.tasks - | .__,_|___/.___|_|____|_|...
2017-10-29 12:34:16,405 - pipeline.components.tasks - |
2017-10-29 12:34:16,405 - pipeline.components.tasks - |
2017-10-29 12:34:16,405 - pipeline.components.bash - Exit code has been 0

Specifying an image

You also can specify an image:

- docker(container):
 image: centos:7.3.1611
 script: cat /etc/redhat-release
 tags:
 - with-image

Here’s an extract of the output:

2017-10-29 12:46:06,080 - pipeline.components.bash - Running script /tmp/pipeline-script-36Ga0I.sh
2017-10-29 12:46:07,583 - pipeline.components.tasks - | CentOS Linux release 7.3.1611 (Core)
2017-10-29 12:46:07,583 - pipeline.components.tasks - |

Using user labels

The docker(container) task also have an optional dictionary attribute lables.
The key has to be upper case and to start with UL (user label). All label
allow Jinja2 rendering.

The idea is to be able to adjust custom values from outside spline (environment variables)
that can be used to query containers more easily.

How to find a Docker container

	Each Docker container gets additional labels:
- pipeline - which contains the PID of the pipeline.
- pipeline-stage - pipeline stage in which the Docker container has been created.
- context - always “pipeline”
- creator - the PID of the shell which created the Docker container.

	with those information you have some control for being able to query a concrete container without knowing the Docker container name (you need not worry about container names since Docker does it for you).

	If you create multiple Docker container per stage then (TODO) there will be a label that can be
adjusted via the yaml to reduce the query to the right container.

	Have a look at the examples [docker.yaml](examples/docker.yaml).

Mounts

	For good reasons various number of mounts have been minimized to the most essential ones:

	
	one mount (always) for the script mechanism (you shouldn’t care)

	one mount (on demand) if you need to exchange things with the host

The next example does activate the second mount which maps $PWD as /mnt/host inside
the Docker container. Here I write a file to the host and another script dumps it
and removes the file afterwards.

- docker(container):
 script: |
 echo "hello world" > /mnt/host/hello.txt
 chown ${UID}:$(GID} /mnt/host/hello.txt
 mount: true

- shell:
 script: |
 cat hello.txt
 rm -f hello.txt

Please note: Usually the Docker user is root (by default) and when you copy
content to the host the caller might fail on removing that files and folders because
of missing permissions. That’s why the user id and group id is always passed to the
container allowing you to adjust the permissions correctly.

Network

The optional field network allows you to specify a network name. You can create
a network with docker network create <name> (see docker.yaml in examples folder).
Another usecase is docker-compose which usually does create a network for all containers
it does create; if you now create an additional container that should be able
to work with the existing ones you have to “join” the network by specifying the name
of that network.

- docker(container):
 network: demo
 script: echo "hello world"

“With” attribute

It’s exactly the same as for shell - please read the details there.

Conditional tasks

The field when allows you to define a condition; when evaluated as true then
the task is executed otherwise not. More details you can read in the separate
section Conditional Tasks.

The Docker Image Script

Simple example

The next example demonstrates one way on how to create a
docker image for Python 3.6.

- docker(image):
 name: python
 tag: "3.6"
 unique: no
 script: |
 FROM centos:7
 RUN yum -y install yum-utils git
 RUN yum -y install https://centos7.iuscommunity.org/ius-release.rpm
 RUN yum -y install python36u python36u-pip
 RUN pip3.6 install tox

When you run this (see examples folder for docker-image.yaml) then last
lines should look like following:

2017-12-22 09:20:15,179 - spline.components.tasks - | Installing collected packages: py, six, pluggy, virtualenv, tox
2017-12-22 09:20:15,339 - spline.components.tasks - | Running setup.py install for pluggy: started
2017-12-22 09:20:15,665 - spline.components.tasks - | Running setup.py install for pluggy: finished with status 'done'
2017-12-22 09:20:15,800 - spline.components.tasks - | Successfully installed pluggy-0.6.0 py-1.5.2 six-1.11.0 tox-2.9.1 virtualenv-15.1.0
2017-12-22 09:20:16,588 - spline.components.tasks - | ---> 29abbe7ec073
2017-12-22 09:20:16,601 - spline.components.tasks - | Removing intermediate container 5ceeb0cf5b89
2017-12-22 09:20:16,601 - spline.components.tasks - | Successfully built 29abbe7ec073
2017-12-22 09:20:16,608 - spline.components.tasks - | Successfully tagged python:3.6
2017-12-22 09:20:16,610 - spline.components.bash - Exit code has been 0
2017-12-22 09:20:16,611 - spline.components.tasks - Processing Bash code: finished

You can verify afterwards:

$ docker images
REPOSITORY TAG IMAGE ID CREATED SIZE
python 3.6 29abbe7ec073 9 minutes ago 605MB
$ docker run --rm -i python:3.6 bash -c "python3.6 -V"
Python 3.6.3

The option “unique”

In the example above unique has been set to no.
The default is yes which injects the pid of the spline tool
into the name. The idea is to allow multiple images generated in
parallel without conflicts.

Dockerfile

The script field represents the Dockerfile and please refer
to the official Documentation if you need to know more.
However Jinja2 templating is supported:

- docker(image):
 name: python
 tag: "3.6"
 unique: no
 script: "{{ model.templates.dockerfiles.py36 }}"

Please note: you also can use jinja templaring in the tag.

The compete example - as already mentioned - in the examples folder.

Conditional tasks

The field when allows you to define a condition; when evaluated as true then
the task is executed otherwise not. More details you can read in the separate
section Conditional Tasks.

The Packer Task

Setup

You have to ensure that the packer tool is installed and in the search path.
The installation is simple (mainly download, unpack and copy of one binary).

Simpe Example

The next example demonstrates how you can use the packer
task to generate a Docker image:

- packer:
 script: |
 {"builders": [{
 "type": "docker",
 "image": "{{ model.image }}",
 "commit": true,
 "changes": [
 "LABEL pipeline={{ env.PIPELINE_PID }}",
 "LABEL pipeline-stage={{ env.PIPELINE_STAGE }}"
]
 }],

 "provisioners": [{
 "type": "shell",
 "inline": [
 "yum -y install python-setuptools",
 "easy_install pip",
 "pip install tox"
]
 }],

 "post-processors": [{
 "type": "docker-tag",
 "repository": "spline/packer/demo",
 "tag": "0.1"
 }]}

The output looks like following starting with:

2018-03-16 05:20:50,948 - spline.components.bash - Running script /tmp/pipeline-script-5N9ZeH.sh
2018-03-16 05:20:50,955 - spline.components.tasks - | packer build /tmp/packer-e7je86.json
2018-03-16 05:20:51,125 - spline.components.tasks - | docker output will be in this color.
2018-03-16 05:20:51,128 - spline.components.tasks - |
2018-03-16 05:20:51,163 - spline.components.tasks - | ==> docker: Creating a temporary directory for sharing data...
2018-03-16 05:20:51,164 - spline.components.tasks - | ==> docker: Pulling Docker image: centos:7
2018-03-16 05:21:03,703 - spline.components.tasks - | docker: 7: Pulling from library/centos
2018-03-16 05:21:14,557 - spline.components.tasks - | docker: Digest: sha256:dcbc4e5e7052ea2306eed59563da1fec09196f2ecacbe042acbdcd2b44b05270
2018-03-16 05:21:14,559 - spline.components.tasks - | docker: Status: Image is up to date for centos:7
2018-03-16 05:21:14,561 - spline.components.tasks - | ==> docker: Starting docker container...
2018-03-16 05:21:14,564 - spline.components.tasks - | docker: Run command: docker run -v /home/thomas/.packer.d/tmp/packer-docker809184673:/packer-files -d -i -t centos:7 /bin/bash
2018-03-16 05:21:15,115 - spline.components.tasks - | docker: Container ID: 2543f16b4acc3e107ef7ce5b1e8164d66bfbc0a0a34ad682c3b75db390677e80
2018-03-16 05:21:15,198 - spline.components.tasks - | ==> docker: Provisioning with shell script: /tmp/packer-shell164186494
2018-03-16 05:21:16,627 - spline.components.tasks - | docker: Loaded plugins: fastestmirror, ovl
2018-03-16 05:21:25,764 - spline.components.tasks - | docker: Determining fastest mirrors
2018-03-16 05:21:27,312 - spline.components.tasks - | docker: * base: centos.intergenia.de
2018-03-16 05:21:27,316 - spline.components.tasks - | docker: * extras: centos.intergenia.de
2018-03-16 05:21:27,319 - spline.components.tasks - | docker: * updates: mirror.fra10.de.leaseweb.net
2018-03-16 05:21:30,280 - spline.components.tasks - | docker: Resolving Dependencies
2018-03-16 05:21:30,281 - spline.components.tasks - | docker: --> Running transaction check
2018-03-16 05:21:30,282 - spline.components.tasks - | docker: ---> Package python-setuptools.noarch 0:0.9.8-7.el7 will be installed

and finishing with:

2018-03-16 05:21:39,991 - spline.components.tasks - | ==> docker: Committing the container
2018-03-16 05:21:41,831 - spline.components.tasks - | docker: Image ID: sha256:270dbc58a828269a069142c8cef9c7d93c735b9217d617ee123cd5c4e2d552a2
2018-03-16 05:21:41,832 - spline.components.tasks - | ==> docker: Killing the container: 2543f16b4acc3e107ef7ce5b1e8164d66bfbc0a0a34ad682c3b75db390677e80
2018-03-16 05:21:42,380 - spline.components.tasks - | ==> docker: Running post-processor: docker-tag
2018-03-16 05:21:42,385 - spline.components.tasks - | docker (docker-tag): Tagging image: sha256:270dbc58a828269a069142c8cef9c7d93c735b9217d617ee123cd5c4e2d552a2
2018-03-16 05:21:42,385 - spline.components.tasks - | docker (docker-tag): Repository: spline/packer/demo:0.1
2018-03-16 05:21:42,451 - spline.components.tasks - | Build 'docker' finished.
2018-03-16 05:21:42,452 - spline.components.tasks - |
2018-03-16 05:21:42,452 - spline.components.tasks - | ==> Builds finished. The artifacts of successful builds are:
2018-03-16 05:21:42,455 - spline.components.tasks - | --> docker: Imported Docker image: sha256:270dbc58a828269a069142c8cef9c7d93c735b9217d617ee123cd5c4e2d552a2
2018-03-16 05:21:42,457 - spline.components.tasks - | --> docker: Imported Docker image: spline/packer/demo:0.1
2018-03-16 05:21:43,344 - spline.components.bash - Exit code has been 0
2018-03-16 05:21:43,345 - spline.components.tasks - Processing Bash code: finished

Important notes

	you don’t require packer variables: Because you directly can use Jinja2 templating you don’t require
variables in the Packer script.

	You are responsible: It depends on you what you are generating and how you do it. The example is just
for Docker but Packer does support more image types. Spline does not know how to cleanup things here.
Also you have to ensure unique names (if wanted) considering builds running in parallel avoiding
any conflicts. The docker(image) task (as comparison) injects the spline pid into the image name;
you can do it easily using Jinja2 templating but you have to do it yourself.

	No filter: You can have multiple builders in packer and when use them the packer task generates all
images (-only and -except options are not used).

	Packer is enabled for parallelization

	When the build does fail Packer does the cleanup.

	The spline option –debug will be passed as -debug to the packer build command.
Please pay attention here: you have to press enter for individual steps.

The Ansible(simple) Task

The Ansible task provides you a subset of Ansible; mainly
the focus is to have an inventory file (hosts) and one playbook
maintainable by one spline document.

Example

The next example you can see in the folder with same name in file ansible-docker.yaml.
One Docker container is organized to have sshd installed and the Ansible connects
to that container installing a few packages.

- ansible(simple):
 inventory: |
 [all]
 localhost ansible_host={{ variables.container_host }} ansible_port=22 ansible_connection=ssh ansible_ssh_user=root ansible_ssh_pass={{ env.PASS }}
 limit: all
 script: |
 - hosts: all
 tasks:
 - name: Install packages
 yum:
 name: "{%raw%}{{ item }}{%endraw%}"
 state: present
 with_items:
 {% for package in model.packages %}
 - {{ package }}
 {% endfor %}

Notes on Jinja Templating

Spline does use Jinja2 for templating and Ansible does it as well.
You have to control when the templating applies and when not.
In given example we would like to have a playbook that finally
looks like following:

- hosts: all
 tasks:
 - name: Install packages
 yum:
 name: "{{ item }}"
 state: present
 with_items:
 - curl
 - git
 - cmake

That’s why the evaluation of item has been suppressed.
Also you cannot insert the packages just by writing {{ model.packages }}
but the result is a Python list with 3 strings. Three lines with
items are wanted (as you can see above); of course a filter could apply
rendering as yaml syntax but then you also have to manage indentation which
turned out to be difficult (have not found a way to pass current indentation).

Hosts, ports, user and password

For the Docker example it was sufficient to define user and password in the inventory
file. Of course credentials in code are not fine but you can inject the credential from
outside (environment variable) or you use the mechanism only for setting up a
regression environment with no access to any production environment.

Reading the documentation about Ansible inventory you also shoud be able to
use ansible_ssh_private_key_file.

Please read: http://docs.ansible.com/ansible/latest/user_guide/intro_inventory.html

Conditional Tasks

Introduction

Conditional tasks allow you to run certain tasks when the defined
condition evaluates to true only. At the moment you can use such conditions
on each task: shell, docker(container), docker(image) and python.

Data sources

There are three sources of information
that can be used the moment (via Jinja templating):

	model variables - constant definition in the yaml file.

	task variables - see different type of tasks using the field variable

	environment variables - see the env entry usable on matrix, pipeline, stage and tasks

Rules

You have to comply some rules when using conditions. Following variants of conditions
are intended:

	{{ variables.cpu_count }} == 1 - comparison of two integers to be equal

	not {{ variables.cpu_count }} == 1 - comparison of two integers to be not equal

	{{ variables.cpu_count }} > 1 - comparison of one integer to be greater than another

	{{ variables.cpu_count }} >= 1 - comparison of one integer to be greater or equal than another

	{{ variables.cpu_count }} < 2 - comparison of one integer to be less than another

	{{ variables.cpu_count }} <= 2 - comparison of one integer to be less or equal than another

	“{{ env.BRANCH_NAME }}” == “master” - comparison of two strings to be equal

	not “{{ env.BRANCH_NAME }}” == “master” - comparison of two strings to be not equal

	{{ variables.cpu_count }} in [1, 2] - integer contained in a list of integers

	{{ variables.cpu_count }} not in [1, 2] - integer not ontained in a list of integers

	“{{ env.BRANCH_NAME }}” in [“master”, “release”] - comparison contained in a list of strings

	“{{ env.BRANCH_NAME }}” not in [“master”, “release”] - comparison not contained in a list of strings

Please note: all other combination that might work should not be considered. Future versions
of the spline tool will improve the condition checks to be more strict.

Please note: When the jinja templating finally produces a condition with wrong syntax
each thrown exception will evaluate the related condition to false. Please check the logs for details then.

Examples

You can see examples in the file conditions.yaml of the tool repository;
here is an extract of it:

- shell:
 script: echo "integer in integer list comparison"
 when: "{{ model.intval }} in [1234, 4321]"
- shell:
 # task output should not be shown
 script: echo "integer not in integer list comparison"
 when: "{{ model.intval }} not in [1234, 4321]"

Hooks

Hooks are defined at same root level as the pipeline or the matrix.

The cleanup hook

It’s basically same as for a shell script with a few differences only:

	When the pipeline succeeds all variables from pipeline level are available.

	When a shell script fails all variables on that level are available

	Additionally the variable PIPELINE_RESULT can have the value SUCCESS or FAILURE.

	Additionally the variable PIPELINE_SHELL_EXIT_CODE has the shell exit code
of the failed shell or 0 (default)

hooks:
 cleanup:
 script: |
 echo "cleanup has been called!"
 echo "${message}"
 echo "PIPELINE_RESULT=${PIPELINE_RESULT}"
 echo "PIPELINE_SHELL_EXIT_CODE=${PIPELINE_SHELL_EXIT_CODE}"

The include statement

Basic Usage

You can use the !include statement on maps and lists. You have to ensure that the
final document structure is still a valid spline document. Spline will run the
validation after the include has been done.

```yaml
model: !include library/model.yaml
pipeline:



	stage(Setup): !include library/setup.yaml


	stage(Build): !include library/build.yaml


	
	stage(Test):

	
	!include library/setup-test.yaml


	!include library/run-test.yaml


	!include library/teardown-test.yaml










	stage(Deploy): !include library/deploy.yaml







```


Notes

	The loader is evaluating the !include statement for the main document

	only (by intention).

	
	the specified file has to exist!

The Even logging

With the command line option –event-logging you enable additional logging that
measures execution time on the whole application, each pipeline, stage, tasks and docker/shell level.

$ PYTHONPATH=$PWD python scripts/pipeline --definition=examples/docker.yaml --tags=using-mount --event-logging
2017-11-03 05:10:52,742 - pipeline.application - Running with Python 2.7.13 (default, Jan 19 2017, 14:48:08) [GCC 6.3.0 20170118]
2017-11-03 05:10:52,757 - pipeline.application - Running on platform Linux-4.9.0-3-amd64-x86_64-with-debian-9.1
2017-11-03 05:10:52,757 - pipeline.application - Processing pipeline definition 'examples/docker.yaml'
2017-11-03 05:10:52,824 - pipeline.application - Schema validation for 'examples/docker.yaml' succeeded
2017-11-03 05:10:52,841 - pipeline.components.stage - Processing pipeline stage 'example'
2017-11-03 05:10:52,842 - pipeline.components.tasks - Processing group of tasks
2017-11-03 05:10:52,842 - pipeline.components.tasks - Processing Bash code: start
2017-11-03 05:10:52,876 - pipeline.components.bash - Running script /tmp/pipeline-script-Ws20v5.sh
2017-11-03 05:10:54,173 - pipeline.components.tasks - |
2017-11-03 05:10:54,173 - pipeline.components.bash - Exit code has been 0
2017-11-03 05:10:54,174 - pipeline.components.bash.event - Succeeded - took 1.331764 seconds.
2017-11-03 05:10:54,174 - pipeline.components.tasks - Processing Bash code: finished
2017-11-03 05:10:54,174 - pipeline.components.tasks - Processing Bash code: start
2017-11-03 05:10:54,176 - pipeline.components.bash - Running script /tmp/pipeline-script-sydNg5.sh
2017-11-03 05:10:54,191 - pipeline.components.tasks - | hello world
2017-11-03 05:10:54,191 - pipeline.components.tasks - |
2017-11-03 05:10:54,191 - pipeline.components.bash - Exit code has been 0
2017-11-03 05:10:54,191 - pipeline.components.bash.event - Succeeded - took 0.017044 seconds.
2017-11-03 05:10:54,192 - pipeline.components.tasks - Processing Bash code: finished
2017-11-03 05:10:54,192 - pipeline.components.tasks.event - Succeeded - took 1.349966 seconds.
2017-11-03 05:10:54,192 - pipeline.components.stage.event - Succeeded - took 1.350690 seconds.
2017-11-03 05:10:54,192 - pipeline.pipeline.event - Succeeded - took 1.351264 seconds.
2017-11-03 05:10:54,192 - pipeline.application.event - Succeeded - took 1.450534 seconds.

Command Line Options

Dry run mode

Using the option –dry-run you get a tool that help
you to analyse your pipeline with following rules when
the option is set:

	parallelism (matrix and tasks) is disabled

	custom logging is disabled

	the default logging is adjusted to have no timestamps

	using docker(image) tasks the Dockerfile is printed as
Bash comment; the Dockerfile is not written as a file.

	The cleanup hooks are also not executed but logged.

As an example a docker(image) task might look similar to
following output:

$ spline --definition=examples/docker-image.yaml --dry-run
spline.application - Running with Python 2.7.13 (default, Jan 19 2017, 14:48:08) [GCC 6.3.0 20170118]
spline.application - Running on platform Linux-4.9.0-3-amd64-x86_64-with-debian-9.1
spline.application - Processing pipeline definition 'examples/docker-image.yaml'
spline.application - Schema validation for 'examples/docker-image.yaml' succeeded
spline.components.stage - Processing pipeline stage 'Example'
spline.components.tasks - Processing group of tasks (parallel=disabled)
spline.components.tasks - Processing Bash code: start
spline.components.bash - Dry run mode for script /tmp/pipeline-script-TRd8fF.sh
spline.components.tasks - | #!/bin/bash
spline.components.tasks - | # Dockerfile:
spline.components.tasks - | # >>
spline.components.tasks - | # FROM centos:7
spline.components.tasks - | # RUN yum -y install yum-utils git
spline.components.tasks - | # RUN yum -y install https://centos7.iuscommunity.org/ius-release.rpm
spline.components.tasks - | # RUN yum -y install python36u python36u-pip
spline.components.tasks - | # RUN pip3.6 install tox
spline.components.tasks - | #
spline.components.tasks - | # <<
spline.components.tasks - | # for visibility in logging
spline.components.tasks - | echo "docker build -t python:3.6 < dockerfile.dry.run.see.comment"
spline.components.tasks - | # trying to build docker image
spline.components.tasks - | docker build -t python:3.6 - < dockerfile.dry.run.see.comment
spline.components.tasks - | docker_error=$?
spline.components.tasks - | # cleanup
spline.components.tasks - | rm -f
spline.components.tasks - | # give back result
spline.components.tasks - | exit ${docker_error}
spline.components.tasks - Processing Bash code: finished

Debug

The option –debug adjust the Bash option set -x which activates the debug
mode in Bash. The primes example in the spline repository gives you a good example.
I’m just printing the first 20 lines:

$ spline --definition=examples/primes.yaml --debug 2>&1 | head -20
2018-01-05 19:31:12,023 - spline.application - Running with Python 2.7.13 (default, Jan 19 2017, 14:48:08) [GCC 6.3.0 20170118]
2018-01-05 19:31:12,028 - spline.application - Running on platform Linux-4.9.0-3-amd64-x86_64-with-debian-9.1
2018-01-05 19:31:12,028 - spline.application - Current cpu count is 4
2018-01-05 19:31:12,029 - spline.application - Processing pipeline definition 'examples/primes.yaml'
2018-01-05 19:31:12,032 - spline.application - Schema validation for 'examples/primes.yaml' succeeded
2018-01-05 19:31:12,032 - spline.components.stage - Processing pipeline stage 'Calculate Primes'
2018-01-05 19:31:12,033 - spline.components.tasks - Processing group of tasks (parallel=no)
2018-01-05 19:31:12,033 - spline.components.tasks - Processing Bash code: start
2018-01-05 19:31:12,043 - spline.components.bash - Running script /tmp/pipeline-script-5iRCsz.sh
2018-01-05 19:31:12,050 - spline.components.tasks - | ++ seq 0 100
2018-01-05 19:31:12,051 - spline.components.tasks - | + for n in $(seq 0 100)
2018-01-05 19:31:12,052 - spline.components.tasks - | ++ is_prime 0
2018-01-05 19:31:12,052 - spline.components.tasks - | ++ n=0
2018-01-05 19:31:12,052 - spline.components.tasks - | ++ '[' 0 -lt 2 ']'
2018-01-05 19:31:12,052 - spline.components.tasks - | ++ return
2018-01-05 19:31:12,053 - spline.components.tasks - | + '[' '' == yes ']'
2018-01-05 19:31:12,053 - spline.components.tasks - | + for n in $(seq 0 100)
2018-01-05 19:31:12,053 - spline.components.tasks - | ++ is_prime 1
2018-01-05 19:31:12,053 - spline.components.tasks - | ++ n=1
2018-01-05 19:31:12,053 - spline.components.tasks - | ++ '[' 1 -lt 2 ']'

Temporary Scripts Path

The Python library functionality related to temporary folders is explained here:
https://docs.python.org/2/library/tempfile.html#tempfile.mkstemp

However you can specify another path that is used to store splines temporary scripts
by specifying the path with –temporary-scripts-path. When the path doesn’t exist
the tool tries to create it for you. Here’s an example:

$ spline --definition=examples/colors.yaml --temporary-scripts-path=$PWD/temp
2018-02-06 05:52:57,547 - spline.application - Running with Python 2.7.13 (default, Nov 24 2017, 17:33:09) [GCC 6.3.0 20170516]
2018-02-06 05:52:57,553 - spline.application - Running on platform Linux-4.9.0-5-amd64-x86_64-with-debian-9.3
2018-02-06 05:52:57,553 - spline.application - Current cpu count is 4
2018-02-06 05:52:57,553 - spline.application - Processing pipeline definition 'examples/colors.yaml'
2018-02-06 05:52:57,557 - spline.application - Schema validation for 'examples/colors.yaml' succeeded
2018-02-06 05:52:57,558 - spline.components.stage - Processing pipeline stage 'Example'
2018-02-06 05:52:57,559 - spline.components.tasks - Processing group of tasks (parallel=no)
2018-02-06 05:52:57,566 - spline.components.tasks - Processing Bash code: start
2018-02-06 05:52:57,568 - spline.components.bash - Running script /work/pipeline/temp/pipeline-script-FxvNFG.sh

Unicode

Unicode is not a trivial topic at all.

Even more it can be pretty tricky writing code that
does work under multiple Python versions especially
when focusing on Python 2.x and Python 3.x.

The reason why I have been investigating into that topic
is that I found a build process where a tool has generated
console output with unicode characters.

In the example you will find a special-characters.yaml.
I tested it for Python 2.7.x and Python 3.5.x on my machine.

Let’s see …

The one file report

Introduction

At the moment a one file HTML is supported only. On updates (stages) the
tool overwrites same file each time which current report data displaying
a table showing each matrix and each stage.

	a green cell indicates a successful completed stage

	a red cell indicates a failed stage

	a yellow stage indicates a stage that has not been processed

Information as currently the state (started, succeeded and failed) and
the duration.

You enable it by using the command line option –report (default: off)

spline --definition=examples/matrix.yaml --report=html

For the moment you cannot specify the output path and filename;
it will be written to current working directory as pipeline.html.

Example

[image: _images/pipeline.png]

Multiprocessing

When running the matrixes in parallel then multiple processes are spawned.
Using Python multiprocessing each process does send information via a
queue to the collector (main process). The collector finally writes
the pipeline.yaml on each update.

Refresh

The generated HTML does have a meta information that enforced refreshing of
the page each 5 seconds allowing to see the progress of your pipelines.

Development

Python Development

Many programming languages are providing essential language constructs
and tools which help to write code with acceptable quality and giving
you control to either keep or even to improve the quality constantly.
A decrease in quality should always fail the build.

For me it turned that tox is a very useful tool to organize the Python
build process (see tox.ini). Basically you define and reuse commands
for different Python (virtual) environments. It’s a wrapper for virtualenv.
A good example is the definition for your tests:

[tool-test]
commands =
 coverage erase
 coverage run --omit={toxinidir}/.tox/*,{toxinidir}/tests/* --branch -m unittest discover -s {toxinidir}/tests -f -v
 coverage html --title="Spline Code Coverage" --directory={toxinidir}/htmlcov
 coverage report --show-missing --fail-under={env:MIN_COVERAGE:95}

The calls:

tox -e test # running tests and coverage
tox -e doctest # running doctests only

The given example simply works with a standard Python installation and
one additional tool named coverage (pip install coverage). The unittesting
framework is capable of discovering all tests using following command:

python -m unittest discover -s {toxinidir}/tests -f -v

The parameter -s specifies the folder to start with, the parameter -v (verbose) does show each
executed test method and the -f (failfast) stops immediately the tests on a failure.
Using coverage run instead of python the whole runs also with code coverage.
Additional parameters control what is included and/or excluded.
In given case the .tox folder should be excluded since it contains all Python libraries which shouldn’t
be part of the coverage. In addition we would like to have more detailed information about the branch coverage.

The coverage erase ensure that results from a previous run do not influence
the new coverage calculation. Finally you should be interested in two reports:

	HTML report - those one does show you the code in two colors: green=covered and red=not covered.
It’s easy then to see which tests you are missing.

	Console report - those one gives you quick and short summary. As last report also
the limit is adjusted forcing the build to fail when the new coverage is less than the
requested limit. A good orientation: try to have it greater or equal to 90%.

A special note on MIN_COVERAGE: Running the coverage for the spline project
with spline itself you cannot run the Docker based tests because usually you can’t run
Docker inside Docker. Leaving out some tests the coverage will decrease and that’s
why the required coverage is decreased via the pipeline.yaml (but still above 90%).

How much coverage is needed? Maybe the most frustrating fact is that even you
have 100% coverage the coverage is not necessarily complete. See following examples:

def square(n):
 return n*n

Let’s say you write tests like assert_that(square(2), equal_to(4)) you might
think all is done but what happens if you call square('2')?
You could argue that you wouldn’t do that but as part of an calculation
where the input has been read from a file or from stdin the usecase might be
valid. Python doesn’t enforce strict types.

def square(n):
 return int(n) * int(n)

Now with this function you can handle both (However you still miss floats). I don’t say you
should do that but the main focus here: also you have a coverage (line and branch) of 100% you
might miss valid usecases. What we can say for sure: if you have less than 100%
coverage you certainly will miss usecases.

Which test tool should be used? Very well known are nosetests and pytest.
I leave it to you. For the spline project - trying to support many
different Python versions - it turned out to run better without them.

What to do for static code analysis? For a long time pep8, pep257, pylint,
radon and flake8 are well known and often used tools. For pylint try to be as strict
as possible:

	number of statements per method (or function)

	number of lines per file

	number of return statements

	number of parameters

There are more but reducing those numbers you can force yourself
to care more on code design. Try to ensure that code complexity
is as low as possible. Flake8 has an option to let it fail when
the complexity of your code exceeds a definable limit (for spline: 6).
Also try to keep line length acceptable; personally I wouldn’t force
to 80 but 110 is a value I felt comfortable with. Keep in mind that
especially version diffs showing code side by side are influenced by this.

Some thrown warnings might annoy you sometimes but keeping the rules
also mean to keep your code style consistent and that cannot be done
without constant observation by tools. Before you commit your changes
to the code repository run all tests and all analysis to be on the safe
side. Here are the commands that can be used for individual checks:

tox -e pep8
tox -e pep257
tox -e pylint
tox -e flake8
tox -e radon
tox -e bandit

What about documentation? Tool documentation is one scenario
and everybody who is using the tool should have reasonable documentation.
You don’t necessarily have to publish on read the docs but it should be easy
to find via the main page of the project. You can read the spline documentation
at read the docs as well as on the GitHub project. Another documentation is
API documentation and especially interesting for developers intending to use
the API. From what I have learned so far there are currently two good tools:

	Sphinx: The tool is not necessarily bound to code; you can
just write markdown text or reStructuredText like this article.
In addition there are extensions that allow embedding diagrams
and code. The documentation of the tool itself is quite good.

	epydoc: this one is somehow similar to Doxygen and Javadoc; it seems
that development has stopped (but that might have changed in the meantime).
It’s a very nice tool to get a good inside into the code.

I have used both. Please check the spline repository and also
see how they are defined in the tox.ini.

tox -e sphinx # generates read the doc HTML
tox -e apidoc # generates API HTML with Sphinx
tox -e epydoc # generates API HTML with epydoc

What about packaging? I decided to use wheel files. When
installing the wheel file in your system all dependencies are
installed as well. With twine (pip install twine) you
can easily upload the package to PyPI.

tox -e package # building the wheel file

I can advise only to be verbose in specifying the details
for your package in your setup.py because there is much
more than just uploading the code:

	of course you have to specify name and version

	the long description you should consider to read from a file
and you can use reStructuredText.

	specifying author and a mail address

	specifying all package folders/paths

	you can specify scripts to be installed (like spline)

	you have to specify files that are not Python code (package_data)

	define the runtime dependencies (install_requires)

	The url can be any homepage for your component (tool or library)

	The classifiers is a standardized way to tell more about
your component like status and which Python versions are supported,
which platforms are supported and other informations like that.

How about testing Python versions you don’t have on your machine?
That has been one reason (there were others too) for writing the spline tool:

spline --matrix-tags=py27 # runs tox -e py27 inside Docker
spline --matrix-tags=py33 # runs tox -e py33 inside Docker
spline --matrix-tags=py34 # runs tox -e py34 inside Docker
spline --matrix-tags=py35 # runs tox -e py35 inside Docker
spline --matrix-tags=py36 # runs tox -e py36 inside Docker
spline --matrix-tags=pypy # runs tox -e pypy inside Docker
spline --matrix-tags=pypy3 # runs tox -e pypy3 inside Docker

Because the different Python processes are running inside a well
defined Docker container environment you are able to reproduce problems
without affecting your own machine.

How about Travis CI? If you have completed all mentioned tasks the
activating of Travis CI is easy. I have logged in with my GitHub account
choosing the public repository and that it’s. Now you require a .travis.yml.
The file format is quite simple; there’s good documentation at Travis CI
itself and you also can search for the file in the internet to find
sufficient examples. You also can check the variant I have used in the
spline project. The probably most interesting aspect for me was using of matrix
builds. Two packages require attention:

	installation of tox-travis which ensures on a matrix build that tox understands
which Python version has to be taken.

	installation of coveralls allows you to send coverage reports to the
central service https://coveralls.io/. It also integrates as build check
when doing pull requests being able to block a merge when coverage has
decreased.

Finally here are some links you might find useful:

	https://tox.readthedocs.io/en/latest/

	http://coverage.readthedocs.io/en/latest/

	http://radon.readthedocs.io/en/latest/

	https://pylint.readthedocs.io/en/latest/

	https://pycodestyle.readthedocs.io/en/latest/

	http://pep257.readthedocs.io/en/latest/

	https://wiki.openstack.org/wiki/Security/Projects/Bandit

	https://docs.python.org/2/library/unittest.html

	https://docs.python.org/2/library/doctest.html

	http://pyhamcrest.readthedocs.io/en/latest/

	http://epydoc.sourceforge.net/

	http://www.sphinx-doc.org/en/stable/rest.html

	http://www.sphinx-doc.org/en/stable/ext/napoleon.html

	https://docs.travis-ci.com/user/languages/python/

	https://travis-ci.org/

	https://coveralls.io/

That’s it. Please let me know when you miss details here.
Also I’m interested in other tools that are useful for the
Python build process that help to keep/improve the quality.
Feel free to create a ticket (see issues on the GitHub page)
with the details. Of course I will always update this article
when I have new details.

The spline-loc tool

Purpose

Helping to verify that the ratio between code and comments
is at a level you can accept.

The usage

You can specify a path with –path (parameter is repeatable).

The threshold (ratio) is at 0.5 by default but you can specify with –threshold (or -t)
to take another one you prefer. The threshold is for all files by default. At the moment
Bash, Python, Java, Javascript, Typescript, Groovy and C++ are supported.

If one file has been found that is below given threshold the tool ends with exit code 1 (default).

$ spline-loc --path=spline
2018-08-11 11:04:34,790 - spline.tools.loc.application - Running with Python 2.7.13 (default, Nov 24 2017, 17:33:09) [GCC 6.3.0 20170516]
2018-08-11 11:04:34,798 - spline.tools.loc.application - Running on platform Linux-4.9.0-6-amd64-x86_64-with-debian-9.4
2018-08-11 11:04:34,799 - spline.tools.loc.application - Current cpu count is 4
|-----|---|---|--------------------|------|
Ratio	Loc	Com	File	Type
0.35	162	57	application.py	Python
0.34	77	26	tools/event.py	Python
0.38	89	34	tools/version.py	Python
0.26	213	56	components/tasks.py	Python
0.36	80	29	components/config.py	Python
-----	---	---	--------------------	------

You can use the option –show-all (or -s) to show all files.

About loc, com and ratio

	LOC - lines of code without comments; empty lines included.

	COM - lines of comments; empty comment lines includes.

	RATIO - COM / LOC if COM < LOC otherwise 1.0.

Some notes:

	if you have as many comments as you have code the ratio is 1.0

	if you have one line comment for four lines code the ration is 0.25

	if you have comments only the ratio is 1.0

	if you have more comments than code the ratio is also 1.0

Basially I was interested in code that has not enough comments which
focuses on ratios below 1.0. That’s the idea.

About comments

	I do not check about empty lines.

	I do not check for sense … if somebody writes ‘bla bla bla’ a code review should reject.

	I do not check tags against parameters because a) there are to many different styles and b)
it would required to parse each language to know which parameters a function or method has.

Using average ratio only for valuation

The option –average does still report all files that have not enough documentation but
the spline-loc tool (now) fails only when the average of all your ratios is smaller
than your defined threshold:

$ spline-loc --path=spline --average
2018-08-14 05:44:03,157 - spline.tools.loc.application - Running with Python 2.7.13 (default, Nov 24 2017, 17:33:09) [GCC 6.3.0 20170516]
2018-08-14 05:44:03,221 - spline.tools.loc.application - Running on platform Linux-4.9.0-6-amd64-x86_64-with-debian-9.4
2018-08-14 05:44:03,221 - spline.tools.loc.application - Current cpu count is 4
|-----|---|---|------------------------|------|
Ratio	Loc	Com	File	Type
0.35	162	57	application.py	Python
0.34	77	26	tools/event.py	Python
0.38	89	34	tools/version.py	Python
0.26	213	56	components/tasks.py	Python
0.36	80	29	components/config.py	Python
-----	---	---	------------------------	------
2018-08-14 05:44:03,240 - spline.tools.loc.application - average ratio is 0.72 for 34 files

Index

Own Test Runner

The test runner combines unittests and coverage:

scripts/runner \
 --start-directory={toxinidir}/tests \
 --verbose \
 --randomly \
 --failfast \
 --cov-omit=.tox/*,tests/*,usr/* \
 --cov-fail-under=95

Please note: the runner is not yet production ready
because the coverage doesn’t work when running through
tox. I havn’t a clue yet why this is the case and will
udate the page when it is solved.

 _static/comment-bright.png

_static/comment-close.png

_static/down.png

_static/comment.png

_static/down-pressed.png

_static/plus.png

_static/file.png

_static/minus.png

_static/up.png

nav.xhtml

 Table of Contents

 		
 Welcome to spline’s documentation!

 		
 Motivation

 		
 Quickstart

 		
 Usage

 		
 Development

 		
 Real Example

 		
 Python and tox

 		
 Quickstart

 		
 Spline and matrix build

 		
 The model

 		
 The init part of the script

 		
 The run part of the script

 		
 Run the build (without matrix filtering)

 		
 Run the build (with a matrix filter)

 		
 Matrix build in Travis CI

 		
 Some final notes

 		
 The pipeline

 		
 The Pipeline matrix

 		
 Usage

 		
 Parallelization

 		
 Pipeline stages

 		
 The Shell

 		
 One line

 		
 Multipe lines

 		
 Jinja templating supported

 		
 Tags

 		
 “With” attribute

 		
 Colors

 		
 Conditional tasks

 		
 The Python task

 		
 The Model

 		
 Introduction

 		
 Nested templates

 		
 The Environment Variables

 		
 The Tasks

 		
 Ordered tasks

 		
 Parallel tasks

 		
 Environment variables

 		
 Variables on tasks

 		
 The Docker Container Script

 		
 Simple Example

 		
 Specifying an image

 		
 Using user labels

 		
 How to find a Docker container

 		
 Mounts

 		
 Network

 		
 “With” attribute

 		
 Conditional tasks

 		
 The Docker Image Script

 		
 Simple example

 		
 The option “unique”

 		
 Dockerfile

 		
 Conditional tasks

 		
 The Packer Task

 		
 Setup

 		
 Simpe Example

 		
 Important notes

 		
 The Ansible(simple) Task

 		
 Example

 		
 Notes on Jinja Templating

 		
 Hosts, ports, user and password

 		
 Conditional Tasks

 		
 Introduction

 		
 Data sources

 		
 Rules

 		
 Examples

 		
 Hooks

 		
 The cleanup hook

 		
 The include statement

 		
 Basic Usage

 		
 Notes

 		
 The Even logging

 		
 Command Line Options

 		
 Dry run mode

 		
 Debug

 		
 Temporary Scripts Path

 		
 Unicode

 		
 The one file report

 		
 Introduction

 		
 Example

 		
 Multiprocessing

 		
 Refresh

 		
 Development

 		
 Python Development

 		
 The spline-loc tool

 		
 Purpose

 		
 The usage

 		
 About loc, com and ratio

 		
 About comments

 		
 Using average ratio only for valuation

_static/up-pressed.png

_images/pipeline.png
Matrix

name: one
duration: 8.0 seconds

name: two
duration: 6.0 seconds

name: three
duration: 2.0 seconds

Spline - Pipeline Visualization

Stage: Testl

status: succeeded
duration: 4.0 seconds

status: succeeded
duration: 3.0 seconds

status: succeeded
duration: 1.0 seconds

Stage: Test2

status: succeeded
duration: 4.0 seconds

status: failed
duration: 3.0 seconds

status: succeeded
duration: 1.0 seconds

Stage: Test3

status: succeeded
duration: 0.0 seconds

no information

status: failed
duration: 0.0 seconds

Generated by the Spline tool, version: 1.7, generated: Sunday, 21. January 2018 - 03:12:22 PM

_static/ajax-loader.gif

