

    
      
          
            
  
Splash - A javascript rendering service

Splash is a javascript rendering service. It’s a lightweight web browser
with an HTTP API, implemented in Python 3 using Twisted and QT5. The (twisted)
QT reactor is used to make the service fully asynchronous allowing
to take advantage of webkit concurrency via QT main loop. Some of Splash
features:


	process multiple webpages in parallel;


	get HTML results and/or take screenshots;


	turn OFF images or use Adblock Plus rules to make rendering faster;


	execute custom JavaScript in page context;


	write Lua browsing scripts;


	develop Splash Lua scripts in Splash-Jupyter
Notebooks.


	get detailed rendering info in HAR format.





Documentation



	Installation
	Linux + Docker

	OS X + Docker

	Ubuntu 16.04 (manual way)

	Splash Versions

	Customizing Dockerized Splash





	Splash HTTP API
	render.html

	render.png

	render.jpeg

	render.har

	render.json

	execute

	run

	Executing custom Javascript code within page context

	Request Filters

	Proxy Profiles

	Other Endpoints





	Splash Scripts Tutorial
	Intro

	Entry Point: the “main” Function

	Where Are My Callbacks?

	Living Without Callbacks

	Calling Splash Methods

	Error Handling

	Sandbox

	Timeouts





	Splash Lua API Overview
	Script as an HTTP API endpoint

	Navigation

	Delays

	Extracting information from a page

	Screenshots

	Interacting with a page

	Making HTTP requests

	Inspecting network traffic

	Browsing Options





	Splash Scripts Reference
	Attributes

	Methods





	Response Object
	response.url

	response.status

	response.ok

	response.headers

	response.info

	response.body

	response.request

	response:abort





	Request Object
	Attributes

	Methods





	Element Object
	Methods

	DOM Methods

	Attributes

	DOM Attributes





	Working with Binary Data
	Motivation

	Binary Objects





	Available Lua Libraries
	Standard Library

	json

	base64

	treat

	Adding Your Own Modules





	Splash and Jupyter
	Installation

	Persistence

	Live Webkit window

	From Notebook to HTTP API





	FAQ
	How to send requests to Splash HTTP API?

	I’m getting lots of 504 Timeout errors, please help!

	How to run Splash in production?

	Website is not rendered correctly

	How do I disable Private mode?

	Why was Splash created in the first place?

	Why are CSS styling and images missing from the .har archive?

	Why does Splash use Lua for scripting, not Python or JavaScript?

	render.html result looks broken in a browser





	Contributing to Splash
	Testing Suite





	Implementation Details
	JavaScript <-> Python <-> Lua intergation





	Changes
	3.3 (2019-02-06)

	3.2 (2018-02-15)

	3.1 (2018-01-31)

	3.0 (2017-07-06)

	2.3.3 (2017-06-07)

	2.3.2 (2017-03-03)

	2.3.1 (2017-01-24)

	2.3 (2016-12-01)

	2.2.2 (2016-11-10)

	2.2.1 (2016-10-17)

	2.2 (2016-09-10)

	2.1 (2016-04-20)

	2.0.3 (2016-03-04)

	2.0.2 (2016-02-26)

	2.0.1 (2016-02-25)

	2.0 (2016-02-21)

	1.8 (2015-09-29)

	1.7 (2015-08-06)

	1.6 (2015-05-15)

	1.5 (2015-03-03)

	1.4 (2015-02-10)

	1.3.1 (2014-12-13)

	1.3 (2014-12-04)

	1.2.1 (2014-10-16)

	1.2 (2014-10-14)

	1.1 (2014-10-10)

	1.0 (2014-07-28)















          

      

      

    

  

    
      
          
            
  
Installation


Linux + Docker


	Install Docker [http://docker.io].


	Pull the image:

$ sudo docker pull scrapinghub/splash







	Start the container:

$ sudo docker run -it -p 8050:8050 scrapinghub/splash







	Splash is now available at 0.0.0.0 at port 8050 (http).







OS X + Docker


	Install Docker [http://docker.io] for Mac (see https://docs.docker.com/docker-for-mac/).


	Pull the image:

$ docker pull scrapinghub/splash







	Start the container:

$ docker run -it -p 8050:8050 scrapinghub/splash










	Splash is available at 0.0.0.0 address at port 8050 (http).







Ubuntu 16.04 (manual way)


Warning

On desktop machines it is often better to use Docker.
Use manual installation with care; at least read the
provision.sh script.




	Clone the repo from GitHub:

$ git clone https://github.com/scrapinghub/splash/







	Install dependencies:

$ cd splash/dockerfiles/splash
$ sudo cp ./qt-installer-noninteractive.qs /tmp/script.qs
$ sudo ./provision.sh \
           prepare_install \
           install_msfonts \
           install_extra_fonts \
           install_deps \
           install_flash \
           install_qtwebkit_deps \
           install_official_qt \
           install_qtwebkit \
           install_pyqt5 \
           install_python_deps





Change back to the parent directory of splash, i.e. cd ~,
then run:

$ sudo pip3 install splash/









To run the server execute the following command:

python3 -m splash.server





Run python3 -m splash.server --help to see options available.

By default, Splash API endpoints listen to port 8050 on all available
IPv4 addresses. To change the port use --port option:

python3 -m splash.server --port=5000






Note

Official Docker image uses Ubuntu 16.04; commands above are similar to
commands executed in Dockerfile. The main difference is that dangerous
provision.sh remove… commands are not executed; they allow to save
space in a Docker image, but can break unrelated software on a
desktop system.




Required Python packages

# install PyQt5 (Splash is tested on PyQT 5.9)
# and the following packages:
twisted == 18.9.0
qt5reactor
psutil
adblockparser >= 0.5
https://github.com/sunu/pyre2/archive/c610be52c3b5379b257d56fc0669d022fd70082a.zip#egg=re2
xvfbwrapper
Pillow > 2.0

# for scripting support
lupa >= 1.3
funcparserlib >= 0.3.6










Splash Versions

docker pull scrapinghub/splash will give you the latest stable Splash
release. To obtain the latest development version use
docker pull scrapinghub/splash:master. Specific Splash versions
are also available, e.g. docker pull scrapinghub/splash:2.3.3.




Customizing Dockerized Splash


Passing Custom Options

To run Splash with custom options pass them to docker run, after
the image name. For example, let’s increase log verbosity:

$ docker run -p 8050:8050 scrapinghub/splash -v3





To see all possible options pass --help. Not all options will work the
same inside Docker: changing ports doesn’t make sense (use docker run options
instead), and paths are paths in the container.




Folders Sharing

To set custom Request Filters use -v Docker option. First, create
a folder with request filters on your local filesystem, then make it available
to the container:

$ docker run -p 8050:8050 -v <my-filters-dir>:/etc/splash/filters scrapinghub/splash





Replace <my-filters-dir> with a path of your local folder with request
filters.

Docker Data Volume Containers can also be used. Check
https://docs.docker.com/userguide/dockervolumes/ for more info.

Proxy Profiles and Javascript Profiles can be added
in a similar way:

$ docker run -p 8050:8050 \
      -v <my-proxy-profiles-dir>:/etc/splash/proxy-profiles \
      -v <my-js-profiles-dir>:/etc/splash/js-profiles \
      scrapinghub/splash





To setup Adding Your Own Modules mount a folder to
/etc/splash/lua_modules. If you use a Lua sandbox
(default) don’t forget to list safe modules using
--lua-sandbox-allowed-modules option:

$ docker run -p 8050:8050 \
      -v <my-lua-modules-dir>:/etc/splash/lua_modules \
      scrapinghub/splash \
      --lua-sandbox-allowed-modules 'module1;module2'






Warning

Folder sharing (-v option) may still have issues on OS X and Windows
(see https://github.com/docker/docker/issues/4023).
If you have problems with volumes, use workarounds mentioned
in issue comments or clone Splash repo and customize its Dockerfile.






Building Local Docker Images

To build your own Docker image, checkout Splash source code [https://github.com/scrapinghub/splash] using git,
then execute the following command from Splash source root:

$ docker build -t my-local-splash .





To build Splash-Jupyter Docker image use this command:

$ docker build -t my-local-splash-jupyter -f  dockerfiles/splash-jupyter/Dockerfile .





You may have to change FROM line in dockerfiles/splash-jupyter/Dockerfile
if you want it to be based on your local Splash Docker container.









          

      

      

    

  

    
      
          
            
  
Splash HTTP API

Consult with Installation to get Splash up and running.

Splash is controlled via HTTP API. For all endpoints below parameters
may be sent either as GET arguments or encoded to JSON and
POSTed with Content-Type: application/json header.

Most versatile endpoints that provide all Splash features
are execute and run; they allow to execute arbitrary Lua
rendering scripts.

Other endpoints may be easier to use in specific
cases - for example, render.png returns a screenshot in PNG format
that can be used as img src without any further processing, and
render.json is convenient if you don’t need to interact with a page.


render.html

Return the HTML of the javascript-rendered page.

Arguments:


	urlstringrequired

	The url to render (required)






	baseurlstringoptional

	The base url to render the page with.

Base HTML content will be fetched from the URL given in the url
argument, while relative referenced resources in the HTML-text used to
render the page are fetched using the URL given in the baseurl argument
as base. See also: render.html result looks broken in a browser.






	timeoutfloatoptional

	A timeout (in seconds) for the render (defaults to 30).

By default, maximum allowed value for the timeout is 90 seconds.
To override it start Splash with --max-timeout command line option.
For example, here Splash is configured to allow timeouts up to 5 minutes:

$ docker run -it -p 8050:8050 scrapinghub/splash --max-timeout 300










	resource_timeoutfloatoptional

	A timeout (in seconds) for individual network requests.

See also: splash:on_request and its
request:set_timeout(timeout) method; splash.resource_timeout
attribute.






	waitfloatoptional

	Time (in seconds) to wait for updates after page is loaded
(defaults to 0). Increase this value if you expect pages to contain
setInterval/setTimeout javascript calls, because with wait=0
callbacks of setInterval/setTimeout won’t be executed. Non-zero
wait is also required for PNG and JPEG rendering when
doing full-page rendering (see render_all).

Wait time must be less than timeout.






	proxystringoptional

	Proxy profile name or proxy URL. See Proxy Profiles.

A proxy URL should have the following format:
[protocol://][user:password@]proxyhost[:port]

Where protocol is either http or socks5. If port is not specified,
the port 1080 is used by default.






	jsstringoptional

	Javascript profile name. See Javascript Profiles.






	js_sourcestringoptional

	JavaScript code to be executed in page context.
See Executing custom Javascript code within page context.






	filtersstringoptional

	Comma-separated list of request filter names. See Request Filters






	allowed_domainsstringoptional

	Comma-separated list of allowed domain names.
If present, Splash won’t load anything neither from domains
not in this list nor from subdomains of domains not in this list.






	allowed_content_typesstringoptional

	Comma-separated list of allowed content types.
If present, Splash will abort any request if the response’s content type
doesn’t match any of the content types in this list.
Wildcards are supported using the fnmatch [https://docs.python.org/3/library/fnmatch.html]
syntax.






	forbidden_content_typesstringoptional

	Comma-separated list of forbidden content types.
If present, Splash will abort any request if the response’s content type
matches any of the content types in this list.
Wildcards are supported using the fnmatch [https://docs.python.org/3/library/fnmatch.html]
syntax.






	viewportstringoptional

	View width and height (in pixels) of the browser viewport to render the web
page. Format is “<width>x<height>”, e.g. 800x600.  Default value is 1024x768.

‘viewport’ parameter is more important for PNG and JPEG rendering; it is supported for
all rendering endpoints because javascript code execution can depend on
viewport size.

For backward compatibility reasons, it also accepts ‘full’ as value;
viewport=full is semantically equivalent to render_all=1 (see
render_all).






	imagesintegeroptional

	Whether to download images. Possible values are
1 (download images) and 0 (don’t download images). Default is 1.

Note that cached images may be displayed even if this parameter is 0.
You can also use Request Filters to strip unwanted contents based on URL.






	headersJSON array or objectoptional

	HTTP headers to set for the first outgoing request.

This option is only supported for application/json POST requests.
Value could be either a JSON array with (header_name, header_value)
pairs or a JSON object with header names as keys and header values
as values.

“User-Agent” header is special: is is used for all outgoing requests,
unlike other headers.






	bodystringoptional

	Body of HTTP POST request to be sent if method is POST.
Default content-type header for POST requests is application/x-www-form-urlencoded.






	http_methodstringoptional

	HTTP method of outgoing Splash request. Default method is GET. Splash also
supports POST.






	save_argsJSON array or a comma-separated stringoptional

	A list of argument names to put in cache. Splash will store each
argument value in an internal cache and return X-Splash-Saved-Arguments
HTTP header with a list of SHA1 hashes for each argument
(a semicolon-separated list of name=hash pairs):

name1=9a6747fc6259aa374ab4e1bb03074b6ec672cf99;name2=ba001160ef96fe2a3f938fea9e6762e204a562b3





Client can then use load_args parameter
to pass these hashes instead of argument values. This is most useful
when argument value is large and doesn’t change often
(js_source or lua_source
are often good candidates).






	load_argsJSON object or a stringoptional

	Parameter values to load from cache.
load_args should be either {"name": "<SHA1 hash>", ...}
JSON object or a raw X-Splash-Saved-Arguments header value
(a semicolon-separated list of name=hash pairs).

For each parameter in load_args Splash tries to fetch the
value from the internal cache using a provided SHA1 hash as a key.
If all values are in cache then Splash uses them as argument values
and then handles the request as usual.

If at least on argument can’t be found Splash returns HTTP 498 status
code. In this case client should repeat the request, but
use save_args and send full argument values.

load_args and save_args
allow to save network traffic by not sending large arguments with each
request (js_source and
lua_source are often good candidates).

Splash uses LRU cache to store values; the number of entries is limited,
and cache is cleared after each Splash restart. In other words, storage
is not persistent; client should be ready to re-send the arguments.






	html5_mediaintegeroptional

	Whether to enable HTML5 media (e.g. <video> tags playback).
Possible values are 1 (enable) and 0 (disable). Default is 0.

HTML5 media is currently disabled by default because it may cause
instability. Splash may enable it by default in future, so pass
html5_media=0 explicitly if you don’t want HTML5 media.

See also: splash.html5_media_enabled.






Examples

Curl example:

curl 'http://localhost:8050/render.html?url=http://domain.com/page-with-javascript.html&timeout=10&wait=0.5'





The result is always encoded to utf-8. Always decode HTML data returned
by render.html endpoint from utf-8 even if there are tags like

<meta http-equiv="Content-Type" content="text/html; charset=iso-8859-1">





in the result.






render.png

Return an image (in PNG format) of the javascript-rendered page.

Arguments:

Same as render.html plus the following ones:


	widthintegeroptional

	Resize the rendered image to the given width (in pixels) keeping the aspect
ratio.






	heightintegeroptional

	Crop the rendered image to the given height (in pixels). Often used in
conjunction with the width argument to generate fixed-size thumbnails.






	render_allintoptional

	Possible values are 1 and 0.  When render_all=1, extend the
viewport to include the whole webpage (possibly very tall) before rendering.
Default is render_all=0.


Note

render_all=1 requires non-zero wait parameter. This is an
unfortunate restriction, but it seems that this is the only way to make
rendering work reliably with render_all=1.








	scale_methodstringoptional

	Possible values are raster (default) and vector.  If
scale_method=raster, rescaling operation performed via width parameter is pixel-wise.  If scale_method=vector, rescaling
is done element-wise during rendering.


Note

Vector-based rescaling is more performant and results in crisper fonts and
sharper element boundaries, however there may be rendering issues, so use
it with caution.








Examples

Curl examples:

# render with timeout
curl 'http://localhost:8050/render.png?url=http://domain.com/page-with-javascript.html&timeout=10'

# 320x240 thumbnail
curl 'http://localhost:8050/render.png?url=http://domain.com/page-with-javascript.html&width=320&height=240'










render.jpeg

Return an image (in JPEG format) of the javascript-rendered page.

Arguments:

Same as render.png plus the following ones:


	qualityintegeroptional

	JPEG quality parameter in range from 0 to 100.
Default is quality=75.


Note

quality values above 95 should be avoided;
quality=100 disables portions of the JPEG compression algorithm,
and results in large files with hardly any gain in image quality.








Examples

Curl examples:

# render with default quality
curl 'http://localhost:8050/render.jpeg?url=http://domain.com/'

# render with low quality
curl 'http://localhost:8050/render.jpeg?url=http://domain.com/&quality=30'










render.har

Return information about Splash interaction with a website in HAR [http://www.softwareishard.com/blog/har-12-spec/] format.
It includes information about requests made, responses received, timings,
headers, etc.

You can use online HAR viewer [http://www.softwareishard.com/har/viewer/] to visualize information returned from
this endpoint; it will be very similar to “Network” tabs in Firefox and Chrome
developer tools.

Request and response contents are included when
‘request_body’ and
‘response_body’ options are set to 1,
respectively.

Due to the HAR [http://www.softwareishard.com/blog/har-12-spec/] format specification lacking a method of encoding binary
request data, a non-standard encoding field is included in postData,
which, similarly to the field of same name in HAR responses, has the value
base64 when the request body has been encoded as such.

Arguments for this endpoint are the same as for render.html, plus the
following:


	request_bodyintoptional

	Possible values are 1 and 0.  When request_body=1,
request content is included in HAR records. Default is request_body=0.






	response_bodyintoptional

	Possible values are 1 and 0.  When response_body=1,
response content is included in HAR records. Default is response_body=0.








render.json

Return a json-encoded dictionary with information about javascript-rendered
webpage. It can include HTML, PNG and other information, based on
arguments passed.

Arguments:

Same as render.jpeg plus the following ones:


	htmlintegeroptional

	Whether to include HTML in output. Possible values are
1 (include) and 0 (exclude). Default is 0.






	pngintegeroptional

	Whether to include PNG in output. Possible values are
1 (include) and 0 (exclude). Default is 0.






	jpegintegeroptional

	Whether to include JPEG in output. Possible values are
1 (include) and 0 (exclude). Default is 0.






	iframesintegeroptional

	Whether to include information about child frames in output.
Possible values are  1 (include) and 0 (exclude).
Default is 0.






	scriptintegeroptional

	Whether to include the result of the executed javascript final
statement in output (see Executing custom Javascript code within page context).
Possible values are 1 (include) and 0 (exclude). Default is 0.






	consoleintegeroptional

	Whether to include the executed javascript console messages in output.
Possible values are 1 (include) and 0 (exclude). Default is 0.






	historyintegeroptional

	Whether to include the history of requests/responses for webpage main
frame. Possible values are 1 (include) and 0 (exclude).
Default is 0.

Use it to get HTTP status codes and headers.
Only information about “main” requests/responses is returned
(i.e. information about related resources like images and AJAX queries
is not returned). To get information about all requests and responses
use ‘har’ argument.






	harintegeroptional

	Whether to include HAR [http://www.softwareishard.com/blog/har-12-spec/] in output. Possible values are
1 (include) and 0 (exclude). Default is 0.
If this option is ON the result will contain the same data
as render.har provides under ‘har’ key.

By default, request and response contents are not included. To enable each,
use ‘request_body’ and
‘response_body’ options respectively.






	request_bodyintoptional

	Possible values are 1 and 0.  When request_body=1,
request content is included in HAR records. Default is
request_body=0. This option has no effect when
both ‘har’ and ‘history’ are 0.






	response_bodyintoptional

	Possible values are 1 and 0.  When response_body=1,
response content is included in HAR records. Default is
response_body=0. This option has no effect when
both ‘har’ and ‘history’ are 0.






Examples

By default, URL, requested URL, page title and frame geometry is returned:

{
    "url": "http://crawlera.com/",
    "geometry": [0, 0, 640, 480],
    "requestedUrl": "http://crawlera.com/",
    "title": "Crawlera"
}





Add ‘html=1’ to request to add HTML to the result:

{
    "url": "http://crawlera.com/",
    "geometry": [0, 0, 640, 480],
    "requestedUrl": "http://crawlera.com/",
    "html": "<!DOCTYPE html><!--[if IE 8]>....",
    "title": "Crawlera"
}





Add ‘png=1’ to request to add base64-encoded PNG screenshot to the result:

{
    "url": "http://crawlera.com/",
    "geometry": [0, 0, 640, 480],
    "requestedUrl": "http://crawlera.com/",
    "png": "iVBORw0KGgoAAAAN...",
    "title": "Crawlera"
}





Setting both ‘html=1’ and ‘png=1’ allows to get HTML and a screenshot
at the same time - this guarantees that the screenshot matches the HTML.

By adding “iframes=1” information about iframes can be obtained:

{
    "geometry": [0, 0, 640, 480],
    "frameName": "",
    "title": "Scrapinghub | Autoscraping",
    "url": "http://scrapinghub.com/autoscraping.html",
    "childFrames": [
        {
            "title": "Tutorial: Scrapinghub's autoscraping tool - YouTube",
            "url": "",
            "geometry": [235, 502, 497, 310],
            "frameName": "<!--framePath //<!--frame0-->-->",
            "requestedUrl": "http://www.youtube.com/embed/lSJvVqDLOOs?version=3&rel=1&fs=1&showsearch=0&showinfo=1&iv_load_policy=1&wmode=transparent",
            "childFrames": []
        }
    ],
    "requestedUrl": "http://scrapinghub.com/autoscraping.html"
}





Note that iframes can be nested.

Pass both ‘html=1’ and ‘iframes=1’ to get HTML for all iframes
as well as for the main page:

 {
    "geometry": [0, 0, 640, 480],
    "frameName": "",
    "html": "<!DOCTYPE html...",
    "title": "Scrapinghub | Autoscraping",
    "url": "http://scrapinghub.com/autoscraping.html",
    "childFrames": [
        {
            "title": "Tutorial: Scrapinghub's autoscraping tool - YouTube",
            "url": "",
            "html": "<!DOCTYPE html>...",
            "geometry": [235, 502, 497, 310],
            "frameName": "<!--framePath //<!--frame0-->-->",
            "requestedUrl": "http://www.youtube.com/embed/lSJvVqDLOOs?version=3&rel=1&fs=1&showsearch=0&showinfo=1&iv_load_policy=1&wmode=transparent",
            "childFrames": []
        }
    ],
    "requestedUrl": "http://scrapinghub.com/autoscraping.html"
}





Unlike ‘html=1’, ‘png=1’ does not affect data in childFrames.

When executing JavaScript code (see Executing custom Javascript code within page context) add the
parameter ‘script=1’ to the request to include the code output in the result:

{
    "url": "http://crawlera.com/",
    "geometry": [0, 0, 640, 480],
    "requestedUrl": "http://crawlera.com/",
    "title": "Crawlera",
    "script": "result of script..."
}





The JavaScript code supports the console.log() function to log messages.
Add ‘console=1’ to the request to include the console output in the result:

{
    "url": "http://crawlera.com/",
    "geometry": [0, 0, 640, 480],
    "requestedUrl": "http://crawlera.com/",
    "title": "Crawlera",
    "script": "result of script...",
    "console": ["first log message", "second log message", ...]
}





Curl examples:

# full information
curl 'http://localhost:8050/render.json?url=http://domain.com/page-with-iframes.html&png=1&html=1&iframes=1'

# HTML and meta information of page itself and all its iframes
curl 'http://localhost:8050/render.json?url=http://domain.com/page-with-iframes.html&html=1&iframes=1'

# only meta information (like page/iframes titles and urls)
curl 'http://localhost:8050/render.json?url=http://domain.com/page-with-iframes.html&iframes=1'

# render html and 320x240 thumbnail at once; do not return info about iframes
curl 'http://localhost:8050/render.json?url=http://domain.com/page-with-iframes.html&html=1&png=1&width=320&height=240'

# Render page and execute simple Javascript function, display the js output
curl -X POST -H 'content-type: application/javascript' \
    -d 'function getAd(x){ return x; } getAd("abc");' \
    'http://localhost:8050/render.json?url=http://domain.com&script=1'

# Render page and execute simple Javascript function, display the js output and the console output
curl -X POST -H 'content-type: application/javascript' \
    -d 'function getAd(x){ return x; }; console.log("some log"); console.log("another log"); getAd("abc");' \
    'http://localhost:8050/render.json?url=http://domain.com&script=1&console=1'










execute

Execute a custom rendering script and return a result.

render.html, render.png, render.jpeg, render.har
and render.json endpoints cover many common use cases, but sometimes
they are not enough. This endpoint allows to write custom
Splash Scripts.

Arguments:


	lua_sourcestringrequired

	Browser automation script. See Splash Scripts Tutorial for more info.






	timeoutfloatoptional

	Same as ‘timeout’ argument for render.html.



	allowed_domainsstringoptional

	Same as ‘allowed_domains’ argument for render.html.



	proxystringoptional

	Same as ‘proxy’ argument for render.html.



	filtersstringoptional

	Same as ‘filters’ argument for render.html.



	save_argsJSON array or a comma-separated stringoptional

	Same as ‘save_args’ argument for render.html.
Note that you can save not only default Splash arguments,
but any other parameters as well.



	load_argsJSON object or a stringoptional

	Same as ‘load_args’ argument for render.html.
Note that you can load not only default Splash arguments,
but any other parameters as well.





You can pass any other arguments. All arguments passed to execute
endpoint are available in a script in splash.args table.




run

This endpoint is the same as execute, but it wraps lua_source
in function main(splash, args) ... end automatically.
For example, if you’re sending this script to execute:

function main(splash, args)
    assert(splash:go(args.url))
    assert(splash:wait(1.0))
    return splash:html()
end





equivalent script for run endpoint would be

assert(splash:go(args.url))
assert(splash:wait(1.0))
return splash:html()








Executing custom Javascript code within page context


Note

See also: executing JavaScript in Splash scripts



Splash supports executing JavaScript code within the context of the page.
The JavaScript code is executed after the page finished loading (including
any delay defined by ‘wait’) but before the page is rendered. This allows to
use the javascript code to modify the page being rendered.

To execute JavaScript code use js_source parameter.
It should contain JavaScript code to be executed.

Note that browsers and proxies limit the amount of data that can be sent using GET,
so it is a good idea to use content-type: application/json POST request.

Curl example:

# Render page and modify its title dynamically
curl -X POST -H 'content-type: application/json' \
    -d '{"js_source": "document.title=\"My Title\";", "url": "http://example.com"}' \
    'http://localhost:8050/render.html'





Another way to do it is to use a POST request with the content-type set to
‘application/javascript’. The body of the request should contain the code to
be executed.

Curl example:

# Render page and modify its title dynamically
curl -X POST -H 'content-type: application/javascript' \
    -d 'document.title="My Title";' \
    'http://localhost:8050/render.html?url=http://domain.com'





To get the result of a javascript function executed within page
context use render.json endpoint with script = 1 parameter.


Javascript Profiles

Splash supports “javascript profiles” that allows to preload javascript files.
Javascript files defined in a profile are executed after the page is loaded
and before any javascript code defined in the request.

The preloaded files can be used in the user’s POST’ed code.

To enable javascript profiles support, run splash server with the
--js-profiles-path=<path to a folder with js profiles> option:

python3 -m splash.server --js-profiles-path=/etc/splash/js-profiles






Note

See also: Splash Versions.



Then create a directory with the name of the profile and place inside it the
javascript files to load (note they must be utf-8 encoded).
The files are loaded in the order they appear in the filesystem.
Directory example:

/etc/splash/js-profiles/
                    mywebsite/
                          lib1.js





To apply this javascript profile add the parameter
js=mywebsite to the request:

curl -X POST -H 'content-type: application/javascript' \
    -d 'myfunc("Hello");' \
    'http://localhost:8050/render.html?js=mywebsite&url=http://domain.com'





Note that this example assumes that myfunc is a javascript function
defined in lib1.js.




Javascript Security

If Splash is started with --js-cross-domain-access option

$ docker run -it -p 8050:8050 scrapinghub/splash --js-cross-domain-access





then javascript code is allowed to access the content of iframes
loaded from a security origin different to the original page (browsers usually
disallow that). This feature is useful for scraping, e.g. to extract the
html of a iframe page. An example of its usage:

curl -X POST -H 'content-type: application/javascript' \
    -d 'function getContents(){ var f = document.getElementById("external"); return f.contentDocument.getElementsByTagName("body")[0].innerHTML; }; getContents();' \
    'http://localhost:8050/render.html?url=http://domain.com'





The javascript function ‘getContents’ will look for a iframe with
the id ‘external’ and extract its html contents.

Note that allowing cross origin javascript calls is a potential
security issue, since it is possible that secret information (i.e cookies)
is exposed when this support is enabled; also, some websites don’t load
when cross-domain security is disabled, so this feature is OFF by default.






Request Filters

Splash supports filtering requests based on
Adblock Plus [https://adblockplus.org/] rules. You can use
filters from EasyList [https://easylist.adblockplus.org/en/] to remove ads and tracking codes
(and thus speedup page loading), and/or write filters manually to block
some of the requests (e.g. to prevent rendering of images, mp3 files,
custom fonts, etc.)

To activate request filtering support start splash with --filters-path
option:

python3 -m splash.server --filters-path=/etc/splash/filters






Note

See also: Splash Versions.



The folder --filters-path points to should contain .txt files with
filter rules in Adblock Plus format. You may download easylist.txt
from EasyList [https://easylist.adblockplus.org/en/] and put it there, or create .txt files with your own rules.

For example, let’s create a filter that will prevent custom fonts
in ttf and woff formats from loading (due to qt bugs they may cause
splash to segfault on Mac OS X):

! put this to a /etc/splash/filters/nofonts.txt file
! comments start with an exclamation mark

.ttf|
.woff|





To use this filter in a request add filters=nofonts parameter
to the query:

curl 'http://localhost:8050/render.png?url=http://domain.com/page-with-fonts.html&filters=nofonts'





You can apply several filters; separate them by comma:

curl 'http://localhost:8050/render.png?url=http://domain.com/page-with-fonts.html&filters=nofonts,easylist'





If default.txt file is present in --filters-path folder it is
used by default when filters argument is not specified. Pass
filters=none if you don’t want default filters to be applied.

Only related resources are filtered out by request filters; ‘main’ page loading
request can’t be blocked this way. If you really want to do that consider
checking URL against Adblock Plus filters before sending it to Splash
(e.g. for Python there is adblockparser [https://github.com/scrapinghub/adblockparser] library).

To learn about Adblock Plus filter syntax check these links:


	https://adblockplus.org/en/filter-cheatsheet


	https://adblockplus.org/en/filters




Splash doesn’t support full Adblock Plus filters syntax, there are some
limitations:


	element hiding rules are not supported; filters can prevent network
request from happening, but they can’t hide parts of an already loaded page;


	only domain option is supported.




Unsupported rules are silently discarded.


Note

If you want to stop downloading images check ‘images’
parameter. It doesn’t require URL-based filters to work, and it can
filter images that are hard to detect using URL-based patterns.




Warning

It is very important to have pyre2 [https://github.com/axiak/pyre2]
library installed if you are going to use filters with a large number
of rules (this is the case for files downloaded from EasyList [https://easylist.adblockplus.org/en/]).

Without pyre2 library splash (via adblockparser [https://github.com/scrapinghub/adblockparser]) relies on re module
from stdlib, and it can be 1000x+ times slower than re2 - it may be
faster to download files than to discard them if you have a large number
of rules and don’t use re2. With re2 matching becomes very fast.

Make sure you are not using re2==0.2.20 installed from PyPI (it is broken);
use the latest version.






Proxy Profiles

Splash supports “proxy profiles” that allows to set proxy handling rules
per-request using proxy parameter.

To enable proxy profiles support, run splash server with
--proxy-profiles-path=<path to a folder with proxy profiles> option:

python3 -m splash.server --proxy-profiles-path=/etc/splash/proxy-profiles






Note

If you run Splash using Docker, check Folders Sharing.



Then create an INI file with “proxy profile” config inside the
specified folder, e.g. /etc/splash/proxy-profiles/mywebsite.ini.
Example contents of this file:

[proxy]

; required
host=proxy.crawlera.com
port=8010

; optional, default is no auth
username=username
password=password

; optional, default is HTTP. Allowed values are HTTP and SOCKS5
type=HTTP

[rules]
; optional, default ".*"
whitelist=
    .*mywebsite\.com.*

; optional, default is no blacklist
blacklist=
    .*\.js.*
    .*\.css.*
    .*\.png





whitelist and blacklist are newline-separated lists of regexes.
If URL matches one of whitelist patterns and matches none of blacklist
patterns, proxy specified in [proxy] section is used;
no proxy is used otherwise.

Then, to apply proxy rules according to this profile,
add proxy=mywebsite parameter to request:

curl 'http://localhost:8050/render.html?url=http://mywebsite.com/page-with-javascript.html&proxy=mywebsite'





If default.ini profile is present, it will be used when proxy
argument is not specified. If you have default.ini profile
but don’t want to apply it pass none as proxy value.




Other Endpoints


_gc

To reclaim some RAM send a POST request to the /_gc endpoint:

curl -X POST http://localhost:8050/_gc





It runs the Python garbage collector and clears internal WebKit caches.




_debug

To get debug information about Splash instance (max RSS used, number of used
file descriptors, active requests, request queue length, counts of alive
objects) send a GET request to the /_debug endpoint:

curl http://localhost:8050/_debug








_ping

To ping Splash instance send a GET request to the /_ping endpoint:

curl http://localhost:8050/_ping





It returns “ok” status and max RSS used, if instance is alive.









          

      

      

    

  

    
      
          
            
  
Splash Scripts Tutorial


Intro

Splash can execute custom rendering scripts written in the Lua [http://www.lua.org/]
programming language. This allows us to use Splash as a browser automation
tool similar to PhantomJS [http://phantomjs.org/].

To execute a script and get the result back send it to the execute
(or run) endpoint in a lua_source argument.
We’ll be using execute endpoint in this tutorial.


Note

Most likely you’ll be able to follow Splash scripting examples even
without knowing Lua; nevertheless, the language is worth learning.
With Lua you can, for example, write Redis [http://redis.io/commands/EVAL], Nginx [https://github.com/openresty/lua-nginx-module], Apache [http://httpd.apache.org/docs/trunk/mod/mod_lua.html],
World of Warcraft [http://www.wowwiki.com/Lua] scripts, create mobile apps using
Corona [https://coronalabs.com/] or use the state of the art Deep Learning
framework Torch7 [http://torch.ch/]. It is easy to get started and there are good online
resources available like the tutorial Learn Lua in 15 minutes [http://tylerneylon.com/a/learn-lua/] and the
book Programming in Lua [http://www.lua.org/pil/contents.html].



Let’s start with a basic example:

function main(splash, args)
  splash:go("http://example.com")
  splash:wait(0.5)
  local title = splash:evaljs("document.title")
  return {title=title}
end





If we submit this script to the execute endpoint in a lua_source
argument, Splash will go to the example.com website, wait until it loads,
wait another half-second, then get the page title (by evaluating a JavaScript
snippet in page context), and then return the result as a JSON encoded object.


Note

Splash UI provides an easy way to try scripts: there is a code editor
for Lua and a button to submit a script to execute. Visit
http://127.0.0.1:8050/ (or whatever host/port Splash is listening to).

To run scripts from your programming environment you need to figure
out how to send HTTP requests. Check How to send requests to Splash HTTP API? FAQ
section - it contains recipes for some of the common setupts
(e.g. Python + requests library).






Entry Point: the “main” Function

The script must provide a “main” function which is called by Splash. The
result is returned as an HTTP response. The script could contain other
helper functions and statements, but ‘main’ is required.

In the first example ‘main’ function returned a Lua table (an associative array
similar to JavaScript Object or Python dict). Such results are returned as
JSON.

The following will return the string {"hello":"world!"} as an HTTP response:

function main(splash)
    return {hello="world!"}
end





The script can also return a string:

function main(splash)
    return 'hello'
end





Strings are returned as-is (unlike tables they are not encoded to JSON).
Let’s check it with curl:

$ curl 'http://127.0.0.1:8050/execute?lua_source=function+main%28splash%29%0D%0A++return+%27hello%27%0D%0Aend'
hello





The “main” function receives an object that allows us to control the “browser
tab”. All Splash features are exposed using this object. By convention, this
argument is called “splash”, but you are not required to follow this convention:

function main(please)
    please:go("http://example.com")
    please:wait(0.5)
    return "ok"
end








Where Are My Callbacks?

Here is a snippet from our first example:

splash:go("http://example.com")
splash:wait(0.5)
local title = splash:evaljs("document.title")





The code looks like standard procedural code; there are no callbacks or fancy
control-flow structures. It doesn’t mean Splash works in a synchronous
way; under the hood it is still async. When you call splash.wait(0.5),
Splash switches from the script to other tasks, and comes back after 0.5s.

It is possible to use loops, conditional statements, functions as usual
in Splash scripts which enables more straightforward coding.

Let’s check an example [https://github.com/ariya/phantomjs/blob/master/examples/render_multi_url.js]
PhantomJS script:

// Render Multiple URLs to file

"use strict";
var RenderUrlsToFile, arrayOfUrls, system;

system = require("system");

/*
Render given urls
@param array of URLs to render
@param callbackPerUrl Function called after finishing each URL, including the last URL
@param callbackFinal Function called after finishing everything
*/
RenderUrlsToFile = function(urls, callbackPerUrl, callbackFinal) {
    var getFilename, next, page, retrieve, urlIndex, webpage;
    urlIndex = 0;
    webpage = require("webpage");
    page = null;
    getFilename = function() {
        return "rendermulti-" + urlIndex + ".png";
    };
    next = function(status, url, file) {
        page.close();
        callbackPerUrl(status, url, file);
        return retrieve();
    };
    retrieve = function() {
        var url;
        if (urls.length > 0) {
            url = urls.shift();
            urlIndex++;
            page = webpage.create();
            page.viewportSize = {
                width: 800,
                height: 600
            };
            page.settings.userAgent = "Phantom.js bot";
            return page.open("http://" + url, function(status) {
                var file;
                file = getFilename();
                if (status === "success") {
                    return window.setTimeout((function() {
                        page.render(file);
                        return next(status, url, file);
                    }), 200);
                } else {
                    return next(status, url, file);
                }
            });
        } else {
            return callbackFinal();
        }
    };
    return retrieve();
};

arrayOfUrls = null;

if (system.args.length > 1) {
    arrayOfUrls = Array.prototype.slice.call(system.args, 1);
} else {
    console.log("Usage: phantomjs render_multi_url.js [domain.name1, domain.name2, ...]");
    arrayOfUrls = ["www.google.com", "www.bbc.co.uk", "phantomjs.org"];
}

RenderUrlsToFile(arrayOfUrls, (function(status, url, file) {
    if (status !== "success") {
        return console.log("Unable to render '" + url + "'");
    } else {
        return console.log("Rendered '" + url + "' at '" + file + "'");
    }
}), function() {
    return phantom.exit();
});





The code is (arguably) tricky: RenderUrlsToFile function implements a loop
by creating a chain of callbacks; page.open callback doesn’t return a value
(it would be more complex to implement) - the result is saved on disk.

A similar Splash script:

function main(splash, args)
  splash.set_viewport_size(800, 600)
  splash.set_user_agent('Splash bot')
  local example_urls = {"www.google.com", "www.bbc.co.uk", "scrapinghub.com"}
  local urls = args.urls or example_urls
  local results = {}
  for _, url in ipairs(urls) do
    local ok, reason = splash:go("http://" .. url)
    if ok then
      splash:wait(0.2)
      results[url] = splash:png()
    end
  end
  return results
end





It is not doing exactly the same work - instead of saving screenshots
to files we’re returning PNG data to the client via HTTP API.

Observations:


	instead of a page.open callback which receives “status” argument
there is a “blocking” splash:go call which returns “ok” flag;


	we’re using a standard Lua for loop without a need to create
a recursive callback chain;


	some Lua knowledge is helpful to be productive in Splash Scripts:
ipairs or string concatenation via .. could be unfamiliar;


	error handling is different: in case of an HTTP 4xx or 5xx error
PhantomJS doesn’t return an error code to page.open callback - example
script will get a screenshot nevertheless because “status” won’t
be “fail”; in Splash this error will be detected;


	instead of console messages and local files we’ve created a JSON HTTP API;


	apparently, PhantomJS allows to create multiple page objects and
run several page.open requests in parallel (?); Splash only provides
a single “browser tab” to a script via its splash parameter of main
function (but you’re free to send multiple concurrent requests with
Lua scripts to Splash).




There are great PhantomJS wrappers like CasperJS [http://casperjs.org/] and NightmareJS [http://www.nightmarejs.org/] which
(among other things) bring a sync-looking syntax to PhantomJS scripts by
providing custom control flow mini-languages. However, they all have their
own gotchas and edge cases (loops? moving code to helper functions? error
handling?). Splash scripts are standard Lua code.


Note

PhantomJS itself and its wrappers are great, they deserve lots of
respect; please don’t take this writeup as an attack on them.
These tools are much more mature and feature complete than Splash.
Splash tries to look at the problem from a different angle, but
for each unique Splash feature there is an unique PhantomJS feature.



To read more about Splash Lua API features
check Splash Lua API Overview.




Living Without Callbacks


Note

For the curious, Splash uses Lua coroutines under the hood.

Internally, “main” function is executed as a coroutine by Splash,
and some of the splash:foo() methods use coroutine.yield.
See http://www.lua.org/pil/9.html for Lua coroutines tutorial.



In Splash scripts it is not explicit which calls are async and which calls
are blocking; this is a common criticism of coroutines/greenlets. Check
this [https://glyph.twistedmatrix.com/2014/02/unyielding.html] article
for a good description of the problem.

However, these negatives have no real impact in Splash scripts which: are
meant to be small, where shared state is minimized, and the API is designed to
execute a single command at a time, so in most cases the control flow is linear.

If you want to be safe then think of all splash methods as async;
consider that after you call splash:foo() a webpage being
rendered can change. Often that’s the point of calling a method,
e.g. splash:wait(time) or splash:go(url) only make sense because
webpage changes after calling them, but still - keep it in mind.

There are async methods like splash:go, splash:wait,
splash:wait_for_resume, etc.; most splash methods are currently
not async, but thinking of them as of async will allow your scripts
to work if we ever change that.




Calling Splash Methods

Unlike in many languages, methods in Lua are usually separated from an object
using a colon :; to call “foo” method of “splash” object use
splash:foo() syntax. See http://www.lua.org/pil/16.html for more details.

There are two main ways to call Lua methods in Splash scripts:
using positional and named arguments. To call a method using positional
arguments use parentheses splash:foo(val1, val2), to call it with
named arguments use curly braces: splash:foo{name1=val1, name2=val2}:

-- Examples of positional arguments:
splash:go("http://example.com")
splash:wait(0.5, false)
local title = splash:evaljs("document.title")

-- The same using keyword arguments:
splash:go{url="http://example.com"}
splash:wait{time=0.5, cancel_on_redirect=false}
local title = splash:evaljs{source="document.title"}

-- Mixed arguments example:
splash:wait{0.5, cancel_on_redirect=false}





For convenience all splash methods are designed to support both styles
of calling: positional and named. But since there are no “real” named
arguments in Lua [http://www.lua.org/pil/5.3.html] most Lua functions (including the ones from the
standard library) choose to support just positional arguments.




Error Handling

There are two ways to report errors in Lua: raise an exception and return
an error flag. See http://www.lua.org/pil/8.3.html.

Splash uses the following convention:


	for developer errors (e.g. incorrect function arguments) exception is raised;


	for errors outside developer control (e.g. a non-responding remote website)
status flag is returned: functions that can fail return ok, reason
pairs which developer can either handle or ignore.




If main results in an unhandled exception then Splash returns HTTP 400
response with an error message.

It is possible to raise an exception manually using Lua error function:

error("A message to be returned in a HTTP 400 response")





To handle Lua exceptions (and prevent Splash from returning HTTP 400 response)
use Lua pcall; see http://www.lua.org/pil/8.4.html.

To convert “status flag” errors to exceptions Lua assert function can be used.
For example, if you expect a website to work and don’t want to handle errors
manually, then assert allows to stop processing and return HTTP 400
if the assumption is wrong:

local ok, msg = splash:go("http://example.com")
if not ok then
    -- handle error somehow, e.g.
    error(msg)
end

-- a shortcut for the code above: use assert
assert(splash:go("http://example.com"))








Sandbox

By default Splash scripts are executed in a restricted environment:
not all standard Lua modules and functions are available, Lua require
is restricted, and there are resource limits (quite loose though).

To disable the sandbox start Splash with --disable-lua-sandbox option:

$ docker run -it -p 8050:8050 scrapinghub/splash --disable-lua-sandbox








Timeouts

By default Splash aborts script execution after a timeout
(30s by default); it is a common problem for long scripts.

For more information see I’m getting lots of 504 Timeout errors, please help! and 2. Splash Lua script does too many things.







          

      

      

    

  

    
      
          
            
  
Splash Lua API Overview

Splash provides a lot of methods, functions and properties; all of them are
documented in Splash Scripts Reference, Available Lua Libraries,
Element Object, Request Object, Response Object
and Working with Binary Data. Here is a short description of the most used ones:


Script as an HTTP API endpoint

Each Splash Lua script can be seen as an HTTP API endpoint, with input
arguments and structured result value. For example, you can emulate
render.png endpoint using Lua script, including all its
HTTP arguments.


	splash.args is the way to get data to the script;


	splash:set_result_status_code allows to change HTTP status code
of the result;


	splash:set_result_content_type allows to change Content-Type
returned to the client;


	splash:set_result_header allows to add custom HTTP headers to the result;


	Working with Binary Data section describes how to work with non-text data in
Splash, e.g. how to return it to the client;


	treat library allows to customize the way data is serialized
to JSON when returning the result.







Navigation


	splash:go - load an URL to the browser;


	splash:set_content - load specified content (usually HTML)
to the browser;


	splash:lock_navigation and splash:unlock_navigation -
lock/unlock navigation;


	splash:on_navigation_locked allows to inspect requests
discarded after navigation was locked;


	splash:set_user_agent allows to change User-Agent header used
for requests;


	splash:set_custom_headers allows to set default HTTP headers
Splash use.


	splash:on_request allows to filter out or replace requests to
related resources; it also allows to set HTTP or SOCKS5 proxy servers
per-request;


	splash:on_response_headers allows to filter out requests
based on their headers (e.g. based on Content-Type);


	splash:init_cookies, splash:add_cookie,
splash:get_cookies, splash:clear_cookies and
splash:delete_cookies allow to manage cookies.







Delays


	splash:wait allows to wait for a specified amount of time;


	splash:call_later schedules a task in future;


	splash:wait_for_resume allows to wait until a certain JS event
happens;


	splash:with_timeout allows to limit time spent in a code block.







Extracting information from a page


	splash:html returns page HTML content, after it is rendered
by a browser;


	splash:url returns current URL loaded in the browser;


	splash:evaljs and splash:jsfunc allow to extract data from
a page using JavaScript;


	splash:select and splash:select_all allow to run CSS
selectors in a page; they return Element objects which has many
methods useful for scraping and further processing
(see Element Object)


	element:text returns text content of a DOM element;


	element:bounds returns bounding box of an element;


	element:styles returns computed styles of an element;


	element:form_values return values of a <form> element;


	many methods and attributes of DOM HTMLElement [https://developer.mozilla.org/en-US/docs/Web/API/HTMLElement] are supported - see
DOM Methods and DOM Attributes.







Screenshots


	splash:png, splash:jpeg - take PNG or JPEG screenshot;


	splash:set_viewport_full - change viewport size (call it before
splash:png or splash:jpeg) to get a screenshot of the whole
page;


	splash:set_viewport_size - change size of the viewport;


	element:png and element:jpeg - take screenshots
of individual DOM elements.







Interacting with a page


	splash:runjs, splash:evaljs and splash:jsfunc
allow to run arbitrary JavaScript in page context;


	splash:autoload allows to preload JavaScript libraries
or execute some JavaScript code at the beginning of each page render;


	splash:mouse_click, splash:mouse_hover,
splash:mouse_press, splash:mouse_release allow to send mouse
events to specific coordinates on a page;


	element:mouse_click and element:mouse_hover allow
to send mouse events to specific DOM elements;


	splash:send_keys and splash:send_text allow to send keyboard
events to a page;


	element:send_keys and element:send_text allow to
send keyboard events to particular DOM elements;


	you can get initial <form> values using element:form_values,
change them in Lua code, fill the form with the updated values
using element:fill and submit it using
element:submit;


	splash.scroll_position allows to scroll the page;


	many methods and attributes of DOM HTMLElement [https://developer.mozilla.org/en-US/docs/Web/API/HTMLElement] are supported - see
DOM Methods and DOM Attributes.







Making HTTP requests


	splash:http_get - send an HTTP GET request and get a response
without loading page to the browser;


	splash:http_post - send an HTTP POST request and get a response
without loading page to the browser;







Inspecting network traffic


	splash:har returns all requests and responses in HAR [http://www.softwareishard.com/blog/har-12-spec/] format;


	splash:history returns information about redirects and pages loaded
to the main browser window;


	splash:on_request allows to capture requests issued by a webpage
and by the script;


	splash:on_response_headers allows to inspect (and maybe drop)
responses once headers arrive;


	splash:on_response allows to inspect raw responses received
(including content of related resources);


	splash.response_body_enabled enables full response bodies in
splash:har and splash:on_response;


	see Response Object and Request Object for more information
about Request and Response objects.







Browsing Options


	splash.js_enabled allows to turn JavaScript support OFF:


	splash.private_mode_enabled allows to turn Private Mode OFF
(it is requird for some websites because Webkit doesn’t have localStorage
available in Private Mode);


	splash.images_enabled allows to turn OFF downloading of images;


	splash.plugins_enabled allows to enable plugins (in the default
Docker image it enables Flash);


	splash.resource_timeout allows to drop slow or hanging requests
to related resources after a timeout


	splash.indexeddb_enabled allows to turn IndexedDB ON


	splash.webgl_enabled allows to turn WebGL OFF


	splash.html5_media_enabled allows to turn on HTML5 media
(e.g. playback of <video> tags).


	splash.media_source_enabled allows to turn off Media Source Extension
API support










          

      

      

    

  

    
      
          
            
  
Splash Scripts Reference


Note

While this reference is comprehensive, it can be hard to navigate.
If you’re just starting, or don’t know what you’re looking for exactly,
check Splash Lua API Overview first.



splash object is passed to main function as a first argument;
via this object a script can control the browser. Think of it as of an API to
a single browser tab.


Attributes


splash.args

splash.args is a table with incoming parameters. It contains
merged values from the orignal URL string (GET arguments) and
values sent using application/json POST request.

For example, if you passed ‘url’ argument to a script using HTTP API,
then splash.args.url contains this URL.

You can also access splash.args using second, optional args argument
of the main function:

function main(splash, args)
    local url = args.url
    -- ...
end





The example above is the same as

function main(splash)
    local url = splash.args.url
    -- ...
end





Using either args or splash.args is the preferred way to pass
parameters to Splash scripts. An alternative way is to use string
formatting to build a script with variables embedded.
There are two problems which make splash.args a better solution:


	data must be escaped somehow, so that it doesn’t break a Lua script;


	embedding variables makes it impossible to use script cache efficiently
(see save_args and load_args
arguments of the HTTP API).







splash.js_enabled

Enable or disable execution of JavaSript code embedded in the page.

Signature: splash.js_enabled = true/false

JavaScript execution is enabled by default.




splash.private_mode_enabled

Enable or disable browser’s private mode (incognito mode).

Signature: splash.private_mode_enabled = true/false

Private mode is enabled by default unless you pass flag
--disable-private-mode at Splash startup. Note that if you disable
private mode some of the browsing data may persist between requests
(it doesn’t affect cookies though).

See also: How do I disable Private mode?.




splash.resource_timeout

Set a default timeout for network requests, in seconds.

Signature: splash.resource_timeout = number

Example - abort requests to remote resources if they take more than 10 seconds:

function main(splash)
    splash.resource_timeout = 10.0
    assert(splash:go(splash.args.url))
    return splash:png()
end





Zero or nil value means “no timeout”.

Request timeouts set in splash:on_request using
request:set_timeout have a priority over splash.resource_timeout.




splash.images_enabled

Enable/disable images.

Signature: splash.images_enabled = true/false

By default, images are enabled. Disabling of the images can save a lot
of network traffic (usually around ~50%) and make rendering faster.
Note that this option can affect the JavaScript code inside page:
disabling of the images may change sizes and positions of DOM elements,
and scripts may read and use them.

Splash uses in-memory cache; cached images will be displayed
even when images are disabled. So if you load a page, then disable images,
then load a new page, then likely first page will display all images
and second page will display some images (the ones common with the first page).
Splash cache is shared between scripts executed in the same process, so you
can see some images even if they are disabled at the beginning of the script.

Example:

function main(splash, args)
  splash.images_enabled = false
  assert(splash:go(splash.args.url))
  return {png=splash:png()}
end








splash.plugins_enabled

Enable or disable browser plugins (e.g. Flash).

Signature: splash.plugins_enabled = true/false

Plugins are disabled by default.




splash.request_body_enabled

Enable or disable storage of request content.

Signature: splash.request_body_enabled = true/false

By default Splash doesn’t keep bodies of each request in memory. It means that
request content is not available in request.info and in HAR [http://www.softwareishard.com/blog/har-12-spec/]
exports. To make request content available to a Lua script set
splash.request_body_enabled = true.

Note that request body in request.info is not available in the
callback splash:on_response_headers or in the request of the response
returned by splash:http_get and splash:http_post.




splash.response_body_enabled

Enable or disable response content tracking.

Signature: splash.response_body_enabled = true/false

By default Splash doesn’t keep bodies of each response in memory,
for efficiency reasons. It means that in splash:on_response
callbacks response.body attribute is not available, and that
response content is not available in HAR [http://www.softwareishard.com/blog/har-12-spec/] exports. To make response content
available to a Lua script set splash.response_body_enabled = true.

Note that response.body is always available
in splash:http_get and splash:http_post results, regardless
of splash.response_body_enabled option.

To enable response content tracking per-request call
request:enable_response_body in a splash:on_request
callback.




splash.scroll_position

Get or set current scroll position.

Signature: splash.scroll_position = {x=..., y=...}

This property allows to get and set current scroll position of the
main window.

Scrolling outside window content has no effect. For example, if you set
splash.scroll_position to {x=-100, y=-100}, then
splash.scroll_position will likely still be equal to the default
{x=0, y=0}.

To set scroll position instead of the full form
(e.g. splash.scroll_position = {x=100, y=200}) you can also use the
short form splash.scroll_position = {100, 200}. Attribute
value is always a table with x and y keys, even if you set it using
the short form.

It is also possible to omit coordinates which you don’t want to change.
For example, splash.scroll_position = {y=200} sets y to 200 and keeps
previous x value.




splash.indexeddb_enabled

Enable or disable IndexedDB [https://developer.mozilla.org/en-US/docs/Web/API/IndexedDB_API].

Signature: splash.indexeddb_enabled = true/false

IndexedDB is disabled by default. Use splash.indexeddb_enabled = true
to enable it.


Note

Currently IndexedDB is disabled by default because there are issues
with Splash WebKit’s implementation. Default value for this option may
change to true in future.






splash.webgl_enabled

Enable or disable WebGL [https://developer.mozilla.org/en-US/docs/Web/API/WebGL_API].

Signature: splash.webgl_enabled = true/false

WebGL is enabled by default. Use splash.webgl_enabled = false
to disable it.




splash.html5_media_enabled

Enable or disable HTML5 media, including HTML5 video and audio
(e.g. <video> elements playback).

Signature: splash.html5_media_enabled = true/false

HTML5 media is disabled by default. Use splash.html5_media_enabled = true
to enable it.


Note

Currently HTML5 media is disabled by default, because it makes WebKit
crash on some websites in some environments. Default value for this
option may change to true in future. Set it to false explicitly
in a script if you don’t want HTML5 media.



See also: html5_media HTTP API argument.




splash.media_source_enabled

Enable or disable Media Source Extensions API [https://developer.mozilla.org/en-US/docs/Web/API/Media_Source_Extensions_API].

Signature: splash.media_source_enabled = true/false

Media Source is enabled by default. Use splash.media_source_enabled = false
to disable it.






Methods


splash:go

Go to an URL. This is similar to entering an URL in a browser
address bar, pressing Enter and waiting until page loads.

Signature: ok, reason = splash:go{url, baseurl=nil, headers=nil, http_method="GET", body=nil, formdata=nil}

Parameters:


	url - URL to load;


	baseurl - base URL to use, optional. When baseurl argument is passed
the page is still loaded from url, but it is rendered as if it was
loaded from baseurl: relative resource paths will be relative
to baseurl, and the browser will think baseurl is in address bar;


	headers - a Lua table with HTTP headers to add/replace in the initial request.


	http_method - optional, string with HTTP method to use when visiting url,
defaults to GET, Splash also supports POST.


	body - optional, string with body for POST request


	formdata - Lua table that will be converted to urlencoded POST body and sent
with header content-type: application/x-www-form-urlencoded




Returns: ok, reason pair. If ok is nil then error happened during
page load; reason provides an information about error type.

Async: yes, unless the navigation is locked.

Five types of errors are reported (ok can be nil in 5 cases):


	There is a network error: a host doesn’t exist, server dropped connection,
etc. In this case reason is "network<code>". A list of possible
error codes can be found in Qt docs [http://doc.qt.io/qt-5/qnetworkreply.html#NetworkError-enum]. For example, "network3" means
a DNS error (invalid hostname).


	Server returned a response with 4xx or 5xx HTTP status code.
reason is "http<code>" in this case, i.e. for
HTTP 404 Not Found reason is "http404".


	Navigation is locked (see splash:lock_navigation); reason
is "navigation_locked".


	Splash can’t render the main page (e.g. because the first request was
aborted) - reason is render_error.


	If Splash can’t decide what caused the error, just "error" is returned.




Error handling example:

local ok, reason = splash:go("http://example.com")
if not ok then
    if reason:sub(0,4) == 'http' then
        -- handle HTTP errors
    else
        -- handle other errors
    end
end
-- process the page

-- assert can be used as a shortcut for error handling
assert(splash:go("http://example.com"))





Errors (ok==nil) are only reported when “main” webpage request failed.
If a request to a related resource failed then no error is reported by
splash:go. To detect and handle such errors (e.g. broken image/js/css
links, ajax requests failed to load) use splash:har
or splash:on_response.

splash:go follows all HTTP redirects before returning the result,
but it doesn’t follow HTML <meta http-equiv="refresh" ...> redirects or
redirects initiated by JavaScript code. To give the webpage time to follow
those redirects use splash:wait.

headers argument allows to add or replace default HTTP headers for the
initial request. To set custom headers for all further requests
(including requests to related resources) use
splash:set_custom_headers or splash:on_request.

Custom headers example:

local ok, reason = splash:go{"http://example.com", headers={
    ["Custom-Header"] = "Header Value",
}})





User-Agent header is special: once used, it is kept for further requests.
This is an implementation detail and it could change in future releases;
to set User-Agent header it is recommended to use
splash:set_user_agent method.




splash:wait

Wait for time seconds. When script is waiting WebKit continues
processing the webpage.

Signature: ok, reason = splash:wait{time, cancel_on_redirect=false, cancel_on_error=true}

Parameters:


	time - time to wait, in seconds;


	cancel_on_redirect - if true (not a default) and a redirect
happened while waiting, then splash:wait stops earlier and returns
nil, "redirect". Redirect could be initiated by
<meta http-equiv="refresh" ...> HTML tags or by JavaScript code.


	cancel_on_error - if true (default) and an error which prevents page
from being rendered happened while waiting (e.g. an internal WebKit error
or a network error like a redirect to a non-resolvable host)
then splash:wait stops earlier and returns nil, "<error string>".




Returns: ok, reason pair. If ok is nil then the timer was
stopped prematurely, and reason contains a string with a reason.

Async: yes.

Usage example:

-- go to example.com, wait 0.5s, return rendered html, ignore all errors.
function main(splash)
    splash:go("http://example.com")
    splash:wait(0.5)
    return {html=splash:html()}
end





By default wait timer continues to tick when redirect happens.
cancel_on_redirect option can be used to restart the timer after
each redirect. For example, here is a function that waits for a given
time after each page load in case of redirects:

function wait_restarting_on_redirects(splash, time, max_redirects)
    local redirects_remaining = max_redirects
    while redirects_remaining > 0 do
        local ok, reason = self:wait{time=time, cancel_on_redirect=true}
        if reason ~= 'redirect' then
            return ok, reason
        end
        redirects_remaining = redirects_remaining - 1
    end
    return nil, "too_many_redirects"
end








splash:jsfunc

Convert JavaScript function to a Lua callable.

Signature: lua_func = splash:jsfunc(func)

Parameters:


	func - a string which defines a JavaScript function.




Returns: a function that can be called from Lua to execute JavaScript
code in page context.

Async: no.

Example:

function main(splash, args)
  local get_div_count = splash:jsfunc([[
  function () {
    var body = document.body;
    var divs = body.getElementsByTagName('div');
    return divs.length;
  }
  ]])
  splash:go(args.url)

  return ("There are %s DIVs in %s"):format(
    get_div_count(), args.url)
end





Note how Lua [[ ]] string syntax is helpful here.

JavaScript functions may accept arguments:

local vec_len = splash:jsfunc([[
    function(x, y) {
       return Math.sqrt(x*x + y*y)
    }
]])
return {res=vec_len(5, 4)}





Global JavaScript functions can be wrapped directly:

local pow = splash:jsfunc("Math.pow")
local twenty_five = pow(5, 2)  -- 5^2 is 25
local thousand = pow(10, 3)    -- 10^3 is 1000





Lua → JavaScript conversion rules:







	Lua

	JavaScript





	string

	string



	number

	number



	boolean

	boolean



	table

	Object or Array, see below



	nil

	undefined



	Element

	DOM node






Lua strings, numbers, booleans and tables can be passed as arguments;
they are converted to JS strings/numbers/booleans/objects.
Element instances are supported, but they can’t
be inside a Lua table.

Currently it is not possible to pass other Lua objects. For example, it
is not possible to pass a wrapped JavaScript function or a regular Lua function
as an argument to another wrapped JavaScript function.

By default Lua tables are converted to JavaScript Objects. To convert
a table to an Array use treat.as_array.

JavaScript → Lua conversion rules:







	JavaScript

	Lua





	string

	string



	number

	number



	boolean

	boolean



	Object

	table



	Array

	table, marked as array (see treat.as_array)



	undefined

	nil



	null

	"" (an empty string)



	Date

	string: date’s ISO8601 representation, e.g.
1958-05-21T10:12:00.000Z



	Node

	Element instance



	NodeList

	a tabl with Element instances



	function

	nil



	circular object

	nil



	host object

	nil






Function result is converted from JavaScript to Lua data type. Only simple
JS objects are supported. For example, returning a function or a
JQuery selector from a wrapped function won’t work.

Returning a Node (a reference to a DOM element) or NodeList instance
(result of document.querySelectorAll) works though, but only if Node
or NodeList is the only result - Nodes and NodeLists can’t be inside
other objects or arrays.


Note

The rule of thumb: if an argument or a return value can be serialized
via JSON, then it is fine. You can also return DOM Element or a NodeList,
but they can’t be inside other data structures.



Note that currently you can’t return JQuery $ results and
similar structures from JavaScript to Lua; to pass data you have to
extract their attributes of interest as plain strings/numbers/objects/arrays:

-- this function assumes jQuery is loaded in page
local get_hrefs = splash:jsfunc([[
    function(sel){
        return $(sel).map(function(){return this.href}).get();
    }
]])
local hrefs = get_hrefs("a.story-title")





However, you can also write the code above using
Element objects and splash:select_all:

local elems = splash:select_all("a.story-title")
local hrefs = {}
for i, elem in ipairs(elems) do
    hrefs[i] = elem.node:getAttribute("href")
end





Function arguments and return values are passed by value. For example,
if you modify an argument from inside a JavaScript function then the caller
Lua code won’t see the changes, and if you return a global JS object and modify
it in Lua then object won’t be changed in webpage context. The exception is
Element which has some mutable fields.

If a JavaScript function throws an error, it is re-throwed as a Lua error.
To handle errors it is better to use JavaScript try/catch because some of the
information about the error can be lost in JavaScript → Lua conversion.

See also: splash:runjs, splash:evaljs, splash:wait_for_resume,
splash:autoload, treat.as_array, Element Object,
splash:select, splash:select_all.




splash:evaljs

Execute a JavaScript snippet in page context and return the result of the
last statement.

Signature: result = splash:evaljs(snippet)

Parameters:


	snippet - a string with JavaScript source code to execute.




Returns: the result of the last statement in snippet,
converted from JavaScript to Lua data types. In case of syntax errors or
JavaScript exceptions an error is raised.

Async: no.

JavaScript → Lua conversion rules are the same as for
splash:jsfunc.

splash:evaljs is useful for evaluation of short JavaScript snippets
without defining a wrapper function. Example:

local title = splash:evaljs("document.title")





Don’t use splash:evaljs when the result is not needed - it is
inefficient and could lead to problems; use splash:runjs instead.
For example, the following innocent-looking code (using jQuery) will do
unnecessary work:

splash:evaljs("$(console.log('foo'));")





A gotcha is that to allow chaining jQuery $ function returns a huge object,
splash:evaljs tries to serialize it and convert to Lua,
which is a waste of resources. splash:runjs doesn’t have this problem.

If the code you’re evaluating needs arguments it is better to use
splash:jsfunc instead of splash:evaljs and string formatting.
Compare:

function main(splash)

    local font_size = splash:jsfunc([[
        function(sel) {
            var el = document.querySelector(sel);
            return getComputedStyle(el)["font-size"];
        }
    ]])

    local font_size2 = function(sel)
        -- FIXME: escaping of `sel` parameter!
        local js = string.format([[
            var el = document.querySelector("%s");
            getComputedStyle(el)["font-size"]
        ]], sel)
        return splash:evaljs(js)
    end

    -- ...
end





See also: splash:runjs, splash:jsfunc,
splash:wait_for_resume, splash:autoload,
Element Object, splash:select, splash:select_all.




splash:runjs

Run JavaScript code in page context.

Signature: ok, error = splash:runjs(snippet)

Parameters:


	snippet - a string with JavaScript source code to execute.




Returns: ok, error pair. When the execution is successful
ok is True. In case of JavaScript errors ok is nil,
and error contains the error string.

Async: no.

Example:

assert(splash:runjs("document.title = 'hello';"))





Note that JavaScript functions defined using function foo(){} syntax
won’t be added to the global scope:

assert(splash:runjs("function foo(){return 'bar'}"))
local res = splash:evaljs("foo()")  -- this raises an error





It is an implementation detail: the code passed to splash:runjs
is executed in a closure. To define functions use global variables, e.g.:

assert(splash:runjs("foo = function (){return 'bar'}"))
local res = splash:evaljs("foo()")  -- this returns 'bar'





If the code needs arguments it is better to use splash:jsfunc.
Compare:

function main(splash)

    -- Lua function to scroll window to (x, y) position.
    function scroll_to(x, y)
        local js = string.format(
            "window.scrollTo(%s, %s);",
            tonumber(x),
            tonumber(y)
        )
        assert(splash:runjs(js))
    end

    -- a simpler version using splash:jsfunc
    local scroll_to2 = splash:jsfunc("window.scrollTo")

    -- ...
end





See also: splash:runjs, splash:jsfunc, splash:autoload,
splash:wait_for_resume.




splash:wait_for_resume

Run asynchronous JavaScript code in page context. The Lua script will
yield until the JavaScript code tells it to resume.

Signature: result, error = splash:wait_for_resume(snippet, timeout)

Parameters:


	snippet - a string with a JavaScript source code to execute. This code
must include a function called main. The first argument to main
is an object that has the properties resume and error. resume
is a function which can be used to resume Lua execution. It takes an optional
argument which will be returned to Lua in the result.value return value.
error is a function which can be called with a required string value
that is returned in the error return value.


	timeout - a number which determines (in seconds) how long to allow JavaScript
to execute before forceably returning control to Lua. Defaults to
zero, which disables the timeout.




Returns: result, error pair. When the execution is successful
result is a table. If the value returned by JavaScript is not
undefined, then the result table will contain a key value
that has the value passed to splash.resume(…). The result table also
contains any additional key/value pairs set by splash.set(…). In case of
timeout or JavaScript errors result is nil and error contains an
error message string.

Async: yes.

Examples:

The first, trivial example shows how to transfer control of execution from Lua
to JavaScript and then back to Lua. This command will tell JavaScript to
sleep for 3 seconds and then return to Lua. Note that this is an async
operation: the Lua event loop and the JavaScript event loop continue to run
during this 3 second pause, but Lua will not continue executing the current
function until JavaScript calls splash.resume().

function main(splash)

    local result, error = splash:wait_for_resume([[
        function main(splash) {
            setTimeout(function () {
                splash.resume();
            }, 3000);
        }
    ]])

    -- result is {}
    -- error is nil

end





result is set to an empty table to indicate that nothing was returned
from splash.resume. You can use assert(splash:wait_for_resume(…))
even when JavaScript does not return a value because the empty table signifies
success to assert().


Note

Your JavaScript code must contain a main() function. You will get an
error if you do not include it. The first argument to this function can
have any name you choose, of course. We will call it splash by
convention in this documentation.



The next example shows how to return a value from JavaScript to Lua.
You can return booleans, numbers, strings, arrays, or objects.

function main(splash)

    local result, error = splash:wait_for_resume([[
        function main(splash) {
            setTimeout(function () {
                splash.resume([1, 2, 'red', 'blue']);
            }, 3000);
        }
    ]])

    -- result is {value={1, 2, 'red', 'blue'}}
    -- error is nil

end






Note

As with splash:evaljs, be wary of returning objects that are
too large, such as the $ object in jQuery, which will consume a lot
of time and memory to convert to a Lua result.



You can also set additional key/value pairs in JavaScript with the
splash.set(key, value) function. Key/value pairs will be included
in the result table returned to Lua. The following example demonstrates
this.

function main(splash)

    local result, error = splash:wait_for_resume([[
        function main(splash) {
            setTimeout(function () {
                splash.set("foo", "bar");
                splash.resume("ok");
            }, 3000);
        }
    ]])

    -- result is {foo="bar", value="ok"}
    -- error is nil

end





The next example shows an incorrect usage of splash:wait_for_resume():
the JavaScript code does not contain a main() function. result is
nil because splash.resume() is never called, and error contains
an error message explaining the mistake.

function main(splash)

    local result, error = splash:wait_for_resume([[
        console.log('hello!');
    ]])

    -- result is nil
    -- error is "error: wait_for_resume(): no main() function defined"

end





The next example shows error handling. If splash.error(…) is
called instead of splash.resume(), then result will be nil
and error will contain the string passed to splash.error(…).

function main(splash)

    local result, error = splash:wait_for_resume([[
        function main(splash) {
            setTimeout(function () {
                splash.error("Goodbye, cruel world!");
            }, 3000);
        }
    ]])

    -- result is nil
    -- error is "error: Goodbye, cruel world!"

end





Your JavaScript code must either call splash.resume() or
splash.error() exactly one time. Subsequent calls to either function
have no effect, as shown in the next example.

function main(splash)

    local result, error = splash:wait_for_resume([[
        function main(splash) {
            setTimeout(function () {
                splash.resume("ok");
                splash.resume("still ok");
                splash.error("not ok");
            }, 3000);
        }
    ]])

    -- result is {value="ok"}
    -- error is nil

end





The next example shows the effect of the timeout argument. We have set
the timeout argument to 1 second, but our JavaScript code will not call
splash.resume() for 3 seconds, which guarantees that
splash:wait_for_resume() will time out.

When it times out, result will be nil, error will contain a string
explaining the timeout, and Lua will continue executing. Calling
splash.resume() or splash.error() after a timeout has no effect.

function main(splash)

    local result, error = splash:wait_for_resume([[
        function main(splash) {
            setTimeout(function () {
                splash.resume("Hello, world!");
            }, 3000);
        }
    ]], 1)

    -- result is nil
    -- error is "error: One shot callback timed out while waiting for resume() or error()."

end






Note

The timeout must be >= 0. If the timeout is 0, then
splash:wait_for_resume() will never timeout (although Splash’s
HTTP timeout still applies).



Note that your JavaScript code is not forceably canceled by a timeout: it may
continue to run until Splash shuts down the entire browser context.

See also: splash:runjs, splash:jsfunc, splash:evaljs.




splash:autoload

Set JavaScript to load automatically on each page load.

Signature: ok, reason = splash:autoload{source_or_url, source=nil, url=nil}

Parameters:


	source_or_url - either a string with JavaScript source code or an URL
to load the JavaScript code from;


	source - a string with JavaScript source code;


	url - an URL to load JavaScript source code from.




Returns: ok, reason pair. If ok is nil, error happened and
reason contains an error description.

Async: yes, but only when an URL of a remote resource is passed.

splash:autoload allows to execute JavaScript code at each page load.
splash:autoload doesn’t doesn’t execute the passed
JavaScript code itself. To execute some code once, after page is loaded
use splash:runjs or splash:jsfunc.

splash:autoload can be used to preload utility JavaScript libraries
or replace JavaScript objects before a webpage has a chance to do it.

Example:

function main(splash, args)
  splash:autoload([[
    function get_document_title(){
      return document.title;
    }
  ]])
  assert(splash:go(args.url))

  return splash:evaljs("get_document_title()")
end





For the convenience, when a first splash:autoload argument starts
with “http://” or “https://” a script from the passed URL is loaded.
Example 2 - make sure a remote library is available:

function main(splash, args)
  assert(splash:autoload("https://code.jquery.com/jquery-2.1.3.min.js"))
  assert(splash:go(splash.args.url))
  local version = splash:evaljs("$.fn.jquery")

  return 'JQuery version: ' .. version
end





To disable URL auto-detection use ‘source’ and ‘url’ arguments:

splash:autoload{url="https://code.jquery.com/jquery-2.1.3.min.js"}
splash:autoload{source="window.foo = 'bar';"}





It is a good practice not to rely on auto-detection when the argument
is not a constant.

If splash:autoload is called multiple times then all its scripts
are executed on page load, in order they were added.

To revert Splash not to execute anything on page load use
splash:autoload_reset.

See also: splash:evaljs, splash:runjs, splash:jsfunc,
splash:wait_for_resume, splash:autoload_reset.




splash:autoload_reset

Unregister all scripts previously set by splash:autoload.

Signature: splash:autoload_reset()

Returns: nil

Async: no

After splash:autoload_reset call scripts set by splash:autoload
won’t be loaded in future requests; one can use splash:autoload again
to setup a different set of scripts.

Already loaded scripts are not removed from the current page context.

See also: splash:autoload.




splash:call_later

Arrange for the callback to be called after the given delay seconds.

Signature: timer = splash:call_later(callback, delay)

Parameters:


	callback - function to run;


	delay - delay, in seconds;




Returns: a handle which allows to cancel pending timer or reraise
exceptions happened in a callback.

Async: no.

Example 1 - take two HTML snapshots, at 1.5s and 2.5s after page
loading starts:

function main(splash, args)
  local snapshots = {}
  local timer = splash:call_later(function()
    snapshots["a"] = splash:html()
    splash:wait(1.0)
    snapshots["b"] = splash:html()
  end, 1.5)
  assert(splash:go(args.url))
  splash:wait(3.0)
  timer:reraise()

  return snapshots
end





splash:call_later returns a handle (a timer). To cancel pending
task use its timer:cancel() method. If a callback is already
started timer:cancel() has no effect.

By default, exceptions raised in splash:call_later callback
stop the callback, but don’t stop the main script. To reraise these errors
use timer:reraise().

splash:call_later arranges callback to be executed in future;
it never runs it immediately, even if delay is 0. When delay is 0
callback is executed no earlier than current function yields to event loop,
i.e. no earlier than some of the async functions is called.




splash:http_get

Send an HTTP GET request and return a response without loading
the result to the browser window.

Signature: response = splash:http_get{url, headers=nil, follow_redirects=true}

Parameters:


	url - URL to load;


	headers - a Lua table with HTTP headers to add/replace in the initial request;


	follow_redirects - whether to follow HTTP redirects.




Returns: a Response Object.

Async: yes.

Example:

local reply = splash:http_get("http://example.com")





This method doesn’t change the current page contents and URL.
To load a webpage to the browser use splash:go.

See also: splash:http_post, Response Object.




splash:http_post

Send an HTTP POST request and return a response without loading
the result to the browser window.

Signature: response = splash:http_post{url, headers=nil, follow_redirects=true, body=nil}

Parameters:


	url - URL to load;


	headers - a Lua table with HTTP headers to add/replace in the initial request;


	follow_redirects - whether to follow HTTP redirects.


	body - string with body of request, if you intend to send form submission,
body should be urlencoded.




Returns: a Response Object.

Async: yes.

Example of form submission:

local reply = splash:http_post{url="http://example.com", body="user=Frank&password=hunter2"}
-- reply.body contains raw HTML data (as a binary object)
-- reply.status contains HTTP status code, as a number
-- see Response docs for more info





Example of JSON POST request:

json = require("json")

local reply = splash:http_post{
    url="http://example.com/post",
    body=json.encode({alpha="beta"}),
    headers={["content-type"]="application/json"}
}





This method doesn’t change the current page contents and URL.
To load a webpage to the browser use splash:go.

See also: splash:http_get, json, Response Object.




splash:set_content

Set the content of the current page and wait until the page loads.

Signature: ok, reason = splash:set_content{data, mime_type="text/html; charset=utf-8", baseurl=""}

Parameters:


	data - new page content;


	mime_type - MIME type of the content;


	baseurl - external objects referenced in the content are located
relative to baseurl.




Returns: ok, reason pair. If ok is nil then error happened during
page load; reason provides an information about error type.

Async: yes.

Example:

function main(splash)
    assert(splash:set_content("<html><body><h1>hello</h1></body></html>"))
    return splash:png()
end








splash:html

Return a HTML snapshot of a current page (as a string).

Signature: html = splash:html()

Returns: contents of a current page (as a string).

Async: no.

Example:

-- A simplistic implementation of render.html endpoint
function main(splash)
    splash:set_result_content_type("text/html; charset=utf-8")
    assert(splash:go(splash.args.url))
    return splash:html()
end





Nothing prevents us from taking multiple HTML snapshots. For example, let’s
visit first 3 pages on a website, and for each page store
initial HTML snapshot and an HTML snapshot after waiting 0.5s:

treat = require("treat")

-- Given an url, this function returns a table
-- with the page screenshoot, it's HTML contents
-- and it's title.
function page_info(splash, url)
  local ok, msg = splash:go(url)
  if not ok then
    return {ok=false, reason=msg}
  end
  local res = {
    html=splash:html(),
    title=splash:evaljs('document.title'),
    image=splash:png(),
    ok=true,
  }
  return res
end

function main(splash, args)
  -- visit first 3 pages of hacker news
  local base = "https://news.ycombinator.com/news?p="
  local result = treat.as_array({})
  for i=1,3 do
    local url =  base .. i
    result[i] = page_info(splash, url)
  end
  return result
end








splash:png

Return a width x height screenshot of a current page in PNG format.

Signature: png = splash:png{width=nil, height=nil, render_all=false, scale_method='raster', region=nil}

Parameters:


	width - optional, width of a screenshot in pixels;


	height - optional, height of a screenshot in pixels;


	render_all - optional, if true render the whole webpage;


	scale_method - optional, method to use when resizing the image, 'raster'
or 'vector';


	region - optional, {left, top, right, bottom} coordinates of
a cropping rectangle.




Returns: PNG screenshot data, as a binary object.
When the result is empty nil is returned.

Async: no.

Without arguments splash:png() will take a snapshot of the current viewport.

width parameter sets the width of the resulting image.  If the viewport has a
different width, the image is scaled up or down to match the specified one.
For example, if the viewport is 1024px wide then splash:png{width=100} will
return a screenshot of the whole viewport, but the image will be downscaled to
100px width.

height parameter sets the height of the resulting image.  If the viewport has
a different height, the image is trimmed or extended vertically to match the
specified one without resizing the content.  The region created by such
extension is transparent.

To set the viewport size use splash:set_viewport_size,
splash:set_viewport_full or render_all argument.  render_all=true
is equivalent to running splash:set_viewport_full() just before the
rendering and restoring the viewport size afterwards.

To render an arbitrary part of a page use region parameter. It should
be a table with {left, top, right, bottom} coordinates. Coordinates
are relative to current scroll position. Currently you can’t take anything
which is not in a viewport; to make sure part of a page can be rendered call
splash:set_viewport_full before using splash:png with region.
This may be fixed in future Splash versions.

With region and a bit of JavaScript it is possible to render only a single
HTML element. Example:

-- This in an example of how to use lower-level
-- Splash functions to get element screenshot.
--
-- In practice use splash:select("a"):png{pad=32}.


-- this function adds padding around region
function pad(r, pad)
  return {r[1]-pad, r[2]-pad, r[3]+pad, r[4]+pad}
end

function main(splash, args)
  -- this function returns element bounding box
  local get_bbox = splash:jsfunc([[
    function(css) {
      var el = document.querySelector(css);
      var r = el.getBoundingClientRect();
      return [r.left, r.top, r.right, r.bottom];
    }
  ]])

  -- main script
  assert(splash:go(splash.args.url))
  assert(splash:wait(0.5))

  -- don't crop image by a viewport
  splash:set_viewport_full()

  -- let's get a screenshot of a first <a>
  -- element on a page, with extra 32px around it
  local region = pad(get_bbox("a"), 32)
  return splash:png{region=region}
end





An easier way is to use element:png instead:

splash:select('#my-element'):png()





scale_method parameter must be either 'raster' or 'vector'.  When
scale_method='raster', the image is resized per-pixel.  When
scale_method='vector', the image is resized per-element during rendering.
Vector scaling is more performant and produces sharper images, however it may
cause rendering artifacts, so use it with caution.

The result of splash:png is a binary object,
so you can return it directly from “main” function and it will be sent as
a binary image data with a proper Content-Type header:

-- A simplistic implementation of render.png
-- endpoint.
function main(splash, args)
  assert(splash:go(args.url))

  return splash:png{
    width=args.width,
    height=args.height
  }
end





If the result of splash:png() is returned as a table value, it is encoded
to base64 to make it possible to embed in JSON and build a data:uri
on a client (magic!):

function main(splash)
    assert(splash:go(splash.args.url))
    return {png=splash:png()}
end





When an image is empty splash:png returns nil. If you want Splash to
raise an error in these cases use assert:

function main(splash)
    assert(splash:go(splash.args.url))
    local png = assert(splash:png())
    return {png=png}
end





See also: splash:jpeg, Binary Objects,
splash:set_viewport_size, splash:set_viewport_full,
element:jpeg, element:png.




splash:jpeg

Return a width x height screenshot of a current page in JPEG format.

Signature: jpeg = splash:jpeg{width=nil, height=nil, render_all=false, scale_method='raster', quality=75, region=nil}

Parameters:


	width - optional, width of a screenshot in pixels;


	height - optional, height of a screenshot in pixels;


	render_all - optional, if true render the whole webpage;


	scale_method - optional, method to use when resizing the image, 'raster'
or 'vector';


	quality - optional, quality of JPEG image, integer in range from 0 to 100;


	region - optional, {left, top, right, bottom} coordinates of
a cropping rectangle.




Returns: JPEG screenshot data, as a binary object.
When the image is empty nil is returned.

Async: no.

Without arguments splash:jpeg() will take a snapshot of the current viewport.

width parameter sets the width of the resulting image.  If the viewport has a
different width, the image is scaled up or down to match the specified one.
For example, if the viewport is 1024px wide then splash:jpeg{width=100} will
return a screenshot of the whole viewport, but the image will be downscaled to
100px width.

height parameter sets the height of the resulting image.  If the viewport has
a different height, the image is trimmed or extended vertically to match the
specified one without resizing the content.  The region created by such
extension is white.

To set the viewport size use splash:set_viewport_size,
splash:set_viewport_full or render_all argument.  render_all=true
is equivalent to running splash:set_viewport_full() just before the
rendering and restoring the viewport size afterwards.

To render an arbitrary part of a page use region parameter. It should
be a table with {left, top, right, bottom} coordinates. Coordinates
are relative to current scroll position. Currently you can’t take anything
which is not in a viewport; to make sure part of a page can be rendered call
splash:set_viewport_full before using splash:jpeg with region.
This may be fixed in future Splash versions.

With some JavaScript it is possible to render only a single HTML element
using region parameter. See an example
in splash:png docs. An alternative is to use element:jpeg.

scale_method parameter must be either 'raster' or 'vector'.  When
scale_method='raster', the image is resized per-pixel.  When
scale_method='vector', the image is resized per-element during rendering.
Vector scaling is more performant and produces sharper images, however it may
cause rendering artifacts, so use it with caution.

quality parameter must be an integer in range from 0 to 100.
Values above 95 should be avoided; quality=100 disables portions of
the JPEG compression algorithm, and results in large files with hardly any
gain in image quality.

The result of splash:jpeg is a binary object,
so you can return it directly from “main” function and it will be sent as
a binary image data with a proper Content-Type header:

-- A simplistic implementation of render.jpeg endpoint
function main(splash, args)
    assert(splash:go(args.url))
    return splash:jpeg{
       width=args.width,
       height=args.height
    }
end





If the result of splash:jpeg() is returned as a table value, it is encoded
to base64 to make it possible to embed in JSON and build a data:uri
on a client:

function main(splash)
    assert(splash:go(splash.args.url))
    return {jpeg=splash:jpeg()}
end





When an image is empty splash:jpeg returns nil. If you want Splash to
raise an error in these cases use assert:

function main(splash)
    assert(splash:go(splash.args.url))
    local jpeg = assert(splash:jpeg())
    return {jpeg=jpeg}
end





See also: splash:png, Binary Objects,
splash:set_viewport_size, splash:set_viewport_full,
element:jpeg, element:png.

Note that splash:jpeg() is often 1.5..2x faster than splash:png().




splash:har

Signature: har = splash:har{reset=false}

Parameters:


	reset - optional; when true, reset HAR records after taking a snapshot.




Returns: information about pages loaded, events happened,
network requests sent and responses received in HAR [http://www.softwareishard.com/blog/har-12-spec/] format.

Async: no.

Use splash:har to get information about network requests and
other Splash activity.

If your script returns the result of splash:har() in a top-level
"har" key then Splash UI will give you a nice diagram with network
information (similar to “Network” tabs in Firefox or Chrome developer tools):

function main(splash)
    assert(splash:go(splash.args.url))
    return {har=splash:har()}
end





By default, when several requests are made (e.g. splash:go is called
multiple times), HAR data is accumulated and combined into a single object
(logs are still grouped by page).

If you want only updated information use reset parameter: it drops
all existing logs and start recording from scratch:

function main(splash, args)
    assert(splash:go(args.url1))
    local har1 = splash:har{reset=true}
    assert(splash:go(args.url2))
    local har2 = splash:har()
    return {har1=har1, har2=har2}
end





By default, request and response contents are not included in HAR data. To
enable request contents, use splash.request_body_enabled option. To
enable response contents, use splash.response_body_enabled option or
request:enable_response_body method.

See also: splash:har_reset, splash:on_response,
splash.request_body_enabled, splash.response_body_enabled,
request:enable_response_body.




splash:har_reset

Signature: splash:har_reset()

Returns: nil.

Async: no.

Drops all internally stored HAR [http://www.softwareishard.com/blog/har-12-spec/] records. It is similar to
splash:har{reset=true}, but doesn’t return anything.

See also: splash:har.




splash:history

Signature: entries = splash:history()

Returns: information about requests/responses for the pages loaded, in
HAR entries [http://www.softwareishard.com/blog/har-12-spec/#entries] format.

Async: no.

splash:history doesn’t return information about related resources
like images, scripts, stylesheets or AJAX requests. If you need this
information use splash:har or splash:on_response.

Let’s get a JSON array with HTTP headers of the response we’re displaying:

function main(splash)
    assert(splash:go(splash.args.url))
    local entries = splash:history()
    -- #entries means "entries length"; arrays in Lua start from 1
    local last_entry = entries[#entries]
    return {
       headers = last_entry.response.headers
    }
end





See also: splash:har, splash:on_response.




splash:url

Signature: url = splash:url()

Returns: the current URL.

Async: no.




splash:get_cookies

Signature: cookies = splash:get_cookies()

Returns: CookieJar contents - an array with all cookies available
for the script. The result is returned in HAR cookies [http://www.softwareishard.com/blog/har-12-spec/#cookies] format.

Async: no.

Example result:

[
    {
        "name": "TestCookie",
        "value": "Cookie Value",
        "path": "/",
        "domain": "www.example.com",
        "expires": "2016-07-24T19:20:30+02:00",
        "httpOnly": false,
        "secure": false,
    }
]








splash:add_cookie

Add a cookie.

Signature: cookies = splash:add_cookie{name, value, path=nil, domain=nil, expires=nil, httpOnly=nil, secure=nil}

Async: no.

Example:

function main(splash)
    splash:add_cookie{"sessionid", "237465ghgfsd", "/", domain="http://example.com"}
    splash:go("http://example.com/")
    return splash:html()
end








splash:init_cookies

Replace all current cookies with the passed cookies.

Signature: splash:init_cookies(cookies)

Parameters:


	cookies - a Lua table with all cookies to set, in the same format as
splash:get_cookies returns.




Returns: nil.

Async: no.

Example 1 - save and restore cookies:

local cookies = splash:get_cookies()
-- ... do something ...
splash:init_cookies(cookies)  -- restore cookies





Example 2 - initialize cookies manually:

splash:init_cookies({
    {name="baz", value="egg"},
    {name="spam", value="egg", domain="example.com"},
    {
        name="foo",
        value="bar",
        path="/",
        domain="localhost",
        expires="2016-07-24T19:20:30+02:00",
        secure=true,
        httpOnly=true,
    }
})

-- do something
assert(splash:go("http://example.com"))








splash:clear_cookies

Clear all cookies.

Signature: n_removed = splash:clear_cookies()

Returns: a number of cookies deleted.

Async: no.

To delete only specific cookies
use splash:delete_cookies.




splash:delete_cookies

Delete matching cookies.

Signature: n_removed = splash:delete_cookies{name=nil, url=nil}

Parameters:


	name - a string, optional. All cookies with this name will be deleted.


	url - a string, optional. Only cookies that should be sent to this url
will be deleted.




Returns: a number of cookies deleted.

Async: no.

This function does nothing when both name and url are nil.
To remove all cookies use splash:clear_cookies method.




splash:lock_navigation

Lock navigation.

Signature: splash:lock_navigation()

Async: no.

After calling this method the navigation away from the current page is no
longer permitted - the page is locked to the current URL.




splash:unlock_navigation

Unlock navigation.

Signature: splash:unlock_navigation()

Async: no.

After calling this method the navigation away from the page becomes
permitted. Note that the pending navigation requests suppressed
by splash:lock_navigation won’t be reissued.




splash:set_result_status_code

Set HTTP status code of a result returned to a client.

Signature: splash:set_result_status_code(code)

Parameters:


	code - HTTP status code (a number 200 <= code <= 999).




Returns: nil.

Async: no.

Use this function to signal errors or other conditions to splash client
using HTTP status codes.

Example:

function main(splash)
    local ok, reason = splash:go("http://www.example.com")
    if reason == "http500" then
        splash:set_result_status_code(503)
        splash:set_result_header("Retry-After", 10)
        return ''
    end
    return splash:png()
end





Be careful with this function: some proxies can be configured to
process responses differently based on their status codes. See e.g. nginx
proxy_next_upstream [http://nginx.org/en/docs/http/ngx_http_proxy_module.html#proxy_next_upstream]
option.

In case of unhandled Lua errors HTTP status code is set to 400 regardless
of the value set with splash:set_result_status_code.

See also: splash:set_result_content_type,
splash:set_result_header.




splash:set_result_content_type

Set Content-Type of a result returned to a client.

Signature: splash:set_result_content_type(content_type)

Parameters:


	content_type - a string with Content-Type header value.




Returns: nil.

Async: no.

If a table is returned by “main” function then
splash:set_result_content_type has no effect: Content-Type of the result
is set to application/json.

This function does not set Content-Type header for requests
initiated by splash:go; this function is for setting Content-Type
header of a result.

Example:

function main(splash)
    splash:set_result_content_type("text/xml")
    return [[
       <?xml version="1.0" encoding="UTF-8"?>
       <note>
           <to>Tove</to>
           <from>Jani</from>
           <heading>Reminder</heading>
           <body>Don't forget me this weekend!</body>
       </note>
    ]]
end





See also:


	splash:set_result_header which allows to set any custom
response header, not only Content-Type.


	Binary Objects which have their own method for setting result
Content-Type.







splash:set_result_header

Set header of result response returned to splash client.

Signature: splash:set_result_header(name, value)

Parameters:


	name of response header


	value of response header




Returns: nil.

Async: no.

This function does not set HTTP headers for responses
returned by splash:go or requests initiated by splash:go;
this function is for setting headers of splash response sent to client.

Example 1, set ‘foo=bar’ header:

function main(splash)
    splash:set_result_header("foo", "bar")
    return "hello"
end





Example 2, measure the time needed to build PNG screenshot and return it
result in an HTTP header:

function main(splash)

    -- this function measures the time code takes to execute and returns
    -- it in an HTTP header
    function timeit(header_name, func)
        local start_time = splash:get_perf_stats().walltime
        local result = func()  -- it won't work for multiple returned values!
        local end_time = splash:get_perf_stats().walltime
        splash:set_result_header(header_name, tostring(end_time - start_time))
        return result
    end

    -- rendering script
    assert(splash:go(splash.args.url))
    local screenshot = timeit("X-Render-Time", function()
       return splash:png()
    end)
    splash:set_result_content_type("image/png")
    return screenshot
end





See also: splash:set_result_status_code,
splash:set_result_content_type.




splash:get_viewport_size

Get the browser viewport size.

Signature: width, height = splash:get_viewport_size()

Returns: two numbers: width and height of the viewport in pixels.

Async: no.




splash:set_viewport_size

Set the browser viewport size.

Signature: splash:set_viewport_size(width, height)

Parameters:


	width - integer, requested viewport width in pixels;


	height - integer, requested viewport height in pixels.




Returns: nil.

Async: no.

This will change the size of the visible area and subsequent rendering
commands, e.g., splash:png, will produce an image with the specified
size.

splash:png uses the viewport size.

Example:

function main(splash)
    splash:set_viewport_size(1980, 1020)
    assert(splash:go("http://example.com"))
    return {png=splash:png()}
end






Note

This will relayout all document elements and affect geometry variables, such
as window.innerWidth and window.innerHeight.  However
window.onresize event callback will only be invoked during the next
asynchronous operation and splash:png is notably synchronous, so if
you have resized a page and want it to react accordingly before taking the
screenshot, use splash:wait.






splash:set_viewport_full

Resize browser viewport to fit the whole page.

Signature: width, height = splash:set_viewport_full()

Returns: two numbers: width and height the viewport is set to, in pixels.

Async: no.

splash:set_viewport_full should be called only after page is loaded, and
some time passed after that (use splash:wait). This is an unfortunate
restriction, but it seems that this is the only way to make automatic resizing
work reliably.

See splash:set_viewport_size for a note about interaction with JS.

splash:png uses the viewport size.

Example:

function main(splash)
    assert(splash:go("http://example.com"))
    assert(splash:wait(0.5))
    splash:set_viewport_full()
    return {png=splash:png()}
end








splash:set_user_agent

Overwrite the User-Agent header for all further requests.

Signature: splash:set_user_agent(value)

Parameters:


	value - string, a value of User-Agent HTTP header.




Returns: nil.

Async: no.




splash:set_custom_headers

Set custom HTTP headers to send with each request.

Signature: splash:set_custom_headers(headers)

Parameters:


	headers - a Lua table with HTTP headers.




Returns: nil.

Async: no.

Headers are merged with WebKit default headers, overwriting WebKit values
in case of conflicts.

When headers argument of splash:go is used headers set with
splash:set_custom_headers are not applied to the initial request:
values are not merged, headers argument of splash:go has
higher priority.

Example:

splash:set_custom_headers({
   ["Header-1"] = "Value 1",
   ["Header-2"] = "Value 2",
})






Note

Named arguments are not supported for this function.



See also: splash:on_request.




splash:get_perf_stats

Return performance-related statistics.

Signature: stats = splash:get_perf_stats()

Returns: a table that can be useful for performance analysis.

Async: no.

As of now, this table contains:


	walltime - (float) number of seconds since epoch, analog of os.clock


	cputime - (float) number of cpu seconds consumed by splash process


	maxrss - (int) high water mark number of bytes of RAM consumed by splash
process







splash:on_request

Register a function to be called before each HTTP request.

Signature: splash:on_request(callback)

Parameters:


	callback - Lua function to call before each HTTP request.




Returns: nil.

Async: no.

splash:on_request callback receives a single request argument
(a Request Object).

To get information about a request use request
attributes;
to change or drop the request before sending use request
methods;

A callback passed to splash:on_request can’t call Splash
async methods like splash:wait or splash:go.

Example 1 - log all URLs requested using request.url attribute:

treat = require("treat")

function main(splash, args)
  local urls = {}
  splash:on_request(function(request)
    table.insert(urls, request.url)
  end)

  assert(splash:go(splash.args.url))
  return treat.as_array(urls)
end





Example 2 - to log full request information use request.info
attribute; don’t store request objects directly:

treat = require("treat")
function main(splash)
    local entries = treat.as_array({})
    splash:on_request(function(request)
        table.insert(entries, request.info)
    end)
    assert(splash:go(splash.args.url))
    return entries
end





Example 3 - drop all requests to resources containing “.css” in their URLs
(see request:abort):

splash:on_request(function(request)
    if string.find(request.url, ".css") ~= nil then
        request.abort()
    end
end)





Example 4 - replace a resource
(see request:set_url):

splash:on_request(function(request)
    if request.url == 'http://example.com/script.js' then
        request:set_url('http://mydomain.com/myscript.js')
    end
end)





Example 5 - set a custom proxy server, with credentials passed in an HTTP
request to Splash (see request:set_proxy):

splash:on_request(function(request)
    request:set_proxy{
        host = "0.0.0.0",
        port = 8990,
        username = splash.args.username,
        password = splash.args.password,
    }
end)





Example 6 - discard requests which take longer than 5 seconds to complete,
but allow up to 15 seconds for the first request
(see request:set_timeout):

local first = true
splash.resource_timeout = 5
splash:on_request(function(request)
    if first then
        request:set_timeout(15.0)
        first = false
    end
end)






Note

splash:on_request doesn’t support named arguments.



See also: splash:on_response, splash:on_response_headers,
splash:on_request_reset, treat, Request Object.




splash:on_response_headers

Register a function to be called after response headers are received, before
response body is read.

Signature: splash:on_response_headers(callback)

Parameters:


	callback - Lua function to call for each response after
response headers are received.




Returns: nil.

Async: no.

splash:on_response_headers callback receives a single response
argument (a Response Object).

response.body is not available in
a splash:on_response_headers callback because response body is not
read yet. That’s the point of splash:on_response_headers method: you can
abort reading of the response body using response:abort method.

A callback passed to splash:on_response_headers can’t call Splash
async methods like splash:wait or splash:go. response object
is deleted after exiting from a callback, so you cannot use
it outside a callback.

Example 1 - log content-type headers of all responses received while rendering

function main(splash)
    local all_headers = {}
    splash:on_response_headers(function(response)
        local content_type = response.headers["Content-Type"]
        all_headers[response.url] = content_type
    end)
    assert(splash:go(splash.args.url))
    return all_headers
end





Example 2 - abort reading body of all responses with content type text/css

function main(splash, args)
  splash:on_response_headers(function(response)
    local ct = response.headers["Content-Type"]
    if ct == "text/css" then
      response.abort()
    end
  end)

  assert(splash:go(args.url))
  return {
    png=splash:png(),
    har=splash:har()
  }
end





Example 3 - extract all cookies set by website without downloading
response bodies

function main(splash)
    local cookies = ""
    splash:on_response_headers(function(response)
        local response_cookies = response.headers["Set-cookie"]
        cookies = cookies .. ";" .. response_cookies
        response.abort()
    end)
    assert(splash:go(splash.args.url))
    return cookies
end






Note

splash:on_response_headers doesn’t support named arguments.



See also: splash:on_request, splash:on_response,
splash:on_response_headers_reset, Response Object.




splash:on_response

Register a function to be called after response is downloaded.

Signature: splash:on_response(callback)

Parameters:


	callback - Lua function to call for each response after it is downloaded.




Returns: nil.

Async: no.

splash:on_response callback receives a single response argument
(a Response Object).

By default, this response object doesn’t have response.body
attribute. To enable it, use splash.response_body_enabled option
or request:enable_response_body method.


Note

splash:on_response doesn’t support named arguments.



See also: splash:on_request, splash:on_response_headers,
splash:on_response_reset, Response Object,
splash.response_body_enabled, request:enable_response_body.




splash:on_request_reset

Remove all callbacks registered by splash:on_request.

Signature: splash:on_request_reset()

Returns: nil

Async: no.




splash:on_response_headers_reset

Remove all callbacks registered by splash:on_response_headers.

Signature: splash:on_response_headers_reset()

Returns: nil

Async: no.




splash:on_response_reset

Remove all callbacks registered by splash:on_response.

Signature: splash:on_response_reset()

Returns: nil

Async: no.




splash:get_version

Get Splash major and minor version.

Signature: version_info = splash:get_version()

Returns: A table with version information.

Async: no.

As of now, this table contains:


	splash - (string) Splash version


	major - (int) Splash major version


	minor - (int) Splash minor version


	python - (string) Python version


	qt - (string) Qt version


	pyqt - (string) PyQt version


	webkit - (string) WebKit version


	sip - (string) SIP version


	twisted - (string) Twisted version




Example:

function main(splash)
     local version = splash:get_version()
     if version.major < 2 and version.minor < 8 then
         error("Splash 1.8 or newer required")
     end
 end








splash:mouse_click

Trigger mouse click event in web page.

Signature: splash:mouse_click(x, y)

Parameters:


	x - number with x position of element to be clicked
(distance from the left, relative to the current viewport)


	y - number with y position of element to be clicked
(distance from the top, relative to the current viewport)




Returns: nil

Async: no.

Coordinates for mouse events must be relative to viewport.

If you want to click on element an easy way is to use splash:select
with element:mouse_click:

local button = splash:select('button')
button:mouse_click()





You also can implement it using splash:mouse_click;
use JavaScript getClientRects [https://developer.mozilla.org/en/docs/Web/API/Element/getClientRects] to get coordinates of html element:

-- Get button element dimensions with javascript and perform mouse click.
function main(splash)
    assert(splash:go(splash.args.url))
    local get_dimensions = splash:jsfunc([[
        function () {
            var rect = document.getElementById('button').getClientRects()[0];
            return {"x": rect.left, "y": rect.top}
        }
    ]])
    splash:set_viewport_full()
    splash:wait(0.1)
    local dimensions = get_dimensions()
    -- FIXME: button must be inside a viewport
    splash:mouse_click(dimensions.x, dimensions.y)

    -- Wait split second to allow event to propagate.
    splash:wait(0.1)
    return splash:html()
end





Unlike element:mouse_click, splash:mouse_click is not
async. Mouse events are not propagated immediately, to see consequences
of click reflected in page source you must call splash:wait if you
use splash:mouse_click.

Element on which action is performed must be inside viewport
(must be visible to the user). If element is outside viewport and
user needs to scroll to see it, you must either scroll to the element
(using JavaScript, splash.scroll_position or e.g.
element:scrollIntoViewIfNeeded()) or set viewport to full with
splash:set_viewport_full.


Note

element:mouse_click scrolls automatically, unlike
splash:mouse_click.



Under the hood splash:mouse_click performs splash:mouse_press
followed by splash:mouse_release.

At the moment only left click is supported.

See also: element:mouse_click, splash:mouse_press,
splash:mouse_release, splash:mouse_hover,
splash.scroll_position.




splash:mouse_hover

Trigger mouse hover (JavaScript mouseover) event in web page.

Signature: splash:mouse_hover(x, y)

Parameters:


	x - number with x position of element to be hovered on
(distance from the left, relative to the current viewport)


	y - number with y position of element to be hovered on
(distance from the top, relative to the current viewport)




Returns: nil

Async: no.

See notes about mouse events in splash:mouse_click.

See also: element:mouse_hover.




splash:mouse_press

Trigger mouse press event in web page.

Signature: splash:mouse_press(x, y)

Parameters:


	x - number with x position of element over which mouse button is pressed
(distance from the left, relative to the current viewport)


	y - number with y position of element over which mouse button is pressed
(distance from the top, relative to the current viewport)




Returns: nil

Async: no.

See notes about mouse events in splash:mouse_click.




splash:mouse_release

Trigger mouse release event in web page.

Signature: splash:mouse_release(x, y)

Parameters:


	x - number with x position of element over which mouse button is released
(distance from the left, relative to the current viewport)


	y - number with y position of element over which mouse button is released
(distance from the top, relative to the current viewport)




Returns: nil

Async: no.

See notes about mouse events in splash:mouse_click.




splash:with_timeout

Run the function with the allowed timeout

Signature: ok, result = splash:with_timeout(func, timeout)

Parameters:


	func - the function to run


	timeout - timeout, in seconds




Returns: ok, result pair. If ok is not true then error
happened during the function call or the timeout expired; result
provides an information about error type. If result is equal to
timeout then the specified timeout period elapsed.
Otherwise, if ok is true then result contains the result of
the executed function. If your function returns several values, they
will be assigned to the next variables to result.

Async: yes.

Example 1:

function main(splash, args)
  local ok, result = splash:with_timeout(function()
    -- try commenting out splash:wait(3)
    splash:wait(3)
    assert(splash:go(args.url))
  end, 2)

  if not ok then
    if result == "timeout_over" then
      return "Cannot navigate to the url within 2 seconds"
    else
      return result
    end
  end
  return "Navigated to the url within 2 seconds"
end





Example 2 - the function returns several values

function main(splash)
    local ok, result1, result2, result3 = splash:with_timeout(function()
        splash:wait(0.5)
        return 1, 2, 3
    end, 1)

    return result1, result2, result3
end





Note that if the specified timeout period elapsed Splash will try to
interrupt the running function. However, Splash scripts are executed
in cooperative multitasking [https://en.wikipedia.org/wiki/Cooperative_multitasking] manner and because of that sometimes
Splash won’t be able to stop your running function upon timeout expiration.
In two words, cooperative multitasking means that the managing program
(in our example, it is Splash scripting engine) won’t stop the running
function if it doesn’t ask for that. In Splash scripting the running
function can be interrupted only if some async operation was called.
On the contrary, non of the sync operations can be interrupted.


Note

Splash scripts are executing in cooperative multitasking [https://en.wikipedia.org/wiki/Cooperative_multitasking] manner.
You should be careful while running sync functions.



Let’s see the difference in examples.

Example 3:

function main(splash)
    local ok, result = splash:with_timeout(function()
        splash:go(splash.args.url) -- during this operation the current function can be stopped
        splash:evaljs(long_js_operation) -- during JS function evaluation the function cannot be stopped
        local png = splash:png() -- sync operation and during it the function cannot be stopped
        return png
    end, 0.1)

    return result
end








splash:send_keys

Send keyboard events to page context.

Signature: splash:send_keys(keys)

Parameters


	keys - string representing the keys to be sent as keyboard events.




Returns: nil

Async: no.

Key sequences are specified by using a small subset of emacs edmacro syntax:


	whitespace is ignored and only used to separate the different keys


	characters are literally represented


	words within brackets represent function keys, like <Return>, <Left>
or <Home>. See Qt docs [http://doc.qt.io/qt-5/qt.html#Key-enum] for a full list of function keys. <Foo>
will try to match Qt::Key_Foo.




Following table shows some examples of macros and what they would generate on
an input:







	Macro

	Result





	Hello World

	HelloWorld



	Hello <Space> World

	Hello World



	< S p a c e >

	<Space>



	Hello <Home> <Delete>

	ello



	Hello <Backspace>

	Hell






Key events are not propagated immediately until event loop regains control,
thus splash:wait must be called to reflect the events.

See also: element:send_keys, splash:send_text.




splash:send_text

Send text as input to page context, literally, character by character.

Signature: splash:send_text(text)

Parameters:


	text - string to be sent as input.




Returns: nil

Async: no.

Key events are not propagated immediately until event loop regains control,
thus splash:wait must be called to reflect the events.

This function in conjuction with splash:send_keys covers most needs on
keyboard input, such as filling in forms and submitting them.

Example 1: focus first input, fill in a form and submit

function main(splash)
    assert(splash:go(splash.args.url))
    assert(splash:wait(0.5))
    splash:send_keys("<Tab>")
    splash:send_text("zero cool")
    splash:send_keys("<Tab>")
    splash:send_text("hunter2")
    splash:send_keys("<Return>")
    -- note how this could be translated to
    -- splash:send_keys("<Tab> zero <Space> cool <Tab> hunter2 <Return>")
    assert(splash:wait(0))
    -- ...
end





Example 2: focus inputs with javascript or splash:mouse_click

We can’t always assume that a <Tab> will focus the input we want or an
<Enter> will submit a form. Selecting an input can either be accomplished
by focusing it or by clicking it. Submitting a form can also be done by
firing a submit event on the form, or simply by clicking on the submit button.

The following example will focus an input, fill in a form and click on the
submit button using splash:mouse_click. It assumes there are two
arguments passed to splash, username and password.

function main(splash, args)
    function focus(sel)
        splash:select(sel):focus()
    end

    assert(splash:go(args.url))
    assert(splash:wait(0.5))
    focus('input[name=username]')
    splash:send_text(args.username)
    assert(splash:wait(0))
    focus('input[name=password]')
    splash:send_text(args.password)
    splash:select('input[type=submit]'):mouse_click()
    assert(splash:wait(0))
    -- Usually, wait for the submit request to finish
    -- ...
end





See also: element:send_text, splash:send_keys.




splash:select

Select the first HTML element from DOM of the current web page that
matches the specified CSS selector.

Signature: element = splash:select(selector)

Parameters:


	selector - valid CSS selector




Returns: an Element object.

Async: no.

Using splash:select you can get the element that matches your
specified CSS selector like using document.querySelector [https://developer.mozilla.org/en-US/docs/Web/API/Document/querySelector] in the browser.
The returned element is an Element Object which has many useful
methods and almost all methods and attributes that element has in JavaScript.

If the element cannot be found using the specified selector nil will
be returned. If your selector is not a valid CSS selector an error will
be raised.

Example 1: select an element which has element class and return class
names off all the siblings of the specified element.

local treat = require('treat')

function main(splash)
    assert(splash:go(splash.args.url))
    assert(splash:wait(0.5))

    local el = splash:select('.element')
    local seen = {}
    local classNames = {}

    while el do
      local classList = el.node.classList
      if classList then
        for _, v in ipairs(classList) do
          if (not seen[v]) then
            classNames[#classNames + 1] = v
            seen[v] = true
          end
        end
      end

      el = el.node.nextSibling
    end

    return treat.as_array(classNames)
end





Example 2: assert that the returned element exists

function main(splash)
    -- ...
    local el = assert(splash:select('.element'))
    -- ...
end








splash:select_all

Select the list of HTML elements from DOM of the current web page
that match the specified CSS selector.

Signature: elements = splash:select_all(selector)

Parameters:


	selector - valid CSS selector




Returns: a list of Element objects.

Async: no.

This method differs from splash:select by returning the all
elements in a table that match the specified selector.

If no elements can be found using the specified selector {} is
returned. If the selector is not a valid CSS selector an error is raised.

Example: select all <img /> elements and get their src attributes

local treat = require('treat')

function main(splash)
    assert(splash:go(splash.args.url))
    assert(splash:wait(0.5))

    local imgs = splash:select_all('img')
    local srcs = {}

    for _, img in ipairs(imgs) do
      srcs[#srcs+1] = img.node.attributes.src
    end

    return treat.as_array(srcs)
end








splash:on_navigation_locked

Register a function to be called before a request is discarded when navigation is locked.

Signature: splash:on_navigation_locked(callback)

Parameters:


	callback - Lua function to call before a request is discarded.




Returns: nil.

Async: no.

splash:on_navigation_locked callback receives a single request argument
(a Request Object).

To get information about a request use request
attributes;

A callback passed to splash:on_navigation_locked can’t call Splash
async methods like splash:wait or splash:go.

Example 1 - log all URLs discarded using request.url attribute:

treat = require("treat")

function main(splash, args)
  local urls = {}
  splash:on_navigation_locked(function(request)
    table.insert(urls, request.url)
  end)

  assert(splash:go(splash.args.url))
  splash:lock_navigation()
  splash:select("a"):mouse_click()
  return treat.as_array(urls)
end








splash:on_navigation_locked_reset

Remove all callbacks registered by splash:on_navigation_locked.

Signature: splash:on_navigation_locked_reset()

Returns: nil

Async: no.









          

      

      

    

  

    
      
          
            
  
Response Object

Response objects are returned as a result of several Splash methods
(like splash:http_get or splash:http_post); they are
are also passed to some of the callbacks (e.g. splash:on_response and
splash:on_response_headers callbacks). These objects contain
information about a response.


response.url

URL of the response. In case of redirects response.url
is a last URL.

This field is read-only.




response.status

HTTP status code of the response.

This field is read-only.




response.ok

true for successful responses and false when error happened.

Example:

local reply = splash:http_get("some-bad-url")
-- reply.ok == false





This field is read-only.




response.headers

A Lua table with HTTP headers (header name => header value).
Keys are header names (strings), values are header values (strings).

Lookups are case-insensitive, so response.headers['content-type']
is the same as response.headers['Content-Type'].

This field is read-only.




response.info

A Lua table with response data in HAR response [http://www.softwareishard.com/blog/har-12-spec/#response] format.

This field is read-only.




response.body

Raw response body (a binary object).

If you want to process response body from Lua use treat.as_string
to convert it to a Lua string first.

response.body attribute is not available by default
in splash:on_response callbacks; use splash.response_body_enabled
or request:enable_response_body to enable it.




response.request

A corresponding Request Object.

This field is read-only.




response:abort

Signature: response:abort()

Returns: nil.

Async: no.

Abort reading of the response body. This method is only available if
a response is not read yet - currently you can use it only
in a splash:on_response_headers callback.







          

      

      

    

  

    
      
          
            
  
Request Object

Request objects are received by splash:on_request callbacks;
they are also available as response.request.


Attributes

Request objects has several attributes with information about a HTTP request.
These fields are for information only; changing them doesn’t change
the request to be sent.


request.url

Requested URL.




request.method

HTTP method name in upper case, e.g. “GET”.




request.headers

A Lua table with request HTTP headers (header name => header value).
Keys are header names (strings), values are header values (strings).

Lookups are case-insensitive, so request.headers['content-type']
is the same as request.headers['Content-Type'].




request.info

A table with request data in HAR request [http://www.softwareishard.com/blog/har-12-spec/#request] format.






Methods

To change or drop the request before sending use one of
the request methods. Note that these methods are only available
before the request is sent (they has no effect if a request is already sent).
Currently it means you can only use them in splash:on_request callbacks.


request:abort

Drop the request.

Signature: request:abort()

Returns: nil.

Async: no.




request:enable_response_body

Enable tracking of response content (i.e. response.body
attribute).

Signature: request:enable_response_body()

Returns: nil.

Async: no.

This function allows to enable response content tracking per-request
when splash.response_body_enabled is set to false.
Call it in a splash:on_request callback.




request:set_url

Change request URL to a specified value.

Signature: request:set_url(url)

Parameters:


	url - new request URL




Returns: nil.

Async: no.




request:set_proxy

Set a proxy server to use for this request.

Signature: request:set_proxy{host, port, username=nil, password=nil, type='HTTP'}

Parameters:


	host


	port


	username


	password


	type - proxy type; allowed proxy types are ‘HTTP’ and ‘SOCKS5’.




Returns: nil.

Async: no.

Omit username and password arguments if a proxy
doesn’t need auth.

When type is set to ‘HTTP’ HTTPS proxying should
also work; it is implemented using CONNECT command.




request:set_timeout

Set a timeout for this request.

Signature: request:set_timeout(timeout)

Parameters:


	timeout - timeout value, in seconds.




Returns: nil.

Async: no.

If response is not fully received after the timeout,
request is aborted. See also: splash.resource_timeout.




request:set_header

Set an HTTP header for this request.

Signature: request:set_header(name, value)

Parameters:


	name - header name;


	value - header value.




Returns: nil.

Async: no.

See also: splash:set_custom_headers









          

      

      

    

  

    
      
          
            
  
Element Object

Element objects wrap JavaScript DOM nodes. They are created whenever some
method returns any type of DOM node (Node, Element, HTMLElement, etc).

splash:select and splash:select_all return element objects;
splash:evaljs may also return element objects, but currently they
can’t be inside other objects or arrays - only top-level Node and NodeList
is supported.


Methods

To modify or retrieve information about the element you can use the
following methods.


element:mouse_click

Trigger mouse click event on the element.

Signature: ok, reason = element:mouse_click{x=nil, y=nil}

Parameters:


	x - optional, x coordinate relative to the left corner of the element


	y - optional, y coordinate relative to the top corner of the element




Returns: ok, reason pair. If ok is nil then error happened during
the function call; reason provides an information about error type.

Async: yes.

If x or y coordinate is not provided, they are set to width/2 and height/2
respectively, and the click is triggered on the middle of the element.

Coordinates can have a negative value which means the click will be triggered
outside of the element.

Example 1: click inside element, but closer to the top left corner:

function main(splash)
    -- ...
    local element = splash:select('.element')
    local bounds = element:bounds()
    assert(element:mouse_click{x=bounds.width/3, y=bounds.height/3})
    -- ...
end





Example 2: click on the area above the element by 10 pixels

function main(splash)
    -- ...
    splash:set_viewport_full()
    local element = splash:select('.element')
    assert(element:mouse_click{y=-10})
    -- ...
end





Unlike splash:mouse_click, element:mouse_click waits
until clicking is done, so to see consequences of click reflected in a page
there is no need to call splash:wait.

If an element is outside the current viewport, viewport is scrolled to make
element visible. If scrolling was necessary, page is not scrolled back
to the original position after the click.

See more about mouse events in splash:mouse_click.




element:mouse_hover

Trigger mouse hover (JavaScript mouseover) event on the element.

Signature: ok, reason = element:mouse_hover{x=0, y=0}

Parameters:


	x - optional, x coordinate relative to the left corner of the element


	y - optional, y coordinate relative to the top corner of the element




Returns: ok, reason pair. If ok is nil then error happened
during the function call; reason provides an information about error type.

Async: no.

If x or y coordinate is not provided, they are set to width/2 and height/2
respectively, and the hover is triggered on the middle of the element.

Coordinates can have a negative value which means the hover will be
triggered outside of the element.

Example 1: mouse hover over top left element corner:

function main(splash)
    -- ...
    local element = splash:select('.element')
    assert(element:mouse_hover{x=0, y=0})
    -- ...
end





Example 2: hover over the area above the element by 10 pixels

function main(splash)
    -- ...
    splash:set_viewport_full()
    local element = splash:select('.element')
    assert(element:mouse_hover{y=-10})
    -- ...
end





Unlike splash:mouse_hover, element:mouse_hover waits
until event is propagated, so to see consequences of click reflected in a page
there is no need to call splash:wait.

If an element is outside the current viewport, viewport is scrolled to make
element visible. If scrolling was necessary, page is not scrolled back
to the original position.

See more about mouse events in splash:mouse_hover.




element:styles

Return the computed styles of the element.

Signature: styles = element:styles()

Returns: styles is a table with computed styles of the element.

Async: no.

This method returns the result of JavaScript window.getComputedStyle() [https://developer.mozilla.org/en-US/docs/Web/API/Window/getComputedStyle]
applied on the element.

Example: get all computed styles and return the font-size property.

function main(splash)
    -- ...
    local element = splash:select('.element')
    return element:styles()['font-size']
end








element:bounds

Return the bounding client rectangle of the element

Signature: bounds = element:bounds()

Returns: bounds is a table with the client bounding rectangle
with the top, right, bottom and left coordinates and
also with width and height values.

Async: no.

Example: get the bounds of the element.

function main(splash)
    -- ..
    local element = splash:select('.element')
    return element:bounds()
    -- e.g. bounds is { top = 10, right = 20, bottom = 20, left = 10, height = 10, width = 10 }
end








element:png

Return a screenshot of the element in PNG format

Signature: shot = element:png{width=nil, scale_method='raster', pad=0}

Parameters:


	width - optional, width of a screenshot in pixels;


	scale_method - optional, method to use when resizing the image, 'raster'
or 'vector';


	pad - optional, integer or {left, top, right, bottom} values of padding




Returns: shot is a PNG screenshot data, as
a binary object. When the result is empty
(e.g. if the element doesn’t exist in DOM or it isn’t visible) nil
is returned.

Async: no.

pad parameter sets the padding of the resulting image. If it is
a single integer then the padding from all sides will be equal.
If the value of the padding is positive the resulting screenshot
will be expanded by the specified amount of pixes. And if the value
of padding is negative the resulting screenshot will be shrunk by the
specified amount of pixels.

Example: return a padded screenshot of the element

function main(splash)
    -- ..
    local element = splash:select('.element')
    return element:png{pad=10}
end





If an element is not in a viewport, viewport temporarily scrolls
to make the element visible, then it scrolls back.

See more in splash:png.




element:jpeg

Return a screenshot of the element in JPEG format

Signature: shot = element:jpeg{width=nil, scale_method='raster', quality=75, region=nil, pad=0}

Parameters:


	width - optional, width of a screenshot in pixels;


	scale_method - optional, method to use when resizing the image, 'raster'
or 'vector';


	quality - optional, quality of JPEG image, integer in range from
0 to 100;


	pad - optional, integer or {left, top, right, bottom} values of padding




Returns: shot is a JPEG screenshot data, as
a binary object. When the result is empty (e.g. if
the element doesn’t exist in DOM or it isn’t visible) nil is returned.

Async: no.

pad parameter sets the padding of the resulting image. If it is a single
integer then the padding from all sides will be equal. If the value of the
padding is positive the resulting screenshot will be expanded by the
specified amount of pixes. And if the value of padding is negative the resulting
screenshot will be shrunk by the specified amount of pixes.

If an element is not in a viewport, viewport temporarily scrolls
to make the element visible, then it scrolls back.

See more in splash:jpeg.




element:visible

Check whether the element is visible.

Signature: visible = element:visible()

Returns: visible indicates whether the element is visible.

Async: no.




element:focused

Check whether the element has focus.

Signature: focused = element:focused()

Returns: focused indicates whether the element is focused.

Async: no.




element:text

Fetch a text information from the element

Signature: text = element:text()

Returns: text is a text content
of the element.

Async: no.

It tries to return the trimmed value of the following JavaScript
Node properties:


	textContent


	innerText


	value




If all of them are empty an empty string is returned.




element:info

Get useful information about the element.

Signature: info = element:info()

Returns: info is a table with element info.

Async: no.

Info is a table with the following fields:


	nodeName - node name in a lower case (e.g. h1)


	attributes - table with attributes names and its values


	tag - html string representation of the element


	html - inner html of the element


	text - inner text of the element


	x - x coordinate of the element


	y - y coordinate of the element


	width - width of the element


	height - height of the element


	visible - flag representing if the element is visible







element:field_value

Get value of the field element (input, select, textarea, button).

Signature: ok, value = element:field_value()

Returns: ok, value pair. If ok is nil then error happened
during the function call; value provides an information about error type.
When there is no error ok is true and value is a value of the element.

Async: no.

This method works in the following way:



	
	if the element type is select:

	
	if the multiple attribute is true it returns a table
with the selected values;


	otherwise it returns the value of the select;










	
	if the element has attribute type="radio":

	
	if it’s checked returns its value;


	other it returns nil










	if the element has attribute type="checkbox" it returns bool value


	otherwise it returns the value of the value attribute or
empty string if it doesn’t exist










element:form_values

Return a table with form values if the element type is form

Signature: form_values, reason = element:form_values{values='auto'}

Parameters:


	values - type of the return value, can be one of
'auto', 'list' or 'first'




Returns: form_values, reason pair. If form_values is nil then
error happened during the function call or node type is not form;
reason provides an information about error type; otherwise
form_values is a table with element names as keys and values as values.

Async: no.

The returned values depend on values parameter. It can be in 3 states:


	'auto'

	Returned values are tables or singular values depending on the
form element type:


	if the element is <select multiple> the returned value is
a table with the selected option values or text contents if the value
attribute is missing;


	if the form has several elements with the same name attribute the
returned value is a table with all values of that elements;


	otherwise it is a string (for text and radio inputs), bool (for checkbox
inputs) or nil the value of value attribute.




This result type is convenient if you’re working with the result in a Lua
script.



	'list'

	Returned values always are tables (lists), even if the form element
can be a singular value, useful for forms with unknown structure. Few notes:


	if the element is a checkbox input and a value attribute then
the table will contain that value;


	if the element is <select multiple> and they are several of them
with the same names then their values will be concatenated with the
previous ones




This result type is convenient if you’re writing generic form-handling
code - unlike auto there is no need to support multiple data types.



	'first'

	Returned values always are singular values, even if the form element
can multiple value. If the element has multiple values only the first
one will be selected.





Example 1: return the values of the following login form

<form id="login">
    <input type="text" name="username" value="admin" />
    <input type="password" name="password" value="pass" />
    <input type="checkbox" name="remember" value="yes" checked />
</form>





function main(splash)
    -- ...
    local form = splash:select('#login')
    return assert(form:form_values())
end

-- returned values are
{ username = 'admin', password = 'pass', remember = true }





Example 2: when values is equal to 'list'

function main(splash)
    -- ...
    local form = splash:select('#login')
    return assert(form:form_values{values='list'}))
end

-- returned values are
{ username = ['admin'], password = ['pass'], remember = ['checked'] }





Example 3: return the values of the following form when values
is equal to 'first'

<form>
    <input type="text" name="foo[]" value="coffee"/>
    <input type="text" name="foo[]" value="milk"/>
    <input type="text" name="foo[]" value="eggs"/>
    <input type="text" name="baz" value="foo"/>
    <input type="radio" name="choice" value="yes"/>
    <input type="radio" name="choice" value="no" checked/>
    <input type="checkbox" name="check" checked/>

    <select multiple name="selection">
        <option value="1" selected>1</option>
        <option value="2">2</option>
        <option value="3" selected>2</option>
    </select>
</form>





function main(splash)
    -- ...
    local form = splash:select('form')
    return assert(form:form_values(false))
end

-- returned values are
{
    ['foo[]'] = 'coffee',
    baz = 'foo',
    choice = 'no',
    check = false,
    selection = '1'
}








element:fill

Fill the form with the provided values

Signature: ok, reason = element:fill(values)

Parameters:


	values - table with input names as keys and values as input values




Returns: ok, reason pair. If ok is nil then error happened during
the function call; reason provides an information about error type.

Async: no.

In order to fill your form your inputs must have name property and
this method will select those input using that property.

Example 1: get the current values, change password and fill the form

<form id="login">
    <input type="text" name="username" value="admin" />
    <input type="password" name="password" value="pass" />
</form>





function main(splash)
    -- ...
    local form = splash:select('#login')
    local values = assert(form:form_values())
    values.password = "l33t"
    assert(form:fill(values))
end





Example 2: fill more complex form

<form id="signup" action="/signup">
    <input type="text" name="name"/>
    <input type="radio" name="gender" value="male"/>
    <input type="radio" name="gender" value="female"/>

    <select multiple name="hobbies">
        <option value="sport">Sport</option>
        <option value="cars">Cars</option>
        <option value="games">Video Games</option>
    </select>

    <button type="submit">Sign Up</button>
</form>





function main(splash)
  assert(splash:go(splash.args.url))
  assert(splash:wait(0.1))

  local form = splash:select('#signup')
  local values = {
    name = 'user',
    gender = 'female',
    hobbies = {'sport', 'games'},
  }

  assert(form:fill(values))
  assert(form:submit())
  -- ...
end








element:send_keys

Send keyboard events to the element.

Signature: ok, reason = element:send_keys(keys)

Parameters


	keys - string representing the keys to be sent as keyboard events.




Returns: ok, reason pair. If ok is nil then error happened during
the function call; reason provides an information about error type.

Async: no.

This method does the following:


	clicks on the element


	send the specified keyboard events




See more about keyboard events in in splash:send_keys.




element:send_text

Send keyboard events to the element.

Signature: ok, reason = element:send_text(text)

Parameters


	text - string to be sent as input.




Returns: ok, reason pair. If ok is nil then error happened during
the function call; reason provides an information about error type.

Async: no.

This method does the following:


	clicks on the element


	send the specified text to the element




See more about it in splash:send_text.




element:submit

Submit the form element.

Signature: ok, reason = element:submit()

Returns: ok, reason pair. If ok is nil then error happened during
the function call (e.g. you are trying to submit on element which is not
a form); reason provides an information about error type.

Async: no.

Example: get the form, fill with values and submit it

<form id="login" action="/login">
    <input type="text" name="username" />
    <input type="password" name="password" />
    <input type="checkbox" name="remember" />
    <button type="submit">Submit</button>
</form>





function main(splash)
    -- ...
    local form = splash:select('#login')
    assert(form:fill({ username='admin', password='pass', remember=true }))
    assert(form:submit())
    -- ...
end








element:exists

Check whether the element exists in DOM. If the element doesn’t exist
some of the methods will fail, returning the error flag.

Signature: exists = element:exists()

Returns: exists indicated whether the element exists.

Async: no.


Note

Don’t use splash:select(..):exists() to check
if an element is present - splash:select returns nil
if selector returns nothing. Check for nil instead.

element:exists() should only be used if you already have
an Element instance, but suspect it can be removed from the current DOM.



There are several reasons why the element can be absent from DOM.
One of the reasons is that the element was removed by some JavaScript code.

Example 1: the element was removed by JS code

function main(splash)
    -- ...
    local element = splash:select('.element')
    assert(splash:runjs('document.write("<body></body>")'))
    assert(splash:wait(0.1))
    local exists = element:exists() -- exists will be `false`
    -- ...
end





Another reason is that the element was created by script and not inserted
into DOM.

Example 2: the element is not inserted into DOM

function main(splash)
    -- ...
    local element = splash:select('.element')
    local cloned = element.node:cloneNode() -- the cloned element isn't in DOM
    local exists = cloned:exists() -- exists will be `false`
    -- ...
end










DOM Methods

In addition to custom Splash-specific methods Element supports many
common DOM HTMLElement methods.


Usage

To use these methods just call them on element. For example, to check
if an element has a specific attribute you can use hasAttribute [https://developer.mozilla.org/en-US/docs/Web/API/Element/hasAttribute] method:

function main(splash)
    -- ...
    if splash:select('.element'):hasAttribute('foo') then
        -- ...
    end
    -- ...
end





Another example: to make sure element is in a viewport, you can call its
scrollIntoViewIfNeeded method:

function main(splash)
    -- ...
    splash:select('.element'):scrollIntoViewIfNeeded()
    -- ...
end








Supported DOM methods


	Methods inherited from EventTarget [https://developer.mozilla.org/en-US/docs/Web/API/EventTarget]:

	
	addEventListener


	removeEventListener






	Methods inherited from HTMLElement [https://developer.mozilla.org/en-US/docs/Web/API/HTMLElement]:

	
	blur


	click


	focus






	Methods inherited from Element [https://developer.mozilla.org/en-US/docs/Web/API/Element]:

	
	getAttribute


	getAttributeNS


	getBoundingClientRect


	getClientRects


	getElementsByClassName


	getElementsByTagName


	getElementsByTagNameNS


	hasAttribute


	hasAttributeNS


	hasAttributes


	querySelector


	querySelectorAll


	releasePointerCapture


	remove


	removeAttribute


	removeAttributeNS


	requestFullscreen


	requestPointerLock


	scrollIntoView


	scrollIntoViewIfNeeded


	setAttribute


	setAttributeNS


	setPointerCapture






	Methods inherited from Node [https://developer.mozilla.org/en-US/docs/Web/API/Node]:

	
	appendChild


	cloneNode


	compareDocumentPosition


	contains


	hasChildNodes


	insertBefore


	isDefaultNamespace


	isEqualNode


	isSameNode


	lookupPrefix


	lookupNamespaceURI


	normalize


	removeChild


	replaceChild








These methods should work as their JS counterparts, but in Lua.

For example, you can attach event handlers using
element:addEventListener(event, listener).

function main(splash)
    -- ...
    local element = splash:select('.element')
    local x, y = 0, 0

    local store_coordinates = function(event)
        x = event.clientX
        y = event.clientY
    end

    element:addEventListener('click', store_coordinates)
    assert(splash:wait(10))
    return x, y
end










Attributes


element.node

element.node has all exposed element DOM methods and attributes available,
but not custom Splash methods and attributes. Use it for readability if
you want to be more explicit. It also allows to avoid possible naming
conflicts in future.

For example, to get element’s innerHTML one can use .node.innerHTML:

function main(splash)
    -- ...
    return {html=splash:select('.element').node.innerHTML}
end








element.inner_id

ID of the inner representation of the element, read-only.
It may be useful for comparing element instances for the equality.

Example:

function main(splash)
    -- ...

    local same = element2.inner_id == element2.inner_id

    -- ...
end










DOM Attributes


Usage

Element objects also provide almost all DOM element attributes.
For example, get element’s node name (p, div, a, etc.):

function main(splash)
    -- ...
    local tag_name = splash:select('.foo').nodeName
    -- ...
end





Many of attributes are writable, not only readable - you can e.g.
set innerHTML of an element:

function main(splash)
    -- ...
    splash:select('.foo').innerHTML = "hello"
    -- ...
end








Supported DOM attributes

The list of supported properties (some of them are mutable, other
are read-only):


	Properties inherited from HTMLElement [https://developer.mozilla.org/en-US/docs/Web/API/HTMLElement]:

	
	accessKey


	accessKeyLabel (read-only)


	contentEditable


	isContentEditable (read-only)


	dataset (read-only)


	dir


	draggable


	hidden


	lang


	offsetHeight (read-only)


	offsetLeft (read-only)


	offsetParent (read-only)


	offsetTop (read-only)


	spellcheck


	style - a table with styles which can be modified


	tabIndex


	title


	translate






	Properties inherited from Element [https://developer.mozilla.org/en-US/docs/Web/API/Element]:

	
	attributes (read-only) - a table with attributes of the element


	classList (read-only) - a table with class names of the element


	className


	clientHeight (read-only)


	clientLeft (read-only)


	clientTop (read-only)


	clientWidth (read-only)


	id


	innerHTML


	localeName (read-only)


	namespaceURI (read-only)


	nextElementSibling (read-only)


	outerHTML


	prefix (read-only)


	previousElementSibling (read-only)


	scrollHeight (read-only)


	scrollLeft


	scrollTop


	scrollWidth (read-only)


	tabStop


	tagName (read-only)






	Properties inherited from Node [https://developer.mozilla.org/en-US/docs/Web/API/Node]:

	
	baseURI (read-only)


	childNodes (read-only)


	firstChild (read-only)


	lastChild (read-only)


	nextSibling (read-only)


	nodeName (read-only)


	nodeType (read-only)


	nodeValue


	ownerDocument (read-only)


	parentNode (read-only)


	parentElement (read-only)


	previousSibling (read-only)


	rootNode (read-only)


	textContent








Also, you can attach event handlers to the specified event. When the handler
is called it will receive event table with the almost all available
methods and properties.

function main(splash)
    -- ...
    local element = splash:select('.element')

    local x, y = 0, 0

    element.onclick = function(event)
        event:preventDefault()
        x = event.clientX
        y = event.clientY
    end

    assert(splash:wait(10))

    return x, y
end





Use element:addEventListener() method if you want to attach multiple event
handlers for an event.









          

      

      

    

  

    
      
          
            
  
Working with Binary Data


Motivation

Splash assumes that most strings in a script are encoded to UTF-8.
This is true for HTML content - even if the original response was not UTF-8,
internally browser works with UTF-8, so splash:html result is always
UTF-8.

When you return a Lua table from the main function Splash encodes it
to JSON; JSON is a text protocol which can’t handle arbitrary binary data,
so Splash assumes all strings are UTF-8 when returning a JSON result.

But sometimes it is necessary to work with binary data: for example,
it could be raw image data returned by splash:png or a response
body of a non-UTF-8 page returned by splash:http_get.




Binary Objects

To pass non-UTF8 data to Splash (returning it as a result of main or
passing as arguments to splash methods) a script may mark it as
a binary object using treat.as_binary function.

Some of the Splash functions already return binary objects: splash:png,
splash:jpeg; response.body attribute is also
a binary object.

A binary object can be returned as a main result directly.
It is the reason the following example works
(a basic render.png implementation in Lua):

-- basic render.png emulation
function main(splash)
    assert(splash:go(splash.args.url))
    return splash:png()
end





All binary objects have content-type attached. For example, splash:png
result will have content-type image/png.

When returned directly, a binary object data is used as-is for the
response body, and Content-Type HTTP header is set to the content-type
of a binary object. So in the previous example the result will be a PNG image
with a proper Content-Type header.

To construct your own binary objects use treat.as_binary function.
For example, let’s return a 1x1px black GIF image as a response:

treat = require("treat")
base64 = require("base64")

function main(splash)
    local gif_b64 = "AQABAIAAAAAAAAAAACH5BAAAAAAALAAAAAABAAEAAAICTAEAOw=="
    local gif_bytes = base64.decode(gif_b64)
    return treat.as_binary(gif_bytes, "image/gif")
end





When main result is returned, binary object content-type takes a priority
over a value set by splash:set_result_content_type. To override
content-type of a binary object create another binary object with a required
content-type:

lcoal treat = require("treat")
function main(splash)
    -- ...
    local img = splash:png()
    return treat.as_binary(img, "image/x-png") -- default was "image/png"
end





When a binary object is serialized to JSON it is auto-encoded to base64
before serializing. For example, it may happen when a table is returned
as a main function result:

function main(splash)
    assert(splash:go(splash.args.url))

    -- result is a JSON object {"png": "...base64-encoded image data"}
    return {png=splash:png()}
end











          

      

      

    

  

    
      
          
            
  
Available Lua Libraries

When Sandbox is disabled all standard Lua modules
are available; with a Sandbox ON (default) only some of them can be used.
See Standard Library for more.

Splash ships several non-standard modules by default:


	json - encoded/decode JSON data


	base64 - encode/decode Base64 data


	treat - fine-tune the way Splash works with your Lua varaibles
and returns the result.




Unlike standard modules, custom modules should to be imported before use,
for example:

base64 = require("base64")
function main(splash)
    return base64.encode('hello')
end





It is possible to add more Lua libraries to Splash using
Custom Lua Modules feature.


Standard Library

The following standard Lua 5.2 libraries are available
to Splash scripts when Sandbox is enabled (default):


	string [http://www.lua.org/manual/5.2/manual.html#6.4]


	table [http://www.lua.org/manual/5.2/manual.html#6.5]


	math [http://www.lua.org/manual/5.2/manual.html#6.6]


	os [http://www.lua.org/manual/5.2/manual.html#6.9]




Aforementioned libraries are pre-imported; there is no need to require them.


Note

Not all functions from these libraries are currently exposed
when Sandbox is enabled. Check the code [https://github.com/scrapinghub/splash/blob/master/splash/lua_modules/sandbox.lua]
for detailed list of functions available.






json

A library to encode data to JSON and decode it from JSON to Lua data
structure. It provides 2 functions: json.encode
and json.decode.


json.encode

Encode data to JSON.

Signature: result = json.encode(obj)

Parameters:


	obj - an object to encode.




Returns: a string with JSON representation of obj.

JSON format doesn’t support binary data; json.encode handles
Binary Objects by automatically encoding them
to Base64 before putting to JSON.




json.decode

Decode JSON string to a Lua object.

Signature: decoded = json.decode(s)

Parameters:


	s - a string with JSON.




Returns: decoded Lua object.

Example:

json = require("json")

function main(splash)
    local resp = splash:http_get("http:/myapi.example.com/resource.json")
    local decoded = json.decode(resp.content.text)
    return {myfield=decoded.myfield}
end





Note that unlike json.encode function, json.decode
doesn’t have any special features to support binary data.
It means that if you want to get a binary object encoded by
json.encode back, you need to decode data from base64 yourselves.
This can be done in a Lua script using base64 module.






base64

A library to encode/decode strings to/from Base64. It provides 2 functions:
base64.encode and base64.decode. These functions are
handy if you need to pass some binary data in a JSON request or response.


base64.encode

Encode a string or a binary object to Base64.

Signature: encoded = base64.encode(s)

Parameters:


	s - a string or a binary object to encode.




Returns: a string with Base64 representation of s.




base64.decode

Decode a string from base64.

Signature: data = base64.decode(s)

Parameters:


	s - a string to decode.




Returns: a Lua string with decoded data.

Note that base64.decode may return a non-UTF-8 Lua string, so the result
may be unsafe to pass back to Splash (as a part of main function result
or as an argument to splash methods). It is fine if you know the original
data was ASCII or UTF8, but if you work with unknown data, “real” binary
data or just non-UTF-8 content then call treat.as_binary on the result
of base64.decode.

Example - return 1x1px black gif:

treat = require("treat")
base64 = require("base64")

function main(splash)
    local gif_b64 = "AQABAIAAAAAAAAAAACH5BAAAAAAALAAAAAABAAEAAAICTAEAOw=="
    local gif_bytes = base64.decode(gif_b64)
    return treat.as_binary(gif_bytes, "image/gif")
end










treat


treat.as_binary

Get a binary object for a string.

Signature: bytes = treat.as_binary(s, content_type="application/octet-stream")

Parameters:


	s - a string.


	content-type - Content-Type of s.




Returns: a binary object.

treat.as_binary returns a binary object for a string. This binary
object no longer can be processed from Lua, but it can be
returned as a main() result as-is.




treat.as_string

Get a Lua string with a raw data from a binary object.

Signature: s, content_type = treat.as_string(bytes)

Parameters:


	bytes - a binary object.




Returns: (s, content_type) pair: a Lua string with raw data and
its Content-Type.

treat.as_string “unwraps” a binary object and
returns a plain Lua string which can be processed from Lua.
If the resulting string is not encoded to UTF-8 then it is still possible to
process it in Lua, but it is not safe to return it as a main result
or pass to Splash functions. Use treat.as_binary to convert
processed string to a binary object if you need to pass it back to Splash.




treat.as_array

Mark a Lua table as an array (for JSON encoding and Lua -> JS conversions).

Signature: tbl = treat.as_array(tbl)

Parameters:


	tbl - a Lua table.




Returns: the same table.

JSON can represent arrays and objects, but in Lua there is no distinction
between them; both key-value mappings and arrays are stored in Lua tables.

By default, Lua tables are converted to JSON objects when returning a result
from Splash main function and when using json.encode
or ref:splash-jsfunc:

function main(splash)
    -- client gets {"foo": "bar"} JSON object
    return {foo="bar"}
end





It can lead to unexpected results with array-like Lua tables:

function main(splash)
    -- client gets {"1": "foo", "2": "bar"} JSON object
    return {"foo", "bar"}
end





treat.as_array allows to mark tables as JSON arrays:

treat = require("treat")

function main(splash)
    local tbl = {"foo", "bar"}
    treat.as_array(tbl)

    -- client gets ["foo", "bar"] JSON object
    return tbl
end





This function modifies its argument inplace, but as a shortcut it returns
the same table; it allows to simplify the code:

treat = require("treat")
function main(splash)
    -- client gets ["foo", "bar"] JSON object
    return treat.as_array({"foo", "bar"})
end






Note

There is no autodetection of table type because {} Lua table
is ambiguous: it can be either a JSON array or as a JSON object.
With table type autodetection it is easy to get a wrong output:
even if some data is always an array, it can be suddenly exported
as an object when an array is empty. To avoid surprises Splash requires
an explicit treat.as_array call.








Adding Your Own Modules

Splash provides a way to use custom Lua modules (stored on server)
from scripts passed via HTTP API. This allows to


	reuse code without sending it over network again and again;


	use third-party Lua modules;


	implement features which need unsafe code and expose them safely
in a sandbox.





Note

To learn about Lua modules check e.g. http://lua-users.org/wiki/ModulesTutorial.
Please prefer “the new way” of writing modules because it plays better
with a sandbox. A good Lua modules style guide can be found here:
http://hisham.hm/2014/01/02/how-to-write-lua-modules-in-a-post-module-world/




Setting Up

To use custom Lua modules, do the following steps:


	setup the path for Lua modules and add your modules there;


	tell Splash which modules are enabled in a sandbox;


	use Lua require function from a script to load a module.




To setup the path for Lua modules start Splash with --lua-package-path
option. --lua-package-path value should be a semicolon-separated list
of places where Lua looks for modules. Each entry should have a ? in it
that’s replaced with the module name.

Example:

$ python3 -m splash.server --lua-package-path "/etc/splash/lua_modules/?.lua;/home/myuser/splash-modules/?.lua"






Note

If you use Splash installed using Docker see
Folders Sharing for more info on how to setup
paths.




Note

For the curious: --lua-package-path value is added to Lua
package.path.



When you use a Lua sandbox (default) Lua require
function is restricted when used in scripts: it only allows to load
modules from a whitelist. This whitelist is empty by default, i.e. by default
you can require nothing. To make your modules available for scripts start
Splash with --lua-sandbox-allowed-modules option. It should contain a
semicolon-separated list of Lua module names allowed in a sandbox:

$ python3 -m splash.server --lua-sandbox-allowed-modules "foo;bar" --lua-package-path "/etc/splash/lua_modules/?.lua"





After that it becomes possible to load these modules from Lua scripts using
require:

local foo = require("foo")
function main(splash)
    return {result=foo.myfunc()}
end








Writing Modules

A basic module could look like the following:

-- mymodule.lua
local mymodule = {}

function mymodule.hello(name)
    return "Hello, " .. name
end

return mymodule





Usage in a script:

local mymodule = require("mymodule")

function main(splash)
    return mymodule.hello("world!")
end





Many real-world modules will likely want to use splash object.
There are several ways to write such modules. The simplest way is to use
functions that accept splash as an argument:

-- utils.lua
local utils = {}

-- wait until `condition` function returns true
function utils.wait_for(splash, condition)
    while not condition() do
        splash:wait(0.05)
    end
end

return utils





Usage:

local utils = require("utils")

function main(splash)
    splash:go(splash.args.url)

    -- wait until <h1> element is loaded
    utils.wait_for(splash, function()
       return splash:evaljs("document.querySelector('h1') != null")
    end)

    return splash:html()
end





Another way to write such module is to add a method to splash
object. This can be done by adding a method to its Splash
class - the approach is called “open classes” in Ruby or “monkey-patching”
in Python.

-- wait_for.lua

-- Sandbox is not enforced in custom modules, so we can import
-- internal Splash class and change it - add a method.
local Splash = require("splash")

function Splash:wait_for(condition)
    while not condition() do
        self:wait(0.05)
    end
end

-- no need to return anything





Usage:

require("wait_for")

function main(splash)
    splash:go(splash.args.url)

    -- wait until <h1> element is loaded
    splash:wait_for(function()
       return splash:evaljs("document.querySelector('h1') != null")
    end)

    return splash:html()
end





Which style to prefer is up to the developer. Functions are more explicit
and composable, monkey patching enables a more compact code. Either way,
require is explicit.

As seen in a previous example, sandbox restrictions for standard Lua modules
and functions are not applied in custom Lua modules, i.e. you can use
all the Lua powers. This makes it possible to import third-party Lua modules
and implement advanced features, but requires developer to be careful.
For example, let’s use os [http://www.lua.org/manual/5.2/manual.html#6.9]
module:

-- evil.lua
local os = require("os")
local evil = {}

function evil.sleep()
    -- Don't do this! It blocks the event loop and has a startup cost.
    -- splash:wait is there for a reason.
    os.execute("sleep 2")
end

function evil.touch(filename)
    -- another bad idea
    os.execute("touch " .. filename)
end

-- todo: rm -rf /

return evil













          

      

      

    

  

    
      
          
            
  
Splash and Jupyter

Splash provides a custom Jupyter [http://jupyter.org/] (previously known as IPython [http://ipython.org/]) kernel for Lua.
Together with Jupyter notebook [http://ipython.org/notebook.html] frontend it forms an interactive
web-based development environment for Splash Scripts with syntax highlighting,
smart code completion, context-aware help, inline images support and a real
live WebKit browser window with Web Inspector enabled, controllable from
a notebook.


Installation

To install Splash-Jupyter using Docker, run:

$ docker pull scrapinghub/splash-jupyter





Then start the container:

$ docker run -p 8888:8888 -it scrapinghub/splash-jupyter






Note

Without -it flags you won’t be able to stop the container using Ctrl-C.



This command should print something like this:

Copy/paste this URL into your browser when you connect for the first time,
to login with a token:
    http://localhost:8888/?token=e2435ae336d22b23d5e868d03ce728bc33e73b6159e391ba





To view Jupyter, open the suggested location in a browser.
It should display an usual Jupyter Notebook overview page.


Note

In older Docker setups (e.g. with boot2docker [http://boot2docker.io/] on OS X) you may have
to replace ‘localhost’ with the IP address Docker is available on,
e.g. a result of boot2docker ip in case of boot2docker or
docker-machine ip <your machine> in case of docker-machine [https://docs.docker.com/machine/].



Click “New” button and choose “Splash” in the drop-down list - Splash Notebook
should open.

Splash Notebook looks like an IPython notebook or other Jupyter-based
notebooks; it allows to run and develop Splash Lua scripts interactively.
For example, try entering splash:go("you-favorite-website") in a cell,
execute it, then enter splash:png() in the next cell and run it
as well - you should get a screenshot of the website displayed inline.




Persistence

By default, notebooks are stored in a Docker container; they are destroyed
when you restart an image. To persist notebooks you can mount a local folder
to /notebooks. For example, let’s use current folder to store the
notebooks:

$ docker run -v `/bin/pwd`/notebooks:/notebooks -p 8888:8888 -it splash-jupyter








Live Webkit window

To view Live Webkit window with web inspector when Splash-Jupyter is executed
from Docker, you will need to pass additional docker parameters to share the
host system’s X server with the docker container, and use the --disable-xvfb
command line flag:

$ docker run -e DISPLAY=unix$DISPLAY \
             -v /tmp/.X11-unix:/tmp/.X11-unix \
             -v $XAUTHORITY:$XAUTHORITY \
             -e XAUTHORITY=$XAUTHORITY \
             -p 8888:8888 \
             -it scrapinghub/splash-jupyter --disable-xvfb






Note

The command above is tested on Linux.






From Notebook to HTTP API

After you finished developing the script using Splash Notebook,
you may want to convert it to a form suitable for submitting
to Splash HTTP API (see execute and run).

To do that, copy-paste (or download using “File -> Download as -> .lua”)
all relevant code. For run endpoint add return statement to
return the final result:

-- Script code goes here,
-- including all helper functions.
return {...}  -- return the result





For execute add return statement and put the code
inside function main(splash):

function main(splash)
    -- Script code goes here,
    -- including all helper functions.
    return {...}  -- return the result
end





To make the script more generic you can use splash.args instead of
hardcoded constants (e.g. for page urls). Also, consider submitting several
requests with different arguments instead of running a loop in a script
if you need to visit and process several pages - it is an easy way
to parallelize the work.

There are some gotchas:


	When you run a notebook cell and then run another notebook cell there
is a delay between runs; the effect is similar to inserting
splash:wait calls at the beginning of each cell.


	Regardless of sandbox settings, scripts in Jupyter
notebook are not sandboxed. Usually it is not a problem,
but some functions may be unavailable in HTTP API if sandbox is enabled.










          

      

      

    

  

    
      
          
            
  
FAQ


How to send requests to Splash HTTP API?

The recommended way is to use application/json POST requests,
because this way you can preserve data types, and there is no limit on
request size.


Python, using requests library

requests [http://docs.python-requests.org/en/master/] library is a popular way to send HTTP requests in Python.
It provides a shortcut for sending JSON POST requests. Let’s send
a simple Lua script to run endpoint:

import requests

script = """
splash:go(args.url)
return splash:png()
"""
resp = requests.post('http://localhost:8050/run', json={
    'lua_source': script,
    'url': 'http://example.com'
})
png_data = resp.content








Python + Scrapy

Scrapy [https://scrapy.org/] is a popular web crawling and scraping framework.
For Scrapy [https://scrapy.org/] + Splash integration use scrapy-splash [https://github.com/scrapy-plugins/scrapy-splash] library.




R language

There is a third-party library which makes it easy to use Splash
in R language: https://github.com/hrbrmstr/splashr




curl

curl --header "Content-Type: application/json" \
     -X POST \
     --data '{"url":"http://example.com","wait":1.0}' \
     'http://localhost:8050/render.html'








httpie

httpie [https://httpie.org] is a command-line utility for sending HTTP requests; it has a nice
API for sending for JSON POST requests:

http POST localhost:8050/render.png url=http://example.com width=200 > img.png








HTML

You can embed Splash results directly in HTML pages. This is not the best,
as you’ll be rendering the website each time this HTML page is opened.
But still, you can do this:

<img src="http://splash-url:8050/render.jpeg?url=http://example.com&width=300"/>










I’m getting lots of 504 Timeout errors, please help!

HTTP 504 error means a request to Splash took more than
timeout seconds to complete (30s by default) - Splash
aborts script execution after the timeout. To override the timeout value
pass ‘timeout’ argument to the Splash endpoint
you’re using.

Note that the maximum allowed timeout value is limited by the maximum
timeout setting, which is by default 60 seconds. In other words,
by default you can’t pass ?timeout=300 to run a long script - an
error will be returned.

Maximum allowed timeout can be increased by passing --max-timeout
option to Splash server on startup (see Passing Custom Options):

$ docker run -it -p 8050:8050 scrapinghub/splash --max-timeout 3600





If you’ve installed Splash without Docker, use

$ python3 -m splash.server --max-timeout 3600





The next question is why a request can need 10 minutes to render.
There are 3 common reasons:


1. Slow website

A website can be really slow, or it can try to get some remote
resources which are really slow.

There is no way around increasing timeouts and reducing request rate
if the website itself is slow. However, often the problem lays in unreliable
remote resources like third-party trackers or advertisments. By default
Splash waits for all remote resources to load, but in most cases it is
better not to wait for them forever.

To abort resource loading after a timeout and give the whole page a chance to
render use resource timeouts. For render.*** endpoints use
‘resource_timeout’ argument;
for execute or run use either splash.resource_timeout or
request:set_timeout (see splash:on_request).

It is a good practive to always set resource_timeout; something similar to
resource_timeout=20 often works well.




2. Splash Lua script does too many things

When a script fetches many pages or uses large delays then timeouts
are inevitable. Sometimes you have to run such scripts; in this case increase
--max-timeout Splash option and use larger timeout
values.

But before increasing the timeouts consider splitting your script
into smaller steps and sending them to Splash individually.
For example, if you need to fetch 100 websites, don’t write a Splash Lua
script which takes a list of 100 URLs and fetches them - write a Splash Lua
script that takes 1 URL and fetches it, and send 100 requests to Splash.
This approach has a number of benefits: it makes scripts more simple and
robust and enables parallel processing.




3. Splash instance is overloaded

When Splash is overloaded it may start producing 504 errors.

Splash renders requests in parallel, but it doesn’t render them all
at the same time - concurrency is limited to a value set at startup
using --slots option. When all slots are used a request is put into
a queue. The thing is that a timeout starts to tick once Splash receives
a request, not when Splash starts to render it. If a request stays in an
internal queue for a long time it can timeout even if a website is fast
and splash is capable of rendering the website.

To increase rendering speed and fix an issue with a queue it is recommended
to start several Splash instances and use a load balancer capable of
maintaining its own request queue. HAProxy [http://www.haproxy.org/] has all necessary features;
check an example config
here [https://github.com/scrapinghub/splash/blob/master/splash/examples/splash-haproxy.conf].
A shared request queue in a load balancer also helps with reliability:
you won’t be loosing requests if a Splash instance needs to be restarted.


Note

Nginx [https://www.nginx.com/] (which is another popular load balancer) provides an
internal queue only in its commercial version, Nginx Plus [https://www.nginx.com/products/].








How to run Splash in production?


Easy Way

If you want to get started quickly take a look at Aquarium [https://github.com/TeamHG-Memex/aquarium]
(which is a Splash setup without many of the pitfalls) or use
a hosted solution like ScrapingHub’s [http://scrapinghub.com/splash/].

Don’t forget to use resource timeous in your client code (see
1. Slow website). It also makes sense to retry a couple of times
if Splash returns 5xx error response.




Hard Way

If you want to create your own production setup, here is a small
non-exhaustive checklist:


	Splash should be daemonized and started on boot;


	in case of failures or segfaults Splash must be restarted;


	memory usage should be limited;


	several Splash instances should be started to use all CPU cores and/or
multiple servers;


	requests queue should be moved to the load balancer to make rendering more
robust (see 3. Splash instance is overloaded).




Of course, it is also good to setup monitoring, configuration management,
etc. - all the usual stuff.

To daemonize Splash, start it on boot and restart on failures
one can use Docker: since Docker 1.2 there are --restart
and -d options which can be used together. Another way to do that is
to use standard tools like upstart, systemd
or supervisor.


Note

Docker --restart option won’t work without -d.



Splash uses an unbound in-memory cache and so it will eventually consume
all RAM. A workaround is to restart the process when it uses too much memory;
there is Splash --maxrss option for that. You can also add Docker
--memory option to the mix.

In production it is a good idea to pin Splash version - instead of
scrapinghub/splash it is usually better to use something like
scrapinghub/splash:2.0.

A command for starting a long-running Splash server which uses
up to 4GB RAM and daemonizes & restarts itself could look like this:

$ docker run -d -p 8050:8050 --memory=4.5G --restart=always scrapinghub/splash:3.1 --maxrss 4000





You also need a load balancer; for example configs check Aquarium [https://github.com/TeamHG-Memex/aquarium] or
an HAProxy config in Splash repository [https://github.com/scrapinghub/splash/blob/master/examples/splash-haproxy.conf].




Ansible Way

Ansible [https://www.ansible.com/] role for Splash is available via third-party project:
https://github.com/nabilm/ansible-splash.






Website is not rendered correctly

Sometimes websites are not rendered correctly by Splash.
Common reasons:


	not enough wait time; solution - wait more (see e.g. splash:wait);


	non-working localStorage in Private Mode. This is a common issue e.g. for
websites based on AngularJS. If rendering doesn’t work, try disabling
Private mode (see How do I disable Private mode?).


	Sometimes content is lazy-loaded, or loaded only in a response for user
actions (e.g. page scrolling). Try increasing viewport size to make
everything visible, and waiting a bit after that
(see splash:set_viewport_full). You may also have to simulate
mouse and keyboard events (see Interacting with a page).


	Missing features in WebKit used by Splash. Splash now uses
https://github.com/annulen/webkit, which is much more recent than WebKit
provided by Qt; we’ll be updating Splash WebKit as annulen’s webkit
develops.


	Qt or WebKit bugs which cause Splash to hang or crash. Often the whole
website works, but some specific .js (or other) file causes problems.
In this case you can try starting splash in verbose mode
(e.g. docker run -it -p8050:8050 scrapinghub/splash -v2),
noting what resources are downloaded last, and filtering them out
using splash:on_request or Request Filters.


	Some of the crashes can be solved by disabling HTML 5 media
(splash.html5_media_enabled property or
html5_media HTTP API argument) - note it is
disabled by default.


	Website may show a different content based on User-Agent header or based
on IP address. Use splash:set_user_agent to change the default
User-Agent header. If you’re running Splash in a cloud and not getting good
results, try reproducing it locally as well, just in case results depend on
IP address.


	Website requires Flash. You can enable it using
splash.plugins_enabled.


	Website requires IndexedDB [https://developer.mozilla.org/en-US/docs/Web/API/IndexedDB_API]. Enable it using splash.indexeddb_enabled.


	If there is no video or other media, use html5_media
Splash HTTP argument or splash.html5_media_enabled property to enable
HTML5 media, or splash.plugins_enabled to enable Flash.


	Website has compatibility issues with Webkit version Splash is using.
A quick (though not precise) way to check it is to try opening a page
in Safari.




If you have troubles making Splash work, consider asking a question
at https://stackoverflow.com. If you think it is a Splash bug,
raise an issue at https://github.com/scrapinghub/splash/issues.




How do I disable Private mode?

With Splash>=2.0, you can disable Private mode (which is “on” by default).
There are two ways to go about it:


	at startup, with the --disable-private-mode argument, e.g., if you’re
using Docker:

$ sudo docker run -it -p 8050:8050 scrapinghub/splash --disable-private-mode







	at runtime when using the /execute endpoint and setting
splash.private_mode_enabled attribute to false




Note that if you disable private mode then browsing data may persist
between requests (cookies are not affected though). If you’re using
Splash in a shared environment it could mean some information about
requests you’re making can be accessible for other Splash users.

You may still want to turn Private mode off because in WebKit localStorage
doesn’t work when Private mode is enabled, and it is not possible
to provide a JavaScript shim for localStorage. So for some websites
(AngularJS websites are common offenders) you may have to turn
Private model off.




Why was Splash created in the first place?

Please refer to this great answer from kmike on reddit. [https://www.reddit.com/r/Python/comments/2xp5mr/handling_javascript_in_scrapy_with_splash/cp2vgd6]




Why are CSS styling and images missing from the .har archive?

Webkit has an in-memory cache (also called page-cache [https://webkit.org/blog/427/webkit-page-cache-i-the-basics/])
and a network cache [http://doc.qt.io/qt-5/qnetworkrequest.html#CacheLoadControl-enum].

If you tell splash to load two pages that share some common resources,
the second page’s .har file will not contain the shared resources because
they were cached through the page cache.

If you want the .har file to contain all the resources for that page,
run splash with the command-line option --disable-browser-caches.




Why does Splash use Lua for scripting, not Python or JavaScript?

Check this GitHub Issue [https://github.com/scrapinghub/splash/issues/117]
for the motivation.




render.html result looks broken in a browser

When you check http://<splash-server>:8050/render.html?url=<url>
in a browser it is likely stylesheets & other resources won’t
load properly. It happens when resource URLs are relative - the browser
will resolve them as relative to
http://<splash-server>:8050/render.html?url=<url>, not to url.
This is not a Splash bug, it is a standard browser behaviour.

If you just want to check how the page looks like after rendering
use render.png or render.jpeg endpoints.
If screenshot is not an option and you want to display html with images,
etc. using a browser then you may post-process the HTML and add
an appropriate <base> [https://developer.mozilla.org/en-US/docs/Web/HTML/Element/base] HTML tag to the page.

baseurl Splash argument can’t help here. It allows
to render a page located at one URL as if it is located at another
URL. For example, you can host a copy of page HTML on your server,
but use baseurl of the original page. This way Splash will resolve
relative URLs as relative to original page URL, so that you can get
e.g. a proper screenshot or execute proper JavaScript code.

But by passing baseurl you’re instructing Splash to use it,
not your browser. It doesn’t change relative links to absolute in DOM,
it makes Splash to treat them as relative to baseurl when rendering.

Changing links to absolute in DOM tree is not what browsers do when
base url is applied - e.g. if you check href attribute using JS code
it will still contain relative value even if <base> tag is used.
render.html returns DOM snapshot, so the links are not changed.

When you load render.html result in a browser it is your browser
who resolves relative links, not Splash, so they are resolved incorrectly.







          

      

      

    

  

    
      
          
            
  
Contributing to Splash

Splash is free & open source.
Development happens at GitHub: https://github.com/scrapinghub/splash


Testing Suite

[image: _images/splash.png]
 [http://travis-ci.org/scrapinghub/splash]The recommended way to execute Splash testing suite is to use a special
testing Docker container.


	First, create a base Splash image named “splash”. If you’re not
customizing Splash dependencies, and your changes are based on Splash
master branch, you can use scrapinghub/splash:master image:

docker pull scrapinghub/splash:master
docker tag scrapinghub/splash:master splash





If you’ve changed Splash dependencies (Python-level or system-level)
then you have to build Splash image from scratch. Run the following
command from the source checkout:

docker build -t splash .





It can take a while (maybe half an hour).
Alternatively, you can temporarily change dockerfiles/tests/Dockerfile
or setup.py to install new dependencies.



	Create a testing Docker image:

docker build -t splash-tests -f dockerfiles/tests/Dockerfile .





Testing Docker image is based on splash docker image, so you need to
have an image called splash - we created such image at step (1).



	Run tests inside this testing image:

docker run -it splash-tests





You can also pass pytest command-line arguments in the command above.
For example, you can select only a subset of tests to execute
(SandboxTest test case in this example):

docker run -it splash-tests -k SandboxTest









If you’ve changed Splash source code and want to re-run tests, repeat steps
(2) and (3). Step (2) should take much less time now.
Repeating step (1) is only necessary if you’re adding new
dependencies to Splash (Python or system-level), or if you want to update
the base Splash image (e.g. after a recent rebase on Splash master).

There is a script in the root of Splash repository
(runtests-docker.sh) which combines steps (2) and (3); you can use it
during development to run tests: change Splash source code or testing source
code, then run ./runtests-docker.sh from source checkout.







          

      

      

    

  

    
      
          
            
  
Implementation Details

This section contains information useful if you want to understand
Splash codebase.



	JavaScript <-> Python <-> Lua intergation









          

      

      

    

  

    
      
          
            
  
JavaScript <-> Python <-> Lua intergation

Lua and JavaScript are not connected directly; they communicate through Python.

Python <-> Lua is handled using lupa library.
splash.qtrender_lua.command() decorator handles most of Python <-> Lua
integration.

Python <-> JavaScript is handled using custom serialization code.
QT host objects are not used (with a few exceptions). Instead of this
JavaScript results are sanitized and processed in Python;
Python results are encoded to JSON and decoded/processed
in JavaScript.


Python -> Lua

Data is converted from Python to Lua in two cases:


	method of an exposed Python object returns a result
(most common example is a method of splash Lua object);


	Python code calls Lua function with arguments - it could be e.g.
an on_request callback.




Conversion rules:


	Basic Python types are converted to Lua: strings -> Lua strings,
lists and dicts -> Lua tables, numbers -> Lua numbers, None -> nil(?).

This is handled using splash.lua_runtime.SplashLuaRuntime.python2lua()
method. For attributes exposed to Lua this method is called manually;
for return results of Python functions / methods it is handled by
splash.qtrender_lua.emits_lua_objects() decorator. Methods decorated
with @command use splash.qtrender_lua.emits_lua_objects internally,
so a Python method decorated with @command decorator may return Python
result in its body, and the final result would be a Lua object.



	If there is a need to expose a custom Python object to Lua then
a subclass of splash.qtrender_lua.BaseExposedObject is used; it is
wrapped to a Lua table using utilities from wraputils.lua.
Lua table exposes whitelisted attributes and methods of the object
using metatable, and disallows access to all other attributes.


	Other than that, there is no automatic conversion. If something is not
converted then it is available for Lua as an opaque userdata object;
access to methods and attributes is disabled by a sandbox.


	To prevent wrapping method may return splash.lua.PyResult instance.







Lua -> Python

Lua -> Python conversion is needed in two cases:


	Lua code calls Python code, passing some arguments;


	Python code calls Lua code and wants a result back.





	Basic Lua types are converted to Python using
splash.lua_runtime.SplashLuaRuntime.lua2python(). For method arguments
lua2python is called by splash.qtrender_lua.decodes_lua_arguments()
decorator; @command decorator uses decodes_lua_arguments internally.


	Python objects which were exposed to Lua (BaseExposedObject subclasses)
are not converted back. By default they raise an error;
with decode_arguments=False they are available as opaque
Lua (lupa) table objects.

splash.qtrender_lua.is_wrapped_exposed_object() can be used to check
if a lupa object is a wrapped BaseExposedObject instance; obj.unwrapped()
method can be used to access the underlying Python object.








JavaScript -> Python

To get results from JavaScript to Python they are converted to primitive
JSON-serializable types first. QtWebKit host objects are not used.
Objects of unknown JavaScript types are discared, max depth of result
is limited.

JavaScript -> Python conversion utilities reside in


	splash.jsutils module - JavaScript side, i.e. sanitizing and encoding;
two main functions are SANITIZE_FUNC_JS and STORE_DOM_ELEMENTS_JS;


	splash.browser_tab.BrowserTab.evaljs() method - Python side,
i.e. decoding of the result.




For most types (objects, arrays, numbers, strings) conversion method
is straightforward; the most tricky case is a reference to DOM nodes.

For top-level DOM nodes (i.e. a result is a DOM node or a NodeList)
a node is stored in a special window attribute, and generated id is returned
to Python instead. All other DOM nodes are discarded - returning a Node
or a NodeList as a part of data structure is not supported at the moment.
STORE_DOM_ELEMENTS_JS processes Node and NodeList objects;
SANITIZE_FUNC_JS sanitizes the result (handles all other data types,
drops unsupported data).

In Python HTMLElement objects are created for DOM nodes; they contain node_id
attribute with id returned by JavaScript; it allows to fetch the real Node
object in JavaScript. This is handled by
splash.browser_tab.BrowserTab.evaljs().




Python -> JavaScript

There are two cases Python objects are converted to JavaScript objects:


	functions created with splash:jsfunc() are called with arguments;


	methods of HtmlElement which wrap JS functions are called with arguments.




The conversion is handled either by splash.html_element.escape_js_args()
or by splash.jsutils.escape_js().


	escape_js just encodes Python data to JSON and removes quotes; the result
can be used as literal representation of argument values, i.e. added to
a JS function call using string formatting.


	escape_js_args is similar to escape_js, but it handles
splash.html_element.HTMLElement instances by replacing them with JS
code to access stored nodes.










          

      

      

    

  

    
      
          
            
  
Changes


3.3 (2019-02-06)

Backwards incompatible:


	--manhole support is dropped for now: it was untested and
not really documented, and it stopped working after software upgrades;


	default --slots value is now 20 instead of 50
(which is still too high for most practical tasks).




New features:


	splash:on_navigation_locked allows to register a function to
be called before a request is discarded when navigation is locked.


	new --disable-browser-caches command-line option allows to disable
browser caching. See Why are CSS styling and images missing from the .har archive? for an use case.


	request_body and splash.request_body_enabled
allow to enable request bodies in HAR output and splash:on_response
callbacks.




Bug fixes:


	fixed crash on pages which call window.prompt, prompts are discarded now;


	fixed response.request.method and response.request.url in
splash:on_response callbacks;


	fixed an edge case with logging causing an exception;


	proper log level is used for “image is trimmed vertically” message.




Other improvements:


	qt5reactor is upgraded to 0.5 - this should slightly reduce idle CPU usage;


	Twisted is upgraded from 16.1.0 to 18.9.0;


	PyQT5 is upgraded from 5.9 to 5.9.2;


	Pillow is upgraded to 5.4.1 - as a side effect, taking large JPEG screenshots
should use slightly less RAM;


	a workaround for JPEG + transparency on a web page is removed, as it seems
to do nothing;


	Splash-Jupyter is updated to latest jupyter (ipykernel==5.1.0,
notebook==5.7.4);


	testing improvements;


	typo fixes and documentation improvements.







3.2 (2018-02-15)

HTML5 media (e.g. <video> tags playback) is disabled by default in this
release, because it was a source of some of Splash crashes. This is
backwards incompatible, as it can affect rendering. If you need old
behavior (it was working on sites you’re crawling), use either
html5_media=1 HTTP API argument
or splash.html5_media_enabled attribute to re-enable HTML5 media.

Other changes:


	html5_media HTTP API argument and
splash.html5_media_enabled attribute allow to enable/disable HTML5
media;


	splash.webgl_enabled attribute allows to enable/disable WebGL;


	splash.media_source_enabled attribute allows to enable/disable
Media Source Extension API;


	--xvbf_screen_size Splash startup argument allows to customize
xvfb screen size (it could be helpful sometimes to have it matching with
a viewport size you’re using in a crawl);


	documentation and test improvements.







3.1 (2018-01-31)


	IndexedDB can be enabled by setting splash.indexeddb_enabled
attribute to true in a Lua script;


	Bengali and Assamese fonts are added to the default Docker image;


	splash:runjs and splash:autoload are fixed for scripts
which end with a line comment (//);


	--ip startup argument allows to set an IP address Splash listens on;


	Documentation and testing improvements.







3.0 (2017-07-06)

WebKit is upgraded in this Splash release - Splash now uses
https://github.com/annulen/webkit instead of official (deprecated
and unsupported) QtWebKit. Splash rendering engine
is now similar to Safari from mid-2016. It fixes a lot of problems
with compatibility, speed and quality of rendering.

Backwards incompatible changes:


	there are rendering changes, as WebKit is upgraded;


	wait argument for render.??? endpoints
no longer increases timeout automatically.
If you increase timeout by wait value requests to render.???
endpoints will work as before. Also, 30s limit (10s prior to Splash 2.3.3)
for wait argument is removed - you can set any wait value, as soon
as it is smaller than timeout.


	Python 2 support is removed. You can still use Python 2 to make requests
to Splash, but Splash server itself now runs on Python 3.4+.


	element:mouse_click and element:mouse_hover
now click/hover element center by default, not element top-left corner.
Also, they scroll to the element being clicked/hovered if needed, to
make it work when an element is outside the current viewport. These methods
are now async; they wait for events to propagate
(unlike splash:mouse_click and splash:mouse_hover).




New features:


	An alternative way to access splash.args: it can be received
as a second argument of main function
(i.e. function main(splash, args) ...);


	new run endpoint is an alternative to execute endpoint; it is
almost the same, but it doesn’t require putting code into
function main(splash, args) ... end;


	new splash.scroll_position attribute allows to get and set
window scroll position;


	Qt is upgraded to 5.9.1, PyQT is upgraded to 5.9;


	official Docker image now uses Ubuntu 16.04.




Other changes and bug fixes:


	default timeout limit (i.e. max allowed value)
is increased from 60s to 90s; default timeout value
is still 30s.


	Lua sandbox: instruction count limit is increased further
(10M instructions instead of 5M)


	new docs section: Splash Lua API Overview;


	new FAQ entries: How to send requests to Splash HTTP API?, Website is not rendered correctly;


	Fixed an issue with splash:runjs: previously in case of an error
it returned a table with error information. This approach didn’t play well
with Lua assert, so now a string with an error message is returned
instead. It was always documented that a string is returned by splash:runjs
as a second value when error happens.


	Fixed element:png and element:jpeg for elements
outside curent viewport;


	DOM attributes and methods are documented as accessible on
elements directly, without .node - i.e.
splash:select('.my-element'):getAttribute('foo') instead of
splash:select('.my-element').node:getAttribute('foo');


	exposed element:scrollIntoViewIfNeeded() method;


	improved validation of headers arguments in splash:go,
splash:set_custom_headers, splash:http_get and
splash:http_post;


	Splash shouldn’t crash if an exception happens while creating a request
in network manager;


	cleanup of JS event handlers is improved;


	documentation and testing improvements.







2.3.3 (2017-06-07)


	WebGL support in default Docker image;


	Maximum value for wait argument in render.??? endpoints
is increased from 10 seconds to 30 seconds;


	Lua sandbox limits (RAM and CPU) are raised;


	documentation and testing improvements.







2.3.2 (2017-03-03)


	security fix: Xvfb shouldn’t listen to tcp.







2.3.1 (2017-01-24)


	Fixed proxy authentication for proxies set using ‘proxy’
HTTP argument;


	minor documentation fixes.







2.3 (2016-12-01)

This release adds lots of scraping helpers to Splash: CSS selectors,
form filling, easy access to HTML node attributes. Scraping helpers were
implemented by Michael Manukyan as a Google Summer of Code 2016 project.

New features:


	splash:select and splash:select_all methods which allow
to execute CSS selectors;


	new Element object which wraps JavaScript DOM
node and allows to interact with it.







2.2.2 (2016-11-10)

This is a bug fix release:


	Splash-Jupyter is fixed;


	fix an issue with non-ascii HTTP status messages;


	upgrade Pillow to 3.4.2.







2.2.1 (2016-10-17)

This is a bug fix release:


	fix Splash UI in Chrome when serving from localhost;


	upgrade adblockparser to 0.7 to support recent easylist filters;


	upgrade Pillow to 3.3.3.







2.2 (2016-09-10)

New features:


	new splash:send_keys and splash:send_text methods allow to
send native keyboard events to browser;


	new splash:with_timeout method allows to limit execution time of
blocks of code;


	new splash.plugins_enabled attribute which allows to enable Flash;
Flash is now available in Docker image, but it is still disabled by default.


	new splash.response_body_enabled attribute,
request:enable_response_body method and
response_body argument allows to access
and export response bodies.




Bug fixes:


	fixed handling of splash:call_later, splash:on_request,
splash:on_response and splash:on_response_headers
callback arguments;


	fixed cleanup of various callbacks;


	fixed save_args in Python 2.x;




Other changes:


	internal cleanup of Lua <-> Python interaction;


	Pillow library is updated in Docker image;


	HarViewer is upgraded to a recent version.







2.1 (2016-04-20)

New features:


	‘region’ argument for splash:png and splash:jpeg methods
allow to take screenshots of parts of pages;


	save_args and load_args
parameters allow to save network traffic by caching large request arguments
inside Splash server;


	new splash:mouse_click, splash:mouse_press,
splash:mouse_release and splash:mouse_hover methods for sending
mouse events to web pages.




Bug fixes:


	User-Agent is set correctly for requests with baseurl;


	“download” links in Splash UI are fixed;


	an issue with ad blockers preventing Splash UI to work is fixed.







2.0.3 (2016-03-04)

This is a bugfix release:


	Splash Notebook is fixed to work with recent ipykernel versions;


	segfaults in adblock middleware are fixed;


	adblock parsing issues are fixed by upgrading adblockparser to v0.5;


	fixed handling of adblock rules with ‘domain’ option: domain is now
extracted from the page URL, not necessarily from ‘url’ Splash argument.







2.0.2 (2016-02-26)

This is a bugfix release:


	an issue which may cause segfaults is fixed.







2.0.1 (2016-02-25)

This is a bugfix release:


	XSS in HTTP UI is fixed;


	Splash-Jupyter docker image is fixed.







2.0 (2016-02-21)

Splash 2.0 uses Qt 5.5.1 instead of Qt 4; it means the rendering
engine now supports more HTML5 features and is more modern overall.
Also, the official Docker image now uses Python 3 instead of Python 2.
This work is largely done by Tarashish Mishra as a Google Summer of Code 2015
project.

Splash 2.0 release introduces other cool new features:


	many Splash HTTP UI improvements;


	better support for binary data;


	built-in json and base64 libraries;


	more control for result serialization
(support for JSON arrays and raw bytes);


	it is now possible to turn Private mode OFF at startup using command-line
option or at runtime using splash.private_mode_enabled attribute;


	_ping endpoint is added;


	cookie handling is fixed;


	downloader efficiency is improved;


	request processing is stopped when client disconnects;


	logging inside callbacks now uses proper verbosity;


	sandbox memory limit for user objects is increased to 50MB;


	some sandboxing issues are fixed;


	splash:evaljs and splash:jsfunc results are sanitized better;


	it is possible to pass arguments when starting Splash-Jupyter - it means
now you can get a browser window for splash-jupyter when it is executed
from docker;


	proxy authentication is fixed;


	logging improvements: logs now contain request arguments in JSON format;
errors are logged;




There are backwards-incompatible changes
to Splash Scripting: previously, different
Splash methods were returning/receiving inconsistent
response and request objects. For example, splash:http_get response was
not in the same format as response received by splash:on_response
callbacks. Splash 2.0 uses Request and
Response objects consistently.
Unfortunately this requires changes to existing user scripts:


	replace resp = splash:http_get(...) and resp = splash:http_post(...)
with resp = splash:http_get(...).info and
resp = splash:http_post(...).info. Client code also may need to be
changed: the default encoding of info['content']['text'] is now base64.
If you used resp.content.text consider switching to
response.body.


	response object received by splash:on_response_headers and
splash:on_response callbacks is changed: instead of
response.request write response.request.info.




Serialization of JS objects in splash:jsfunc, splash:evaljs
and splash:wait_for_resume is changed: circular objects are
no longer returned, Splash doesn’t try to serialize DOM elements, and error
messages are changed.

Splash no longer supports QT-based disk cache; it was disable by default
and it usage was discouraged since Splash 1.0, in Splash 2.0 --cache
command-line option is removed. For HTTP cache there are better options like
Squid [http://www.squid-cache.org/].

Another backwards-incompatible change is that Splash-as-a-proxy feature
is removed. Please use regular HTTP API instead of this proxy interface.
Of course, Splash will still support using proxies to make requests,
these are two different features.




1.8 (2015-09-29)

New features:


	POST requests support: http_method and
body arguments for render endpoints;
new splash:go arguments: body, http_method and formdata;
new splash:http_post method.


	Errors are now returned in JSON format; error mesages became more detailed;
Splash UI now displays detailed error information.


	new splash:call_later method which allows to schedule tasks in future;


	new splash:on_response method allows to register a callback to be
executed after each response;


	proxy can now be set directly, without using proxy profiles - there is a new
proxy argument for render endpoints;


	more detailed splash:go errors: a new “render_error” error type can
be reported;


	new splash:set_result_status_code method;


	new splash.resource_timeout attribute as a shortcut for
request:set_timeout in splash:on_request;


	new splash:get_version method;


	new splash:autoload_reset, splash:on_response_reset,
splash:on_request_reset, splash:on_response_headers_reset,
splash:har_reset methods and a new reset=true argument for
splash:har. They are most useful with Splash-Jupyter.




Bug fixes and improvements:


	fixed an issue: proxies were not applied for POST requests;


	improved argument validation for various methods;


	more detailed logs;


	it is now possible to load a combatibility shim for window.localStorage;


	code coverage integration;


	improved Splash-Jupyter tests;


	Splash-Jupyter is upgraded to Jupyter 4.0.







1.7 (2015-08-06)

New features:


	render.jpeg endpoint and splash:jpeg function allow to take
screenshots in JPEG format;


	splash:on_response_headers Lua function and
allowed_content_types /
forbidden_content_types HTTP arguments
allow to discard responses earlier based on their headers;


	splash.images_enabled attribute to enable/disable images from
Lua scripts;


	splash.js_enabled attribute to enable/disable JS processing from
Lua scripts;


	splash:set_result_header method for setting custom HTTP headers
returned to Splash clients;


	resource_timeout argument for setting network
request timeouts in render endpoints;


	request:set_timeout(timeout) method (ses splash:on_request)
for setting request timeouts from Lua scripts;


	SOCKS5 proxy support: new ‘type’ argument
in proxy profile config files
and request:set_proxy method (ses splash:on_request)


	enabled HTTPS proxying;




Other changes:


	HTTP error detection is improved;


	MS fonts are added to the Docker image for better rendering quality;


	Chinese fonts are added to the Docker image to enable rendering of Chinese
websites;


	validation of timeout and wait arguments is improved;


	documentation: grammar is fixed in the tutorial;


	assorted documentation improvements and code cleanups;


	splash:set_images_enabled method is deprecated.







1.6 (2015-05-15)

The main new feature in Splash 1.6 is splash:on_request function
which allows to process individual outgoing requests: log, abort,
change them.

Other improvements:


	a new _gc endpoint which allows to clear QWebKit caches;


	Docker images are updated with more recent package versions;


	HTTP arguments validation is improved;


	serving Splash UI under HTTPS is fixed.


	documentation improvements and typo fixes.







1.5 (2015-03-03)

In this release we introduce Splash-Jupyter - a
web-based IDE for Splash Lua scripts with syntax highlighting, autocompletion
and a connected live browser window. It is implemented as a kernel for
Jupyter (IPython).

Docker images for Splash 1.5 are optimized - download size is much smaller
than in previous releases.

Other changes:


	splash:go() returned incorrect result after an
unsuccessful splash:go() call - this is fixed;


	Lua main function can now return multiple results;


	there are testing improvements and internal cleanups.







1.4 (2015-02-10)

This release provides faster and more robust screenshot rendering,
many improvements in Splash scripting engine and other improvements
like better cookie handling.

From version 1.4 Splash requires Pillow (built with PNG support) to work.

There are backwards-incompatible changes in Splash scripts:


	splash:set_viewport() is split into
splash:set_viewport_size()
and splash:set_viewport_full();


	old splash:runjs() method is renamed to splash:evaljs();


	new splash:runjs method just runs JavaScript code
without returning the result of the last JS statement.




To upgrade check all splash:runjs() usages: if the returned result is used
then replace splash:runjs() with splash:evaljs().

viewport=full argument is deprecated; use render_all=1.

New scripting features:


	it is now possible to write custom Lua plugins stored server-side;


	a restricted version of Lua require is enabled in sandbox;


	splash:autoload() method for setting JS to load
on each request;


	splash:wait_for_resume() method for
interacting with async JS code;


	splash:lock_navigation() and
splash:unlock_navigation() methods;


	splash:set_viewport() is split into
splash:set_viewport_size()
and splash:set_viewport_full();


	splash:get_viewport_size() method;


	splash:http_get() method for sending HTTP GET
requests without loading result to the browser;


	splash:set_content() method for setting
page content from a string;


	splash:get_cookies(),
splash:add_cookie(),
splash:clear_cookies(),
splash:delete_cookies() and
splash:init_cookies() methods for working
with cookies;


	splash:set_user_agent() method for
setting User-Agent header;


	splash:set_custom_headers() method for
setting other HTTP headers;


	splash:url() method for getting current URL;


	splash:go() now accepts headers argument;


	splash:evaljs() method, which is a
splash:runjs() from Splash v1.3.1 with improved error handling
(it raises an error in case of JavaScript exceptions);


	splash:runjs() method no longer returns the result
of last computation;


	splash:runjs() method handles JavaScript errors
by returning ok, error pair;


	splash:get_perf_stats() method for
getting Splash resource usage.




Other improvements:


	–max-timeout option can be passed to Splash at startup to increase or
decrease maximum allowed timeout value;


	cookies are no longer shared between requests;


	PNG rendering becomes more efficient: less CPU is spent on compression.
The downside is that the returned PNG images become 10-15% larger;


	there is an option (scale_method=vector) to resize images
while painting to avoid pixel-based resize step - it can make taking
a screenshot much faster on image-light webpages (up to several times faster);


	when ‘height’ is set and image is downscaled the rendering is more efficient
because Splash now avoids rendering unnecessary parts;


	/debug endpoint tracks more objects;


	testing setup improvements;


	application/json POST requests handle invalid JSON better;


	undocumented splash:go_and_wait() and splash:_wait_restart_on_redirects()
methods are removed (they are moved to tests);


	Lua sandbox is cleaned up;


	long log messages from Lua are truncated in logs;


	more detailed error info is logged;


	example script in Splash UI is simplified;


	stress tests now include PNG rendering benchmark.




Bug fixes:


	default viewport size and window geometry are now set to 1024x768;
this fixes PNG screenshots with viewport=full;


	PNG rendering is fixed for huge viewports;


	splash:go() argument validation is improved;


	timer is properly deleted when an exception is raised in an errback;


	redirects handling for baseurl requests is fixed;


	reply is deleted only once when baseurl is used.







1.3.1 (2014-12-13)

This release fixes packaging issues with Splash 1.3.




1.3 (2014-12-04)

This release introduces an experimental
scripting support.

Other changes:


	manhole is disabled by default in Debian package;


	more objects are tracked in /debug endpoint;


	“history” in render.json now includes “queryString” keys; it makes the
output compatible with HAR entry format;


	logging improvements;


	improved timer cancellation.







1.2.1 (2014-10-16)


	Dockerfile base image is downgraded to Ubuntu 12.04 to fix random crashes;


	Debian/buildbot config is fixed to make Splash UI available when deployed
from deb;


	Qt / PyQt / sip / WebKit / Twisted version numbers are logged at startup.







1.2 (2014-10-14)


	All Splash rendering endpoints now accept Content-Type: application/json
POST requests with JSON-encoded rendering options as an alternative to using
GET parameters;


	headers parameter allows to set HTTP headers (including user-agent)
for all endpoints - previously it was possible only in proxy mode;


	js_source parameter allows to execute JS in page context without
application/javascript POST requests;


	testing suite is switched to pytest, test running can now be parallelized;


	viewport size changes are logged;


	/debug endpoint provides leak info for more classes;


	Content-Type header parsing is less strict;


	documentation improvements;


	various internal code cleanups.







1.1 (2014-10-10)


	An UI is added - it allows to quickly check Splash features.


	Splash can now return requests/responses information in HAR [http://www.softwareishard.com/blog/har-12-spec/] format. See
render.har endpoint and har argument of render.json
endpoint. A simpler history argument is also available.
With HAR support it is possible to get timings for various events,
HTTP status code of the responses, HTTP headers, redirect chains, etc.


	Processing of related resources is stopped earlier and more robustly
in case of timeouts.


	wait parameter changed its meaning: waiting now restarts
after each redirect.


	Dockerfile is improved: image is updated to Ubuntu 14.04;
logs are shown immediately; it becomes possible to pass additional
options to Splash and customize proxy/js/filter profiles; adblock filters
are supported in Docker; versions of Python dependencies are pinned;
Splash is started directly (without supervisord).


	Splash now tries to start Xvfb automatically - no need for xvfb-run.
This feature requires xvfbwrapper Python package to be installed.


	Debian package improvements: Xvfb viewport matches default Splash viewport,
it is possible to change Splash option using SPLASH_OPTS environment variable.


	Documentation is improved: finally, there are some install instructions.


	Logging: verbosity level of several logging events are changed;
data-uris are truncated in logs.


	Various cleanups and testing improvements.







1.0 (2014-07-28)

Initial release.







          

      

      

    

  

    
      
          
            

Index



 




          

      

      

    

  _static/up.png





_images/splash.png
“build passing





_static/ajax-loader.gif





_static/comment-bright.png





_static/comment-close.png





nav.xhtml

    
      Table of Contents


      
        		
          Splash - A javascript rendering service
        


        		
          Installation
          
            		
              Linux + Docker
            


            		
              OS X + Docker
            


            		
              Ubuntu 16.04 (manual way)
              
                		
                  Required Python packages
                


              


            


            		
              Splash Versions
            


            		
              Customizing Dockerized Splash
              
                		
                  Passing Custom Options
                


                		
                  Folders Sharing
                


                		
                  Building Local Docker Images
                


              


            


          


        


        		
          Splash HTTP API
          
            		
              render.html
              
                		
                  Examples
                


              


            


            		
              render.png
              
                		
                  Examples
                


              


            


            		
              render.jpeg
              
                		
                  Examples
                


              


            


            		
              render.har
            


            		
              render.json
              
                		
                  Examples
                


              


            


            		
              execute
            


            		
              run
            


            		
              Executing custom Javascript code within page context
              
                		
                  Javascript Profiles
                


                		
                  Javascript Security
                


              


            


            		
              Request Filters
            


            		
              Proxy Profiles
            


            		
              Other Endpoints
              
                		
                  _gc
                


                		
                  _debug
                


                		
                  _ping
                


              


            


          


        


        		
          Splash Scripts Tutorial
          
            		
              Intro
            


            		
              Entry Point: the “main” Function
            


            		
              Where Are My Callbacks?
            


            		
              Living Without Callbacks
            


            		
              Calling Splash Methods
            


            		
              Error Handling
            


            		
              Sandbox
            


            		
              Timeouts
            


          


        


        		
          Splash Lua API Overview
          
            		
              Script as an HTTP API endpoint
            


            		
              Navigation
            


            		
              Delays
            


            		
              Extracting information from a page
            


            		
              Screenshots
            


            		
              Interacting with a page
            


            		
              Making HTTP requests
            


            		
              Inspecting network traffic
            


            		
              Browsing Options
            


          


        


        		
          Splash Scripts Reference
          
            		
              Attributes
              
                		
                  splash.args
                


                		
                  splash.js_enabled
                


                		
                  splash.private_mode_enabled
                


                		
                  splash.resource_timeout
                


                		
                  splash.images_enabled
                


                		
                  splash.plugins_enabled
                


                		
                  splash.request_body_enabled
                


                		
                  splash.response_body_enabled
                


                		
                  splash.scroll_position
                


                		
                  splash.indexeddb_enabled
                


                		
                  splash.webgl_enabled
                


                		
                  splash.html5_media_enabled
                


                		
                  splash.media_source_enabled
                


              


            


            		
              Methods
              
                		
                  splash:go
                


                		
                  splash:wait
                


                		
                  splash:jsfunc
                


                		
                  splash:evaljs
                


                		
                  splash:runjs
                


                		
                  splash:wait_for_resume
                


                		
                  splash:autoload
                


                		
                  splash:autoload_reset
                


                		
                  splash:call_later
                


                		
                  splash:http_get
                


                		
                  splash:http_post
                


                		
                  splash:set_content
                


                		
                  splash:html
                


                		
                  splash:png
                


                		
                  splash:jpeg
                


                		
                  splash:har
                


                		
                  splash:har_reset
                


                		
                  splash:history
                


                		
                  splash:url
                


                		
                  splash:get_cookies
                


                		
                  splash:add_cookie
                


                		
                  splash:init_cookies
                


                		
                  splash:clear_cookies
                


                		
                  splash:delete_cookies
                


                		
                  splash:lock_navigation
                


                		
                  splash:unlock_navigation
                


                		
                  splash:set_result_status_code
                


                		
                  splash:set_result_content_type
                


                		
                  splash:set_result_header
                


                		
                  splash:get_viewport_size
                


                		
                  splash:set_viewport_size
                


                		
                  splash:set_viewport_full
                


                		
                  splash:set_user_agent
                


                		
                  splash:set_custom_headers
                


                		
                  splash:get_perf_stats
                


                		
                  splash:on_request
                


                		
                  splash:on_response_headers
                


                		
                  splash:on_response
                


                		
                  splash:on_request_reset
                


                		
                  splash:on_response_headers_reset
                


                		
                  splash:on_response_reset
                


                		
                  splash:get_version
                


                		
                  splash:mouse_click
                


                		
                  splash:mouse_hover
                


                		
                  splash:mouse_press
                


                		
                  splash:mouse_release
                


                		
                  splash:with_timeout
                


                		
                  splash:send_keys
                


                		
                  splash:send_text
                


                		
                  splash:select
                


                		
                  splash:select_all
                


                		
                  splash:on_navigation_locked
                


                		
                  splash:on_navigation_locked_reset
                


              


            


          


        


        		
          Response Object
          
            		
              response.url
            


            		
              response.status
            


            		
              response.ok
            


            		
              response.headers
            


            		
              response.info
            


            		
              response.body
            


            		
              response.request
            


            		
              response:abort
            


          


        


        		
          Request Object
          
            		
              Attributes
              
                		
                  request.url
                


                		
                  request.method
                


                		
                  request.headers
                


                		
                  request.info
                


              


            


            		
              Methods
              
                		
                  request:abort
                


                		
                  request:enable_response_body
                


                		
                  request:set_url
                


                		
                  request:set_proxy
                


                		
                  request:set_timeout
                


                		
                  request:set_header
                


              


            


          


        


        		
          Element Object
          
            		
              Methods
              
                		
                  element:mouse_click
                


                		
                  element:mouse_hover
                


                		
                  element:styles
                


                		
                  element:bounds
                


                		
                  element:png
                


                		
                  element:jpeg
                


                		
                  element:visible
                


                		
                  element:focused
                


                		
                  element:text
                


                		
                  element:info
                


                		
                  element:field_value
                


                		
                  element:form_values
                


                		
                  element:fill
                


                		
                  element:send_keys
                


                		
                  element:send_text
                


                		
                  element:submit
                


                		
                  element:exists
                


              


            


            		
              DOM Methods
              
                		
                  Usage
                


                		
                  Supported DOM methods
                


              


            


            		
              Attributes
              
                		
                  element.node
                


                		
                  element.inner_id
                


              


            


            		
              DOM Attributes
              
                		
                  Usage
                


                		
                  Supported DOM attributes
                


              


            


          


        


        		
          Working with Binary Data
          
            		
              Motivation
            


            		
              Binary Objects
            


          


        


        		
          Available Lua Libraries
          
            		
              Standard Library
            


            		
              json
              
                		
                  json.encode
                


                		
                  json.decode
                


              


            


            		
              base64
              
                		
                  base64.encode
                


                		
                  base64.decode
                


              


            


            		
              treat
              
                		
                  treat.as_binary
                


                		
                  treat.as_string
                


                		
                  treat.as_array
                


              


            


            		
              Adding Your Own Modules
              
                		
                  Setting Up
                


                		
                  Writing Modules
                


              


            


          


        


        		
          Splash and Jupyter
          
            		
              Installation
            


            		
              Persistence
            


            		
              Live Webkit window
            


            		
              From Notebook to HTTP API
            


          


        


        		
          FAQ
          
            		
              How to send requests to Splash HTTP API?
              
                		
                  Python, using requests library
                


                		
                  Python + Scrapy
                


                		
                  R language
                


                		
                  curl
                


                		
                  httpie
                


                		
                  HTML
                


              


            


            		
              I’m getting lots of 504 Timeout errors, please help!
              
                		
                  1. Slow website
                


                		
                  2. Splash Lua script does too many things
                


                		
                  3. Splash instance is overloaded
                


              


            


            		
              How to run Splash in production?
              
                		
                  Easy Way
                


                		
                  Hard Way
                


                		
                  Ansible Way
                


              


            


            		
              Website is not rendered correctly
            


            		
              How do I disable Private mode?
            


            		
              Why was Splash created in the first place?
            


            		
              Why are CSS styling and images missing from the .har archive?
            


            		
              Why does Splash use Lua for scripting, not Python or JavaScript?
            


            		
              render.html result looks broken in a browser
            


          


        


        		
          Contributing to Splash
          
            		
              Testing Suite
            


          


        


        		
          Implementation Details
          
            		
              JavaScript <-> Python <-> Lua intergation
              
                		
                  Python -> Lua
                


                		
                  Lua -> Python
                


                		
                  JavaScript -> Python
                


                		
                  Python -> JavaScript
                


              


            


          


        


        		
          Changes
          
            		
              3.3 (2019-02-06)
            


            		
              3.2 (2018-02-15)
            


            		
              3.1 (2018-01-31)
            


            		
              3.0 (2017-07-06)
            


            		
              2.3.3 (2017-06-07)
            


            		
              2.3.2 (2017-03-03)
            


            		
              2.3.1 (2017-01-24)
            


            		
              2.3 (2016-12-01)
            


            		
              2.2.2 (2016-11-10)
            


            		
              2.2.1 (2016-10-17)
            


            		
              2.2 (2016-09-10)
            


            		
              2.1 (2016-04-20)
            


            		
              2.0.3 (2016-03-04)
            


            		
              2.0.2 (2016-02-26)
            


            		
              2.0.1 (2016-02-25)
            


            		
              2.0 (2016-02-21)
            


            		
              1.8 (2015-09-29)
            


            		
              1.7 (2015-08-06)
            


            		
              1.6 (2015-05-15)
            


            		
              1.5 (2015-03-03)
            


            		
              1.4 (2015-02-10)
            


            		
              1.3.1 (2014-12-13)
            


            		
              1.3 (2014-12-04)
            


            		
              1.2.1 (2014-10-16)
            


            		
              1.2 (2014-10-14)
            


            		
              1.1 (2014-10-10)
            


            		
              1.0 (2014-07-28)
            


          


        


      


    
  

_static/down.png





_static/comment.png





_static/down-pressed.png





_static/plus.png





_static/file.png





_static/minus.png





_static/up-pressed.png





