
spindle Documentation
Release 2.0.0

Jorge Ortiz, Jason Liszka

November 13, 2014

Contents

1 Thrift 3
1.1 Data model . 3
1.2 Interface definition language (IDL) . 4
1.3 Serialization formats . 4

2 Records 5
2.1 Creating a record . 5
2.2 Reading/writing records . 6
2.3 Record interface methods . 6
2.4 Other methods . 7
2.5 Mutable trait . 7
2.6 Raw class . 7
2.7 Priming . 7
2.8 Proxies . 8
2.9 Reflection . 8
2.10 Field descriptors . 8

3 Custom types 9
3.1 Enhanced types . 9
3.2 Bitfields . 9
3.3 Type-safe IDs . 10

4 Enums 13
4.1 Enum value methods . 13
4.2 Companion object methods . 13
4.3 Matching and unknown values . 14
4.4 Examples . 14

5 Working with MongoDB 15
5.1 Annotations . 15
5.2 Rogue queries . 15

6 Indices and tables 17

i

ii

spindle Documentation, Release 2.0.0

Spindle is a library and code generation tool developed at Foursquare for representing data stored in MongoDB. It’s
based heavily on Apache Thrift, so understanding some Thrift fundamentals is important. However, most of Spindle
is custom Scala code generation developed to work with Thrift models.

Contents:

Contents 1

spindle Documentation, Release 2.0.0

2 Contents

CHAPTER 1

Thrift

Thrift is a framework that allows you to define serializable datatypes in a language-independent manner. These
datatypes are described in .thrift files which conform to the Thrift Interface Description Language (IDL). The stan-
dard Thrift compiler will read Thrift IDLs and generate code for many different languages: Java, Python, JavaScript,
C++, etc. We’ve built a custom Thrift compiler (documented here) which generates Scala code.

1.1 Data model

Thrift’s data model has the following base types:

• bool - true/false boolean value (Java’s boolean)

• byte - 8-bit signed integer (Java’s byte)

• i16 - 16-bit signed integer (Java’s short)

• i32 - 32-bit signed integer (Java’s int)

• i64 - 64-bit signed integer (Java’s long)

• double - 64 bit IEEE 754 double precision floating point number (Java’s double)

• string - UTF-8 encoded text string (Java’s string)

• binary - sequence of unencoded bytes (Java’s Array[Byte] or ByteBuffer)

Thrift’s data model includes an enum type (equivalent to Java’s enum). On the wire, enums are represented as 32-bit
integers.

Thrift’s data model also has the following parametrized container types. The parameters <a> and can be primi-
tives, enums, or structs.

• list<a> - ordered list of elements (Java’s List<A>)

• set<a> - unordered list of unique elements (Java’s Set<A>)

• map<a, b> - a map of unique keys to values (Java’s Map<A, B>). Warning: non-string map keys will
fail at runtime if you try to use TBSONObjectProtocol.

Thrift includes three “class” types:

• struct - numbered fields, with a type and an optional default value

• union - tagged union types

• exception - like structs, but can be used in the “throws” clause of a service

3

spindle Documentation, Release 2.0.0

Finally, Thrift allows you to define constants and typedefs. A constant is a value of any Thrift type. A typedef is an
alias of any Thrift type.

1.2 Interface definition language (IDL)

Thrift data structures are described in .thrift files which conform to the Thrift IDL grammar. You can see the
Thrift Tutorial for an example, or reference the formal grammar.

1.3 Serialization formats

There are four serialization formats we use:

• TBinaryProtocol - The original binary encoding included with Thrift. It is not well-documented, but is
fairly simple. Field names are ommitted (only integer field identifiers are used), types are encoded as byte
identifiers, sizes are prepended as integers.

• TCompactProtocol - A more compact binary encoding. Also not well-documented, but somewhat described
here

• TReadableJSONProtocol - Reads and writes human-readable JSON. Unlike TJSONProtocol, ituses
actual field names for keys, rather than field identifiers. If the field has a wire_name annotation, will use that
instead of the name. Includes special handling for ObjectId.

• TBSONObjectProtocol - Reads and writes BSON DBObjects. It uses field names for keys. If the field
has a wire_name annotation, will use that instead of the name. Includes special handling for ObjectId and
DateTime.

4 Chapter 1. Thrift

http://wiki.apache.org/thrift/Tutorial
http://thrift.apache.org/docs/idl
http://wiki.apache.org/thrift/New_compact_binary_protocol

CHAPTER 2

Records

2.1 Creating a record

There are three ways to create a Record.

2.1.1 1. apply method

The easiest way to create a Record is to use the companion object’s apply method. This method only works if you
know the value of all of the Record’s fields, even optional fields. This is useful for structs that have a small, usually
fixed number of fields. (Note that if you add another field to your struct, any existing calls to apply will fail due to
insufficient arguments.)

Example (Thrift file):

struct LatLong {
1: optional double lat
2: optional double long

}

Example (Scala file):

val ll = LatLong(40.65, -73.78)

2.1.2 2. Builder

If you need to omit optional fields, or if you want to pass around a partially-constructed Record before you know all its
fields, you will want to use a Builder. Builders are created using the newBuilder method on a Record’s companion
object. Fields on the builder are set using methods with the same name as the field. Field setter methods can be passed
either a value or an Option value. To finish constructing a Builder, call result or resultMutable (returns
a Record that conforms to the Mutable trait). Builders enforce that all required fields are set before result can be
called.

Example:

val v = (Venue
.newBuilder
.id(new ObjectId())
.venuename(Some("Foursquare HQ"))
.likeCount(None)
.result())

5

spindle Documentation, Release 2.0.0

2.1.3 3. Raw

If for whatever reason a Builder is not flexible enough to do what you want, you can always instantiate a Raw class.
You can use the createRawRecord method on the Record’s companion object or you can call new directly on the
Record’s Raw class. This is unsafe, as it will not verify that required fields are set and can seriously corrupt data.
Make sure you know what you’re doing before you use Raw constructors.

2.2 Reading/writing records

All records have read and write methods that take one argument: a TProtocol. We use a number of protocols,
depending on the serialization format you want to read from or write to. See the section on Serialization formats.
Each protocol has a particular way in which it’s constructed. Refer to the documentation for each protocol on how to
use them. If you’re reading in a record, it’s acceptable to use the createRawRecord method on the MetaRecord
companion object to instantiate a record that you can call read on.

2.3 Record interface methods

Every record has a trait of the same name that defines a mostly immutable interface to that record (the exception being
some mutable methods for priming foreign keys). Methods that modify the record are generally only available as part
of the Mutable trait.

2.3.1 Field access

The record’s trait has a bunch of methods for field access. Not all of them are always available. Given a field named
foo, the following field access methods may be available:

• foo - Returns the value of the field. Only available if a default is available (in which case it aliases
fooOrDefault), or if the field is required (in which case it aliases fooOrThrow).

• fooOption‘ - Returns an ‘‘Option with the value of the field, or None if the field is not set. Al-
ways available.

• fooOrDefault - Returns the value of the field, or the default value if the field is not set. Only available
if a default is available (either there’s an explicit default in the .thrift file, or the field is a primitive or a
collection, in which case the default is 0/0.0/false/empty/etc).

• fooOrNull - Returns the value of the field, or null if the field is not set. For primitives, typed to return
the boxed type (e.g., java.lang.Integer instead of scala.Int) so that null is valid. In general, avoid using
fooOrNull. Prefer fooOption in general and fooOrThrow if you want to fail fast (such as in tests, etc). Only use
fooOrNull if you’re writing performance-sensitive code that can’t afford to allocate an Option.

• fooOrThrow - Returns the value of the field, or throws an exception if the field is not set.

• fooIsSet - Returns true if the field is set, false otherwise.

2.3.2 Special field access

Some field types have special access methods:

• fooByteArray - if the field is of the binary thrift type, this method will exist and return an Array[Byte]
(instead of the more efficient java.nio.ByteBuffer)

6 Chapter 2. Records

spindle Documentation, Release 2.0.0

• fooStruct - if the field has a bitfield_struct or bitfield_struct_no_setbits annotation,
this method will exist and return a populated bitfield struct. (See: Bitfields)

• fooFk - if the field is a foreign_key field, this method will exist and return the foreign object. (See:
Priming)

2.4 Other methods

Other methods on the record trait:

• toString - produces a JSON-like string representation of the record. It is not strict JSON because it supports
non-string map keys.

• hashCode - uses scala.util.MurmurHash to produce a hash code from all the already-set fields on the
record

• equals - compares two records to make sure that all their fields have the same set state, and if they’re both set
that they have the same value

• compare - compares two records by their set state for each field and their value for each field

• copy - similar to case class copy, creates a shallow copy of a record; has method arguments with default values
so you can override the value of a single field or many fields when copying

• deepCopy - creates a deep copy of a record; doesn’t take arguments

• mutableCopy - creates a shallow copy of a record, with the Mutable trait as its return type

• mutable - if the underlying implementation is mutable, return this typed as a Mutable trait, otherwise make
a mutableCopy

• toBuilder - creates a new builder that has been initialized to have the same state as this record

2.5 Mutable trait

TODO: the Mutable trait interface is likely to change before being finalized

2.6 Raw class

TODO

2.7 Priming

The only way to prime records is through the prime method on DatabaseService, which takes a sequence of records,
the field to be primed on those records, and the model to be primed on that field. It optionally takes a sequence of
already known foreign records and a Mongo ReadPreference. For example:

val checkins: List[Checkin] = ...
services.db.prime(checkins, Checkin.venueId, Venue)

To access the primed foreign object on field foo, use the fooFk method on the record, which takes the model of the
foreign object as an argument and returns an Option of the foreign object:

2.4. Other methods 7

spindle Documentation, Release 2.0.0

val venues: List[Venue] = checkins.flatMap(_.venueIdFk(Venue))

(This is somewhat clunky, mostly because of having to pass around the model of the foreign object (in this case,
Venue) everywhere. This is necessary in order to decouple foreign key fields from the models they point to and so
avoid dependency hairballs.)

2.8 Proxies

Spindle can generate proxy classes that can be used to decorate generated models with additional behavior. For
example, suppose you have this thrift definition:

struct Rectangle {
1: double length
2: double width

}

Thrift will generate a class Rectangle. But suppose you want to add a convenience method area to Rectangle.
First, instruct Spindle to generate a proxy:

struct Rectangle {
1: double length
2: double width

} (
generate_proxy="1"

)

Thrift will now generate a class RectangleProxy that by forwards all of its methods to an underlying Rectangle
instance. You can now do:

class RichRectangle(override val underlying: Rectangle) extends RectangleProxy(underlying) {
def area = underlying.length * underlying.width

}

val rect: Rectangle = ... // fetch from database
val myRect = new RichRectangle(rect)
myRect.area

2.9 Reflection

TODO

2.10 Field descriptors

TODO

8 Chapter 2. Records

CHAPTER 3

Custom types

In addition to all of the standard Thrift types, Spindle codegen makes available a few extras.

3.1 Enhanced types

Enhanced types are types tagged with an annotation so as to produce either a custom protocol format or a custom
Scala type. Enhanced types are defined with the enhanced_types annotation on a Thrift typedef, along with
custom logic in the code generator to deal with the enhanced type. For example:

// A BSON ObjectId, stored as a binary blob.
typedef binary (enhanced_types="bson:ObjectId") ObjectId

// A UTC datetime, stored as millis since the epoch.
typedef i64 (enhanced_types="bson:DateTime") DateTime

// A BSON Object, stored as a binary blob
// This is especially useful if you have serialized data to mongo that cannot be represented in thrift
typedef binary (enhanced_types="bson:BSONObject") BSONObject

Without the enhanced types mechanism, an ObjectId would be serialized as binary over the wire and represented
as a ByteBuffer or an Array[Byte] in Scala code. With the enhanced types mechanism, this will be serial-
ized as binary in the binary protocols (TBinaryProtocol, TCompactProtocol) but receive special handling
in TBSONObjectProtocol (using the native ObjectId type) and in TReadableJSONProtocol (using a
custom ObjectId encoding). In the Scala code, it will be represented as an instance of ObjectId.

3.2 Bitfields

In order to use space more efficiently, sometimes you want to store several boolean values into a single integer (i32)
or long (i64) value. Spindle calls these fields “bitfields”. Bitfields come in two variants, with and without “set” bits.
(With “set” bits, a single boolean value will take two bits, one to determine whether or not the boolean is set, and
another for the boolean value itself.)

Spindle has some features to make working with bitfields more convenient. You can associate a i32 or i64 field
with a “bitfield struct”. A bitfield struct is a Thrift struct with only boolean fields. If a field foo is marked with a
bitfield_struct or bitfield_struct_no_setbits annotation, then an additional fooStruct method
will be generated which returns a populated boolean struct.

Bitfield annotations are applied directly to a class field (not through a typedef), as follows:

9

spindle Documentation, Release 2.0.0

struct Checkin {
1: optional i32 flags (bitfield_struct="CheckinFlags")

}

struct CheckinFlags {
1: optional bool sendToTwitter
2: optional bool sendToFacebook
3: optional bool geoCheat

}

In this example, the Checkin struct will have all the normal methods for dealing with flags as an i32, as well as
a flagsStruct method that returns an instance of CheckinFlags.

3.3 Type-safe IDs

You often use BSON ObjectIds as primary keys in Mongo collections. This means common collectons like
Checkin and Venue would use the same type as their primary key. In order to avoid errors (such as passing a
List[ObjectId] of checkin IDs to a method expecting a List[ObjectId] of venue IDs), Spindle includes a
mechanism for tagging common types so they have distinct type-safe version.

This behavior is triggered by using the new_type="true" annotation on a typedef. In Scala code, this will turn
the type alias into a tagged type, which means it’s a new subtype of the aliased type. For example, CheckinId is
a tagged ObjectId (unique subtype of ObjectId). Because it’s a subtype, you can use CheckinId anywhere
you would expect an ObjectId. In order to use an ObjectId where a CheckinId is required, you will need to
cast it. A convenience method (with the same name as the type) will be generated to perform this cast. For example:
CheckinId(new ObjectId()).

Sample usage, in Thrift (ids.thrift):

package com.foursquare.types.gen

typedef ObjectId CheckinId (new_type="true")
typedef ObjectId VenueId (new_type="true")

struct Checkin {
1: optional CheckinId id (wire_name="_id")

}

struct Venue {
1: optional VenueId id (wire_name="_id")

}

And in Scala:

import com.foursquare.types.gen.IdsTypedefs.{CheckinId, VenueId}

// cast a regular ObjectId to CheckinId
val checkinId: CheckinId = CheckinId(new ObjectId())

// cast a regular ObjectId to VenueId
val venueId: VenueId = VenueId(new ObjectId())

// compile error, this won’t work because VenueId and CheckinId are different subtypes of ObjectId
val checkinId2: CheckinId = venueId

// works, because CheckinId is a subtype of ObjectId and can be automatically upcast
val unsafeCheckinId: ObjectId = checkinId

10 Chapter 3. Custom types

spindle Documentation, Release 2.0.0

Note that the tagged types live in an object with the same name as the thrift file with Typedefs appended to the end.

3.3. Type-safe IDs 11

spindle Documentation, Release 2.0.0

12 Chapter 3. Custom types

CHAPTER 4

Enums

Enumerations in Thrift are defined with the enum keyword. Enumeration values have names and integer identifiers.
When compiled to Scala code, enumerations are represented by a class (of the same name as the enumeration), a
companion object, and objects for each of the enumeration values (defined inside the companion object).

4.1 Enum value methods

The following methods are available on each value of an enumeration:

• id - integer id of the enum value

• name - string name of the enum value, as represented in Thrift source (not intended to be stable)

• stringValue - string value of the enum value, as represented by string_value annotation in Thrift
(intended to be stable); if there is no annotation, the name is used

• compare - compare two enum values by their ids

• meta - access the companion object for the enum

4.2 Companion object methods

The following methods are availabel on an enumeration’s companion object:

• findById - given an integer id, return an Option of the enum value with that id, or None

• findByIdOrNull - given an integer id, return the enum value with that id, or null

• findByName - given a string name, return an Option of the enum value with that name, or None

• findByNameOrNull - given a string name, return the enum value with that name, or null

• findByStringValue - given an string value, return an Option of the enum value with that string value, or
None

• findByStringValueOrNull - given an string value, return the enum value with that string value, or null

• unapply - alias for findByName (TODO: should be findByStringValue)

13

spindle Documentation, Release 2.0.0

4.3 Matching and unknown values

Spindle will generate an additional value in every enum called UnknownWireValue. This value is meant to handle
values read off the wire that do not correspond to any known enum value. This can happen when a value is added
to an enum, and old code tries to deserialize a value written by new code. So in order for your enum matches to be
exhaustive, you must also match against UnknownWireValue(id).

4.4 Examples

Example thrift:

enum ClientType {
Android = 1
Blackberry = 2
IPhone = 3
Web = 4

}

Example Scala:

val client: ClientType = ClientType.web

client match {
case ClientType.Android => ...
case ClientType.Blackberry => ...
case ClientType.IPhone => ...
case ClientType.Web => ...
case ClientType.UnknownWireValue(id) => ???

}

14 Chapter 4. Enums

CHAPTER 5

Working with MongoDB

5.1 Annotations

In order to use Spindle structs with Mongo, they must have the required Mongo annotations.

• mongo_collection - name of the Mongo collection

• mongo_identifier - name of the Mongo instance

• primary_key - the name of the primary key field

There are also a number of optional Mongo annotations:

• foreign_key - one or more annotations with names of foreign key fields

• index - one or more annotations with indexed fields

Example:

struct Checkin {
1: optional ids.CheckinId id (wire_name="_id")
2: optional ids.UserId userId (wire_name="uid")
2: optional ids.VenueId venueId (wire_name="venueid")

} (primary_key="id",
foreign_key="userId",
foreign_key="venueId",
index="userId: asc",
index="venueId: asc",
mongo_collection="checkins",
mongo_identifier="foursquare")

5.2 Rogue queries

There are two main differences between Lift Record and Spindle when it comes to creating and executing Rogue
queries. First, queries are not created by calling Rogue methods on a model. Queries must be created explicitly
by wrapping a model in a SpindleQuery (which we recommend aliasing to Q). Second, queries are not executed
by called an execution method on the query, the query must be sent to a SpindleDatabaseService object to
execute it.

For example:

15

spindle Documentation, Release 2.0.0

import com.foursquare.rogue.spindle.{SpindleQuery => Q}
import com.foursquare.rogue.spindle.SpindleRogue._

val q = Q(Checkin).where(_.userId eqs 646).and(_.photoCount > 0)
val checkins = db.fetch(q)

Here is a basic SpindleDatabaseService implementation:

import com.foursquare.rogue.spindle.{SpindleDBCollectionFactory, SpindleDatabaseService}
import com.foursquare.spindle.UntypedMetaRecord
import com.mongodb.{DB, Mongo, MongoClient, MongoURI}

object db extends SpindleDatabaseService(ConcreteDBCollectionFactory)

object ConcreteDBCollectionFactory extends SpindleDBCollectionFactory {
lazy val db: DB = {
val mongoUrl = System.getenv("MONGOHQ_URL")
if (mongoUrl == null) {

// For local testing
new MongoClient("localhost", 27017).getDB("mydatabase")

} else {
// Connect using the MongoHQ connection string
val mongoURI = new MongoURI(mongoUrl)
val mongo = mongoURI.connectDB
if (mongoURI.getUsername != null && mongoURI.getUsername.nonEmpty) {

mongo.authenticate(mongoURI.getUsername, mongoURI.getPassword)
}
mongo

}
}
override def getPrimaryDB(meta: UntypedMetaRecord) = db
override def indexCache = None

}

16 Chapter 5. Working with MongoDB

CHAPTER 6

Indices and tables

• genindex

• modindex

• search

17

	Thrift
	Data model
	Interface definition language (IDL)
	Serialization formats

	Records
	Creating a record
	Reading/writing records
	Record interface methods
	Other methods
	Mutable trait
	Raw class
	Priming
	Proxies
	Reflection
	Field descriptors

	Custom types
	Enhanced types
	Bitfields
	Type-safe IDs

	Enums
	Enum value methods
	Companion object methods
	Matching and unknown values
	Examples

	Working with MongoDB
	Annotations
	Rogue queries

	Indices and tables

