

Spinach

Release v0.0.17. (Installation)

Spinach is a Redis task queue for Python 3 heavily inspired by Celery and RQ.

Distinctive features:

	Threaded and asyncio workers

	At-least-once or at-most-once delivery per task

	Periodic tasks without an additional process

	Concurrency limits on queued jobs

	Scheduling of tasks in batch

	Embeddable workers for easier testing

	Integrations with Flask, Django, Logging, Sentry and Datadog

	See design choices for more details

Installation:

pip install spinach

Quickstart

from spinach import Engine, MemoryBroker

spin = Engine(MemoryBroker())

@spin.task(name='compute')
def compute(a, b):
 print('Computed {} + {} = {}'.format(a, b, a + b))

Schedule a job to be executed ASAP
spin.schedule(compute, 5, 3)

print('Starting workers, ^C to quit')
spin.start_workers()

The Engine is the central part of Spinach, it allows to define tasks, schedule jobs to
execute in the background and start background workers. More details.

The Broker is the backend that background workers use to retrieve jobs to execute. Spinach provides
two brokers: MemoryBroker for development and RedisBroker for production.

The Engine.task() decorator is used to register tasks. It requires at least a name to
identify the task, but other options can be given to customize how the task behaves. More
details.

Background jobs can then be scheduled by using either the task name or the task function:

spin.schedule('compute', 5, 3) # identify a task by its name
spin.schedule(compute, 5, 3) # identify a task by its function

Getting started with spinach:

	Installation

	Tasks

	Jobs

	Engine

	Queues

	Asyncio

	Integrations

	Signals

	Running in Production

	Design choices

	FAQ

Hacking guide:

	Contributing

	Internals

Installation

Prerequisites

Spinach is written in Python 3, prior to use it you must make sure you have a Python 3.6+
interpreter on your system.

Pip

If you are familiar with the Python ecosystem, you won’t be surprised that Spinach can be installed
with:

$ pip install spinach

That’s it, you can call it a day!

From Source

Spinach is developed on GitHub, you can find the code at NicolasLM/spinach [https://github.com/NicolasLM/spinach].

You can clone the public repository:

$ git clone https://github.com/NicolasLM/spinach.git

Once you have the sources, simply install it with:

$ cd spinach
$ pip install -e .

Tasks

A tasks is a unit of code, usually a function, to be executed in the background on remote workers.

To define a task:

from spinach import Tasks

tasks = Tasks()

@tasks.task(name='add')
def add(a, b):
 print('Computed {} + {} = {}'.format(a, b, a + b))

Note

The args and kwargs of a task must be JSON serializable.

Retries

Spinach knows two kinds of tasks: the ones that can be retried safely (idempotent tasks) and the
ones that cannot be retried safely (non-idempotent tasks). Since Spinach cannot guess if a task
code is safe to be retried multiple times, it must be annotated when the task is created.

Note

Whether a task is retryable or not affects the behavior of jobs in case of normal errors
during their execution but also when a worker catastrophically dies (power outage, OOM
killed…).

Non-Retryable Tasks

Spinach assumes that by default tasks are not safe to be retried (tasks are assumed to have side
effects).

These tasks are defined with max_retries=0 (the default):

@tasks.task(name='foo')
def foo(a, b):
 pass

	use at-most-once delivery

	it is guarantied that the job will not run multiple times

	it is guarantied that the job will not run simultaneously in multiple workers

	the job is not automatically retried in case of errors

	the job may never even start in very rare conditions

Retryable Tasks

Idempotent tasks can be executed multiple times without changing the result beyond the initial
execution. It is a nice property to have and most tasks should try to be idempotent to gracefully
recover from errors.

Retryable tasks are defined with a positive max_retries value:

@tasks.task(name='foo', max_retries=10)
def foo(a, b):
 pass

	use at-least-once delivery

	the job is automatically retried, up to max_retries times, in case of errors

	the job may be executed more than once

	the job may be executed simultaneously in multiple workers in very rare
conditions

When a worker catastrophically dies it will be detected dead after 30 minutes of inactivity and the
retryable jobs that were running will be rescheduled automatically.

Retrying

When a retryable task is being executed it will be retried when it encounters an unexpected
exception:

@tasks.task(name='foo', max_retries=10)
def foo(a, b):
 l = [0, 1, 2]
 print(l[100]) # Raises IndexError

To allow the system to recover gracefully, a default backoff strategy is applied.

	
spinach.utils.exponential_backoff(attempt: int, cap: int = 1200) → datetime.timedelta

	Calculate a delay to retry using an exponential backoff algorithm.

It is an exponential backoff with random jitter to prevent failures
from being retried at the same time. It is a good fit for most
applications.

	Parameters

	
	attempt – the number of attempts made

	cap – maximum delay, defaults to 20 minutes

To be more explicit, a task can also raise a RetryException which allows to precisely
control when it should be retried:

from spinach import RetryException

@tasks.task(name='foo', max_retries=10)
def foo(a, b):
 if status_code == 429:
 raise RetryException(
 'Should retry in 10 minutes',
 at=datetime.now(tz=timezone.utc) + timedelta(minutes=10)
)

	
class spinach.task.RetryException(message, at: Optional[datetime.datetime] = None)

	Exception raised in a task to indicate that the job should be retried.

Even if this exception is raised, the max_retries defined in the task
still applies.

	Parameters

	at – Optional date at which the job should be retried. If it is not
given the job will be retried after a randomized exponential backoff.
It is advised to pass a timezone aware datetime to lift any
ambiguity. However if a timezone naive datetime if given, it will
be assumed to contain UTC time.

A task can also raise a AbortException for short-circuit behavior:

	
class spinach.task.AbortException

	Exception raised in a task to indicate that the job should NOT be
retried.

If this exception is raised, all retry attempts are stopped immediately.

Limiting task concurrency

If a task is idempotent it may also have a limit on the number of concurrent jobs spawned across
all workers. These types of tasks are defined with a positive max_concurrency value:

@tasks.task(name='foo', max_retries=10, max_concurrency=1)
def foo(a, b):
 pass

With this definition, no more than one instance of the Task will ever be spawned as a running Job,
no matter how many are queued and waiting to run.

Periodic tasks

Tasks marked as periodic get automatically scheduled. To run a task every 5 seconds:

from datetime import timedelta

from spinach import Engine, MemoryBroker

spin = Engine(MemoryBroker())
every_5_sec = timedelta(seconds=5)

@spin.task(name='make_coffee', periodicity=every_5_sec)
def make_coffee():
 print("Making coffee...")

print('Starting workers, ^C to quit')
spin.start_workers()

Periodic tasks get scheduled by the workers themselves, there is no need to run an additional
process only for that. Of course having multiple workers on multiple machine is fine and will not
result in duplicated tasks.

Periodic tasks run at most every period. If the system scheduling periodic tasks gets delayed,
nothing compensates for the time lost. This has the added benefit of periodic tasks not being
scheduled if all the workers are down for a prolonged amount of time. When they get back online,
workers won’t have a storm of periodic tasks to execute.

Tasks Registry

Before being attached to a Spinach Engine, tasks are created inside a Tasks
registry.

Attaching tasks to a Tasks registry instead of directly to the Engine allows to
compose large applications in smaller units independent from each other, the same way a Django
project is composed of many small Django apps.

This may seem cumbersome for trivial applications, like the examples in this documentation or some
single-module projects, so those can create tasks directly on the Engine using:

spin = Engine(MemoryBroker())

@spin.task(name='fast')
def fast():
 time.sleep(1)

Note

Creating tasks directly in the Engine is a bit like creating a Flask app
globally instead of using an app factory: it works until a change introduces a circular
import. Its usage should really be limited to tiny projects.

	
class spinach.task.Tasks(queue: Optional[str] = None, max_retries: Optional[numbers.Number] = None, periodicity: Optional[datetime.timedelta] = None, max_concurrency: Optional[int] = None)

	Registry for tasks to be used by Spinach.

	Parameters

	
	queue – default queue for tasks

	max_retries – default retry policy for tasks

	periodicity – for periodic tasks, delay between executions as a
timedelta

	max_concurrency – maximum number of simultaneous Jobs that can be
started for this Task. Requires max_retries to be also set.

	
add(func: Callable, name: Optional[str] = None, queue: Optional[str] = None, max_retries: Optional[numbers.Number] = None, periodicity: Optional[datetime.timedelta] = None, max_concurrency: Optional[int] = None)

	Register a task function.

	Parameters

	
	func – a callable to be executed

	name – name of the task, used later to schedule jobs

	queue – queue of the task, the default is used if not provided

	max_retries – maximum number of retries, the default is used if
not provided

	periodicity – for periodic tasks, delay between executions as a
timedelta

	max_concurrency – maximum number of simultaneous Jobs that can be
started for this Task. Requires max_retries to be also set.

>>> tasks = Tasks()
>>> tasks.add(lambda x: x, name='do_nothing')

	
schedule(task: Union[str, Callable, spinach.task.Task], *args, **kwargs) → Job

	Schedule a job to be executed as soon as possible.

	Parameters

	
	task – the task or its name to execute in the background

	args – args to be passed to the task function

	kwargs – kwargs to be passed to the task function

	Returns

	The Job that was created and scheduled.

This method can only be used once tasks have been attached to a
Spinach Engine.

	
schedule_at(task: Union[str, Callable, spinach.task.Task], at: datetime.datetime, *args, **kwargs) → Job

	Schedule a job to be executed in the future.

	Parameters

	
	task – the task or its name to execute in the background

	at – Date at which the job should start. It is advised to pass a
timezone aware datetime to lift any ambiguity. However if a
timezone naive datetime if given, it will be assumed to
contain UTC time.

	args – args to be passed to the task function

	kwargs – kwargs to be passed to the task function

	Returns

	The Job that was created and scheduled.

This method can only be used once tasks have been attached to a
Spinach Engine.

	
schedule_batch(batch: Batch) → Iterable[Job]

	Schedule many jobs at once.

Scheduling jobs in batches allows to enqueue them fast by avoiding
round-trips to the broker.

	Parameters

	batch – Batch instance containing jobs to schedule

	Returns

	The Jobs that were created and scheduled.

	
task(func: Optional[Callable] = None, name: Optional[str] = None, queue: Optional[str] = None, max_retries: Optional[numbers.Number] = None, periodicity: Optional[datetime.timedelta] = None, max_concurrency: Optional[int] = None)

	Decorator to register a task function.

	Parameters

	
	name – name of the task, used later to schedule jobs

	queue – queue of the task, the default is used if not provided

	max_retries – maximum number of retries, the default is used if
not provided

	periodicity – for periodic tasks, delay between executions as a
timedelta

	max_concurrency – maximum number of simultaneous Jobs that can be
started for this Task. Requires max_retries to be also set.

>>> tasks = Tasks()
>>> @tasks.task(name='foo')
>>> def foo():
... pass

Batch

	
class spinach.task.Batch

	Container allowing to schedule many jobs at once.

Batching the scheduling of jobs allows to avoid doing many round-trips
to the broker, reducing the overhead and the chance of errors associated
with doing network calls.

In this example 100 jobs are sent to Redis in one call:

>>> batch = Batch()
>>> for i in range(100):
... batch.schedule('compute', i)
...
>>> spin.schedule_batch(batch)

Once the Batch is passed to the Engine it should be
disposed off and not be reused.

	
schedule(task: Union[str, Callable, spinach.task.Task], *args, **kwargs)

	Add a job to be executed ASAP to the batch.

	Parameters

	
	task – the task or its name to execute in the background

	args – args to be passed to the task function

	kwargs – kwargs to be passed to the task function

	
schedule_at(task: Union[str, Callable, spinach.task.Task], at: datetime.datetime, *args, **kwargs)

	Add a job to be executed in the future to the batch.

	Parameters

	
	task – the task or its name to execute in the background

	at – Date at which the job should start. It is advised to pass a
timezone aware datetime to lift any ambiguity. However if a
timezone naive datetime if given, it will be assumed to
contain UTC time.

	args – args to be passed to the task function

	kwargs – kwargs to be passed to the task function

Jobs

A Job represents a specific execution of a task. To make an analogy with Python,
a Task gets instantiated into many Job, like a class that gets instantiated
into many objects.

Job

	
class spinach.job.Job

	Represent the execution of a Task by background workers.

The Job class should not be instantiated by the user, instead jobs
are automatically created when they are scheduled.

	Variables

	
	id [https://docs.python.org/3/library/functions.html#id] – UUID of the job

	status – JobStatus

	task_name – string name of the task

	queue [https://docs.python.org/3/library/queue.html#module-queue] – string name of the queue

	at – timezone aware datetime representing the date at which the job
should start

	max_retries – int representing how many times a failing job should be
retried

	retries – int representing how many times the job was already executed

	task_args – optional tuple containing args passed to the task

	task_kwargs – optional dict containing kwargs passed to the task

Job Status

	
class spinach.job.JobStatus

	Possible status of a Job.

Life-cycle:

	Newly created jobs first get the status NOT_SET

	Future jobs are then set to WAITING until they are ready to be QUEUED

	Jobs starting immediately get the status QUEUED directly when they are
received by the broker

	
	Jobs are set to RUNNING when a worker start their execution

	
	if the job terminates without error it is set to SUCCEEDED

	if the job terminates with an error and can be retried it is set to
WAITING until it is ready to be queued again

	if the job terminates with an error and cannot be retried it is set
to FAILED for ever

See Signals to be notified on some of these status transitions.

	
FAILED = 5

	Job failed and will not be retried

	
NOT_SET = 0

	Job created but not scheduled yet

	
QUEUED = 2

	Job is in a queue, ready to be picked by a worker

	
RUNNING = 3

	Job is being executed

	
SUCCEEDED = 4

	Job is finished, execution was successful

	
WAITING = 1

	Job is scheduled to start in the future

Engine

The Spinach Engine is what connects tasks, jobs, brokers and workers together.

It is possible, but unusual, to have multiple Engines running in the same Python interpreter.

	
class spinach.engine.Engine(broker: spinach.brokers.base.Broker, namespace: str = 'spinach')

	Spinach Engine coordinating a broker with workers.

This class does the orchestration of all components, it is the one that
starts and terminates the whole machinery.

The Engine can be run in two modes:

	client: synchronously submits jobs.

	worker: asynchronously executes jobs.

Submitting jobs is quite easy, so running the Engine in client mode doesn’t
require spawning any thread.

Executing jobs however is a bit more involved, so running the Engine in
worker mode ends up spawning a few threads:

	a few worker threads: they are only responsible for executing the task
function and advancing the job status once it is finished.

	a result notifier thread: sends back the result of job executions to the
Broker backend, acts basically as a client.

	an arbiter thread: fetches jobs from the Broker and gives them to the
workers as well as doing some periodic bookkeeping.

	a Broker subscriber thread: receives notifications from the backend when
something happens, typically a job is enqueued.

	the process main thread: starts all the above threads, then does nothing
waiting for the signal to terminate the threads it started.

This means that a Spinach worker process has at least 5 threads.

	Parameters

	
	broker – instance of a Broker

	namespace – name of the namespace used by the Engine. When different
Engines use the same Redis server, they must use different namespaces to
isolate themselves.

	
attach_tasks(tasks: spinach.task.Tasks)

	Attach a set of tasks.

A task cannot be scheduled or executed before it is attached to an
Engine.

>>> tasks = Tasks()
>>> spin.attach_tasks(tasks)

	
namespace

	Namespace the Engine uses.

	
schedule(task: Union[str, Callable, spinach.task.Task], *args, **kwargs) → spinach.job.Job

	Schedule a job to be executed as soon as possible.

	Parameters

	
	task – the task or its name to execute in the background

	args – args to be passed to the task function

	kwargs – kwargs to be passed to the task function

	Returns

	The Job that was created and scheduled.

	
schedule_at(task: Union[str, Callable, spinach.task.Task], at: datetime.datetime, *args, **kwargs) → spinach.job.Job

	Schedule a job to be executed in the future.

	Parameters

	
	task – the task or its name to execute in the background

	at – date at which the job should start. It is advised to pass a
timezone aware datetime to lift any ambiguity. However if a
timezone naive datetime if given, it will be assumed to
contain UTC time.

	args – args to be passed to the task function

	kwargs – kwargs to be passed to the task function

	Returns

	The Job that was created and scheduled.

	
schedule_batch(batch: spinach.task.Batch) → Iterable[spinach.job.Job]

	Schedule many jobs at once.

Scheduling jobs in batches allows to enqueue them fast by avoiding
round-trips to the broker.

	Parameters

	batch – Batch instance containing jobs to schedule

	Returns

	The Jobs that were created and scheduled.

	
start_workers(number: int = 5, queue: str = 'spinach', block: bool = True, stop_when_queue_empty=False, workers_class: Type[spinach.worker.BaseWorkers] = <class 'spinach.worker.ThreadWorkers'>)

	Start the worker threads.

	Parameters

	
	number – number of workers to launch, each job running uses one
worker.

	queue – name of the queue to consume, see Queues.

	block – whether to block the calling thread until a signal arrives
and workers get terminated.

	stop_when_queue_empty – automatically stop the workers when the
queue is empty. Useful mostly for one-off scripts and testing.

	worker_class – Class to change the behavior of workers,
defaults to threaded workers

	
stop_workers(_join_arbiter=True)

	Stop the workers and wait for them to terminate.

Namespace

Namespaces allow to identify and isolate multiple Spinach engines running on the same Python
interpreter and/or sharing the same Redis server.

Having multiple engines on the same interpreter is rare but can happen when using the Flask
integration with an app factory. In this case using different namespaces is important to avoid
signals sent from one engine to be received by another engine.

When multiple Spinach Engines use the same Redis server, for example when production and staging
share the same database, different namespaces must be used to make sure they do not step on each
other’s feet.

The production application would contain:

spin = Engine(RedisBroker(), namespace='prod')

While the staging application would contain:

spin = Engine(RedisBroker(), namespace='stg')

Note

Using different Redis database numbers (0, 1, 2…) for different environments is not
enough as Redis pubsubs are shared among databases. Namespaces solve this problem.

Queues

Queues are an optional feature that allows directing a set of tasks to specific workers.

Queues are useful when different tasks have different usage patterns, for instance one task being
fast and high priority while another task is slow and low-priority. To prevent the slow task from
blocking the execution of the fast one, each task can be attached to its own queue:

import time
import logging

from spinach import Engine, MemoryBroker

logging.basicConfig(
 format='%(asctime)s - %(threadName)s %(levelname)s: %(message)s',
 level=logging.DEBUG
)
spin = Engine(MemoryBroker())

@spin.task(name='fast', queue='high-priority')
def fast():
 time.sleep(1)

@spin.task(name='slow', queue='low-priority')
def slow():
 time.sleep(10)

spin.schedule(slow)
spin.schedule(fast)

spin.start_workers(number=1, queue='high-priority', stop_when_queue_empty=True)

The task decorator accepts an optional queue name that binds the task to a specific queue.
Likewise, passing a queue name to start_workers restricts workers to executing only tasks of this
particular queue.

Note

By default all tasks and all workers use the spinach queue

Note

Namespaces and queues are different concepts. While queues share the same Spinach
Engine, namespaces make two Spinach Engines invisible to each other while still using
the same broker.

Asyncio

Spinach allows to define and run tasks as asyncio coroutines. In this mode the worker is a single
thread that runs all tasks asynchronously. This allows for greater concurrency as well as
compatibility with the asyncio ecosystem.

Creating async tasks

To define an asynchronous task, just prefix its definition with the async keyword:

@spin.task(name='compute')
async def compute(a, b):
 await asyncio.sleep(1)
 print('Computed {} + {} = {}'.format(a, b, a + b))

To run the workers in asynchronous mode, pass the AsyncioWorkers class to start_workers:

from spinach import AsyncioWorkers

spin.start_workers(number=256, workers_class=AsyncioWorkers)

When using the asyncio workers, the number argument can be set quite high because each worker
is just a coroutine, consuming a negligible amount of resources.

Scheduling jobs

Because internally only workers are asyncio aware, jobs are still sent to Redis using a blocking
socket. This means that to schedule jobs from asynchronous code, care must be taken to send jobs
from outside the event loop. This can be achieve using asyncio.to_thread [https://docs.python.org/3/library/asyncio-task.html#asyncio.to_thread]:

await asyncio.to_thread(spin.schedule, compute, 2, 4)

Code scheduling a lot of jobs should use batches to improve performance.

Example

import aiohttp
from spinach import Engine, MemoryBroker, Batch, AsyncioWorkers

spin = Engine(MemoryBroker())

@spin.task(name='get_pokemon_name')
async def get_pokemon_name(pokemon_id: int):
 """Call an HTTP API to retrieve a pokemon name by its ID."""
 url = f'https://pokeapi.co/api/v2/pokemon/{pokemon_id}'
 async with aiohttp.ClientSession() as session:
 async with session.get(url) as response:
 pokemon = await response.json()

 print(f'Pokemon #{pokemon_id} is {pokemon["name"]}')

Schedule a batch of 150 tasks to retrieve the name of the
first 150 pokemons.
batch = Batch()
for pokemon_id in range(1, 151):
 batch.schedule(get_pokemon_name, pokemon_id)
spin.schedule_batch(batch)

Start the asyncio workers and process the tasks
spin.start_workers(
 number=256,
 workers_class=AsyncioWorkers,
 stop_when_queue_empty=True
)

Note

If an application defines both sync and async tasks, each kind of task should go in its
own queue so that sync tasks are picked by threaded workers and async tasks by
asyncio workers.

Note

Not all contrib integrations may work with asynchronous workers.

Integrations

Integration with third-party libraries and frameworks.

Logging

Spinach uses the standard Python logging package [https://docs.python.org/3/library/logging.html]. Its logger prefix is spinach. Spinach does
nothing else besides creating its loggers and emitting log records. The user is responsible for
configuring logging before starting workers.

For simple applications it is enough to use:

import logging

logging.basicConfig(
 format='%(asctime)s - %(threadName)s %(levelname)s: %(message)s',
 level=logging.DEBUG
)

More complex applications will probably use dictConfig [https://docs.python.org/3/library/logging.config.html].

Flask

The Flask integration follows the spirit of Flask very closely, it provides two ways of getting
started: a single module approach for minial applications and an application factory approach for
more scalable code.

The Spinach extension for Flask pushes an application context for the duration of the tasks, which
means that it plays well with other extensions like Flask-SQLAlchemy and doesn’t require extra
precautions.

Single Module

from flask import Flask
from spinach.contrib.flask_spinach import Spinach

app = Flask(__name__)
spinach = Spinach(app)

@spinach.task(name='say_hello')
def say_hello():
 print('Hello from a task')

@app.route('/')
def home():
 spinach.schedule('say_hello')
 return 'Hello from HTTP'

Application Factory

This more complex layout includes an Application Factory create_app and an imaginary auth
Blueprint containing routes and tasks.

app.py:

from flask import Flask
from spinach import RedisBroker
from spinach.contrib.flask_spinach import Spinach

spinach = Spinach()

def create_app():
 app = Flask(__name__)
 app.config['SPINACH_BROKER'] = RedisBroker()
 spinach.init_app(app)

 from . import auth
 app.register_blueprint(auth.blueprint)
 spinach.register_tasks(app, auth.tasks)

 return app

auth.py:

from flask import Blueprint, jsonify
from spinach import Tasks

from .app import spinach

blueprint = Blueprint('auth', __name__)
tasks = Tasks()

@blueprint.route('/')
def create_user():
 spinach.schedule('send_welcome_email')
 return jsonify({'user_id': 42})

@tasks.task(name='send_welcome_email')
def send_welcome_email():
 print('Sending email...')

Running workers

Workers can be launched from the Flask CLI:

$ FLASK_APP=examples.flaskapp flask spinach

The working queue and the number of threads can be changed with:

$ FLASK_APP=examples.flaskapp flask spinach --queue high-priority --threads 20

Note

When in development mode, Flask uses its reloader to automatically restart the process
when the code changes. When having periodic tasks defined, using the MemoryBroker and Flask
reloader users may see their periodic tasks scheduled each time the code changes. If this is
a problem, users are encouraged to switch to the RedisBroker for development.

Configuration

	SPINACH_BROKER, default spinach.RedisBroker()

	SPINACH_NAMESPACE, defaults to the Flask app name

Django

A Django application is available for integrating Spinach into Django projects.

To get started, add the application spinach.contrib.spinachd to settings.py:

INSTALLED_APPS = (
 ...
 'spinach.contrib.spinachd',
)

On startup, Spinach will look for a tasks.py module in all installed applications. For instance
polls/tasks.py:

from spinach import Tasks

from .models import Question

tasks = Tasks()

@tasks.task(name='polls:close_poll')
def close_poll(question_id: int):
 Question.objects.get(pk=question_id).delete()

Tasks can be easily scheduled from views:

from .models import Question
from .tasks import tasks

def close_poll_view(request, question_id):
 question = get_object_or_404(Question, pk=question_id)
 tasks.schedule('polls:close_poll', question.id)

Users of the Django Datadog app get their jobs reported to Datadog APM automatically in task
workers.

Running workers

Workers can be launched from manage.py:

$ python manage.py spinach

The working queue and the number of threads can be changed with:

$ python manage.py spinach --queue high-priority --threads 20

Sending emails in the background

The Spinach app provides an EMAIL_BACKEND allowing to send emails as background tasks. To use
it simply add it to settings.py:

EMAIL_BACKEND = 'spinach.contrib.spinachd.mail.BackgroundEmailBackend'
SPINACH_ACTUAL_EMAIL_BACKEND = 'django.core.mail.backends.smtp.EmailBackend'

Emails can then be sent using regular Django functions:

from django.core.mail import send_mail

send_mail('Subject', 'Content', 'sender@example.com', ['receiver@example.com'])

Periodically clearing expired sessions

Projects using django.contrib.sessions must remove expired session from the database from time
to time. Django comes with a management command to do that manually, but this can be automated.

Spinach provides a periodic task, disabled by default, to do that. To enable it give it
a periodicity in settings.py. For instance to clear sessions once per week:

from datetime import timedelta

SPINACH_CLEAR_SESSIONS_PERIODICITY = timedelta(weeks=1)

Configuration

	SPINACH_BROKER, default spinach.RedisBroker()

	SPINACH_NAMESPACE, default spinach

	SPINACH_ACTUAL_EMAIL_BACKEND, default
django.core.mail.backends.smtp.EmailBackend

	SPINACH_CLEAR_SESSIONS_PERIODICITY, default None (disabled)

Sentry

With the Sentry integration, failing jobs can be automatically reported to Sentry [https://sentry.io] with full traceback, log breadcrumbs and job information. Moreover
performance tracing of task is enabled.

The Sentry integration requires Sentry SDK [https://pypi.org/project/sentry-sdk/]:

pip install sentry_sdk

It then just needs to be registered before starting workers:

import sentry_sdk

from spinach.contrib.sentry_sdk_spinach import SpinachIntegration

sentry_sdk.init(
 dsn="https://sentry_dsn/42",
 integrations=[SpinachIntegration(send_retries=False)]
)

Datadog

With the Datadog integration, all jobs are automatically reported to Datadog APM.

The integration requires ddtrace [https://pypi.python.org/pypi/ddtrace], the Datadog APM client
for Python:

pip install ddtrace

The integration just needs to be registered before starting workers:

from spinach.contrib.datadog import register_datadog

register_datadog()

spin = Engine(MemoryBroker())
spin.start_workers()

This only installs the integration with Spinach, other libraries still need to be patched by
ddtrace. It is recommended to run your application patched as explained in the ddtrace
documentation.

	
spinach.contrib.datadog.register_datadog(tracer=None, namespace: Optional[str] = None, service: str = 'spinach')

	Register the Datadog integration.

	Parameters

	
	tracer – optionally use a custom ddtrace Tracer instead of the global
one.

	namespace – optionally only register the Datadog integration for a
particular Spinach Engine

	service – Datadog service associated with the trace, defaults to
spinach

Signals

Signals are events broadcasted when something happens in Spinach, like a job starting or a worker
shutting down.

Subscribing to signals allows your code to react to internal events in a composable and reusable
way.

Subscribing to signals

Subscribing to a signal is done via its connect decorator:

from spinach import signals

@signals.job_started.connect
def job_started(namespace, job, **kwargs):
 print('Job {} started'.format(job))

The first argument given to your function is always the namespace of your Spinach Engine,
the following arguments depend on the signal itself.

Subscribing to signals of a specific Spinach Engine

As your application gets bigger you may end up running multiple Engines in the same interpreter.
The connect_via decorator allows to subscribe to the signals sent by a specific Spinach
Engine:

from spinach import Engine, MemoryBroker, signals

foo_spin = Engine(MemoryBroker(), namespace='foo')
bar_spin = Engine(MemoryBroker(), namespace='bar')

@signals.job_started.connect_via(foo_spin.namespace)
def job_started(namespace, job, **kwargs):
 print('Job {} started on Foo'.format(job))

In this example only signals sent by the foo Engine will be received.

Available signals

	
spinach.signals.job_started = SafeNamedSignal "job_started"

	Sent by a worker when a job starts being executed.

Signal handlers receive:

	namespace Spinach namespace

	job Job being executed

	
spinach.signals.job_finished = SafeNamedSignal "job_finished"

	Sent by a worker when a job finishes execution.

The signal is sent no matter the outcome, even if the job fails or gets
rescheduled for retry.

Signal handlers receive:

	namespace Spinach namespace

	job Job being executed

	
spinach.signals.job_schedule_retry = SafeNamedSignal "job_schedule_retry"

	Sent by a worker when a job gets rescheduled for retry.

Signal handlers receive:

	namespace Spinach namespace

	job Job being executed

	err exception that made the job retry

	
spinach.signals.job_failed = SafeNamedSignal "job_failed"

	Sent by a worker when a job failed.

A failed job will not be retried.

Signal handlers receive:

	namespace Spinach namespace

	job Job being executed

	err exception that made the job fail

	
spinach.signals.worker_started = SafeNamedSignal "worker_started"

	Sent by a worker when it starts.

Signal handlers receive:

	namespace Spinach namespace

	worker_name name of the worker starting

	
spinach.signals.worker_terminated = SafeNamedSignal "worker_terminated"

	Sent by a worker when it shutdowns.

Signal handlers receive:

	namespace Spinach namespace

	worker_name name of the worker shutting down

Tips

Received objects

Objects received via signals should not be modified in handlers as it could break something in
Spinach internals.

Exceptions

If your receiving function raises an exception while processing a signal, this exception will be
logged in the spinach.signals logger.

Going further

Have a look at the blinker documentation [http://pythonhosted.org/blinker/] for other ways using
signals.

Running in Production

Advices to read before deploying an application using Spinach to production.

Spinach

Since by default Spinach executes jobs in a separate threads, the user’s code must be thread-safe.
This is usually quite easy to achieve on a traditional web application because frameworks like
Flask or Django make that straightforward.

Tasks should not store state in the process between invocations. Instead all state must be stored
in an external system, like a database or a cache. This advice also applies to views in a web
application.

Redis

Most Spinach features are implemented as Lua scripts running inside Redis. Having a solid
installation of Redis is the key to Spinach reliability.

To ensure that no tasks are lost or duplicated, Redis must be configured with persistence enabled.
It is recommended to use AOF persistence (appendonly yes) instead of periodic RDB dumps. The
default of fsync every second (appendfsync everysec) is a good trade-off between performance
and security against sudden power failures.

Using Redis as a task queue is very different from using it as a cache. If an application uses
Redis for both task queue and cache, it is recommended to have two separated Redis servers. One
would be configured with persistence and without eviction while the other would have no persistence
but would evict keys when running low on memory.

Finally standard security practices apply: Redis should not accept connections from the Internet
and it should require a password even when connecting locally.

System

If the application is deployed on multiple servers it is important that their clocks be
approximately synchronized. This is because Spinach uses the system time to know when a job should
start. Running an ntp daemon is highly recommended.

Workers should be started by an init system that will restart them if they get killed or if the
host reboots.

To gracefully shutdown a worker, it is recommended to send it a SIGINT or a SIGTERM and let it
finish its running jobs. If the worker gets killed before it terminates gracefully, non-retryable
jobs will be lost and retryable jobs will be rescheduled automatically after the worker is
identified as dead, which takes 30 minutes by default. This is important if Spinach workers run in
docker containers because docker gives 10 seconds to a container to finish before killing it.

Production Checklist

Spinach:

	Tasks that are NOT safe to be retried have their max_retries set to 0

	Tasks that are safe to be retried have their max_retries set to a positive
number

	Retries happen after an exponential delay with randomized jitter (the
default)

	Task args and kwargs are JSON serializable and small in size

	Jobs are sent in Batch to the broker when multiple jobs are to be
scheduled at once

	The user’s code is thread-safe when using the default threaded workers

	Tasks do not store state in the process between invocations

	Logging is configured and exceptions are sent to Sentry, see
Integrations

	Different queues are used if tasks have different usage pattens, see
Queues

	Different namespaces are used if multiple Spinach applications share the same
Redis server, see Engine

Redis:

	Redis uses AOF persistence

	Redis does not evict keys when running low on memory

	The Redis server used by Spinach is not also used as a cache

	Connections are secured by a long password

	Connections are encrypted if they go through the public Internet

System:

	Servers have their clock synchronized by ntp

	Workers get restarted by an init system if they get killed

Design choices

I have used the Celery task queue for a long time and while it is a rock solid piece of software,
there are some design decisions that just drive me crazy.

This page presents and explains the key design decisions behind Spinach. It can be summed up as:
explicit is better than implicit. Spinach makes sure that it does not provide any convenient
feature that can backfire in more complex usages.

Threaded & asynchronous workers

Spinach workers are either threaded or asynchronous while other task queues like Celery or RQ rely
on processes by default.

Threaded and asynchronous workers work best with IO bound tasks: tasks that make requests to other
services, query a database or read files. If your tasks are CPU bound, meaning that you do heavy
computations in Python, a process based worker will be more efficient.

Tasks in a typical web application are more often than not IO bound. The choice of threads or
coroutines as unit of concurrency is a sensible one.

Threads and coroutines also have the advantage of being lighter than processes, a system can handle
more threads than processes before resources get exhausted.

Fork

Another reason why Spinach does not use processes for concurrency is because the fork system
call used to create the workers is a very special one. It has Copy-On-Write semantics that are
unfamiliar to many Python developers.

On the other hand thread-safety is a more understood problem in Python, the standard library
providing most of the solutions to write thread-safe programs.

Not relying on fork also makes Spinach compatible with Windows.

Embeddable workers

As workers are just threads they are easily embeddable in any other Python process. This opens the
door to two nice usages:

During automated tests a worker can be launched processing jobs exactly like a normal worker would
do in production. What is more by using an in-memory broker there is no need for having a Redis
server running during tests.

For small web projects, the task workers can be launched from the same process as the web
application. As the application gets bigger the workers can be moved to a separate process very
easily.

Logging

One issue I have with Celery is the way it handles logging: the framework tries to be too smart,
resulting in great pain when the logging setup gets more complex.

That is why Spinach keeps it simple: as a well behaved library it uses the standard logging module [https://docs.python.org/3/library/logging.html] and writes logs in its own loggers.

The choice of what to do with theses log records is up to the final user.

Jobs scheduled for the future

Spinach has full support for jobs that need to be executed in the future. These jobs go to
a special queue until the are ready to be launched. At that time they are moved to a normal queue
where they are picked by a worker.

Celery emulates this behavior by immediately sending the task to a worker and waiting there until
the time has come to execute it. It means tasks cannot be scheduled much in advance without wasting
resources in the worker.

Periodic jobs

One annoying thing with Celery is that you can launch as many distributed workers as you want but
there must be one and only one Celery beat process running in the cluster at a time.

This approach does not work well with containerized applications that run in a cluster that often
redeploys and move containers around.

All Spinach workers are part of the system that schedules periodic jobs, there is no need to have
a pet in the cattle farm.

Only two brokers

Spinach lets the user pick between the in-memory broker for local development and the Redis broker
for production. Both support exactly the same set of features.

Redis was chosen because it is an incredibly versatile database. With Lua scripting it becomes
possible to develop entirely new patterns which are essential to create a useful and reliable task
queue.

Other services like Google PubSub, Amazon SQS or AMQP are very opinionated and not as versatile as
Redis, making them difficult to use within Spinach without cutting down on features.

Namespace

Multiple Spinach applications (production, staging…) can use the same Redis database without
interfering with each other.

Likewise, a single interpreter can run multiple Spinach applications without them interfering with
each other.

Minimize import side-effects

Spinach encourages users to write applications that have minimal side-effects when imported. There
is no global state that gets created or modified when importing or using Spinach.

The user is free to use Spinach in a scoped fashion or declaring everything globally.

This makes it possible for a single interpreter to run multiple Spinach applications without them
interfering with each other, which is particularly useful for running automated tests.

No worker entrypoint

Celery has this celery worker entrypoint that can be launched from the command line to load an
application and spawn the workers.

The problem I often face is that I never know if a setting should be defined in my code as part of
the app setup or as a flag of this command line.

Moreover command line flags and application settings often have slightly different names, making
things more confusing.

Spinach thus makes it foolproof, you are responsible for configuring the Spinach app though your
Python code. You can read settings from environment variables, from a file or anything else
possible in Python.

It is then easy to use it to create your own entrypoint to launch the workers.

Schedule tasks in batch

A pattern that is used frequently with task queues is to periodically scan all entities and
schedule an individual task for each entity that needs further work. For instance closing user
accounts of member who haven’t logged in in a year.

With Celery this results in having to do as many round-trips to the broker as there are tasks to
schedule. There are some workarounds but they just move the problem elsewhere.

Spinach supports sending tasks to the broker in batch to avoid this overhead.

Written for the Cloud

Latency between workers and Redis can be high, for example when they are deployed in two separate
regions. Spinach leverages Lua scripting in Redis to avoid unnecessary round-trips by batching
calls as much as possible.

In a cloud environment network connections can get dropped and packets get lost. Spinach retries
failed actions after applying an exponential backoff with randomized jitter to avoid the thundering
herd problem when the network gets back to normal.

Workers are expected to be deployed in containers, probably managed by an orchestrator like
Kubernetes or Nomad that often scale and shuffle containers around. Workers can join and leave the
cluster at any time without impacting the ability to process jobs.

Because worker processes can die unexpectedly (power loss, OOM killed, extended network outage…),
Spinach tries to detect dead workers and reschedule the jobs that were running on them if the jobs
are safe to be retried.

FAQ

Should I use Spinach?

Spinach was designed from the ground up to be reliable. It is built using proven technologies
(Redis, Python queues, thread pools…), is heavily tested and in my experience just works.

The project has been around for long enough that I am now confident it is a good option among task
frameworks. If after reading this documentation you feel like giving it a try, go for it!

Threads are not enough, can I use Processes?

Threading is the only concurrency primitive however it is possible to run many processes each
containing one worker thread. This will open more connections to Redis, but Redis is known to
support thousands of concurrent connections so this should not be a problem.

The best approach to achieve this is to rely on an init system like systemd, supervisord or docker.
The init system will be responsible for spawning the correct number of processes and making sure
they are properly restarted if they terminate prematurely.

Writing this init system yourself in Python using the multiprocessing module is possible but it
must not import your actual application using Spinach. This is because mixing threads and forks in
a single interpreter is a minefield. Anyway you are probably better off using a battle tested init
system.

How do I get in touch?

Bug reports and feature requests can be sent on GitHub [https://github.com/NicolasLM/spinach].

For help with integrating Spinach to a project or giving feedback there is the IRC channel
#spinach on irc.libera.chat [https://kiwiirc.com/nextclient/irc.libera.chat:+6697/#spinach].

What is the licence?

Spinach is released under the BSD license.

Contributing

This page contains the few guidelines and conventions used in the code base.

Pull requests

The development of Spinach happens on GitHub, the main repository is
https://github.com/NicolasLM/spinach. To contribute to
Spinach:

	Fork NicolasLM/spinach

	Clone your fork

	Create a feature branch git checkout -b my_feature

	Commit your changes

	Push your changes to your fork git push origin my_feature

	Create a GitHub pull request against NicolasLM/spinach’s master branch

Note

Avoid including multiple commits in your pull request, unless it adds value to a future
reader. If you need to modify a commit, git commit --amend is your friend. Write
a meaningful commit message, see How to write a commit message [http://chris.beams.io/posts/git-commit/].

Python sources

The code base follows pep8 [https://www.python.org/dev/peps/pep-0008/] guidelines with lines
wrapping at the 79th character. You can verify that the code follows the conventions with:

$ pycodestyle --ignore=E252,W503,W504 spinach tests

Running tests is an invaluable help when adding a new feature or when refactoring. Try to add the
proper test cases in tests/ together with your patch. The test suite can be run with pytest:

$ pytest tests

Because the Redis broker tests require a running Redis server, there is also a convenience
tox.ini that runs all the tests and pep8 checks for you after starting Redis in a container via
docker-compose. Simply running:

$ tox

will build a virtualenv, install Spinach and its dependencies into it, start the Redis server in
the container, and run tests and pycodestyle, tearing down the Redis server container when done.

Compatibility

Spinach runs on all versions of Python starting from 3.6. Tests are run via GitHub actions to
ensure that.

Documentation sources

Documentation is located in the doc directory of the repository. It is written in
reStructuredText [http://docutils.sourceforge.net/docs/ref/rst/restructuredtext.html] and built
with Sphinx [http://www.sphinx-doc.org/en/stable/index.html].

If you modify the docs, make sure it builds without errors:

$ cd doc/
$ make html

The generated HTML pages should land in doc/_build/html.

Internals

This page provides the basic information needed to start reading and modifying the source code of
Spinach. It presents how it works inside and how the project is designed.

Todo

Document how Spinach works internally

Index

 A
 | B
 | E
 | F
 | J
 | N
 | Q
 | R
 | S
 | T
 | W

A

 	
 	AbortException (class in spinach.task)

 	
 	add() (spinach.task.Tasks method)

 	attach_tasks() (spinach.engine.Engine method)

B

 	
 	Batch (class in spinach.task)

E

 	
 	Engine (class in spinach.engine)

 	
 	exponential_backoff() (in module spinach.utils)

F

 	
 	FAILED (spinach.job.JobStatus attribute)

J

 	
 	Job (class in spinach.job)

 	job_failed (in module spinach.signals)

 	job_finished (in module spinach.signals)

 	
 	job_schedule_retry (in module spinach.signals)

 	job_started (in module spinach.signals)

 	JobStatus (class in spinach.job)

N

 	
 	namespace (spinach.engine.Engine attribute)

 	
 	NOT_SET (spinach.job.JobStatus attribute)

Q

 	
 	QUEUED (spinach.job.JobStatus attribute)

R

 	
 	register_datadog() (in module spinach.contrib.datadog)

 	
 	RetryException (class in spinach.task)

 	RUNNING (spinach.job.JobStatus attribute)

S

 	
 	schedule() (spinach.engine.Engine method)

 	(spinach.task.Batch method)

 	(spinach.task.Tasks method)

 	schedule_at() (spinach.engine.Engine method)

 	(spinach.task.Batch method)

 	(spinach.task.Tasks method)

 	
 	schedule_batch() (spinach.engine.Engine method)

 	(spinach.task.Tasks method)

 	start_workers() (spinach.engine.Engine method)

 	stop_workers() (spinach.engine.Engine method)

 	SUCCEEDED (spinach.job.JobStatus attribute)

T

 	
 	task() (spinach.task.Tasks method)

 	
 	Tasks (class in spinach.task)

W

 	
 	WAITING (spinach.job.JobStatus attribute)

 	
 	worker_started (in module spinach.signals)

 	worker_terminated (in module spinach.signals)

 _static/plus.png

_static/file.png

_static/minus.png

_static/up-pressed.png

_static/up.png

_static/down-pressed.png

_static/down.png

_static/comment-close.png

_static/comment.png

nav.xhtml

 Table of Contents

 		
 Spinach

 		
 Installation

 		
 Prerequisites

 		
 Pip

 		
 From Source

 		
 Tasks

 		
 Retries

 		
 Non-Retryable Tasks

 		
 Retryable Tasks

 		
 Retrying

 		
 Limiting task concurrency

 		
 Periodic tasks

 		
 Tasks Registry

 		
 Batch

 		
 Jobs

 		
 Job

 		
 Job Status

 		
 Engine

 		
 Namespace

 		
 Queues

 		
 Asyncio

 		
 Creating async tasks

 		
 Scheduling jobs

 		
 Example

 		
 Integrations

 		
 Logging

 		
 Flask

 		
 Single Module

 		
 Application Factory

 		
 Running workers

 		
 Configuration

 		
 Django

 		
 Running workers

 		
 Sending emails in the background

 		
 Periodically clearing expired sessions

 		
 Configuration

 		
 Sentry

 		
 Datadog

 		
 Signals

 		
 Subscribing to signals

 		
 Subscribing to signals of a specific Spinach Engine

 		
 Available signals

 		
 Tips

 		
 Received objects

 		
 Exceptions

 		
 Going further

 		
 Running in Production

 		
 Spinach

 		
 Redis

 		
 System

 		
 Production Checklist

 		
 Design choices

 		
 Threaded & asynchronous workers

 		
 Fork

 		
 Embeddable workers

 		
 Logging

 		
 Jobs scheduled for the future

 		
 Periodic jobs

 		
 Only two brokers

 		
 Namespace

 		
 Minimize import side-effects

 		
 No worker entrypoint

 		
 Schedule tasks in batch

 		
 Written for the Cloud

 		
 FAQ

 		
 Should I use Spinach?

 		
 Threads are not enough, can I use Processes?

 		
 How do I get in touch?

 		
 What is the licence?

 		
 Contributing

 		
 Pull requests

 		
 Python sources

 		
 Compatibility

 		
 Documentation sources

 		
 Internals

_static/comment-bright.png

_static/ajax-loader.gif

