
sphinxcontrib-jupyter Documentation
Release 19.2.1

QuantEcon Development Team

Jul 30, 2019

Contents:

1 Installation 3

2 Sphinx Setup 5

3 Extension Configuration and Options 7

4 RST Conversion Gallery 15

5 Example conf.py file 35

6 Managing Large Projects 37

7 Credits 39

8 Projects using Extension 41

9 LICENSE 43

10 Indices and tables 45

i

ii

sphinxcontrib-jupyter Documentation, Release 19.2.1

This sphinx extension can be used to build a collection of Jupyter notebooks for Sphinx Projects.

Note: It has mainly been written to support the use case of scientific publishing and hasn’t been well tested outside
of this domain. Please provide feedback as an issue to this repository.

Requires: Sphinx >= 1.7.2 (for running tests).

One of the main benefits of writing Jupyter notebooks as RST files is to simplify the task of version control for large
projects.

Contents: 1

http://jupyter.org
https://github.com/QuantEcon/sphinxcontrib-jupyter

sphinxcontrib-jupyter Documentation, Release 19.2.1

2 Contents:

CHAPTER 1

Installation

To install the extension:

pip install sphinxcontrib-jupyter

to upgrade your current installation to the latest version:

pip install sphinxcontrib-jupyter --upgrade

Todo: Add installation via conda-forge

1.1 Alternative

Another way to get the latest version it is to install directly by getting a copy of the repository:

git clone https://github.com/QuantEcon/sphinxcontrib-jupyter

and then use

python setup.py install

1.2 Developers

For developers it can be useful to install using the develop option:

python setup.py develop

this will install the package into the site-wide package directory which is linked to the code in your local copy of the
repository. It is not recommended to install this way for common use.

3

https://github.com/QuantEcon/sphinxcontrib-jupyter

sphinxcontrib-jupyter Documentation, Release 19.2.1

4 Chapter 1. Installation

CHAPTER 2

Sphinx Setup

To initially setup a Sphinx project, please refer here.

Note: QuantEcon is currently developing a custom quickstart to assist with setting up a sphinx project customised to
use this extension and provide more guidance with the configuration process.

Update the project conf.py file to include the jupyter extension and add the desired configuration settings (see
Extension Configuration section for details):

extensions = ["sphinxcontrib.jupyter"]

once the extension is installed you can then run:

make jupyter

The Extension Configuration section includes details on how to configure the extension.

5

https://www.sphinx-doc.org/en/master/usage/quickstart.html

sphinxcontrib-jupyter Documentation, Release 19.2.1

6 Chapter 2. Sphinx Setup

CHAPTER 3

Extension Configuration and Options

The options are split into the different parts of the compilation pipeline that are available in this extension:

3.1 Constructing Jupyter Notebooks

Options

• jupyter_conversion_mode

• jupyter_static_file_path

• jupyter_header_block

• jupyter_default_lang

• jupyter_lang_synonyms

• jupyter_kernels

• jupyter_write_metadata

• jupyter_options

• jupyter_drop_solutions

• jupyter_drop_tests

• jupyter_ignore_no_execute:

• jupyter_ignore_skip_test

• jupyter_allow_html_only

• jupyter_target_html

• jupyter_images_markdown

7

sphinxcontrib-jupyter Documentation, Release 19.2.1

3.1.1 jupyter_conversion_mode

Specifies which writer to use when constructing notebooks.

Option Description
“all” (default) compile complete notebooks which include markdown cells and code blocks
“code” compile notebooks that only contain the code blocks.

conf.py usage:

jupyter_conversion_mode = "all"

3.1.2 jupyter_static_file_path

Specify path to _static folder.

conf.py usage:

jupyter_static_file_path = ["source/_static"]

3.1.3 jupyter_header_block

Add a header block to every generated notebook by specifying an RST file

conf.py usage:

jupyter_header_block = ["source/welcome.rst"]

3.1.4 jupyter_default_lang

Specify default language for collection of RST files

conf.py usage:

jupyter_default_lang = "python3"

3.1.5 jupyter_lang_synonyms

Specify any language synonyms.

This will be used when parsing code blocks. For example, python and ipython have slightly different highlighting
directives but contain code that can both be executed on the same kernel

conf.py usage:

jupyter_lang_synonyms = ["pycon", "ipython"]

8 Chapter 3. Extension Configuration and Options

sphinxcontrib-jupyter Documentation, Release 19.2.1

3.1.6 jupyter_kernels

Specify kernel information for the jupyter notebook metadata.

This is used by jupyter to connect the correct language kernel and is required in conf.py.

conf.py usage:

jupyter_kernels = {
"python3": {

"kernelspec": {
"display_name": "Python",
"language": "python3",
"name": "python3"
},

"file_extension": ".py",
},

}

Todo: See Issue 196

3.1.7 jupyter_write_metadata

write time and date information at the top of each notebook as notebook metadata

Note: This option is slated to be deprecated

3.1.8 jupyter_options

An dict-type object that is used by dask to control execution

Todo: This option needs to be reviewed

3.1.9 jupyter_drop_solutions

Drop code-blocks that include :class: solution

Values
False (default)
True

Todo: This option needs to be reviewed

3.1. Constructing Jupyter Notebooks 9

https://github.com/QuantEcon/sphinxcontrib-jupyter/issues/196)

sphinxcontrib-jupyter Documentation, Release 19.2.1

3.1.10 jupyter_drop_tests

Drop code-blocks` that include ``:class: test

Values
False (default)
True

Todo: This option needs to be reviewed

3.1.11 jupyter_ignore_no_execute:

Values
False (default)
True

When constructing notebooks this option can be enabled to ignore :class: no-execute for code-blocks. This is useful
for html writer for pages that are meant to fail but shouldn’t be included in coverage tests.

conf.py usage:

jupyter_ignore_no_execute = True

3.1.12 jupyter_ignore_skip_test

When constructing notebooks this option can be enabled to ignore :class: skip-test for code-blocks.

Values
False (default)
True

conf.py usage:

jupyter_ignore_skip_test = True

3.1.13 jupyter_allow_html_only

Enable this option to allow .. only:: html pass through to the notebooks.

Values
False (default)
True

conf.py usage:

jupyter_allow_html_only = True

10 Chapter 3. Extension Configuration and Options

sphinxcontrib-jupyter Documentation, Release 19.2.1

3.1.14 jupyter_target_html

Enable this option to generate notebooks that favour the inclusion of html in notebooks to support more advanced
features.

Values
False (default)
True

Supported Features:

1. html based table support

2. image inclusion as html figures

conf.py usage:

jupyter_target_html = True

3.1.15 jupyter_images_markdown

Force the inclusion of images as native markdown

Values
False (default)
True

Note: when this option is enabled the :scale: option is not supported in RST.

conf.py usage:

jupyter_images_markdown = True

3.2 Executing Notebooks

3.2.1 jupyter_execute_nb

Enables the execution of generated notebooks

Values
False (default)
True

Todo: deprecate this option in favour of jupyter_execute_notebooks

3.2. Executing Notebooks 11

sphinxcontrib-jupyter Documentation, Release 19.2.1

3.2.2 jupyter_execute_notebooks

Enables the execution of generated notebooks

Values
False (default)
True

conf.py usage:

jupyter_execute_notebooks = True

3.2.3 jupyter_dependency_lists

Dependency of notebooks on other notebooks for execution can also be added to the configuration file above in the
form of a dictionary. The key/value pairs will contain the names of the notebook files.

conf.py usage:

add your dependency lists here
jupyter_dependency_lists = {

'python_advanced_features' : ['python_essentials','python_oop'],
'discrete_dp' : ['dp_essentials'],

}

3.2.4 jupyter_number_workers

Specify the number cores to use with dask

Values
Integer (default = 1)

conf.py usage:

jupyter_number_workers = 4

3.2.5 jupyter_threads_per_worker

Specify the number of threads per worker for dask

Values
Integer (default = 1)

conf.py usage:

jupyter_threads_per_worker = 1

12 Chapter 3. Extension Configuration and Options

sphinxcontrib-jupyter Documentation, Release 19.2.1

3.3 Converting Notebooks to HTML

Options

• jupyter_generate_html

• jupyter_html_template

• jupyter_make_site

• jupyter_download_nb

• jupyter_images_urlpath

3.3.1 jupyter_generate_html

Enable sphinx to generate HTML versions of notebooks

Values
False (default)
True

conf.py usage:

jupyter_generate_html = True

3.3.2 jupyter_html_template

Specify path to nbconvert html template file

Note: Documentation on nbconvert templates can be found here

conf.py usage:

jupyter_html_template = "theme/template/<file>.tpl"

3.3.3 jupyter_make_site

Enable sphinx to construct a complete website

Todo: Document all the extra elements this option does over jupyter_generate_html

This option:

1. fetches coverage statistics if coverage is enabled.

conf.py usage:

3.3. Converting Notebooks to HTML 13

https://nbconvert.readthedocs.io/en/latest/customizing.html#Customizing-nbconvert

sphinxcontrib-jupyter Documentation, Release 19.2.1

jupyter_make_site = True

3.3.4 jupyter_download_nb

Request Sphinx to generate a collection of download notebooks to support a website

conf.py usage:

jupyter_download_nb = True

3.3.5 jupyter_images_urlpath

Apply a url prefix when writing images in Jupyter notebooks. This is useful when paired with
jupyter_download_nb so that download notebooks are complete with web referenced images.

conf.py usage:

jupyter_images_urlpath = "s3://<path>/_static/img/"

3.4 Computing Coverage Statistics

3.4.1 jupyter_make_coverage

Enable coverage statistics to be computed

Values
False (default)
True

3.4.2 jupyter_template_coverage_file_path

Provide path to template coverage file

Todo: Document format for template

conf.py usage:

jupyter_template_coverage_file_path = "theme/templates/<file>.json"

It can also be useful to have multiple configurations when working on a large project, such as generating notebooks
for working on locally and editing and compiling the project for HTML in a deployment setting. Further details on
how to manage large projects can be found here.

An example conf.py is available here

14 Chapter 3. Extension Configuration and Options

CHAPTER 4

RST Conversion Gallery

Note: A minimum configured sphinx repo is available here which generates a sample notebook

Examples

• RST Conversion Gallery

– code-blocks

– images and figures

– jupyter-directive

– links

– math

– block-quote

– slides

– footnotes

– solutions

– tables

– tests

The test suite, located here provides examples of conversions between RST and the Jupyter notebook which form the
test cases for this extension. It can be a useful resource to check how elements are converted if they are not contained
in this gallery.

15

https://github.com/QuantEcon/sphinxcontrib-jupyter.minimal
https://github.com/QuantEcon/sphinxcontrib-jupyter.minimal#simple_notebookrst
https://github.com/QuantEcon/sphinxcontrib-jupyter/tree/master/tests

sphinxcontrib-jupyter Documentation, Release 19.2.1

4.1 code-blocks

The following code in the .rst file

Code blocks

This is a collection to test various code-blocks

This is a **.. code::** directive

.. code:: python

this = 'is a code block'
x = 1
no = 'really!'
p = argwhere(x == 2)

This is another **.. code::** directive

.. code:: python

from pylab import linspace
t = linspace(0, 1)
x = t**2

This is a **::** directive

::

from pylab import *
x = logspace(0, 1)
y = x**2
figure()
plot(x, y)
show()

will look as follows in the jupyter notebook

16 Chapter 4. RST Conversion Gallery

sphinxcontrib-jupyter Documentation, Release 19.2.1

4.2 images and figures

The following code in the .rst file

Images
======

Collection of tests for **.. image::** and **.. figure::** directives

Image

`Docutils Reference <http://docutils.sourceforge.net/docs/ref/rst/directives.html
→˓#images>`__

Most basic image directive

.. image:: _static/hood.jpg

A scaled down version with 25 % width
(continues on next page)

4.2. images and figures 17

sphinxcontrib-jupyter Documentation, Release 19.2.1

(continued from previous page)

.. image:: _static/hood.jpg
:width: 25 %

A height of 50px

.. image:: _static/hood.jpg
:height: 50px

Figure

`Docutils Reference <http://docutils.sourceforge.net/docs/ref/rst/directives.html
→˓#figure>`__

Testing the **.. figure::** directive

.. figure:: _static/hood.jpg
:scale: 50 %

will look as follows in the jupyter notebook

18 Chapter 4. RST Conversion Gallery

sphinxcontrib-jupyter Documentation, Release 19.2.1

4.2. images and figures 19

sphinxcontrib-jupyter Documentation, Release 19.2.1

Warning: if jupyter_images_markdown = True then the :scale:, :height: and :width:‘ attributes
will be ignored.

4.3 jupyter-directive

The following code in the .rst file

Jupyter Directive
=================

This is a set of tests related to the Jupyter directive

The following jupyter directive with cell-break option should
split this text and the text that follows into different IN
blocks in the notebook

.. jupyter::
:cell-break:

This text should follow in a separate cell.

will look as follows in the jupyter notebook

20 Chapter 4. RST Conversion Gallery

sphinxcontrib-jupyter Documentation, Release 19.2.1

4.4 links

The following code in the .rst file

.. _links:

Links

Links are generated as markdown references to jump between notebooks and
the sphinx link machinery is employed to track links across documents.

An external link to another `notebook (as full file) <links_target.ipynb>`_

This is a paragraph that contains `a google hyperlink`_.

.. _a google hyperlink: https://google.com.au

- An inline reference to :ref:`another document <links_target>`

Special Cases

The following link has (and) contained within them that doesn't render nicely in
→˓markdown. In this case the extension will substitute (with `%28` and) with `%29`

Thinking back to the mathematical motivation, a `Field <https://en.wikipedia.org/wiki/
→˓Field_\(mathematics\)>`_ is an `Ring` with a few additional properties

will look as follows in the jupyter notebook

4.4. links 21

sphinxcontrib-jupyter Documentation, Release 19.2.1

4.5 math

The following code in the .rst file

Math

Inline maths with inline role: :math:`x^3+\frac{1+\sqrt{2}}{\pi}`

Inline maths using dollar signs (not supported yet): $x^3+\frac{1+\sqrt{2}}{\pi}$ as
→˓the
backslashes are removed.

.. math::

x^3+\frac{1+\sqrt{2}}{\pi}

check math with some more advanced LaTeX, previously reported as an issue.

.. math::

\mathbb P\{z = v \mid x \}
= \begin{cases}

f_0(v) & \mbox{if } x = x_0, \\
f_1(v) & \mbox{if } x = x_1

\end{cases}

and labeled test cases

.. math::
:label: firsteq

\mathbb P\{z = v \mid x \}
= \begin{cases}

f_0(v) & \mbox{if } x = x_0, \\
f_1(v) & \mbox{if } x = x_1

\end{cases}
(continues on next page)

22 Chapter 4. RST Conversion Gallery

sphinxcontrib-jupyter Documentation, Release 19.2.1

(continued from previous page)

Further Inline

A continuation Ramsey planner at :math:`t \geq 1` takes
:math:`(x_{t-1}, s_{t-1}) = (x_-, s_-)` as given and before
:math:`s` is realized chooses
:math:`(n_t(s_t), x_t(s_t)) = (n(s), x(s))` for :math:`s \in {\cal S}`

Referenced Math

Simple test case with reference in text

.. math::
:label: test

v = p + \beta v

this is a reference to :eq:`test` which is the above equation

will look as follows in the jupyter notebook

4.5. math 23

sphinxcontrib-jupyter Documentation, Release 19.2.1

4.6 block-quote

The following code in the .rst file

Quote

This is some text

This is a quote!

and this is not

Epigraph

An epigraph is a special block-quote node

.. epigraph::

"Debugging is twice as hard as writing the code in the first place.
Therefore, if you write the code as cleverly as possible, you are, by definition,
not smart enough to debug it."

-- Brian Kernighan

and one that is technically malformed

.. epigraph::

"Debugging is twice as hard as writing the code in the first place.
Therefore, if you write the code as cleverly as possible, you are, by definition,
not smart enough to debug it." -- Brian Kernighan

with some final text

will look as follows in the jupyter notebook

24 Chapter 4. RST Conversion Gallery

sphinxcontrib-jupyter Documentation, Release 19.2.1

4.7 slides

The following code in the .rst file

Slide option activated

.. jupyter::
:slide: enable

This is a collection of different types of cells where the toolbar: Slideshow has
→˓been activated

.. jupyter::
:cell-break:
:slide-type: subslide

The idea is that eventually we will assign a type (*slide*, *subslide*, *skip*,
→˓*note*) for each one. We used our **jupyter** directive to break the markdown cell
→˓into two different cells.

.. code:: python3

import numpy as np

x = np.linspace(0, 1, 5)
y = np.sin(4 * np.pi * x) * np.exp(-5 * x)

(continues on next page)

4.7. slides 25

sphinxcontrib-jupyter Documentation, Release 19.2.1

(continued from previous page)

print(y)

.. code:: python3

import numpy as np

z = np.cos(3 * np.pi * x) * np.exp(-2 * x)
w = z*y

print(w)

Math
++++

The previous function was

.. math:: f(x)=\sin(4\pi x)\cos(4\pi x)e^{-7x}

.. jupyter::
:cell-break:
:slide-type: fragment

We can also include the figures from some folder

.. figure:: _static/hood.jpg

will look as follows in the jupyter notebook

26 Chapter 4. RST Conversion Gallery

sphinxcontrib-jupyter Documentation, Release 19.2.1

4.7. slides 27

sphinxcontrib-jupyter Documentation, Release 19.2.1

4.8 footnotes

The following code in the .rst file

Rubric
======

Define the government's one-period loss function [#f1]_

.. math::
:label: target

r(y, u) = y' R y + u' Q u

History dependence has two sources: (a) the government's ability to commit [#f2]_ to
→˓a sequence of rules at time :math:`0`

.. rubric:: Footnotes

.. [#f1] The problem assumes that there are no cross products between states and
→˓controls in the return function. A simple transformation converts a problem whose
→˓return function has cross products into an equivalent problem that has no cross
→˓products.

.. [#f2] The government would make different choices were it to choose sequentially,
→˓that is, were it to select its time :math:`t` action at time :math:`t`.

will look as follows in the jupyter notebook

4.9 solutions

The following code in the .rst file

Notebook without solutions
==========================

(continues on next page)

28 Chapter 4. RST Conversion Gallery

sphinxcontrib-jupyter Documentation, Release 19.2.1

(continued from previous page)

The idea is with the use of classes, we can decide whether to show or not the
→˓solutions
of a particular lecture, creating two different types of jupyter notebooks. For now
→˓it only
works with *code blocks*, you have to include **:class: solution**, and set in the
→˓conf.py file

jupyter_drop_solutions=True.

Here is a small example

Question 1

Plot the area under the curve

.. math::

f(x)=\sin(4\pi x) exp(-5x)

when :math:`x \in [0,1]`

.. code-block:: python3
:class: solution

import numpy as np
import matplotlib.pyplot as plt

x = np.linspace(0, 1, 500)
y = np.sin(4 * np.pi * x) * np.exp(-5 * x)

fig, ax = plt.subplots()

ax.fill(x, y, zorder=10)
ax.grid(True, zorder=5)
plt.show()

will look as follows in the jupyter notebook

Todo: Currently generating the two sets of notebooks requires two separate runs of sphinx which is incovenient. It

4.9. solutions 29

sphinxcontrib-jupyter Documentation, Release 19.2.1

would be better to develop a set of notebooks without solutions (as Default) and a set of notebooks with solutions in a
subdir.

4.10 tables

Basic table support is provided by this extension.

Note: Complex tables are not currently supported. See Issue [#54](https://github.com/QuantEcon/
sphinxcontrib-jupyter/issues/54)

The following code in the .rst file

Table
=====

These tables are from the `RST specification <http://docutils.sourceforge.net/docs/
→˓ref/rst/restructuredtext.html#grid-tables>`__:

Grid Tables

A simple rst table with header

+------+------+
| C1 | C2 |
+======+======+
| a | b |
+------+------+
| c | d |
+------+------+

Note: Tables without a header are currently not supported as markdown does
not support tables without headers.

Simple Tables

===== ===== =======
A B A and B
===== ===== =======
False False False
True False False
False True False
True True True
===== ===== =======

Directive Table Types

These table types are provided by `sphinx docs <http://www.sphinx-doc.org/en/master/
→˓rest.html#directives>`__

(continues on next page)

30 Chapter 4. RST Conversion Gallery

https://github.com/QuantEcon/sphinxcontrib-jupyter/issues/54
https://github.com/QuantEcon/sphinxcontrib-jupyter/issues/54

sphinxcontrib-jupyter Documentation, Release 19.2.1

(continued from previous page)

List Table directive
~~~~~~~~~~~~~~~~~~~~

.. list-table:: Frozen Delights!
:widths: 15 10 30
:header-rows: 1

* - Treat
- Quantity
- Description

* - Albatross
- 2.99
- On a stick!

* - Crunchy Frog
- 1.49
- If we took the bones out, it wouldn't be crunchy, now would it?

* - Gannet Ripple
- 1.99
- On a stick!

will look as follows in the jupyter notebook

4.10. tables 31



sphinxcontrib-jupyter Documentation, Release 19.2.1

4.11 tests

The following code in the .rst file

Notebook without Tests
======================

This is an almost exact analogue to the solutions class. The idea is that we can
→˓include test blocks using **:class: test** that we can toggle on or off with
→˓*jupyter_drop_tests = True*. A primary use case is for regression testing for the 0.
→˓6 => 1.0 port, which we will not want to show to the end user.

Here is a small example:
(continues on next page)

32 Chapter 4. RST Conversion Gallery



sphinxcontrib-jupyter Documentation, Release 19.2.1

(continued from previous page)

Question 1
------------

.. code-block:: julia

x = 3
foo = n -> (x -> x + n)

.. code-block:: julia
:class: test

import Test
@test x == 3
@test foo(3) isa Function
@test foo(3)(4) == 7

will look as follows in the jupyter notebook

Note: inclusion of tests in the generated notebook can be controlled in the conf.py file using
jupyter_drop_tests = False. This is useful when using the coverage build pathway.

4.11. tests 33



sphinxcontrib-jupyter Documentation, Release 19.2.1

34 Chapter 4. RST Conversion Gallery



CHAPTER 5

Example conf.py file

After running a sphinx-quickstart you can add the jupyter options needed for your project in a similar fashion to what
is shown belows.

# --------------------------------------------
# sphinxcontrib-jupyter Configuration Settings
# --------------------------------------------

# Conversion Mode Settings
# If "all", convert codes and texts into jupyter notebook
# If "code", convert code-blocks only
jupyter_conversion_mode = "all"

# Write notebook creation metadata to the top of the notebook
jupyter_write_metadata = True

# Location for _static folder
jupyter_static_file_path = ["_static"]

# Configure Jupyter Kernels
jupyter_kernels = {

"python3": {
"kernelspec": {

"display_name": "Python",
"language": "python3",
"name": "python3"
},

"file_extension": ".py",
},

}

# Configure default language for Jupyter notebooks
# Can be changed in each notebook thanks to the ..highlight:: directive
jupyter_default_lang = "python3"

(continues on next page)

35



sphinxcontrib-jupyter Documentation, Release 19.2.1

(continued from previous page)

# Prepend a Welcome Message to Each Notebook
jupyter_welcome_block = "welcome.rst"

# Solutions Configuration
jupyter_drop_solutions = True

# Tests configurations
jupyter_drop_tests = True

# Add Ipython as Synonym for tests
jupyter_lang_synonyms = ["ipython"]

36 Chapter 5. Example conf.py file



CHAPTER 6

Managing Large Projects

Large projects may require different build pathways due to the time required for execution of embedded code. This
can be done by modifying the Makefile to accomodate multiple build pathways.

You may, for example, wish to leave make jupyter simply building notebooks while setting up an alternative
make command to target a full website build.

In the Makefile you can add an alternative build target such as:

BUILDWEBSITE = _build/website

and then you can modify options (set in the conf.py file) using the -D flag.

website:
@$(SPHINXBUILD) -M jupyter "$(SOURCEDIR)" "$(BUILDWEBSITE)" $(SPHINXOPTS) $(O) -D

→˓jupyter_make_site=1 -D jupyter_generate_html=1 -D jupyter_download_nb=1 -D jupyter_
→˓execute_notebooks=1 -D jupyter_target_html=1 -D jupyter_images_markdown=0 -D
→˓jupyter_html_template="theme/templates/lectures-nbconvert.tpl" -D jupyter_download_
→˓nb_urlpath="https://lectures.quantecon.org/"

this will setup a new folder _build/website for the new build pathway to store resultant files from the options
selected.

Note: this method also preserves the sphinx cache mechanism for each build pathway.

Warning: Issue #199 will alter this approach to include all configuration settings in the conf.py file and then
the different pipelines can be switched off in the Makefile which will be less error prone.

37

https://github.com/QuantEcon/sphinxcontrib-jupyter/issues/199


sphinxcontrib-jupyter Documentation, Release 19.2.1

38 Chapter 6. Managing Large Projects



CHAPTER 7

Credits

This project is supported by QuantEcon

Many thanks to the lead developers of this project.

• @AakashGfude

• @mmcky

• @NickSifniotis

• @myuuuuun

Contributors

• FelipeMaldonado

39

https://www.quantecon.org
https://github.com/AakashGfude
https://github.com/mmcky
https://github.com/NickSifniotis
https://github.com/myuuuuun
https://github.com/FelipeMaldonado


sphinxcontrib-jupyter Documentation, Release 19.2.1

40 Chapter 7. Credits



CHAPTER 8

Projects using Extension

1. QuantEcon Lectures

If you find this extension useful please let us know at contact@quantecon.org

41

https://lectures.quantecon.org
mailto:contact@quantecon.org


sphinxcontrib-jupyter Documentation, Release 19.2.1

42 Chapter 8. Projects using Extension



CHAPTER 9

LICENSE

Copyright © 2019 QuantEcon Development Team: BSD-3 All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted provided that the
following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following
disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the follow-
ing disclaimer in the documentation and/or other materials provided with the distribution.

3. Neither the name of the copyright holder nor the names of its contributors may be used to endorse or promote
products derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS “AS IS” AND ANY
EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT
SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, IN-
CIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSI-
NESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CON-
TRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY
WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAM-
AGE.

43



sphinxcontrib-jupyter Documentation, Release 19.2.1

44 Chapter 9. LICENSE



CHAPTER 10

Indices and tables

• genindex

• modindex

• search

45


	Installation
	Sphinx Setup
	Extension Configuration and Options
	RST Conversion Gallery
	Example conf.py file
	Managing Large Projects
	Credits
	Projects using Extension
	LICENSE
	Indices and tables

