
BioShell 3.0
Release 3.0

May 16, 2019

Overview

1 Introduction 1
1.1 BioShell applications . 1
1.2 BioShell tests & examples . 1
1.3 BioShell library for Python (aka PyBioShell) . 2
1.4 BioShell C++ library . 2
1.5 Previous versions . 2
1.6 Citations . 2

2 Installation 5

3 PyBioShell Installation 7
3.1 0. Prequisities . 7
3.2 1. Clone and compile binder . 7
3.3 2. Build PyBioShell . 8

4 BioShell programs 9
4.1 clust tutorial : clustering sequences and structures . 9
4.2 BioShell cookbook . 11

5 BioShell examples 17
5.1 ap_* programs . 17
5.2 ex_* programs . 103
5.3 ww_* programs . 271

6 BioShell C++ library 277
6.1 Reading and processing PDB files . 277

7 BioShell Python library 279
7.1 Reading and writing PDB files . 279

8 SURPASS model 281

9 Indices and tables 283

i

ii

CHAPTER 1

Introduction

1.1 BioShell applications

BioShell is a set of command-line programs for easy data manipulation from a UNIX-like terminal or a shell script.
The programs can read and write standard file formats and handle protein sequences and structures. The tools helps
also in simple calculations, like sequence alignment, Phi/Psi angles, crmsd and many more. See Programs page for
details.

1.2 BioShell tests & examples

Since the most recently published version 3.0, BioShell package comes with extensive set of example applications,
which have been created to simultaneously reach tree goals:

• to extend the set of BioShell command line tools. Programs with names starting with ap_ are in
fact yet another applications. The difference between these test and standard apps is that the latter
perform only a single action and their command line is simplified. These programs are integration
tests at the same time.

• to provide high quality code snippets that help BioShell users write their own programs. Small
programs, that show how to use a particular class or a function, are named ex_*. At the same time
they serve as unit tests

• to test the code. Both ex_* and ap_* tests are automatically executed by a test server to ensure the
quality and integrity of the package. Input data as well as curated output of these tests is versioned
in git repository along the source code.

All the examples are included in respective API documentation pages. Since the test are continuously
tested, the serve as a source of validated snippets for creating future programs.

1

BioShell 3.0, Release 3.0

1.3 BioShell library for Python (aka PyBioShell)

BioShell distribution provides also bindings to Python scripting language; that is, BioShell is also a versatile library
for python scripting. BioShell objects can be imported as any other python modules. Example scripts are also
included in the repository.

Precompiled library (a single .so file) for Unix distribitions can be downloaded from this page. The compilation
process is described here

1.4 BioShell C++ library

Finally, BioShell is a C++ software library. Both ap_* and ex_* BioShell tests are included in respective API
documentation pages. Since the test are continuously tested, they serve as a source of validated snippets for creating
future programs.

1.5 Previous versions

1.5.1 BioShell versions 1.x

The original BioShell package was designed as a suite of programs designed for pre- and post-processing in protein
structure modeling protocols. The package has been providing a convenient set of tools for in conversion between
various sequence and structure formats. It has been also possible to calculate simple properties of protein conforma-
tions. The very first commands (e.g. HCPM for clustering protein structures) were implemented in C, later on the
development switched to C++.

1.5.2 BioShell versions 2.x

Around 2006/07 BioShell has been reimplemented in JAVA, designed as a library for scripting languages running on
Java Virtual Machine, most notably Python, but also Scala, Ruby, Groovy and many others. Currently the most recent
stable release is 2.2. API docs as well as example scripts may be found in documentation. All program from 1.x
versions were also ported to JAVA.

1.6 Citations

• BioShell - the third version: J.M. Macnar, N.A. Szulc, A.E. Badaczewska-Dawid and D. Gront “Exhaustive
tests set of BioShell 3.0 suite for structural bioinformatics” Bioinformatics submitted

• Three-dimensional protein threading:

D. Gront, M. Blaszczyk, P. Wojciechowski, A. Kolinski “Bioshell Threader: protein homology detec-
tion based on sequence profiles and secondary structure profiles.” Nucleic Acids Research 2012
doi:10.1093/nar/gks555

• One-dimensional protein threading:

P. Gniewek, A. Kolinski, D. Gront “Optimization of profile-to-profile alignment parameters for one-
dimensional threading.” J. Computational Biology 2012 Jul;19(7):879-86

• BioShell - the second version:

2 Chapter 1. Introduction

http://bioshell.pl/~bioshell/PyBioShell/

BioShell 3.0, Release 3.0

D. Gront and A. Kolinski “Utility library for structural bioinformatics” Bioinformatics 2008 24(4):584-
585

• BBQ - program for backbone reconstruction:

D. Gront, S. Kmiecik, A. Kolinski “Backbone Building from Quadrilaterals. A fast and accurate algo-
rithm for protein backbone reconstruction from alpha carbon coordinates.” J. Comput. Chemistry
2007 28(9):1593-1597

• BioShell - the first version:

D. Gront and A. Kolinski “BioShell - a package of tools for structural biology computations” Bioinfor-
matics 2006 22(5):621-622

• Program for clustering protein structures (currently named clust):

D. Gront and A. Kolinski “HCPM - program for hierarchical clustering of protein models” Bioinformat-
ics 2005 21(14):3179-3180

1.6. Citations 3

BioShell 3.0, Release 3.0

4 Chapter 1. Introduction

CHAPTER 2

Installation

BioShell is written in C++11 and must be built before use. This is a quite easy process, which requires CMake
(https://cmake.org) and a relatively modern C++ compiler such as gcc 5.0 or clang 10.0 The compilation procedure is
as follows:

1. Install zlib

BioShell requires zlib library so it can handle compressed files. You must install developer version of the library to be
able to compile BioShell. On Ubuntu linux it can be installed by the command:

sudo apt-get install zlib1g-dev

2. If you haven’t done it yet, clone bioshell-release repository (https://bitbucket.org/dgront/bioshell-release/src/
master/) from Bitbucket:

git clone git@bitbucket.org:dgront/bioshell-release.git
cd bioshell-release

This should create bioshell-release directory in your current location. The second line steps into this new
directory

3. Run CMake:

cd build
cmake ..

The build directory will contain compilation intermediate files and may be deleted once BioShell is compiled. The
first line enters that direcotry, the second command calls cmake to set up the compilation process. CMake attempts
to set up everything automatically, sometimes however it would require some guidance, e.g. to find the right compiler
(see below)

4. Run Make:

make -j 4

5

https://cmake.org
https://bitbucket.org/dgront/bioshell-release/src/master/
https://bitbucket.org/dgront/bioshell-release/src/master/

BioShell 3.0, Release 3.0

where -j 4 allows make use 4 cores to run parallel compilations. This command will attempt to compile all targets;
the list of all targets can be printed by make help. As one can see, each executable is a separate target. There are
also predefined group targets:

bioshell compiles only bioshell library

bioshell-apps compiles bioshell library and bioshell toolkit applications, such as seqc and strc

examples compiles all examples, i.e. all ap_ and ex_ application

5. Additional parameters for compilation

The procedure described above compiles the package with the default settings: Release build with no profiling. To
change it, you should remove everything from ./build directory and generate new makefiles with new settings:

• in order to use a compiler other that the default one (e.g. gcc version 4.8), say:

cmake -DCMAKE_CXX_COMPILER=g++-4.8 -DCMAKE_C_COMPILER=gcc-4.8 -DCMAKE_
→˓BUILD_TYPE=Release ..

or to use icc for instance:

cmake -DCMAKE_CXX_COMPILER=icc -DCMAKE_C_COMPILER=icc -DCMAKE_BUILD_
→˓TYPE=Release ..

• to brew a debug build, turn -DCMAKE_BUILD_TYPE=Release into -DCMAKE_BUILD_TYPE=Debug. So
to make a debug build without changing the compiler, say just:

cmake -DCMAKE_BUILD_TYPE=Debug ..

• to make a profiling build (-pg option) for gcc or Xcode Instruments (https://developer.apple.com/
library/ios/documentation/AnalysisTools/Reference/Instruments_User_Reference/TimeProfilerInstrument/
TimeProfilerInstrument.html) add -D PROFILE=ON to the cmake command.

6. Using IDE

In the above examples, cmake was used to produce makefiles for to compile BioShell. cmake command may be also
used to generate project files for other environments, in particular:

• to produce *.xcodeproj file for xcode:

cmake -DCMAKE_BUILD_TYPE=Release -G Xcode

• or to prepare solution files for Microsoft Visual Studio (must be run on a Windows machine):

cmake -DCMAKE_BUILD_TYPE=Release -G "Visual Studio 2013"

6 Chapter 2. Installation

https://developer.apple.com/library/ios/documentation/AnalysisTools/Reference/Instruments_User_Reference/TimeProfilerInstrument/TimeProfilerInstrument.html
https://developer.apple.com/library/ios/documentation/AnalysisTools/Reference/Instruments_User_Reference/TimeProfilerInstrument/TimeProfilerInstrument.html
https://developer.apple.com/library/ios/documentation/AnalysisTools/Reference/Instruments_User_Reference/TimeProfilerInstrument/TimeProfilerInstrument.html

CHAPTER 3

PyBioShell Installation

PyBioShell is a set of Python bindings to BioShell library. It allows use of BioShell classes like any other Python
modules. The closest tool similar by functionality is Biopython, which however is partially written in Python.

The easiest option to get PyBioShell on your machine is to download precombiled library, available for Python3.5 and
Python3.7 from this page

Another way is to compile it from sources, following the steps given below. The procedure assumes your
bioshell-release repository is located in src.git/bioshell-release/ and binder in src.git/
binder/; these paths are arbitrary but the commands must be adjusted accordingly

3.1 0. Prequisities

In order to compile binder, you need to have Ninja building tool (website) and cmake. You will also need python
headers, available from python-dev package or similar (e.g. python3.5-dev). On Ubuntu Linux you can install
them with apt-get:

sudo apt-get install ninja-build cmake python-dev

The use of clang compiler is advised. Try to get clang-6.0 or newer (see this link)

3.2 1. Clone and compile binder

To clone binder from its github repository:

git clone https://github.com/RosettaCommons/binder
cd binder
python3 ./build.py -j 4

where the last command actually builds binder using four CPU cores for that. Note, that binder uses more than 1GB
of disc space and its compilation may take a few hours.

7

http://bioshell.pl/~bioshell/PyBioShell/
https://ninja-build.org/
https://blog.kowalczyk.info/article/k/how-to-install-latest-clang-6.0-on-ubuntu-16.04-xenial-wsl.html

BioShell 3.0, Release 3.0

3.3 2. Build PyBioShell

Open BuildPython.py file and edit variables, adapting it to your system. In particular, you most likely have
to fix clang++ version (LINKER_CMD variable) as well as the path where the binder executable is located
(BINDER_PATH variable) Make a directory build_bindings in the main BioShell directory, i.e in the direc-
tory where pybioshell.config is located. There are three scripts availble for other Python versions Bulid-
Python27.py, BuildPython35 and BuildPython37.py. Choose your Python version and run the compilation as follow:

python BuildPython37.py

You should find your compiled version in bin/pybioshell.so. If you have any problems with compilation,
please do not hesitate to contact us.

8 Chapter 3. PyBioShell Installation

CHAPTER 4

BioShell programs

Currently, BioShell distribution provides the following programs:

seqc (cookbook recipes): sequence converter : a utility to convert between sequence data formats

strc (cookbook recipes): structure converter : a utility to work with PDB files

str_calc (cookbook recipes): structure calculator; perform various calculations on a PDB file

clust (cookbook recipes): calculates hierarchical clustering of arbitrary objects based on a map of pairwise distances
between them

hist (cookbook recipes): simple utulity to make 1D and 2D histograms

Now you can browse BioShell cookbook, or read tutorials, listed below

4.1 clust tutorial : clustering sequences and structures

Clustering procedure allows one to divide arbitrary number of objects into groups accordint to their mutual
(dis)similarity. This method is widely used in bioinformatics and molecular modeling to deal with data sets that
are too large to be inspected manually. Here we give two examples of Hierarchical Agglomerative Clustering with
BioShell package:

1) to cluster a pool of protein sequences

2) to cluster results of protein-peptide docking

The BioShell procedure for clustering divides the task into three steps:

1) calculate a matrix of distances between elements subjected to a clustering analysis.

As a result, a flat text file should be produced. The three columns of that file must provide i-th element ID, j-th
element ID and the respective distance value

2) run the actuall clustering procedure.

Although the procedure can be stopped at a particular cutoff distance, we advise to conduct the calculations i.e.
until all the objects are merged into a single cluster. Clustering tree will be stored in an output file

9

BioShell 3.0, Release 3.0

3) analyse the clustering tree to retrieve clusters at a desired cutoff level

Below we show how to perform these three steps for two different clustering applications

4.1.1 Example 1. Clustering protein sequences by their mutual sequence identity

Step 1: Calculating the distances

Clustering procedure should merge close sequences (i.e. small mutual distance) into a single cluster, while dissimilar
sequences should be placed in different clusters. Unfortunately, sequence identity value (seq_id) cannot be used here
because its largest value (1.0) denotes identical sequences. Here we propose to use 1.0 - seq_id as a distance function.

First we use ap_PairwiseSequenceIdentityProtocol program to evaluate all pairwise distances:

ap_PairwiseSequenceIdentityProtocol inp.fasta 8 0.4 > seq_id.out 2>LOG

where inp.fasta is the input file (FASTA format), 8 is the number of cores (threads run in parallel) and 0.4 is the
smallest seq_id value to be written to a file.

Then the seq_id values are converted into distances with awk command line tool:

awk '{print $1,$2,1.0-$3}' seq_id.out > distances.out

Step 2: Clustering the data

Then we run the clust tool:

clust -in::file=distances.out \
-n=46621 \
-complete \
-clustering:missing_distance=1.1 \
-clustering:out:tree=tree-complete >clust_out 2>clust_log

The -n option is necessary to provide the number of objects subjected to clustering (not the number of distance
values!). -clustering:missing_distance Provides the default distance value for the cases it’s undefined.
The clustering tree will be stored in a file specified by -clustering:out:tree option

Step 3: Analysis

clust -in::file=distances.out \
-n=46621 \
-clustering:in:tree=tree-complete \
-clustering:out:clusters \
-clustering:out:distance=0.4 \
-clustering:out:min_size=1

4.1.2 Example 2. Clustering results of protein-peptide docking

The input data set contains 12500 conformations of a protein receptor (1jd4) with a short peptide bound to its surface.
The conformations were calculated with FlexPepDocking program from Rosetta modelling suite.

10 Chapter 4. BioShell programs

BioShell 3.0, Release 3.0

Step 1: Calculating the distances

Step 2: Clustering the data

We run clust program as above, just should remember to put the correct imput file name and to change the number of
data elements (i.e. protein conformations)

clust -in::file=1jd4-pep-crsmd \
-n=12500 \
-complete \
-clustering:missing_distance=15.1 \
-clustering:out:tree=tree-complete >clust_out 2>clust_log

Step 3: Analysis

clust -in::file=all_vs_all_crmsd_15 \
-n=12500 -clustering:out:clusters \
-clustering:out:distance=2.5 \
-clustering:out:min_size=10 \
-clustering:in:tree=tree-complete

4.2 BioShell cookbook

This cookbook provides a bunch of handy one-liners that simplify daily tasks in structural bioinformatics.

4.2.1 bash-only recipes

Combine a bunch of .pdb files into a single multimodel-pdb:

k=0;
for i in *.pdb; do

k=$(($k+1));
echo "MODEL "$k;
cat $i;
echo "ENDMDL";

done > all-pdb
mv all-pdb all.pdb

4.2.2 1. seqc recipes

1.1 Create FASTA from PDB (prints FASTA on a screen):

seqc -in:pdb=2gb1.pdb -out:fasta

1.2 Create FASTA from PDB, including secondary structure:

seqc -in:pdb=2gb1.pdb -out:fasta -in::pdb::header -out:fasta:secondary

Secondary structure annotation is extracted from the PDB file header (-in::pdb::header option is
necessary to parse it)

4.2. BioShell cookbook 11

BioShell 3.0, Release 3.0

1.3 Create SS2 file from PDB:

seqc -in:pdb=2gb1.pdb -out:ss2 -in::pdb::header

As above, the secondary structure is extracted from the PDB file header; all the probability values (last
three columns in a SS2 file) are set either to 1.0 or 0.0

1.4 Count secondary structure elements in a bunch of PDB files, create a nice table:

for i in 2gb1.pdb 2fdo.pdb 1rrx.pdb
do
ss=`seqc -in:pdb=$i -out:ss2 -in::pdb::header -of -out::sequence::width=0 \

| tail -1 | fold -w1 | uniq | sort | uniq -c | tr '\n' ' '`
echo $i $ss

done 2>/dev/null

As in recipe 1.2, but this time a combination of a few bash commands is used to parse the ouput and count
the number of secondary structure elements: coil (C), strands (E) and helices (H). Example output looks
as below:

2gb1.pdb 6 C 4 E 1 H
2fdo.pdb 7 C 6 E 3 H
1rrx.pdb 16 C 11 E 5 H

1.5 Write FASTA file with only one line per sequence (un-wrap sequences)

seqc -in:fasta=in.fasta -out:sequence:width=0 -out:fasta

1.6 Convert ASN.1 sequence profile (psiblast output) into a text format

seqc -in:profile:asn1=d1or4A_.asn1 -out:profile:txt

1.7 As in recipe 1.5 (i.e. .asn1 -> .txt), but this time reorder profile columns

seqc -in:profile:asn1=d1or4A_.asn1 -out:profile:txt \
-out:profile:columns=GAPVILMCHWFYKRQDNQST

1.8 Sort sequences from the longest to the shortest

seqc -in:fasta=in.fasta -seqc:sort -out:fasta

This recipe can obviously be combined with the one above (every FASTA sequence in a single line)

1.9 Basic sequence filtering

seqc -in:fasta=in.fasta -seqc:sort -select::sequence::protein -out:fasta \
-select::sequence::long_at_least=30

Print only amino acid sequences (due to -select::sequence::protein filter) that are at least 30
residues long

1.10 Basic sequence filtering: keep nucleotide sequences

seqc -in:fasta=in.fasta -seqc:sort -select::sequence::nucleic -out:fasta \
-select::sequence::long_at_least=30

Print only nucleic acid sequences (due to -select::sequence::nucleic filter) that are at least 30
residues long

12 Chapter 4. BioShell programs

BioShell 3.0, Release 3.0

4.2.3 2. strc recipes

2.1 Write only chain A of the given input PDB file

strc -in:pdb=5edw.pdb -select::chains=A -out:pdb=5edwA.pdb

2.2 Write only aminoacids of chain A (ligands, water etc will be removed)

strc -in:pdb=5edw.pdb -select::chains=A -out:pdb=5edwA.pdb -select::aa

2.3 Write only selected fragment of a given protein (residues from 1 to 83 of chain A)

strc -in:pdb=1PQX.pdb -select::substructure=A:1-83 -op=out.pdb

4.2.4 3. str_calc recipes

3.1 Find all pairwise all-atom crmsd distances between all the models in a given PDB

str_calc -in:pdb=2kmk-1.pdb -calc::crmsd -in:pdb::all_models -
→˓in:pdb:native=2KMK.pdb.gz

3.2 Read in only CA atoms; find all pairwise crmsd distances between all the models in a given PDB

str_calc -select::ca -in:pdb=2kmk-1.pdb -calc::crmsd -in:pdb::all_models \
-in:pdb:native=2KMK.pdb.gz

3.3 Generate theoretical NOE restraints on for a protein backbone

str_calc -in::pdb=2kwi.pdb -in:pdb:with_hydrogens \
-calc::distmap::describe -calc::distmap::allatom

This command lists all distances between any two backbone atoms; -in:pdb:with_hydrogens
option forces BioShell to read hydrogen atoms, which is false by default,
-calc::distmap::describe turns on longer atom descriptions. The output may look as
below:

A GLN 9 N 10 A GLY 8 N 1 3.602
A GLN 9 N 10 A GLY 8 CA 2 2.418
A GLN 9 N 10 A GLY 8 C 3 1.326
A GLN 9 N 10 A GLY 8 O 4 2.245
A GLN 9 N 10 A GLY 8 HA2 8 2.506
A GLN 9 N 10 A GLY 8 HA3 9 2.959
A GLN 9 CA 11 A GLY 8 N 1 4.834
A GLN 9 CA 11 A GLY 8 CA 2 3.788
A GLN 9 CA 11 A GLY 8 C 3 2.425
A GLN 9 CA 11 A GLY 8 O 4 2.756

str_calc -in::pdb=2kwi.pdb -in:pdb:with_hydrogens -calc::distmap::describe \
-calc::distmap::allatom | awk '{if(($11<2.5) && ($3-$8>4)) print $0}'

This output is the filtered with awk. The ouput lines must satisfy the criteria: distance below 2.5
Angstroms, sequence separation at least 4 residues.

3.3 Find all-atom crmsd distances between all models in a single PDB and the reference native structure

4.2. BioShell cookbook 13

BioShell 3.0, Release 3.0

str_calc -in:pdb=2kmk-1.pdb -calc::crmsd -in:pdb::all_models -
→˓in:pdb:native=2KMK.pdb.gz

3.4 As in the above example, but after superimposing alpha-carbons, calculate crmsd on all the atoms:

str_calc -in:pdb=2kmk-1.pdb -calc::crmsd -in:pdb::all_models -
→˓in:pdb:native=2KMK.pdb.gz \

-calc::crmsd::matching_atoms=A:*:_CA_ -calc::crmsd::rotated_
→˓atoms=A:*:*

Check peptide docking results: superimpose two structures using alpha carbons of chain A (i.e. the receptor) and
calculate crmsd of CA atoms of chain B (i.e. the ligand)

str_calc -in:pdb=model-1.pdb -calc::crmsd -in:pdb::all_models -
→˓in:pdb:native=native.pdb \

-calc::crmsd::matching_atoms=A:*:_CA_ -calc::crmsd::rotated_
→˓atoms=B:*:_CA_

3.5 Check peptide docking results: superimpose two structures using alpha carbons of chain A (i.e. the receptor) and
calculate crmsd of CA atoms of chain B (i.e. the ligand)

str_calc -in:pdb=models-1.pdb -calc::crmsd -in:pdb::all_models -
→˓in:pdb:native=native.pdb \

-calc::crmsd::matching_atoms=A:*:_CA_ -calc::crmsd::rotated_
→˓atoms=B:*:_CA_

Note, that this recipe loads all models from the models-1.pdb file. For instance, if that file contains
10 structures, one can expect the following output:

name crmsd len crmsd len
models-1-1.pdb 0.000 96 0.000 4
models-1-2.pdb 0.262 96 22.598 4
models-1-3.pdb 0.274 96 16.670 4
models-1-4.pdb 0.260 96 16.123 4
models-1-5.pdb 0.292 96 24.524 4
models-1-6.pdb 0.320 96 27.575 4
models-1-7.pdb 0.351 96 24.200 4
models-1-8.pdb 0.385 96 24.613 4
models-1-9.pdb 0.297 96 22.778 4
models-1-10.pdb 0.325 96 25.136 4

The first column identifies a model structure (name-of-input-file + dash + model number), the second
and third provide crmsd on the atoms used for superposition (CA atoms of chains A inthis case) and the
number of these atoms (here 96), respectively. Finaly the last two columns provude crmds and atom count
for the rotated atom set. The results come for tetrapeptide docking experiment, hence only 4 CA atoms
were rotated.

4.2.5 4. clust recipes

4.1 Calculate hierarchical clustering of 140 elements; distances are stored in tm_dist file.

clust -i=tm_dist -n=140 -clustering:out:distance=0.4

Prints clusters for critical distance 0.4. By default single link clustering strategy is used

14 Chapter 4. BioShell programs

BioShell 3.0, Release 3.0

4.2.6 5. hist recipes

5.1 Calculate a histogram from the 14th column of a given input file:

hist -in:file=default.fsc -in:column=14 -hist:x_max=10 -hist:x_min=0

The command reads a score file produced by Rosetta and makes a histogram of crmsd, assuming it’s in
the 14th column

4.2. BioShell cookbook 15

BioShell 3.0, Release 3.0

16 Chapter 4. BioShell programs

CHAPTER 5

BioShell examples

The latest BioShell 3.0 distribution provides an extensive set of examples. The purpose to create them is three-fold:

• to facilitate continuous testing of the package (unit and integration tests)

• to provide additional functionality to the package,and

• to serve as coding examples and provide ready-to-use snippets

All the tests, which in practice are small C++ applications, were divided into two broad groups; the tests are named
staring from ap_, ex_ and ww_.

5.1 ap_* programs

These are integration tests, that besides testing whether the package is bug-free, should also do something usefull.

5.1.1 ap_BackboneHBondMap

Reads a PDB file and calculates a map of backbone hydrogen bonds, providing also the geometry of each
bond.

The results’ table printed on stdout looks like below:

42 hydrogen bonds found in backbone: TYR 3 -> THR 18 : 2.620 3.346 165.58 94.25 -1.170 -0.702 0.211 2.515
16.25 163.29 LYS 4 -> LYS 50 : 2.259 3.156 120.71 159.88 -1.310 1.445 1.249 1.205 57.75 40.83 LEU 5 -> THR 16
: 1.838 2.802 143.84 -115.27 -2.834 0.102 -1.075 1.488 35.98 -84.57

and provides: - H donor residue name and id (columns 1 and 2) - H acceptor residue name and id (columns 4 and
5) - two distances: r(O..H) and r(N..O) (columns 7 and 8) - planar(C-O..H) and dihedral(C-O..H-N) (columns 9 and
10) - DSSP energy for this bond (column 11) - X,Y,Z coordinates of H atom in the local coordinates system (columns
12, 13 and 14) - theta, phi spherical coordinates of H atom (columns 15 and 16) USAGE: ap_BackboneHBondMap
5edw.pdb

17

BioShell 3.0, Release 3.0

Keywords:

• PDB input

• Hydrogen bonds

• data_structures/PairwiseResidueMap

• Protein structure features

Categories:

• core/calc/structural/BackboneHBondMap

18 Chapter 5. BioShell examples

BioShell 3.0, Release 3.0

5.1.2 ap_Crmsd

ap_Crmsd calculates crmsd value on C-alpha coordinates. The program prints just the crmsd value.

USAGE: ap_Crmsd structureA.pdb [structureB.pdb]

If two structures are provided, the program calculates crmsd between the first model of structure A and the first model
of structure B. If only one input PDB file is given, crsmd is computed for every pair of models found in the input file
(each-vs-each)

Keywords:

• PDB input

• crmsd

Categories:

• core/calc/structural/transformations/Crmsd

5.1. ap_* programs 19

BioShell 3.0, Release 3.0

5.1.3 ap_Hexbins

Reads a file with 2D observations (two columns with real values) and makes hexbin histogram.

USAGE: ap_Hexbins input.dat [bin_side_width]

Keywords:

• histogram 2D

• plotting

20 Chapter 5. BioShell examples

BioShell 3.0, Release 3.0

Categories:

• core::calc::statistics::Hexbins

5.1.4 ap_aligned_pdb

Reads an alignment between two proteins (PIR format) and the two respective protein structures (PDB
format)

and writes the aligned parts of the two structures.

The program concerns only the first two sequences found in the PIR file; they must be given in the same order as the
input PDB files. Only the first chain will be used from either structure; if you need to superimpose chain ‘B’, use strc
command to extract it prior using ap_aligned_pdb.

The program writes ‘query’ and ‘tmplt’ files which contain the respective structure fragments, already superimposed
(the template on the query). One of the two structures may be missing (either the query or the template), dash ‘-‘
should be used instead of the respective file name, as in the examples below.

USAGE: ap_aligned_pdb example.pir prot1.pdb prot2.pdb ap_aligned_pdb example.pir - prot2.pdb ap_aligned_pdb
example.pir prot1.pdb -

5.1. ap_* programs 21

BioShell 3.0, Release 3.0

Keywords:

• PDB input

• PIR input

• PDB output

Categories:

• core/data/io/pir_io

5.1.5 ap_chi1_rotamers_estimation

ap_chi1_rotamers_estimation reads a text file with Chi_1 angles (single column of real values)

and fits a mixture of VonMisses distributions to the data. The program may be thus used for deriving rotamer library
for VAL, THR, SER and CYS USAGE: ap_chi1_rotamers_estimation THR_chi1.dat

Keywords:

• von Misses distribution

• estimation

• expectation-maximization

• statistics

22 Chapter 5. BioShell examples

BioShell 3.0, Release 3.0

Categories:

• core::calc::statistics::VonMissesDistribution

5.1.6 ap_contact_map

ap_contact_map calculates a contact map for a given protein structure

If a multi-model PDB file was given, the program prints contact count observed in all models

USAGE: ap_contact_map CA 2kwi.pdb.pdb 4.5

where 2kwi.pdb is the input file and 4.5 the contact distance in Angstroms. CA defines the contact map type; allowed
options are: CA CB and SC for Calpha, C-beta and all atom side chain, respectively

Keywords:

• PDB input

• contact map

Categories:

• core::calc::structural::ContactMap

5.1. ap_* programs 23

BioShell 3.0, Release 3.0

5.1.7 ap_fit_VonMises_mixture

ap_fit_VonMisses_mixture reads a text file with 1D arbitrary observations in degrees

and fits a mixture of VonMisses distributions to the data. The number of distributions to fit is determined by the starting
parameters: fmuf and f$kappaf$ for each distribution USAGE: ap_fit_VonMises_mixture chi_angles.dat -1.05 30
-3.0 30 1.05 30 ap_fit_VonMises_mixture chi_angles.dat 3

Keywords:

• von Misses distribution

• estimation

24 Chapter 5. BioShell examples

BioShell 3.0, Release 3.0

• expectation-maximization

Categories:

• core::calc::statistics::VonMissesDistribution

5.1.8 ap_ligand_contacts

ap_ligand_contacts finds contacts between a ligand molecule and a protein.

It reads a multi-model PDB file and detects contacts in everyone of them. The output provides the interacting residues
(name and residueId) along with the number of observations for this contact

USAGE: ap_ligand_contacts 5edw.pdb TTP 7.0

where 5edw.pdb id an input file, TTP the ligand code and 7.0 - contact distance in Angstroms

Keywords:

• PDB input

• contact map

• ligand

5.1. ap_* programs 25

BioShell 3.0, Release 3.0

Categories:

• core::data::io::Pdb

5.1.9 ap_orient_pdb

ap_orient_pdb reads a PDB file and orients the atoms along the axes so the longest protein dimension is
along X

and the second longest along Y. Then a second transformation is created to rotate a structure fragment around Z axis
by 45 degrees

USAGE: ap_orient_pdb [2kwi.pdb 419 446]

where 2kwi.pdb is the name of an input file and 419 446 is the first and last of the reoriented residues, respectively

26 Chapter 5. BioShell examples

BioShell 3.0, Release 3.0

Keywords:

• PDB input

• structural fragment

• structure selectors

• PCA

• transformations

Categories:

• core/calc/numeric/PCA.hh

5.1.10 ap_shuffled_sequence_alignment

Reads a FASTA file with two sequences and calculate global sequence alignment scores with one sequence

randomly shuffled. The statistics of scores from randomised alignments is then used to estimate p-value of the global
alignment.

The program prints all the randomized alignment scores and estimated p-value of the alignment

USAGE: ap_shuffled_sequence_alignment test_inputs/ferrodoxins.fasta [N_shuffles]

5.1. ap_* programs 27

BioShell 3.0, Release 3.0

Keywords:

• FASTA input

• Needleman-Wunsch

• sequence alignment

• alignment p-value

Categories:

• core::alignment::NWAligner

5.1.11 ap_AAHydrophobicity

Reads a PDB file and substitutes b-factor column with hydrophobicity values according to Kyte-Doolittle
scale.

If just a PDB file is given as an input, all b-factors will be replaced by respective KD hydrophobicity values. User can
also provide a Multiple Sequence Alignment (MSA) in ClustalO format (.aln); hydrophobicity values will be averaged
over a corresponding column of the MSA

USAGE: ap_AAHydrophobicity 2gb1.pdb ap_AAHydrophobicity 2gb1.pdb 2gb1.aln 2GB1

28 Chapter 5. BioShell examples

BioShell 3.0, Release 3.0

The sequence from the given PDB file must also be included in the alignment; its name is third argument of the
program.

Keywords:

• no_keywords

Categories:

• no_categories

5.1. ap_* programs 29

BioShell 3.0, Release 3.0

30 Chapter 5. BioShell examples

BioShell 3.0, Release 3.0

5.1.12 ap_AlignmentPValuesProtocol

ap_AlignmentPValuesProtocol evaluates pairwise p-value of sequence alignments between all sequences
found in a given FASTA file.

USAGE: ap_AlignmentPValuesProtocol input.fasta

Keywords:

• no_keywords

Categories:

• no_categories

5.1. ap_* programs 31

BioShell 3.0, Release 3.0

32 Chapter 5. BioShell examples

BioShell 3.0, Release 3.0

5.1.13 ap_LocalStructureMatch

Finds contiguous structural segments that are similar between two structures.

The program can use only segments of size 7 or 5. It looks for structurally similar segments shared between two PDB
files, given as an input.

USAGE: ./ap_LocalStructureMatch 7 4rm4A.pdb 5ofqA.pdb

Keywords:

• no_keywords

Categories:

• no_categories

5.1. ap_* programs 33

BioShell 3.0, Release 3.0

34 Chapter 5. BioShell examples

BioShell 3.0, Release 3.0

5.1.14 ap_MSAColumnConservation

ap_MSAColumnConservation reads a Multiple Sequence Alignment (MSA) in ClustalW or in FASTA
format

and evaluates sequence conservation for every column

USAGE: ./ap_MSAColumnConservation cyped.CYP109.aln [M5R670_9BACI]

where cyped.CYP109.aln is the name of input MSA file (.aln or .fasta format). If the second optional argument (here:
M5R670_9BACI) is given, program will attempt find the sequence annotated by this name. When such a sequence is
found, additional column will be added to provide residue for every position in that sequence (gaps are also shown)

Keywords:

• no_keywords

Categories:

• no_categories

5.1. ap_* programs 35

BioShell 3.0, Release 3.0

36 Chapter 5. BioShell examples

BioShell 3.0, Release 3.0

5.1.15 ap_NWAligner

Calculate all pairwise global sequence alignments (Needleman & Wunsh algorithm) between sequences
read from a FASTA file.

For every pair of sequences it prints three columns: query length, template length and the alignment score.

USAGE: ap_NWAligner test_inputs/ferrodoxins.fasta test_inputs/ferrodoxins.fasta [BLOSUM80]

The substitution matrix name (here: BLOSUM80) is an optional parameter.

Keywords:

• no_keywords

Categories:

• no_categories

5.1. ap_* programs 37

BioShell 3.0, Release 3.0

38 Chapter 5. BioShell examples

BioShell 3.0, Release 3.0

5.1.16 ap_OnlineStatistics

ap_OnlineStatistics reads a file with real values and calculates simple statistics: min, mean, stdev, max.

If no input file is provided, the program calculates the statistics from a random sample. USAGE: ap_OnlineStatistics
infile

Keywords:

• no_keywords

Categories:

• no_categories

5.1. ap_* programs 39

BioShell 3.0, Release 3.0

40 Chapter 5. BioShell examples

BioShell 3.0, Release 3.0

5.1.17 ap_PairwiseCrmsd

ap_PairwiseCrmsd calculates pairwise crmsd values for a set of protein structures (at least two).

This example evaluates crmsd for each pair of proteins twice: on C-alpha atoms and on all backbone atoms

USAGE: ap_PairwiseCrmsd structureA.pdb structureB.pdb [structureC.pdb . . .]

Keywords:

• no_keywords

Categories:

• no_categories

5.1. ap_* programs 41

BioShell 3.0, Release 3.0

42 Chapter 5. BioShell examples

BioShell 3.0, Release 3.0

5.1.18 ap_PairwiseSequenceIdentityProtocol

ap_PairwiseSequenceIdentityProtocol evaluates pairwise sequence identity between all sequences found
in a given FASTA file.

The calculated values are printed on the screen if they are greater than a given cutoff (0.25 in the example below).
Calculations may be executed in several parallel threads, the number of threads is the second parameter of this program

USAGE: ap_PairwiseSequenceIdentityProtocol input.fasta [n_threads [seqID_cutoff [5tuple_cutoff]]] EXAMPLE:
ap_PairwiseSequenceIdentityProtocol small500_95identical.fasta 4 0.25

Keywords:

• no_keywords

Categories:

• no_categories

5.1. ap_* programs 43

BioShell 3.0, Release 3.0

44 Chapter 5. BioShell examples

BioShell 3.0, Release 3.0

5.1.19 ap_ProteinArchitecture

ap_ProteinArchitecture 5edw.pdb

Keywords:

• no_keywords

Categories:

• no_categories

5.1. ap_* programs 45

BioShell 3.0, Release 3.0

46 Chapter 5. BioShell examples

BioShell 3.0, Release 3.0

5.1.20 ap_QuickSequenceIdentity

Estimates pairwise sequence similarity for a set of sequences given in a FASTA format.

The output table has 5 columns: i, j (indexing the pair of aligned sequences), 5-tuple score, 8-tuple score and alignment
seq_id, where the first two seq_id values are estimations calculated for 16-aa reduced alphabet and the last value is the
true sequence identity evaluated over a sequence alignment.

If the number of sequences in the provided input file does not exceed 1000, true sequence identity is evaluated for all
pairs; when the input data set is larger, exact sequence alignment is computed only when 5-tuple score is greater than
the given value [score5_to_align, 0.001 by default] and printed when exceeds score5_to_print 0.2 by default. If the
5-tuple score is in between the two cutoff values, true sequence identity will be evaluated and included in a histogram,
but not printed. Otherwise the output file might be extremely large.

USAGE: ap_QuickSequenceIdentity sequences.fasta [score5_to_align score5_to_print]

Keywords:

• no_keywords

Categories:

• no_categories

5.1. ap_* programs 47

BioShell 3.0, Release 3.0

48 Chapter 5. BioShell examples

BioShell 3.0, Release 3.0

5.1.21 ap_SWAligner

Calculate all pairwise local sequence alignments (Smith&Waterman algorithm) between sequences read
from a FASTA file.

For every pair of sequences it prints three columns: query length, template length and the alignment score.

USAGE: ap_SWAligner test_inputs/ferrodoxins.fasta test_inputs/ferrodoxins.fasta

Keywords:

• no_keywords

Categories:

• no_categories

5.1. ap_* programs 49

BioShell 3.0, Release 3.0

50 Chapter 5. BioShell examples

BioShell 3.0, Release 3.0

5.1.22 ap_SequenceProfile

ap_SequenceProfile reads a Multiple Sequence Alignment (MSA) in ClustalW format and prints a se-
quence profile made from it.

The first mandatory argument is the input MSA file, the second is the desired output file name USAGE:
./ap_SequenceProfile cyped.CYP109.aln cyped.CYP109.pro

Keywords:

• no_keywords

Categories:

• no_categories

5.1. ap_* programs 51

BioShell 3.0, Release 3.0

52 Chapter 5. BioShell examples

BioShell 3.0, Release 3.0

5.1.23 ap_SequenceWeightingProtocol

ap_SequenceWeightingProtocol reads a set of protein sequences and computes a real weight for each of
those sequences.

If the FASTA file is the input, every pair of sequences will be aligned and sequence identity values will be evaluated
based on these alignments. If .aln is the input (i.e. ClustalO MSA file format), it is assumed the sequences are already
aligned and sequence identity values will be computed based on the MSA.

Sequence identity values will be transformed into real weights. These weights may be further used e.g. in sequence
profile construction

USAGE: ap_SequenceWeightingProtocol input.fasta ap_SequenceWeightingProtocol input.aln

Keywords:

• no_keywords

Categories:

• no_categories

5.1. ap_* programs 53

BioShell 3.0, Release 3.0

54 Chapter 5. BioShell examples

BioShell 3.0, Release 3.0

5.1.24 ap_WeightedOnlineStatistics

ap_WeightedOnlineStatistics reads a file with two columns: real values and their weights, and calculates
their mean and stdev.

If no input file is provided, the program calculates the statistics from a random sample. USAGE:
ap_WeightedOnlineStatistics infile

Keywords:

• no_keywords

Categories:

• no_categories

5.1. ap_* programs 55

BioShell 3.0, Release 3.0

56 Chapter 5. BioShell examples

BioShell 3.0, Release 3.0

5.1.25 ap_align_profiles

Calculate global alignment between two sequence profiles with a gap penalty that depends on observed
gap probabilities

USAGE: ap_align_profiles d4proc1-A1.profile d4proc1-A2.profile [gap_open gap_extend]

Keywords:

• no_keywords

Categories:

• no_categories

5.1. ap_* programs 57

BioShell 3.0, Release 3.0

58 Chapter 5. BioShell examples

BioShell 3.0, Release 3.0

5.1.26 ap_atom_correlations

ap_atom_correlations reads a multimodel PDB trajectory and calculates correlation between atomic co-
ordinates

USAGE: ap_atom_correlations 2kwi.pdb

where 2kwi.pdb id an input file

Keywords:

• no_keywords

Categories:

• no_categories

5.1. ap_* programs 59

BioShell 3.0, Release 3.0

60 Chapter 5. BioShell examples

BioShell 3.0, Release 3.0

5.1.27 ap_blastxml_to_fasta

Reads XML produced by psiblast and creates FASTA file containing all hits

Keywords:

• no_keywords

Categories:

• no_categories

5.1. ap_* programs 61

BioShell 3.0, Release 3.0

62 Chapter 5. BioShell examples

BioShell 3.0, Release 3.0

5.1.28 ap_build_crystal

ap_create_crystal reads a given PDB file and prints all atoms in a unit cell.

USAGE: ap_create_crystal 5edw.pdb

Keywords:

• no_keywords

Categories:

• no_categories

5.1. ap_* programs 63

BioShell 3.0, Release 3.0

64 Chapter 5. BioShell examples

BioShell 3.0, Release 3.0

5.1.29 ap_contact_map_overlap

ap_contact_map_overlap calculates overlap between contact maps calculated for two (or more) structures

USAGE: ap_contact_map_overlap CA native.pdb models.pdb cutoff 8.0 In this case the program evaluates contact
map overlap (measured by Jaccard coefficient) between the native structure and every model found in models.pdb. 8.0
is the contact distance in Angstroms and CA defines the contact map type; allowed options are: CA CB and SC for
Calpha, C-beta and all atom side chain, respectively

Keywords:

• no_keywords

Categories:

• no_categories

5.1. ap_* programs 65

BioShell 3.0, Release 3.0

66 Chapter 5. BioShell examples

BioShell 3.0, Release 3.0

5.1.30 ap_docking_crmsd

ap_docking_crmsd calculates crmsd between ligand positions after flexible docking to a receptor and a
reference.

The program reads in a native pose and at least one PDB file with a computed pose (i.e. a model), each of them must
contain a ligand molecule bound to a protein receptor. The ligand can be a small molecule, peptide or even a protein.
The program finds the ligand either by residue ID (a three-letter code, such as CAM) or a chain ID - a single letter
code.

USAGE: ap_docking_crmsd 2m56-ref.pdb CAM 00199.pdb 00963.pdb 04473.pdb ap_docking_crmsd 2m56-ref.pdb
X 00199.pdb 00963.pdb 04473.pdb ap_docking_crmsd - X 00199.pdb 00963.pdb 04473.pdb

where 2m56-ref.pdb is the native and CAM is the three-letter PDB code of the ligand for which crmsd will be evaluated
and 00199.pdb and the two other files are conformation after docking. In the second example, X is the ID of the chain
containing a ligand molecule.

The program evaluates crmsd based on ligand cooridinates upon an optimal superimposition of a receptor between the
refence and any model of any input file. If the reference structure is not given and dash ‘-‘ character is used instead
(as in the last example), the program evaluates pairwise all-vs-all crmsd calculations

Keywords:

• no_keywords

Categories:

• no_categories

5.1. ap_* programs 67

BioShell 3.0, Release 3.0

68 Chapter 5. BioShell examples

BioShell 3.0, Release 3.0

5.1.31 ap_download_pdb

Simple app downloads a pdb file from RCSB website

USAGE: ap_download_pdb PDB_code

Keywords:

• no_keywords

Categories:

• no_categories

5.1. ap_* programs 69

BioShell 3.0, Release 3.0

70 Chapter 5. BioShell examples

BioShell 3.0, Release 3.0

5.1.32 ap_dssp

Detects secondary structure using BioShell’s implementation of the DSSP algorithm.

USAGE: ap_dssp 5edw.pdb

Keywords:

• no_keywords

Categories:

• no_categories

5.1. ap_* programs 71

BioShell 3.0, Release 3.0

72 Chapter 5. BioShell examples

BioShell 3.0, Release 3.0

5.1.33 ap_dssp_to_ss2

ap_dssp_to_ss2 reads a DSSP file and writes secondary structure in SS2 format

USAGE: ap_dssp_to_ss2 5edw.dssp

Keywords:

• no_keywords

Categories:

• no_categories

5.1. ap_* programs 73

BioShell 3.0, Release 3.0

74 Chapter 5. BioShell examples

BioShell 3.0, Release 3.0

5.1.34 ap_filter_fasta

ap_find_in_fasta reads a file in FASTA format and prints only these sequences which satisfy the following
filters:

• sequence must a protein

• sequence must not be shorter than 15 aa

• sequence must contain at most 10 UNK residues

The output sequences are sorted. USAGE: ap_filter_fasta input.fasta [input2.fasta . . .]

Keywords:

• no_keywords

Categories:

• no_categories

5.1. ap_* programs 75

BioShell 3.0, Release 3.0

76 Chapter 5. BioShell examples

BioShell 3.0, Release 3.0

5.1.35 ap_find_in_fasta

ap_find_in_fasta reads a sequence database in FASTA format and looks for sequences by given IDs

USAGE: ap_find_in_fasta uniref90.fasta seq_id_list.txt

Keywords:

• no_keywords

Categories:

• no_categories

5.1. ap_* programs 77

BioShell 3.0, Release 3.0

78 Chapter 5. BioShell examples

BioShell 3.0, Release 3.0

5.1.36 ap_ligand_trajectory

ap_ligand_trajectory finds contacts between a ligand molecule and a protein.

It reads a multi-model PDB file and detects contacts in every model (e.g. frame). The output provides the interacting
residues (name and residueId) along with the number of observations for this contact.

USAGE: ap_ligand_trajectory 2kwi.pdb GNP 3.5

where 2kwi.pdb id an input file, GNP the ligand code and 3.5 - contact distance in Angstroms

Keywords:

• no_keywords

Categories:

• no_categories

5.1. ap_* programs 79

BioShell 3.0, Release 3.0

80 Chapter 5. BioShell examples

BioShell 3.0, Release 3.0

5.1.37 ap_local_backbone_geometry

Program reads a protein structure (PDB format) and calculates local backbone properties: distances,
angles, etc.

The list of requested properties should follow the PDB innput file name. If no properties are listed at command line,
the program calculates all known properties.

USAGE: ./ap_local_backbone_geometry input.pdb property1 property2 . . . EXAMPLE:
./ap_local_backbone_geometry 2gb1.pdb PHI PSI OMEGA ./ap_local_backbone_geometry 2gb1.pdb

Known properties

Keywords:

• no_keywords

Categories:

• no_categories

5.1. ap_* programs 81

BioShell 3.0, Release 3.0

82 Chapter 5. BioShell examples

BioShell 3.0, Release 3.0

5.1.38 ap_molecule_diffusion

ap_molecule_diffusion calculates average displacement of a small molecule as a function of time over a
trajectory

If a multi-model PDB file was given, the program prints contact count observed in all models

USAGE: ap_molecule_diffusion trajectory.pdb HOH box_side

where trajectory.pdb is the input file multimodel-PDB file HOH is the PDB-id of molecules for which the displacement
will be evaluated

Keywords:

• no_keywords

Categories:

• no_categories

5.1. ap_* programs 83

BioShell 3.0, Release 3.0

84 Chapter 5. BioShell examples

BioShell 3.0, Release 3.0

5.1.39 ap_pdb_to_fasta_ss

Reads a PDB file and writes protein sequence(s) in FASTA format.

The program also writes secondary structure in FASTA format, if this data is available from PDB headers. The
sequence comprise only these amino acid residues which have C-alpha atom User can select a chain by providing its
code as the second argument of the program. The program also writes PDB file that corresponds to the sequence.

USAGE: ap_pdb_to_fasta_ss 5edw.pdb A

Keywords:

• no_keywords

Categories:

• no_categories

5.1. ap_* programs 85

BioShell 3.0, Release 3.0

86 Chapter 5. BioShell examples

BioShell 3.0, Release 3.0

5.1.40 ap_pdb_to_pir

Reads a PDB file and writes protein sequence(s) in PIR format

USAGE: ap_pdb_to_pir 5edw.pdb

Keywords:

• no_keywords

Categories:

• no_categories

5.1. ap_* programs 87

BioShell 3.0, Release 3.0

88 Chapter 5. BioShell examples

BioShell 3.0, Release 3.0

5.1.41 ap_pir_to_fasta

Reads a file with sequences in PIR format and converts them to FASTA.

USAGE: ap_pir_to_fasta example.pir

Keywords:

• no_keywords

Categories:

• no_categories

5.1. ap_* programs 89

BioShell 3.0, Release 3.0

90 Chapter 5. BioShell examples

BioShell 3.0, Release 3.0

5.1.42 ap_reorder_profile_columns

ap_reorder_profile_columns reads a sequence profile (ASN.1 file format) and shuffles profile’s columns
as requested.

Resulting profile is writen in text format USAGE: ./ap_reorder_profile_columns input.asn1

Keywords:

• no_keywords

Categories:

• no_categories

5.1. ap_* programs 91

BioShell 3.0, Release 3.0

92 Chapter 5. BioShell examples

BioShell 3.0, Release 3.0

5.1.43 ap_rescore_alignment

Reads in a sequence alignment in a FASTA format and recalculates its score. By default it uses

BLOSUM62 substitution matrix with -10 and -1 as gap opening and gap extension penalty, respectively. These pa-
rameters may be changed from command line (optional parameters)

USAGE: ap_rescore_alignment ali.fasta [BLOSUM62 -10 -1]

Keywords:

• no_keywords

Categories:

• no_categories

5.1. ap_* programs 93

BioShell 3.0, Release 3.0

94 Chapter 5. BioShell examples

BioShell 3.0, Release 3.0

5.1.44 ap_scorefile_columns

Reads a score file or a silent file (produced by Rosetta) and extracts requested columns of scores

USAGE: ap_scorefile_columns default.out ap_scorefile_columns score.fsc

Keywords:

• no_keywords

Categories:

• no_categories

5.1. ap_* programs 95

BioShell 3.0, Release 3.0

96 Chapter 5. BioShell examples

BioShell 3.0, Release 3.0

5.1.45 ap_stacking_interactions

Finds stacking interactions in a given PDB file.

The program prints relative orientation (three Euler angles and the distance) between any two aromatic rings found
in amino acid side chains that are closer than 5.0. The rings are assumed to be flat rigid moieties. USAGE:
ap_stacking_interactions 5edw.pdb

Keywords:

• no_keywords

Categories:

• no_categories

5.1. ap_* programs 97

BioShell 3.0, Release 3.0

98 Chapter 5. BioShell examples

BioShell 3.0, Release 3.0

5.1.46 ap_stiff_docking_crmsd

ap_stiff_docking_crmsd calculates crmsd of a ligand that is bound to a receptor, assuming the receptor
conformation has not changed much

The program reads in a native pose and at least one PDB file with a computed pose (i.e. a model), each of them must
contain a ligand molecule bound to a protein receptor. The ligand can be a small molecule, peptide or even a protein.
The program finds the ligand either by residue ID (a three-letter code, such as CAM) or a chain ID - a single letter
code.

USAGE: ap_stiff_docking_crmsd 2m56-ref.pdb CAM 00199.pdb 00963.pdb 04473.pdb ap_stiff_docking_crmsd
2m56-ref.pdb X 00199.pdb 00963.pdb 04473.pdb ap_stiff_docking_crmsd - X 00199.pdb 00963.pdb 04473.pdb

where 2m56-ref.pdb is the native and CAM is the three-letter PDB code of the ligand for which crmsd will be evaluated
and 00199.pdb and the two other files are conformation after docking. In the second example, X is the ID of the chain
containing a ligand molecule.

The program evaluates crmsd based on ligand cooridinates. It assumes the receptor structure doesn’t change signif-
icantly and superimposes all models on the first one, which significantly reduces calculation time. If the reference
structure is not given and dash ‘-‘ character is used instead (as in the last example), the program evaluates pairwise
all-vs-all crmsd calculations.

Keywords:

• no_keywords

Categories:

• no_categories

5.1. ap_* programs 99

BioShell 3.0, Release 3.0

100 Chapter 5. BioShell examples

BioShell 3.0, Release 3.0

5.1.47 ap_superimpose_pdb_by_ligand

Superimposes protein structures by matching ligand molecules.

All the given protein structures must contain the same ligand molecule, every time in the same conformation. The pro-
gram calculates a transformation (rotation-translation) that superimposes that ligand from input structures on the same
ligand molecule found in the native PDB. The transformation is then used to rototranslate whole protein structures.
Results is written to “out.pdb” file

USAGE: ./ap_superimpose_pdb_by_ligand native_pdb ligand_name pdb_file_1 [pdb_file_2 . . .]

EXAMPLE: ./ap_superipose_pdb_by_ligand 4rm4A.pdb HEM 5ofqA.pd

Keywords:

• no_keywords

Categories:

• no_categories

5.1. ap_* programs 101

BioShell 3.0, Release 3.0

102 Chapter 5. BioShell examples

BioShell 3.0, Release 3.0

5.2 ex_* programs

These group contain unit test, i.e. programs that tests a single class of a function.

5.2.1 ex_BinaryTreeNode

Simple demo for BinaryTreeNode class

Keywords:

• algorithms

• data structure

• depth first

• BinaryTreeNode

Categories:

• core/algorithms/trees/BinaryTreeNode

5.2.2 ex_Molecule

Demonstrates how to create a Molecule object based on PdbAtom data type (as nodes of the graph)

5.2. ex_* programs 103

BioShell 3.0, Release 3.0

Keywords:

• molecule

Categories:

• core::chemical::Molecule

5.2.3 ex_Molecule_Vec3

Demonstrates how to create a Molecule object based on Vec3 data type (Vec3 are nodes of the graph)

104 Chapter 5. BioShell examples

BioShell 3.0, Release 3.0

Keywords:

• molecule

Categories:

• core::chemical::Molecule

5.2.4 ex_NcbiSimilarityMatrixFactory

Test for loading substitution matrices available in BioShell.

5.2. ex_* programs 105

BioShell 3.0, Release 3.0

The progam reads a substitution matrix (NCBI file format) and prints in back on the screen. If no input file is given,
the program lists all the substitution matrices found in this BioShell distribution.

User can manually install custom matrices just by copying them to: data/alignments/ directory

USAGE: ex_NcbiSimilarityMatrixFactory BLOSUM45.txt

Keywords:

• sequence alignment

• substitution matrix

Categories:

• core::alignment::scoring::NcbiSimilarityMatrixFactory

5.2.5 ex_SelectChainResidueAtom

Extracts a fragment of a PDB file by applying a SelectChainResidueAtom selector.

106 Chapter 5. BioShell examples

BioShell 3.0, Release 3.0

The selection string constists of chain code and residue range, separated by a colon, e.g.: - A:-1-10 - AB:

USAGE: ex_SelectChainResidueAtom test_inputs/2gb1.pdb A:23-32

Keywords:

• structure selectors

• PDB input

• PDB output

Categories:

• core::data::structural::StructureSelector

5.2. ex_* programs 107

BioShell 3.0, Release 3.0

5.2.6 ex_SelectPlanarCAGeometry

ex_SelectPlanarCAGeometry reads a PDB file and tests whether geometry at CA atom is tetrahedral or
not.

The program also prints the actual values of the N-CA-C-CB dihedral angle. USAGE: ./ex_SelectPlanarCAGeometry
5edw.pdb

Keywords:

• residue geometry

• residue selectors

108 Chapter 5. BioShell examples

BioShell 3.0, Release 3.0

• PDB input

• structure validation

Categories:

• core::data::structural::ResidueHasBBCB; core::data::structural::SelectResidueByName;
core::data::structural::SelectPlanarCAGeometry

5.2.7 ex_VonMisesDistribution

ex_VonMisesDistribution withdraws N random values (by default N = 1000) from a Normal distribution

5.2. ex_* programs 109

BioShell 3.0, Release 3.0

and fits ex_VonMises distribution to the data.

If exactly two arguments are provided (mu and kappa, respectively) the program tabulates Von Mises distribution for
that parameters. USAGE: ex_VonMisesDistribution 10000 ex_VonMisesDistribution mu kappa

Keywords:

• statistics

Categories:

• core/calc/statistics/VonMisesDistribution

5.2.8 ex_bf_by_residue

ex_bf_by_residue reads a PDB file and prints per-residue statistics of B-factors. The output provides:

amino acid type (1-letter code), residue ID, and minimum, average and maximum b-factors for that residue USAGE:
ex_bf_by_residue 2gb1.pdb

110 Chapter 5. BioShell examples

BioShell 3.0, Release 3.0

Keywords:

• PDB input

• B-factors

• atom selectors

Categories:

• core::data::io::Pdb

5.2.9 ex_chi_correlation

Calculates Chi dihedral angles of amino acid side chains measured in two different protein structures.

The program reads two homologous protein structures. The proteins are assumed to be already aligned and Chi angles
are calculated for every pair of identical positions.

USAGE: ex_chi_correlation ./test_inputs/2fd2.pdb ./test_inputs/5fd1.pdb

Keywords:

• PDB input

5.2. ex_* programs 111

BioShell 3.0, Release 3.0

• chi angles

• rotamers

Categories:

• core/calc/structural/evaluate_chi

5.2.10 ex_evaluate_chi

Calculates all side chain Chi dihedral angles for the input protein structure

USAGE: ex_evaluate_chi 2kwi.pdb

Keywords:

• PDB input

• structure properties

• structure validation

112 Chapter 5. BioShell examples

BioShell 3.0, Release 3.0

Categories:

• core::chemical::ChiAnglesDefinition; core::calc::structural::evaluate_chi()

5.2.11 ex_evaluate_phi_psi

Calculates Phi,Psi angles (Ramachandran map) for every model found in the input protein structure

USAGE: ex_evaluate_phi_psi 2kwi.pdb

Keywords:

• PDB input

• structure properties

• structure validation

• Ramachandran map

Categories:

• core::calc::structural::LocalBackboneProperties

5.2. ex_* programs 113

BioShell 3.0, Release 3.0

5.2.12 ex_plot_VonMises_mixture

ex_plot_VonMises_mixture evaluates a mixture of Von Mises distribution so it can be plotted nicely

USAGE: ex_plot_VonMises_mixture 0.487862 -3.00582 17.4059 0.0794212 -1.02886 112.164

where the six numbers are scaling, mean and spread of two VonMises distribution

Keywords:

• statistics

Categories:

• core/calc/statistics/VonMisesDistribution

114 Chapter 5. BioShell examples

BioShell 3.0, Release 3.0

5.2.13 ex_Array2DSymmetric

Simple test for Array2DSymmetric class.

Keywords:

• no_keywords

Categories:

• no_categories

5.2. ex_* programs 115

BioShell 3.0, Release 3.0

116 Chapter 5. BioShell examples

BioShell 3.0, Release 3.0

5.2.14 ex_AtomSelector

Demonstrates how to use atom selectors

Keywords:

• no_keywords

Categories:

• no_categories

5.2. ex_* programs 117

BioShell 3.0, Release 3.0

118 Chapter 5. BioShell examples

BioShell 3.0, Release 3.0

5.2.15 ex_AtomicElement

Example showing how to use AtomicElement class

Keywords:

• no_keywords

Categories:

• no_categories

5.2. ex_* programs 119

BioShell 3.0, Release 3.0

120 Chapter 5. BioShell examples

BioShell 3.0, Release 3.0

5.2.16 ex_BioShellVersion

Test for BioShellVersion class prints the BioShell version info

Keywords:

• no_keywords

Categories:

• no_categories

5.2. ex_* programs 121

BioShell 3.0, Release 3.0

122 Chapter 5. BioShell examples

BioShell 3.0, Release 3.0

5.2.17 ex_BitSet

Test for BitSet class

Keywords:

• no_keywords

Categories:

• no_categories

5.2. ex_* programs 123

BioShell 3.0, Release 3.0

124 Chapter 5. BioShell examples

BioShell 3.0, Release 3.0

5.2.18 ex_BivariateNormal

Estimates parameters of a two-dimensional Gaussian distribution

The program expects a file with columns of real values; based on them parameters of the distributions are estimated.
Otherwise the example withdraws 10000 random numbers from a normal distribution and later it estimates a normal
distribution from the sample.

USAGE: ex_BivariateNormal infile [x_column y_column]

where x_column y_column are optional parameters tthat indicate which columns should be used for estimation; by
default columns 0 and 1 are used.

Keywords:

• no_keywords

Categories:

• no_categories

5.2. ex_* programs 125

BioShell 3.0, Release 3.0

126 Chapter 5. BioShell examples

BioShell 3.0, Release 3.0

5.2.19 ex_BoundedPriorityQueue

Simple demo for BoundedPriorityQueue class

Keywords:

• no_keywords

Categories:

• no_categories

5.2. ex_* programs 127

BioShell 3.0, Release 3.0

128 Chapter 5. BioShell examples

BioShell 3.0, Release 3.0

5.2.20 ex_Cart

Shows how to use CART classification model

Keywords:

• no_keywords

Categories:

• no_categories

5.2. ex_* programs 129

BioShell 3.0, Release 3.0

130 Chapter 5. BioShell examples

BioShell 3.0, Release 3.0

5.2.21 ex_CartesianToSpherical

Calculates spherical coordinates using BioShell and ‘by hand’ to check of it works

Keywords:

• no_keywords

Categories:

• no_categories

5.2. ex_* programs 131

BioShell 3.0, Release 3.0

132 Chapter 5. BioShell examples

BioShell 3.0, Release 3.0

5.2.22 ex_ChiAnglesDefinition

Shows how to look up information on Chi angle definitions

Keywords:

• no_keywords

Categories:

• no_categories

5.2. ex_* programs 133

BioShell 3.0, Release 3.0

134 Chapter 5. BioShell examples

BioShell 3.0, Release 3.0

5.2.23 ex_Cif

ex_Cif tests reading CIF files

USAGE: ex_Cif file.cif

Keywords:

• no_keywords

Categories:

• no_categories

5.2. ex_* programs 135

BioShell 3.0, Release 3.0

136 Chapter 5. BioShell examples

BioShell 3.0, Release 3.0

5.2.24 ex_Combinations

A simple example shows how to generate Combination

Keywords:

• no_keywords

Categories:

• no_categories

5.2. ex_* programs 137

BioShell 3.0, Release 3.0

138 Chapter 5. BioShell examples

BioShell 3.0, Release 3.0

5.2.25 ex_DsspData

ex_DsspData reads a DSSP file and writes secondary structure in FASTA format

USAGE: ex_DsspData 5edw.dssp

Keywords:

• no_keywords

Categories:

• no_categories

5.2. ex_* programs 139

BioShell 3.0, Release 3.0

140 Chapter 5. BioShell examples

BioShell 3.0, Release 3.0

5.2.26 ex_HierarchicalClustering

Example showing how to use hierarchical clustering method.

Keywords:

• no_keywords

Categories:

• no_categories

5.2. ex_* programs 141

BioShell 3.0, Release 3.0

142 Chapter 5. BioShell examples

BioShell 3.0, Release 3.0

5.2.27 ex_Interpolate1D

ex_Interpolate1D reads a file with two columns of data and calculates interpolated values

USAGE: ex_Interpolate1D infile n_steps

Keywords:

• no_keywords

Categories:

• no_categories

5.2. ex_* programs 143

BioShell 3.0, Release 3.0

144 Chapter 5. BioShell examples

BioShell 3.0, Release 3.0

5.2.28 ex_InterpolatePeriodic1D

Simple test for interpolation of a periodic 1D function

Keywords:

• no_keywords

Categories:

• no_categories

5.2. ex_* programs 145

BioShell 3.0, Release 3.0

146 Chapter 5. BioShell examples

BioShell 3.0, Release 3.0

5.2.29 ex_InterpolatePeriodic2D

Simple test for interpolation of a periodic 2D function

Keywords:

• no_keywords

Categories:

• no_categories

5.2. ex_* programs 147

BioShell 3.0, Release 3.0

148 Chapter 5. BioShell examples

BioShell 3.0, Release 3.0

5.2.30 ex_JsonNode

Demo for handling JSON data

Keywords:

• no_keywords

Categories:

• no_categories

5.2. ex_* programs 149

BioShell 3.0, Release 3.0

150 Chapter 5. BioShell examples

BioShell 3.0, Release 3.0

5.2.31 ex_KDE_1D

Reads one column of observations and calculates Kernel Density Estimator (KDE) for the data

USAGE: ex_KDE_1D normal.txt 0.25 [min max periodic]

where normal.txt is the input file and 0.25 is the kernel bandwidth value. min and max are optional parameters to
define the evaluation range. The last optional argument is the word ‘periodic’ to treat the estimated distribution as
periodi

Keywords:

• no_keywords

Categories:

• no_categories

5.2. ex_* programs 151

BioShell 3.0, Release 3.0

152 Chapter 5. BioShell examples

BioShell 3.0, Release 3.0

5.2.32 ex_LBFGS

Example shows how to use BFGS function minimizer

Keywords:

• no_keywords

Categories:

• no_categories

5.2. ex_* programs 153

BioShell 3.0, Release 3.0

154 Chapter 5. BioShell examples

BioShell 3.0, Release 3.0

5.2.33 ex_Monomer

Example demonstrates functionality of core::chemical::Monomer data type.

Keywords:

• no_keywords

Categories:

• no_categories

5.2. ex_* programs 155

BioShell 3.0, Release 3.0

156 Chapter 5. BioShell examples

BioShell 3.0, Release 3.0

5.2.34 ex_NormalDistribution

Demo for NormalDistribution class.

Keywords:

• no_keywords

Categories:

• no_categories

5.2. ex_* programs 157

BioShell 3.0, Release 3.0

158 Chapter 5. BioShell examples

BioShell 3.0, Release 3.0

5.2.35 ex_OptionParser

Shows how to use BioShell command line parser in your own program

Keywords:

• no_keywords

Categories:

• no_categories

5.2. ex_* programs 159

BioShell 3.0, Release 3.0

160 Chapter 5. BioShell examples

BioShell 3.0, Release 3.0

5.2.36 ex_P2QuantileEstimation

ex_P2QuantileEstimation reads a file with real values and calculates a quantile using P-square algorithm

If no input file is provided, the program calculates 0.25, 0.5 and 0.75 quantiles of a random sample from normal
distribution USAGE: ex_P2QuantileEstimation infile p_value

Keywords:

• no_keywords

Categories:

• no_categories

5.2. ex_* programs 161

BioShell 3.0, Release 3.0

162 Chapter 5. BioShell examples

BioShell 3.0, Release 3.0

5.2.37 ex_PairwiseAlignment

Simple example showing how to retrieve arbitrary data according to a sequence alignment object

Keywords:

• no_keywords

Categories:

• no_categories

5.2. ex_* programs 163

BioShell 3.0, Release 3.0

164 Chapter 5. BioShell examples

BioShell 3.0, Release 3.0

5.2.38 ex_PairwiseSequenceAlignment

Calculates the optimal global sequence alignment between two protein sequences.

Keywords:

• no_keywords

Categories:

• no_categories

5.2. ex_* programs 165

BioShell 3.0, Release 3.0

166 Chapter 5. BioShell examples

BioShell 3.0, Release 3.0

5.2.39 ex_Pca3

Orients 3D points along the axes using PCA algorithm

Keywords:

• no_keywords

Categories:

• no_categories

5.2. ex_* programs 167

BioShell 3.0, Release 3.0

168 Chapter 5. BioShell examples

BioShell 3.0, Release 3.0

5.2.40 ex_Pdb

ex_Pdb demo shows how to read a PDB file and create a Structure object.

The program reads a given file with a PDB line filter that passes only backbone atoms and prints sone statistics about
the input file

USAGE: ex_Pdb 5edw.pdb

Keywords:

• no_keywords

Categories:

• no_categories

5.2. ex_* programs 169

BioShell 3.0, Release 3.0

170 Chapter 5. BioShell examples

BioShell 3.0, Release 3.0

5.2.41 ex_PdbLineFilter

Reads a PDB file and removes waters and alternate atom locations.

USAGE: ex_PdbLineFilter 5edw.pdb

Keywords:

• no_keywords

Categories:

• no_categories

5.2. ex_* programs 171

BioShell 3.0, Release 3.0

172 Chapter 5. BioShell examples

BioShell 3.0, Release 3.0

5.2.42 ex_Quaternion

ex_Quaternion illustrates how to use Quaternion class

Keywords:

• no_keywords

Categories:

• no_categories

5.2. ex_* programs 173

BioShell 3.0, Release 3.0

174 Chapter 5. BioShell examples

BioShell 3.0, Release 3.0

5.2.43 ex_ReduceSequenceAlphabet

If no input is given, ex_ReduceSequenceAlphabet lists all reduced amino acid alphabets registered in
BioShell library.

Alternatively, user can provide an alphabet name; in this cace the relevant mapping is printed on the screen.

USAGE: ex_ReduceSequenceAlphabet [alphabet_name]

Keywords:

• no_keywords

Categories:

• no_categories

5.2. ex_* programs 175

BioShell 3.0, Release 3.0

176 Chapter 5. BioShell examples

BioShell 3.0, Release 3.0

5.2.44 ex_Remark290

ex_Pdb demo shows how to access symmetry operators stored in a PDB file header.

The program reads a given PDB file and prints all cymmetry operators as rototranslation objects

USAGE: ex_Remark290 5edw.pdb

Keywords:

• no_keywords

Categories:

• no_categories

5.2. ex_* programs 177

BioShell 3.0, Release 3.0

178 Chapter 5. BioShell examples

BioShell 3.0, Release 3.0

5.2.45 ex_Residue

ex_Residue reads a PDB file and checks if all amino acid residues have complete backbone

USAGE: ex_Residue 5edw.pdb

Keywords:

• no_keywords

Categories:

• no_categories

5.2. ex_* programs 179

BioShell 3.0, Release 3.0

180 Chapter 5. BioShell examples

BioShell 3.0, Release 3.0

5.2.46 ex_RobustDistributionDecorator

Example showing how to create and use a RobustDistributionDecorator

Keywords:

• no_keywords

Categories:

• no_categories

5.2. ex_* programs 181

BioShell 3.0, Release 3.0

182 Chapter 5. BioShell examples

BioShell 3.0, Release 3.0

5.2.47 ex_SelectChainBreaks

Reads a PDB file and prints list of chain breaks found in every chain

USAGE: ex_SelectChainBreaks test_inputs/4mcb.pdb

Keywords:

• no_keywords

Categories:

• no_categories

5.2. ex_* programs 183

BioShell 3.0, Release 3.0

184 Chapter 5. BioShell examples

BioShell 3.0, Release 3.0

5.2.48 ex_SelectResidueRange

Shows how to select a structural fragment based on residue IDs

Keywords:

• no_keywords

Categories:

• no_categories

5.2. ex_* programs 185

BioShell 3.0, Release 3.0

186 Chapter 5. BioShell examples

BioShell 3.0, Release 3.0

5.2.49 ex_SemiglobalAligner

Calculate a pairwise sequence alignment between two sequences with identity scoring method.

Keywords:

• no_keywords

Categories:

• no_categories

5.2. ex_* programs 187

BioShell 3.0, Release 3.0

188 Chapter 5. BioShell examples

BioShell 3.0, Release 3.0

5.2.50 ex_Seqres

ex_Seqres reads a PDB file and prints the sequences stored in its SEQRES fields

These sequences in many cases differ ftom the sequences extracted from coordinates section

USAGE: ./ex_Seqres 2kwi.pdb

Keywords:

• no_keywords

Categories:

• no_categories

5.2. ex_* programs 189

BioShell 3.0, Release 3.0

190 Chapter 5. BioShell examples

BioShell 3.0, Release 3.0

5.2.51 ex_Sequence

ex_Sequence reads a PDB file and prints a sequence fragment. It demonstrates

how to select residues by their PDB_ID USAGE: ./ex_Sequence 3wn7.pdb

Keywords:

• no_keywords

Categories:

• no_categories

5.2. ex_* programs 191

BioShell 3.0, Release 3.0

192 Chapter 5. BioShell examples

BioShell 3.0, Release 3.0

5.2.52 ex_SequenceAlignmentWidget

Simple test for SequenceAlignmentComponent web-component reads an alignment from a PIR or FASTA
file

and formats it to HTM

Keywords:

• no_keywords

Categories:

• no_categories

5.2. ex_* programs 193

BioShell 3.0, Release 3.0

194 Chapter 5. BioShell examples

BioShell 3.0, Release 3.0

5.2.53 ex_Structure

ex_Structure reads a PDB file and prints a list of all atoms grouped by residues they belong to

USAGE: ./ex_Structure 5edw.pdb

Keywords:

• no_keywords

Categories:

• no_categories

5.2. ex_* programs 195

BioShell 3.0, Release 3.0

196 Chapter 5. BioShell examples

BioShell 3.0, Release 3.0

5.2.54 ex_ThreadPool

Simple test for a ThreadPool class

Keywords:

• no_keywords

Categories:

• no_categories

5.2. ex_* programs 197

BioShell 3.0, Release 3.0

198 Chapter 5. BioShell examples

BioShell 3.0, Release 3.0

5.2.55 ex_ThreadSafeMap

Shows how to use ThreadSafeMap class

Keywords:

• no_keywords

Categories:

• no_categories

5.2. ex_* programs 199

BioShell 3.0, Release 3.0

200 Chapter 5. BioShell examples

BioShell 3.0, Release 3.0

5.2.56 ex_ThreeDTree

A simple example shows how to use BioShell kd-tree routines.

Keywords:

• no_keywords

Categories:

• no_categories

5.2. ex_* programs 201

BioShell 3.0, Release 3.0

202 Chapter 5. BioShell examples

BioShell 3.0, Release 3.0

5.2.57 ex_TreeNode

Simple demo for TreeNode class

Keywords:

• no_keywords

Categories:

• no_categories

5.2. ex_* programs 203

BioShell 3.0, Release 3.0

204 Chapter 5. BioShell examples

BioShell 3.0, Release 3.0

5.2.58 ex_UnionFind

A simple example shows how to use UnionFind algorithm.

Keywords:

• no_keywords

Categories:

• no_categories

5.2. ex_* programs 205

BioShell 3.0, Release 3.0

206 Chapter 5. BioShell examples

BioShell 3.0, Release 3.0

5.2.59 ex_WebServer

Simple test for WebServer class

USAGE: ex_WebServer [port]

Keywords:

• no_keywords

Categories:

• no_categories

5.2. ex_* programs 207

BioShell 3.0, Release 3.0

208 Chapter 5. BioShell examples

BioShell 3.0, Release 3.0

5.2.60 ex_XML

Simple for XML I/O utils.

Keywords:

• no_keywords

Categories:

• no_categories

5.2. ex_* programs 209

BioShell 3.0, Release 3.0

210 Chapter 5. BioShell examples

BioShell 3.0, Release 3.0

5.2.61 ex_alignment_io

Read alignment in Edinburgh format or calculate a new one from given sequences; write Edinburgh.

Keywords:

• no_keywords

Categories:

• no_categories

5.2. ex_* programs 211

BioShell 3.0, Release 3.0

212 Chapter 5. BioShell examples

BioShell 3.0, Release 3.0

5.2.62 ex_basic_algebra

ex_basic_algebra illustrates how to calculate eigenvalues and eigenvectors for a 3x3 matrix

Keywords:

• no_keywords

Categories:

• no_categories

5.2. ex_* programs 213

BioShell 3.0, Release 3.0

214 Chapter 5. BioShell examples

BioShell 3.0, Release 3.0

5.2.63 ex_benchmark_quick_seq_identity

ex_benchmark_quick_seq_identity estimates sequence identity without actual aligning the sequences.
The purpose of this

program is to compare three different implementations of the method (BitSet should be much faster than tuple count-
ing)

USAGE: ./ex_benchmark_quick_seq_identity cyped.CYP109.fasta

Keywords:

• no_keywords

Categories:

• no_categories

5.2. ex_* programs 215

BioShell 3.0, Release 3.0

216 Chapter 5. BioShell examples

BioShell 3.0, Release 3.0

5.2.64 ex_chi2_independence_test

Performs chi-square test: calculates p-value for a given number of DOFs. Alternatively,

it can read a contingency matrix from a file and calcutate test for independence of its two first rows When no input data
is provided, the example performs Chi-square independence test on a test data USAGE: ex_chi2_independence_test
[n_dofs chi2_value] ex_chi2_independence_test [input_contingency_matrix_file

Keywords:

• no_keywords

Categories:

• no_categories

5.2. ex_* programs 217

BioShell 3.0, Release 3.0

218 Chapter 5. BioShell examples

BioShell 3.0, Release 3.0

5.2.65 ex_consecutive_find

Shows how to find islands of consecutive elements in a container

Keywords:

• no_keywords

Categories:

• no_categories

5.2. ex_* programs 219

BioShell 3.0, Release 3.0

220 Chapter 5. BioShell examples

BioShell 3.0, Release 3.0

5.2.66 ex_count_residues_by_type

ex_count_residues_by_type reads a Multiple Sequence Alignment (MSA) in ClustalW format and counts
residues by its type

USAGE: ./ex_count_residues_by_type cyped.CYP109.aln

Keywords:

• no_keywords

Categories:

• no_categories

5.2. ex_* programs 221

BioShell 3.0, Release 3.0

222 Chapter 5. BioShell examples

BioShell 3.0, Release 3.0

5.2.67 ex_define_rotamer

ex_define_rotamer prints rotamer type (M-P-T code) for each amino acid

residue in the input PDB structure USAGE: ex_define_rotamer 5edw.pdb

Keywords:

• no_keywords

Categories:

• no_categories

5.2. ex_* programs 223

BioShell 3.0, Release 3.0

224 Chapter 5. BioShell examples

BioShell 3.0, Release 3.0

5.2.68 ex_expectation_maximization

Example showing how to use expectation-maximization method

Keywords:

• no_keywords

Categories:

• no_categories

5.2. ex_* programs 225

BioShell 3.0, Release 3.0

226 Chapter 5. BioShell examples

BioShell 3.0, Release 3.0

5.2.69 ex_find_side_group

Reads a PDB file and prints names of all atoms in residue side chains

USAGE: ex_find_side_group 2gb1.pdb

Keywords:

• no_keywords

Categories:

• no_categories

5.2. ex_* programs 227

BioShell 3.0, Release 3.0

228 Chapter 5. BioShell examples

BioShell 3.0, Release 3.0

5.2.70 ex_goodman_kruskal_rank_correlation

The program read a contingency matrix from a file and calculates Goodman and Kruskal’s gamma param-
eters

which is a measure of rank correlation.

USAGE: ex_goodman_kruskal_rank_correlation input_contingency_matrix_fil

Keywords:

• no_keywords

Categories:

• no_categories

5.2. ex_* programs 229

BioShell 3.0, Release 3.0

230 Chapter 5. BioShell examples

BioShell 3.0, Release 3.0

5.2.71 ex_greedy_clustering

Example showing how to use greedy clustering method.

Keywords:

• no_keywords

Categories:

• no_categories

5.2. ex_* programs 231

BioShell 3.0, Release 3.0

232 Chapter 5. BioShell examples

BioShell 3.0, Release 3.0

5.2.72 ex_intersect_sorted

Shows how to find an intersection of two sorted vectors of data

Keywords:

• no_keywords

Categories:

• no_categories

5.2. ex_* programs 233

BioShell 3.0, Release 3.0

234 Chapter 5. BioShell examples

BioShell 3.0, Release 3.0

5.2.73 ex_k_tuples

Reads a set of sequences given in a FASTA format and prints all 4-tuples that can be created from it.

USAGE: ex_k_tuples sequences.fasta [alphabet_name]

Keywords:

• no_keywords

Categories:

• no_categories

5.2. ex_* programs 235

BioShell 3.0, Release 3.0

236 Chapter 5. BioShell examples

BioShell 3.0, Release 3.0

5.2.74 ex_local_BBQ_coordinates

ex_local_BBQ_coordinates reads a PDB file and prints local coordinates for sidechain atoms

USAGE: ex_local_BBQ_coordinates 5edw.pdb

Keywords:

• no_keywords

Categories:

• no_categories

5.2. ex_* programs 237

BioShell 3.0, Release 3.0

238 Chapter 5. BioShell examples

BioShell 3.0, Release 3.0

5.2.75 ex_local_coordinates_three_atoms

ex_local_coordinates_three_atoms reads a PDB file and prints local coordinates for sidechain atoms.

For every residue, a local coordinate system (LCS) is constructed based on N, C-alpha and C atoms. The program
prints positions of all atoms of a residue in its LCS

USAGE: ex_local_coordinates_three_atoms 5edw.pdb

Keywords:

• no_keywords

Categories:

• no_categories

5.2. ex_* programs 239

BioShell 3.0, Release 3.0

240 Chapter 5. BioShell examples

BioShell 3.0, Release 3.0

5.2.76 ex_monomer_io

The program converts a monomer structure from CIF format to internal formats used by BioShell.

Use it to register your own monomer which is missing in BioShell library. The program is also used to create
‘monomers.txt’ file from BioShell distribution (located in ./data/ directory). In order to do so, download the fresh
repository of monomers in CIF format from:

http://ligand-expo.rcsb.org/dictionaries/Components-pub.cif

and run the program. Then replace the released monomers.txt file with the new one

USAGE: ./ex_monomer_io -in::monomers::cif=HEM.cif -out:file=hem.txt ./ex_monomer_io -
in::monomers::cif=Components-pub.cif

Keywords:

• no_keywords

Categories:

• no_categories

5.2. ex_* programs 241

http://ligand-expo.rcsb.org/dictionaries/Components-pub.cif

BioShell 3.0, Release 3.0

242 Chapter 5. BioShell examples

BioShell 3.0, Release 3.0

5.2.77 ex_pdb_to_fasta

Reads a PDB file and writes protein sequence(s) in FASTA format.

Keywords:

• no_keywords

Categories:

• no_categories

5.2. ex_* programs 243

BioShell 3.0, Release 3.0

244 Chapter 5. BioShell examples

BioShell 3.0, Release 3.0

5.2.78 ex_peptide_hydrogen

ex_peptide_hydrogen reconstructs peptide hydrogen atoms using BioShell algorithm,

where amide H is placed in reference to its N atom. Resulting coordinates are printed on the screen. The program also
computes the amide-H positions using DSSP approach and calculates the average error (in Angstroms) between the
two methods.

USAGE: ex_peptide_hydrogen 5edw.pdb

Keywords:

• no_keywords

Categories:

• no_categories

5.2. ex_* programs 245

BioShell 3.0, Release 3.0

246 Chapter 5. BioShell examples

BioShell 3.0, Release 3.0

5.2.79 ex_protein_peptide_interface

ex_protein_peptide_interface finds atomic contacts between a receptor and a peptide found in an input
PDB file.

Its output provides: protein residue name and ID, protein chain ID, peptide protein name and ID, peptide chain ID,
minimum distance between the residues, e.g.

ILE 36 A ARG 104 X 5.92977 LEU 44 A ARG 104 X 5.92685 LEU 44 A LEU 108 X 5.57779 GLU 45 A THR 102
X 6.81994

USAGE: ex_protein_peptide_interface 1dt7.pdb 7.0

where 1dt7.pdb id an input file and 7.0 - contact distance in Angstroms

Keywords:

• no_keywords

Categories:

• no_categories

5.2. ex_* programs 247

BioShell 3.0, Release 3.0

248 Chapter 5. BioShell examples

BioShell 3.0, Release 3.0

5.2.80 ex_read_properties_file

Simple test for ex_read_properties_file function

USAGE: ex_read_properties_file input_file.properties

Keywords:

• no_keywords

Categories:

• no_categories

5.2. ex_* programs 249

BioShell 3.0, Release 3.0

250 Chapter 5. BioShell examples

BioShell 3.0, Release 3.0

5.2.81 ex_selection_protocols

ex_selection_protocols shows how to use selection protocols

USAGE: ex_selection_protocols 5edw.pdb

Keywords:

• no_keywords

Categories:

• no_categories

5.2. ex_* programs 251

BioShell 3.0, Release 3.0

252 Chapter 5. BioShell examples

BioShell 3.0, Release 3.0

5.2.82 ex_seq_io

ex_seq_io reads a SEQ file and prints its contents in FASTA format

USAGE: ./ex_seq_io 2gb1.seq

Keywords:

• no_keywords

Categories:

• no_categories

5.2. ex_* programs 253

BioShell 3.0, Release 3.0

254 Chapter 5. BioShell examples

BioShell 3.0, Release 3.0

5.2.83 ex_set_dihedral

Sets a particular values for Phi, Psi and Omega angles at a certain residue in a protein.

USAGE: 2gb1.pdb 18 -80.4 90.4 180.0

where 2gb1.pdb is the protein structure to be modified, 18 is the residue ID and the three following real values are Phi,
Psi and omega dihedrals. The results is printed in PDB forma

Keywords:

• no_keywords

Categories:

• no_categories

5.2. ex_* programs 255

BioShell 3.0, Release 3.0

256 Chapter 5. BioShell examples

BioShell 3.0, Release 3.0

5.2.84 ex_shared_pointers

A very basic example showing how to use shared pointers (from standard C++ 11 library) when program-
ming in BioShell.

Keywords:

• no_keywords

Categories:

• no_categories

5.2. ex_* programs 257

BioShell 3.0, Release 3.0

258 Chapter 5. BioShell examples

BioShell 3.0, Release 3.0

5.2.85 ex_simpson_integration

Example for numerical integration with Simpson method

Keywords:

• no_keywords

Categories:

• no_categories

5.2. ex_* programs 259

BioShell 3.0, Release 3.0

260 Chapter 5. BioShell examples

BioShell 3.0, Release 3.0

5.2.86 ex_split_fasta

ex_split_fasta reads a FASTA file and writes every sequence from it in a separate file

USAGE: ./ex_split_fasta 5edw.fasta

Keywords:

• no_keywords

Categories:

• no_categories

5.2. ex_* programs 261

BioShell 3.0, Release 3.0

262 Chapter 5. BioShell examples

BioShell 3.0, Release 3.0

5.2.87 ex_structure_iterators

ex_structure_iterators shows how to iterate through structural components

USAGE: ex_structure_iterators 1dt7.pdb

where 1dt7.pdb id an input file (PDB format)

Keywords:

• no_keywords

Categories:

• no_categories

5.2. ex_* programs 263

BioShell 3.0, Release 3.0

264 Chapter 5. BioShell examples

BioShell 3.0, Release 3.0

5.2.88 ex_test_gzip

Simple test to gzip and un-gzip a string data

Keywords:

• no_keywords

Categories:

• no_categories

5.2. ex_* programs 265

BioShell 3.0, Release 3.0

266 Chapter 5. BioShell examples

BioShell 3.0, Release 3.0

5.2.89 ex_uniquify

Tests uniquify() method which removes redundant objects from a container.

Keywords:

• no_keywords

Categories:

• no_categories

5.2. ex_* programs 267

BioShell 3.0, Release 3.0

268 Chapter 5. BioShell examples

BioShell 3.0, Release 3.0

5.2.90 ex_web_client

Simple test for web_client methods

USAGE: ex_web_client [address]

Keywords:

• no_keywords

Categories:

• no_categories

5.2. ex_* programs 269

BioShell 3.0, Release 3.0

270 Chapter 5. BioShell examples

BioShell 3.0, Release 3.0

5.3 ww_* programs

These group contain test which are displayed in WWW browser.

5.3.1 ww_evaluate_chi

Calculates Chi angles for every model found in the input protein structure

and displays as a 2D scatterplot on a web page USAGE: ww_evaluate_chi [ww_evaluate_chi.htm [8002]]

where the first optional argument is the HTML page file and 8002 is the port number (ww_evaluate_chi.htm and 8002
by default, respectively

Keywords:

• no_keywords

Categories:

• no_categories

5.3. ww_* programs 271

BioShell 3.0, Release 3.0

272 Chapter 5. BioShell examples

BioShell 3.0, Release 3.0

5.3.2 ww_evaluate_contact_map

Calculates contact map for a given protein structure

USAGE: ww_evaluate_contact_map [ww_evaluate_contact_map.htm [8003 [pdb_local_path]]]

where the first optional argument is the HTML page file and 8003 is the port number (ww_evaluate_contact_map.htm
and 8003 by default, respectively

Keywords:

• no_keywords

Categories:

• no_categories

5.3. ww_* programs 273

BioShell 3.0, Release 3.0

274 Chapter 5. BioShell examples

BioShell 3.0, Release 3.0

5.3.3 ww_evaluate_phi_psi

Calculates Phi,Psi angles (Ramachandran map) for every model found in the input protein structure

and displays a Ramachandran plot as a web page USAGE: ww_evaluate_phi_psi [ww_evaluate_phi_psi.htm [8001
[pdb_local_path]]]

where the first optional argument is the HTML page file and 8001 is the port number (ww_evaluate_phi_psi.htm and
8001 by default, respectively

Keywords:

• no_keywords

Categories:

• no_categories

5.3. ww_* programs 275

BioShell 3.0, Release 3.0

276 Chapter 5. BioShell examples

CHAPTER 6

BioShell C++ library

BioShell is a versatile C++11 library for structural bioinformatics. Its struture has been shown in the figure below:

6.1 Reading and processing PDB files

Reading PDB files into a BioShell program is divided into two steps:

• loading a text file into memory, and

• parsing its content and creating Structure object(s)

6.1.1 Loading a PDB file

You have to create a reader object to read a PDB file. In the simplest case this looks as below:

277

BioShell 3.0, Release 3.0

core::data::io::Pdb reader("infile.pdb");

This reader will skip water molecules and hydrogen atoms. You can control which PDB line will be omitted during
reading by providing a PdbLineFilter instance to the constructor, e.g.

core::data::io::Pdb reader("infile.pdb",
core::data::io::all_true(core::data::io::is_not_water,
core::data::io::is_not_alternative));

PdbLineFilter objects can dramaticly limit the number of PDB lines to be parsed and thus shorten the time spent
of PDB file loading.

6.1.2 Creating Structure object

Once a file is loaded, you can create a Structure object from one of its models:

core::data::structural::Structure_SP model = reader.create_structure(0);

The very first model is indexed by 0. Every time create_structure() method is called, a new Structure
object is created, which includes necessary memory allocation. Creating new atom objects is in fact the slowest part of
this call. Sometimes it is possible to recycle old structure filling it with new coordinates rather than just creating a new
one from scratch. This can be done as in the ap_contact_map program; the relevant fragment is shown below:

Coordinates of a new structure must fit into the existing stucture i.e. the new structure must be composed of the same
number of chains, residues and atom as the old one. In practice this is most useful when a multi-model PDB file must
be loaded, as in this example:

• in the line 1 a PDB file is loaded with a filter instance defined someehere before

• in the line 3 a Structure object is creaded based on the first model defined in the file

• in the line 4 a ContactMap object is creaded and the first structure is loaded id

• finally, in lines 5-8 a loop iterates over all the remaining models; in line 6 coordinates of each model are loaded
into the existing structure (the one created in line 3)

Residue, PdbAtom and Chain objects are created only once, when the structure at index 0 is loaded. After that the
loop only substitutes. coordinates of this structure

278 Chapter 6. BioShell C++ library

CHAPTER 7

BioShell Python library

BioShell 3.0 comes also with Python bindings i.e. BioShell classes can be also used as Python modules. Let’s consider
the following C++ program that reads a PDB file and writes a FASTA sequence for every chain:

The same program written in Pyton looks much simpler. It calls nearly the same BioShell C++ objects as the one
above, but due to simplicity of Python, the script is a bit shorter:

7.1 Reading and writing PDB files

7.1.1 Reading PDB files

Reading PDB data is a two-stage process: first you crete a reader that loads PDB content into memory; then the content
is parsed according to user’s requests.

7.1.2 Writing PDB files

PdbAtom class provides create_pdb_line() method.

This page provides documentation for BioShell package. Laboratory protocols and documentation to Rosetta is pro-
vided by labnotes website.

279

https://labnotes.readthedocs.io/en/latest/

BioShell 3.0, Release 3.0

280 Chapter 7. BioShell Python library

CHAPTER 8

SURPASS model

SURPASS model Single United Residue per Pre-Averaged Secondary Structure fragment is a coarse-grained low
resolution model for protein simulations.

• see doc_surpass_representation

• read about: doc_surpass_force_field

• necessary and optional doc_biosimulations_surpass_input

• resutling doc_biosimulations_surpass_output

• surpass_annealing command line program doc_biosimulations_surpass_annealing

281

BioShell 3.0, Release 3.0

282 Chapter 8. SURPASS model

CHAPTER 9

Indices and tables

• genindex

• search

283

BioShell 3.0, Release 3.0

284 Chapter 9. Indices and tables

Index

B
bioshell, 6
bioshell-apps, 6

E
examples, 6

285

	Introduction
	BioShell applications
	BioShell tests & examples
	BioShell library for Python (aka PyBioShell)
	BioShell C++ library
	Previous versions
	Citations

	Installation
	PyBioShell Installation
	0. Prequisities
	1. Clone and compile binder
	2. Build PyBioShell

	BioShell programs
	clust tutorial : clustering sequences and structures
	BioShell cookbook

	BioShell examples
	ap_* programs
	ex_* programs
	ww_* programs

	BioShell C++ library
	Reading and processing PDB files

	BioShell Python library
	Reading and writing PDB files

	SURPASS model
	Indices and tables

