

 [image: _images/logo.png]

Spectacle

Spectacle is an automated model generator for producing models that represent
spectral data. It features the ability to reduce spectral data to its absorption
components, fit features and continua, as well as allow for
statistical analysis of spectral regions.

This package can also be used to generate analytical spectra from detailed
characteristics, find potential line features, and simultaneously fit sets of
absorption/emission lines.

Quick example

Include some setup imports for plotting and unit support.

>>> from astropy import units as u
>>> import numpy as np
>>> from matplotlib import pyplot as plt
>>> from astropy.visualization import quantity_support
>>> quantity_support() # for getting units on the axes below # doctest: +IGNORE_OUTPUT

Import the spectral model and profile model.

>>> from spectacle.modeling import Spectral1D, OpticalDepth1D

Create some HI lines to add to the spectral model. Note that all
column densities are given in \(\log 1 / \textrm{cm}^2\).

>>> line = OpticalDepth1D("HI1216", v_doppler=50 * u.km/u.s, column_density=14)
>>> line2 = OpticalDepth1D("HI1216", delta_v=100 * u.km/u.s)

Create the multi-component spectral model, defining a rest wavelength and
explicitly defining some redshift value.

>>> spec_mod = Spectral1D([line, line2], continuum=1, z=0, output='flux')

Generate spectral data from the model.

>>> x = np.linspace(-500, 500, 1000) * u.Unit('km/s')
>>> y = spec_mod(x)

Plot the result.

>>> f, ax = plt.subplots() # doctest: +IGNORE_OUTPUT
>>> ax.set_title("HI 1216") # doctest: +IGNORE_OUTPUT
>>> ax.step(x, y) # doctest: +IGNORE_OUTPUT

(Source code, png, hires.png, pdf)

[image: _images/index-1.png]

Using Spectacle

	Installation
	Dependencies

	Stable release

	From sources

	Contributing
	Types of Contributions

	Get Started!

	Pull Request Guidelines

	Tips

	Getting Started
	Creating a spectral model

	Providing lines to the initializer

	Adding lines after model creation

	Modeling
	Defining output data

	Applying line spread functions

	Converting dispersions

	Implementing redshift

	Line Finding
	Auto-generate spectral model

	Defining default parameters

	Searching for ion subsets

	Fitting
	Using the MCMC fitter

	Custom fitters with the line finder

	Registries
	Adding your own ion registry

	Analysis
	Arbitrary line region statistics

	Re-sampling dispersion grids

API

	API

Indices and tables

	Index

	Module Index

	Search Page

Installation

Dependencies

The packages needed to run Spectacle should be installed automatically when
the user installs the package. These dependencies include

	astropy>=3.1

	specutils>=0.4

	emcee > 3.0

Stable release

To install Spectacle, run this command in your terminal:

$ pip install spectacle

This is the preferred method to install Spectacle, as it will always install the most recent stable release.

If you don’t have pip [https://pip.pypa.io] installed, this Python installation guide [http://docs.python-guide.org/en/latest/starting/installation/] can guide
you through the process.

From sources

The sources for Spectacle can be downloaded from the Github repo [https://github.com/MISTY-pipeline/spectacle].

You can either clone the public repository:

$ git clone git://github.com/MISTY-pipeline/spectacle

Or download the tarball [https://github.com/MISTY-pipeline/spectacle/tarball/master]:

$ curl -OL https://github.com/MISTY-pipeline/spectacle/tarball/master

Once you have a copy of the source, you can install it with:

$ python setup.py install

Contributing

Contributions are welcome, and they are greatly appreciated! Every
little bit helps, and credit will always be given.

You can contribute in many ways:

Types of Contributions

Report Bugs

Report bugs at https://github.com/MISTY-pipeline/spectacle/issues.

If you are reporting a bug, please include:

	Your operating system name and version.

	Any details about your local setup that might be helpful in troubleshooting.

	Detailed steps to reproduce the bug.

Fix Bugs

Look through the GitHub issues for bugs. Anything tagged with “bug”
and “help wanted” is open to whoever wants to implement it.

Implement Features

Look through the GitHub issues for features. Anything tagged with “enhancement”
and “help wanted” is open to whoever wants to implement it.

Write Documentation

Spectacle could always use more documentation, whether as part of the
official Spectacle docs, in docstrings, or even on the web in blog posts,
articles, and such.

Submit Feedback

The best way to send feedback is to file an issue at https://github.com/MISTY-pipeline/spectacle/issues.

If you are proposing a feature:

	Explain in detail how it would work.

	Keep the scope as narrow as possible, to make it easier to implement.

	Remember that this is a volunteer-driven project, and that contributions
are welcome :)

Get Started!

Ready to contribute? Here’s how to set up spectacle for local development.

	Fork the spectacle repo on GitHub.

	Clone your fork locally:

$ git clone git@github.com:your_name_here/spectacle.git

	Install your local copy into a virtualenv. Assuming you have Anaconda installed, this is how you set up your fork for local development:

$ conda create -n spectacle_env python=3
$ conda activate spectacle_env
$ cd spectacle/
$ python setup.py develop

Alternatively, if you have virtualenvwrapper installed::

$ mkvirtualenv spectacle
$ cd spectacle/
$ python setup.py develop

	Create a branch for local development:

$ git checkout -b name-of-your-bugfix-or-feature

Now you can make your changes locally.

	When you’re done making changes, check that your changes pass flake8 and the tests, including testing other Python versions with tox:

$ flake8 spectacle tests
$ python setup.py test or py.test
$ tox

To get flake8 and tox, just pip install them into your virtualenv.

	Commit your changes and push your branch to GitHub:

$ git add .
$ git commit -m "Your detailed description of your changes."
$ git push origin name-of-your-bugfix-or-feature

	Submit a pull request through the GitHub website.

Pull Request Guidelines

Before you submit a pull request, check that it meets these guidelines:

	The pull request should include tests.

	If the pull request adds functionality, the docs should be updated. Put
your new functionality into a function with a docstring, and add the
feature to the list in README.rst.

	The pull request should work for Python 2.6, 2.7, 3.3, 3.4 and 3.5, and for PyPy. Check
https://travis-ci.org/MISTY-pipeline/spectacle/pull_requests
and make sure that the tests pass for all supported Python versions.

Tips

To run a subset of tests:

$ py.test tests.test_spectacle

Getting Started

Spectacle is designed to facilitate the creation of complex spectral models.
It is built on the Astropy modeling [http://docs.astropy.org/en/stable/modeling/] module.
It can create representations of spectral data in wavelength, frequency, or
velocity space, with any number of line components. These models can then be
fit to data for use in individual ion reduction, or characterization of spectra
as a whole.

Creating a spectral model

The primary class is the Spectral1D. This
serves as the central object through which the user will design their model,
and so exposes many parameters to the user.

Spectral1D models are initialized with
several descriptive properties:

	Attribute

	Description

	z

	This is the redshift of the spectrum. It can either be a single numerical value, or an array describing the redshift at each e.g. velocity bin. Note if the user provides an array, the length of the redshift array must match the length of the dispersion array used as input to the model. Default: 0

	rest_wavelength

	The wavelength at which transformations from wavelength space to velocity space will be performed. Default: 0 Angstrom

	output

	Describes the type of data the spectrum model will produce. This can be one of flux, flux_decrement, or optical_depth. Default: `flux`

	continuum

	A FittableModel1D or single numeric value representing the continuum for the spectral model. Default: 0

	lsf

	The line spread function to be applied to the model. Users can provided an LSFModel, a Kernel1D [http://docs.astropy.org/en/stable/api/astropy.convolution.Kernel1D.html#astropy.convolution.Kernel1D], or a string indicating either cos for the COS LSF, or guassian for a Gaussian LSF. In the latter case, the user should provide key word arguments as parameters for the Gaussian profile.

	lines

	The set of lines to be added to the spectrum. This information is passed to the OpticalDepth1D initializer. This can either be a single OpticalDepth1D instance, a list of OpticalDepth1D instances; a single string representing the name of an ion (e.g. “HI1216”), a list of such strings; a single Quantity [http://docs.astropy.org/en/stable/api/astropy.units.Quantity.html#astropy.units.Quantity] value representing the rest wavelength of an ion, or a list of such values.

The Spectral1D does not require that any
lines be provided initially. In that case, it will just generate data only
considering the continuum and other properties.

Providing lines to the initializer

As mentioned in the table above, lines can be added by passing a set of
OpticalDepth1D instances, ion name strings,
or rest wavelength Quantity [http://docs.astropy.org/en/stable/api/astropy.units.Quantity.html#astropy.units.Quantity] objects to the initializer.

Using a set of OpticalDepth1D instances:

line = OpticalDepth1D("HI1216", v_doppler=50 * u.km/u.s, column_density=14)
line2 = OpticalDepth1D("HI1216", delta_v=100 * u.km/u.s)
spec_mod = Spectral1D([line, line2])

Using ion name strings:

spec_mod = Spectral1D(["HI1216", "OVI1032"])

Using rest wavelength Quantity [http://docs.astropy.org/en/stable/api/astropy.units.Quantity.html#astropy.units.Quantity] objects:

spec_mod = Spectral1D([1216 * u.Angstrom, 1032 * u.Angstrom])

Adding lines after model creation

Likewise, the user can add a line to an already made spectral model by using
the with_line() method, and
provide to it information accepted by the OpticalDepth1D
class

>>> from spectacle import Spectral1D
>>> import astropy.units as u
>>> spec_mod = Spectral1D([1216 * u.AA])
>>> spec_mod = spec_mod.with_line("HI1216", v_doppler=50 * u.km/u.s, column_density=14)
>>> print(spec_mod)
Model: Spectral1D
Inputs: ('x',)
Outputs: ('y',)
Model set size: 1
Parameters:
 amplitude_0 z_1 lambda_0_2 f_value_2 gamma_2 v_doppler_2 column_density_2 delta_v_2 delta_lambda_2 lambda_0_3 f_value_3 gamma_3 v_doppler_3 column_density_3 delta_v_3 delta_lambda_3 z_5
 Angstrom km / s km / s Angstrom Angstrom km / s km / s Angstrom
 ----------- --- ---------- --------- ----------- ----------- ---------------- --------- -------------- ---------- --------- ----------- ----------- ---------------- --------- -------------- ---
 0.0 0.0 1215.6701 0.4164 626500000.0 10.0 13.0 0.0 0.0 1215.6701 0.4164 626500000.0 50.0 14.0 0.0 0.0 0.0

Modeling

The purpose of Spectacle is to provide a descriptive model of spectral data,
where each absorption or emission feature is characterized by an informative
Voigt profile. To that end, there are several ways in which users can generate
this model to more perfectly match their data, or the data they wish to create.

Defining output data

Support for three different types of output data exists: flux,
flux_decrement, and optical_depth. This indicates the type of data that
will be outputted when the model is run. Output type can be specified upon
creation of a spectacle.modeling.Spectral1D object:

spec_mod = Spectral1D("HI1216", output='optical_depth')

Spectacle internally deals in optical depth space, and optical depth
information is transformed into flux as a step in the compound model.

For flux transformations:

\[f(y) = np.exp(-y) - 1\]

And for flux decrement transformations:

\[f(y) = 1 - np.exp(-y) - 1\]

All output types use the continuum information when depositing
absorption or emission data into the dispersion bins. Likewise, flux and
flux_decrement will generate results that may be saturated.

>>> from astropy import units as u
>>> import numpy as np
>>> from matplotlib import pyplot as plt
>>> from spectacle.modeling import Spectral1D, OpticalDepth1D

>>> line = OpticalDepth1D("HI1216", v_doppler=50 * u.km/u.s, column_density=14)
>>> line2 = OpticalDepth1D("HI1216", delta_v=100 * u.km/u.s)

>>> spec_mod = Spectral1D([line, line2], continuum=1, output='flux')
>>> x = np.linspace(-500, 500, 1000) * u.Unit('km/s')

>>> flux = spec_mod(x)
>>> flux_dec = spec_mod.as_flux_decrement(x)
>>> tau = spec_mod.as_optical_depth(x)

>>> f, (ax1, ax2, ax3) = plt.subplots(3, 1, sharex=True)
>>> ax1.set_title("Flux") # doctest: +IGNORE_OUTPUT
>>> ax1.step(x, flux) # doctest: +IGNORE_OUTPUT
>>> ax2.set_title("Flux Decrement") # doctest: +IGNORE_OUTPUT
>>> ax2.step(x, flux_dec) # doctest: +IGNORE_OUTPUT
>>> ax3.set_title("Optical Depth") # doctest: +IGNORE_OUTPUT
>>> ax3.step(x, tau) # doctest: +IGNORE_OUTPUT
>>> ax3.set_xlabel('Velocity [km/s]') # doctest: +IGNORE_OUTPUT
>>> f.tight_layout()

(Source code, png, hires.png, pdf)

[image: _images/modeling-1.png]

Applying line spread functions

LSFs can be added to the Spectral1D model to
generate data that more appropriately matches what one might expect from an
instrument like, e.g., HST COS

>>> from astropy import units as u
>>> import numpy as np
>>> from matplotlib import pyplot as plt
>>> from spectacle.modeling import Spectral1D, OpticalDepth1D

>>> line1 = OpticalDepth1D("HI1216", v_doppler=500 * u.km/u.s, column_density=14)
>>> line2 = OpticalDepth1D("OVI1032", v_doppler=500 * u.km/u.s, column_density=15)

LSFs can either be applied directly during spectrum model creation:

>>> spec_mod_with_lsf = Spectral1D([line1, line2], continuum=1, lsf='cos', output='flux')

or they can be applied after the fact:

>>> spec_mod = Spectral1D([line1, line2], continuum=1, output='flux')
>>> spec_mod_with_lsf = spec_mod.with_lsf('cos')

>>> x = np.linspace(1000, 1300, 1000) * u.Unit('Angstrom')

>>> f, ax = plt.subplots()
>>> ax.step(x, spec_mod(x), label="Flux") # doctest: +IGNORE_OUTPUT
>>> ax.step(x, spec_mod_with_lsf(x), label="Flux with LSF") # doctest: +IGNORE_OUTPUT
>>> ax.set_xlabel("Wavelength [Angstrom]") # doctest: +IGNORE_OUTPUT
>>> f.legend(loc=0) # doctest: +IGNORE_OUTPUT

(Source code, png, hires.png, pdf)

[image: _images/modeling-2.png]

Supplying custom LSF kernels

Spectacle provides two built-in LSF kernels: the HST COS kernel, and a Gaussian
kernel. Both can be applied by simply passing in a string, and in the latter
case, also supplying an additional stddev keyword argument:

.. code-block:: python

spec_mod = Spectral1D(“HI1216”, continuum=1, lsf=’cos’)
spec_mod = Spectral1D(“HI1216”, continuum=1, lsf=’gaussian’, stddev=15)

Users may also supply their own kernels, or any
Astropy 1D kernel [http://docs.astropy.org/en/stable/convolution/index.html#classes].
The only restriction is that kernels must be a subclass of either
LSFModel, or Kernel1D [http://docs.astropy.org/en/stable/api/astropy.convolution.Kernel1D.html#astropy.convolution.Kernel1D].

from astropy.convolution import Box1DKernel
kernel = Box1DKernel(width=10)

spec_mod_with_lsf = Spectral1D([line1, line2], continuum=1, lsf=kernel, output='flux')

Converting dispersions

Spectacle supports dispersions in either wavelength space or velocity space,
and will implicitly deal with conversions internally as necessary. Conversion
to velocity space is calculated using the relativistic doppler equation

\[\begin{align}\begin{aligned}V &= c \frac{f_0^2 - f^2}{f_0^2 + f^2},\\f(V) &= f_0 \frac{\left(1 - (V/c)^2\right)^{1/2}}{(1+V/c)}.\end{aligned}\end{align} \]

This of course makes the assumption that observed redshift is due to relativistic
effects along the light of sight. At higher redshifts, however, the predominant
source of observed redshift is due to the cosmological expansion of space, and
not the source’s velocity with respect to the observer.

It is possible to set the approximation used in wavelength/frequency to
velocity conversions for Spectacle. Aside from the default relativistic
calculation, users can choose the “optical definition”

\[\begin{align}\begin{aligned}V &= c \frac{f_0 - f}{f }\\f(V) &= f_0 (1 + V/c)^{-1}\end{aligned}\end{align} \]

or the “radio definition”

\[\begin{align}\begin{aligned}V &= c \frac{f_0 - f}{f_0}\\f(V) &= f_0 (1 - V/c).\end{aligned}\end{align} \]

This can be done upon instantiation of the
Spectral1D model:

spec_mod = Spectral1D("HI1216", continuum=1, z=0, velocity_convention='optical')

The velocity_convention keyword supports one of either relativisitic,
optical, or radio to indiciate the definition to be used in internal
conversions.

Implementing redshift

When creating a Spectral1D
model, the user can provide a redshift at which the output spectrum will
deposit the lines by including a z parameter.

Note

When fitting, including the z parameter
indicates the redshift of the input dispersion. Spectacle will de-redshift
the data input using this value before performing any fits. Also, the
provided continuum is not included in redshifting.

>>> from astropy import units as u
>>> import numpy as np
>>> from matplotlib import pyplot as plt
>>> from spectacle.modeling import Spectral1D, OpticalDepth1D

>>> line1 = OpticalDepth1D("HI1216", v_doppler=500 * u.km/u.s, column_density=14)
>>> line2 = OpticalDepth1D("OVI1032", v_doppler=500 * u.km/u.s, column_density=15)

>>> spec_mod = Spectral1D([line1, line2], continuum=1, z=0, output='flux')
>>> spec_mod_with_z = Spectral1D([line1, line2], continuum=1, z=0.05, output='flux')

>>> x = np.linspace(1000, 1300, 1000) * u.Unit('Angstrom')

>>> f, ax = plt.subplots() # doctest: +SKIP
>>> ax.step(x, spec_mod(x), label="k$z=0$") # doctest: +SKIP
>>> ax.step(x, spec_mod_with_z(x), label="$z=0.05$") # doctest: +SKIP
>>> ax.set_xlabel("Wavelength [Angstrom]") # doctest: +SKIP
>>> f.legend(loc=0) # doctest: +SKIP

(Source code, png, hires.png, pdf)

[image: _images/modeling-3.png]

Line Finding

Spectacle has automated line-finding and characterization, including support
for blended features. The line finder uses a series of convolutions to indicate
where the slope of the spectrum changes, and uses these positions to
characterize the shape of the absorption or emission lines. Such
characterization includes finding the centroid, the width of the line, and the
whether or not lines are buried within the region of another.

[image: _images/line_finder_conv.png]
The line finder will return a generated spectral model from the found lines.

Auto-generate spectral model

The inputs to the LineFinder class
help dictate the behavior of the finding routine and what lines the finder will
consider when it believes it has found a feature.

The user may note that the line finder takes many of the same parameters accepted when
creating a Spectral1D model explicitly. This
is because these parameter are based onto the internal initialization of the
spectral model. The accepted line finder arguments are summarized in the table
below.

	Argument

	Description

	ions

	The subset of ion information to use when parsing potential profiles in the spectral data.

	continuum

	A FittableModel1D or single numeric value,representing the continuum for the spectral model. Default: 0

	defaults

	A dictionary describing the default arguments passed to internal OpticalDepth1D profiles.

	auto_fit

	Whether the line finder should attempt to automatically fit the resulting spectral model to the provided data.

	velocity_convention

	The velocity convention used in internal conversions between wavelength/frequency and velocity space.

	output

	Describes the type of data the spectrum model will produce. This can be one of flux, flux_decrement, or optical_depth. Default: `flux`

The ions argument allows the user to select a subset of the entire ion
table for the line finder to use when attempting to parse a particular profile.
If no ions are provided, the entire ion table will be searched to find the
ion whose \(\lambda_0\) most closely aligns with the detected centroid.

Note

Currently, when running the line finder in velocity space, only one ion
definition is supported at a time. This is because there is no way to
disambiguate the kinematics of multiple ions simultaneously in velocity
space.

As an example of the line finder functionality, let us define two lines within
a set of “fake” data.

line1 = OpticalDepth1D("HI1216", v_doppler=20 * u.km/u.s, column_density=16)
line2 = OpticalDepth1D("OVI1032", v_doppler=60 * u.km/u.s, column_density=14)

spec_mod = Spectral1D([line1, line2], continuum=1, output='optical_depth')

We will describe the lines in wavelength space to disambiguate their
emission profiles without considering kinematics.

x = np.linspace(1000, 1300, 1000) * u.Unit('Angstrom')
y = spec_mod(x)

Now we tell the line finder that there are two possible lines that
any feature it comes across could be. Doing so means that any
OpticalDepth1D profiles generated
will be given the correct attributes (e.g. f_value, gamma, etc.) when
the line finder attempts to lookup the ion in the ion table.

line_finder = LineFinder1D(ions=["HI1216", "OVI1032"], continuum=0, output='optical_depth')
finder_spec_mod = line_finder(x, y)

(Source code, png, hires.png, pdf)

[image: _images/line_finding-1.png]

Dealing with buried lines

The line finder will implicitly deal with buried lines by considering the
results of the series of convolutions and looking for characteristics that
might indicate that the peak of a line is buried within the region of another
profile.

The basic premise for determining the possibility of a buried line is to
compare the bounds of the second differencing convolution with that of the
third. A buried line is one which, in both cases, share the same found
centroid, but two different sets of region bounds.

(Source code, png, hires.png, pdf)

[image: _images/line_finding-2.png]

Defining default parameters

The line finder class can accept a defaults dictionary whose values will
be applied when new OpticalDepth1D profiles
are initialized. This is an easy way, for example, to manually set global
parameter bounds information that would otherwise be up to Spectacle to determine.

defaults_dict = {
 'v_doppler': {
 'bounds': (-10, 10),
 'fixed': False
 },
 'column_density' = {
 'bounds': (13, 18)
 }
}

line_finder = LineFinder1D(ions=["HI1216"], defaults=defaults_dict, continuum=0, output='optical_depth')

Searching for ion subsets

As mentioned above, the line finder attempts to retrieve information about a
potential profile by looking up the detected centroid in the ion table and
selecting the nearest match. (A more extensive overview of the line registry can be
found in the line registry docs). The user
can provide a subset of ions that will help to narrow the possible options
available to the line finder by passing in a list of ion names or
\(\lambda_0\) values. The default ion list is provided by Morton (2003).

Subsets behave by limiting the entire table of ions in the registry to some
specified list:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36

	>>> from spectacle.registries.lines import line_registry
>>> print(line_registry)

<LineRegistry length=329>
 name wave osc_str gamma
 Angstrom
 str9 float64 float64 float64
-------- --------- --------- ------------
 HI1216 1215.6701 0.4164 626500000.0
 HI1026 1025.7223 0.07912 189700000.0
 HI973 972.5368 0.029 81270000.0
 HI950 949.7431 0.01394 42040000.0
 HI938 937.8035 0.007799 24500000.0
 HI931 930.7483 0.004814 12360000.0
 HI926 926.2257 0.003183 8255000.0

NiII1317 1317.217 0.07786 420500000.0
CuII1368 1367.9509 0.179 623000000.0
CuII1359 1358.773 0.3803 720000000.0
ZnII2063 2062.664 0.256 386000000.0
ZnII2026 2026.136 0.489 407000000.0
GeII1602 1602.4863 0.1436 990600000.0
GaII1414 1414.402 1.8 1970000000.0

>>> subset = line_registry.subset(["HI1216", "NiII1468", "ZnII2026", "CoII1425"])
>>> print(subset)

<LineRegistry length=4>
 name wave osc_str gamma
 Angstrom
 str9 float64 float64 float64
-------- --------- ------- -----------
CoII1425 1424.7866 0.0109 35800000.0
 HI1216 1215.6701 0.4164 626500000.0
NiII1468 1467.756 0.0099 23000000.0
ZnII2026 2026.136 0.489 407000000.0

Passing in a list to the spectacle.fitting.LineFinder1D
will internally do this for the user

line_finder = LineFinder1D(ions=["HI1216", "NiII1468", "ZnII2026", "CoII1425"], continuum=0, output='optical_depth')

Warning

Only a single ion can be defined for the line finder if the user provides
the dispersion in velocity space. This is because the line finder cannot
disambiguate ions based on their kinematics.

Fitting

The core Spectral1D behaves exactly like
an Astropy model and can be used with any of the supported non-linear
Astropy fitters, as well as some not included in the Astropy library.

Spectacle provides a default Levenberg–Marquardt fitter in the
CurveFitter class.

>>> from spectacle.fitting import CurveFitter
>>> from spectacle.modeling import Spectral1D, OpticalDepth1D
>>> import astropy.units as u
>>> from matplotlib import pyplot as plt
>>> import numpy as np

Generate some fake data to fit to:

>>> line1 = OpticalDepth1D("HI1216", v_doppler=10 * u.km/u.s, column_density=14)
>>> spec_mod = Spectral1D(line1, continuum=1)
>>> x = np.linspace(-200, 200, 1000) * u.Unit('km/s')
>>> y = spec_mod(x) + (np.random.sample(1000) - 0.5) * 0.01

Instantiate the fitter and fit the model to the data:

>>> fitter = CurveFitter()
>>> fit_spec_mod = fitter(spec_mod, x, y)

Users can see the results of the fitted spectrum by printing the returned
model object

>>> print(fit_spec_mod) # doctest: +SKIP
Model: Spectral1D
Inputs: ('x',)
Outputs: ('y',)
Model set size: 1
Parameters:
 amplitude_0 z_1 lambda_0_2 f_value_2 gamma_2 v_doppler_2 column_density_2 delta_v_2 delta_lambda_2 z_4
 Angstrom km / s km / s Angstrom
 ----------- --- ---------- --------- ----------- ------------------ ------------------ ------------------ --------------------- ---
 1.0 0.0 1215.6701 0.4164 626500000.0 10.010182187404824 13.998761432240995 1.0052009119192702 -0.004063271434522016 0.0

Plot the results:

>>> f, ax = plt.subplots() # doctest: +SKIP
>>> ax.step(x, y, label="Data") # doctest: +SKIP
>>> ax.step(x, fit_spec_mod(x), label="Fit") # doctest: +SKIP
>>> f.legend() # doctest: +SKIP

(Source code, png, hires.png, pdf)

[image: _images/fitting-1.png]

On both the CurveFitter class and the
EmceeFitter class described below, parameter
uncertainties can be accessed through the uncertainties property of the
instantiated fitter after the fitting routine has run.

>>> fitter.uncertainties
 <QTable length=9>
 name value uncert unit
 str16 float64 float64 object
---------------- ---------------------- --------------------- --------
 z_0 0.0 0.0 None
 lambda_0_1 1215.6701 0.0 Angstrom
 f_value_1 0.4164 0.0 None
 gamma_1 626500000.0 0.0 None
 v_doppler_1 10.000013757295898 0.000957197044912263 km / s
column_density_1 14.000043173540684 3.589807779429899e-05 None
 delta_v_1 0.00011598087488537782 0.0006777042342563724 km / s
 delta_lambda_1 0.0 0.0 Angstrom
 amplitude_2 1.0 0.0 None

Using the MCMC fitter

Spectacle provides Bayesian fitting through the emcee package. This is
implemented in the EmceeFitter class.
The usage is similar above, but extra arguments can be provided to control the
number of walkers and the number of iterations.

from spectacle.fitting import EmceeFitter
...

fitter = EmceeFitter()
fit_spec_mod = fitter(spec_mod, x, y, , nwalkers=250, steps=100, nprocs=8)

The fitted parameter results are given as the value at the 50th quantile of the
distribution of walkers. The uncertainties on the values can be obtained through
the uncertainties property on the fitter instance, and provide the
16th quantile and 80th quantile for the lower and upper bounds on the value,
respectively.

Note

The MCMC fitter is a work in progress. Its results are dependent on how
long the fitter runs and how many walkers are provided.

Custom fitters with the line finder

The LineFinder1D class can also be
passed a fitter instance if the user wishes to use a specific type. If no
explicit fitting class is passed, the default CurveFitter
is used. Fitter-specific arguments can be passed into the fitter_args
keyword as well.

	1
2
3

	line_finder = LineFinder1D(ions=["HI1216", "OVI1032"], continuum=0,
 output='optical_depth', fitter=LevMarLSQFitter(),
 fitter_args={'maxiter': 1000})

More information on using the line finder can be found in the
line finding documentation.

Registries

Spectacle uses an internal database of ions in order to look up relevant
atomic line information (specifically, oscillator strength, gamma values,
and rest-frame wavelength). Spectacle provides an extensive default ion registry
taken from Morton 2003. However, it is possible for users to provide their own
registries.

Spectacle searches the line registry for an atomic transition with the closest
rest-frame wavelength to the line in question. Alternatively, users can provide
a specific set of lines with associated atomic information for Spectacle to use.

>>> from spectacle.registries import line_registry
>>> import astropy.units as u

Users can query the registry by passing in the restframe wavelength,
\(\lambda_0\), information for an ion

>>> from spectacle.registries import line_registry
>>> line_registry.with_lambda(1216 * u.AA)
<Row index=0>
 name wave osc_str gamma
 Angstrom
 str9 float64 float64 float64
------ --------- ------- -----------
HI1216 1215.6701 0.4164 626500000.0

Alternatively users can pass ion names in their queries. Spectacle will
attempt to find the closets alpha-numerical match using an internal
auto-correct:

>>> from spectacle.registries import line_registry
>>> line_registry.with_name("HI1215")
spectacle [INFO]: Found line with name 'HI1216' from given name 'HI1215'.
<Row index=0>
 name wave osc_str gamma
 Angstrom
 str9 float64 float64 float64
------ --------- ------- -----------
HI1216 1215.6701 0.4164 626500000.0

The default ion registry can be seen in its entirety
here [https://github.com/MISTY-pipeline/spectacle/blob/master/spectacle/data/atoms.ecsv].

Adding your own ion registry

Users can provide their own registries to replace the internal default ion
database used by Spectacle. The caveat is that the file must be an
ECSV [http://docs.astropy.org/en/stable/api/astropy.io.ascii.Ecsv.html] file
with four columns: name, wave, osc_str, gamma. The user’s file
can then be loaded by importing and the spectacle.registries.LineRegistry
and declaring the line_registry variable

>>> from spectacle.registries import LineRegistry
>>> line_registry = LineRegistry.read("/path/to/ion_file.ecsv")

Analysis

Spectacle comes with several statistics on the line profiles of models. These
can be accessed via the line_stats()
method on the spectrum object, and will display basic parameter information
such as the centroid, column density, doppler velocity, etc. of each line in
the spectrum.

Three additional statistics are added to this table as well: the
equivalent width (ew), the velocity delta covering 90% of the flux value
(dv90), and the full width half maximum (fwhm) of the feature.

>>> spec_mod.line_stats(x)

<QTable length=2>
 name wave col_dens v_dop delta_v delta_lambda ew dv90 fwhm
 Angstrom km / s km / s Angstrom Angstrom km / s Angstrom
bytes10 float64 float64 float64 float64 float64 float64 float64 float64
------- --------- -------- ------- ------- ------------ ------------------- ------------------ --------------------
 HI1216 1215.6701 13.0 7.0 0.0 0.0 0.05040091274475814 15.21521521521521 0.048709144294889484
 HI1216 1215.6701 13.0 12.0 30.0 0.0 0.08632151159859157 26.426426426426445 0.08119004034051613

The dv90 statistic is calculated following the “Velocity Interval Test”
formulation defined in Prochaska & Wolf (1997). In this case, the optical
depth of the profile is calculated in velocity space, and 5% of the total
is trimmed from each side, leaving the velocity width encompassing the central
90%.

Arbitrary line region statistics

It is also possible to perform statistical operations over arbitrary absorption
or emission line regions. Regions are defined as contiguous portions of the
profile beyond some threshold.

>>> from spectacle.modeling import Spectral1D, OpticalDepth1D
>>> import astropy.units as u
>>> from matplotlib import pyplot as plt
>>> import numpy as np
>>> from astropy.visualization import quantity_support
>>> quantity_support() # doctest: +IGNORE_OUTPUT

We’ll go ahead and compose a spectrum in velocity space of two HI line
profiles, with one offset by \(30 \tfrac{km}{s}\).

>>> line1 = OpticalDepth1D(lambda_0=1216 * u.AA, v_doppler=7 * u.km/u.s, column_density=13, delta_v=0 * u.km/u.s)
>>> line2 = OpticalDepth1D("HI1216", delta_v=30 * u.km/u.s, v_doppler=12 * u.km/u.s, column_density=13)

>>> spec_mod = Spectral1D([line1, line2], continuum=1, output='flux')

>>> x = np.linspace(-200, 200, 1000) * u.km / u.s
>>> y = spec_mod(x)

Now, print the statistics on this absorption region.

>>> region_stats = spec_mod.region_stats(x, rest_wavelength=1216 * u.AA, abs_tol=0.05)
>>> print(region_stats) # doctest: +IGNORE_OUTPUT
 region_start region_end rest_wavelength ew dv90 fwhm
 km / s km / s Angstrom Angstrom km / s Angstrom
------------------- ------------------ --------------- ------------------- ----------------- --------------------
-12.612612612612594 48.648648648648674 1216.0 0.12297380252108686 46.44644644644646 0.056842794376279926

Plot to show the found bounds of the contiguous absorption region.

>>> f, ax = plt.subplots() # doctest: +IGNORE_OUTPUT
>>> ax.axhline(0.95, linestyle='--', color='k', alpha=0.5) # doctest: +IGNORE_OUTPUT
>>> for row in region_stats:
... ax.axvline(row['region_start'].value, color='r', alpha=0.5) # doctest: +IGNORE_OUTPUT
... ax.axvline(row['region_end'].value, color='r', alpha=0.5) # doctest: +IGNORE_OUTPUT
>>> ax.step(x, y) # doctest: +IGNORE_OUTPUT

(Source code, png, hires.png, pdf)

[image: _images/analysis-1.png]

Re-sampling dispersion grids

Spectacle provides a means of doing flux-conversing re-sampling by generating
a re-sampling matrix based on an input spectral dispersion grid and a desired
output grid.

>>> from spectacle.modeling import Spectral1D, OpticalDepth1D
>>> from spectacle.analysis import Resample
>>> import astropy.units as u
>>> from matplotlib import pyplot as plt
>>> import numpy as np
>>> from astropy.visualization import quantity_support
>>> quantity_support() # doctest: +IGNORE_OUTPUT

Create a basic spectral model.

>>> line1 = OpticalDepth1D("HI1216")
>>> spec_mod = Spectral1D(line1)

Define our original, highly-sampled dispersion grid.

>>> vel = np.linspace(-50, 50, 1000) * u.km / u.s
>>> tau = spec_mod(vel)

Define a new, lower-sampled dispersion grid we want to re-sample to.

>>> new_vel = np.linspace(-50, 50, 100) * u.km / u.s

Generate the resampling matrix and apply it to the original data.

>>> resample = Resample(new_vel)
>>> new_tau = resample(vel, tau)

Plot the results.

>>> f, ax = plt.subplots() # doctest: +IGNORE_OUTPUT
>>> ax.step(vel, tau, label="Original") # doctest: +IGNORE_OUTPUT
>>> ax.step(new_vel, new_tau, label="Re-gridded") # doctest: +IGNORE_OUTPUT
>>> f.legend() # doctest: +IGNORE_OUTPUT

(Source code, png, hires.png, pdf)

[image: _images/analysis-2.png]

API

Modeling

spectacle.modeling Package

Classes

	OpticalDepth1D([name, line_list])

	Implements a Voigt profile astropy model.

	Spectral1D(*args, **kwargs)

	Base representation of a compound model containing a variable number of OpticalDepth1D line model features.

Fitting

spectacle.fitting Package

Classes

	CurveFitter()

	

	EmceeFitter()

	

	LineFinder1D([ions, continuum, defaults, z, …])

	

Analysis

spectacle.analysis Package

Functions

	delta_v_90(x, y)

	Calculate the dispersion that encompasses the central 90 percent of the apparant optical depth.

	equivalent_width(x, y[, continuum])

	

	full_width_half_max(x, y)

	Use a univariate spline to fit the line feature, taking its roots as representative of the full width at half maximum.

Classes

	Resample(new_dispersion)

	Resample model which can be used with compound model objects.

Registries

spectacle.registries Package

Classes

	LineRegistry(*args, **kwargs)

	

OpticalDepth1D

	
class spectacle.modeling.OpticalDepth1D(name=None, line_list=None, *args, **kwargs)

 Spectral1D

Spectral1D

	
class spectacle.modeling.Spectral1D(*args, **kwargs)

 CurveFitter

CurveFitter

	
class spectacle.fitting.CurveFitter

 EmceeFitter

EmceeFitter

	
class spectacle.fitting.EmceeFitter

 LineFinder1D

LineFinder1D

	
class spectacle.fitting.LineFinder1D(ions=None, continuum=None, defaults=None, z=None, auto_fit=True, velocity_convention='relativistic', output='flux', fitter=None, with_rejection=False, fitter_args=None, *args, **kwargs)

 delta_v_90

delta_v_90

	
spectacle.analysis.delta_v_90(x, y)

 equivalent_width

equivalent_width

	
spectacle.an