
spead2 Documentation
Release 1.2.2

SKA South Africa

May 19, 2017

Contents

1 Introduction to spead2 3
1.1 Preparation . 3
1.2 Installing spead2 for Python . 4
1.3 Installing spead2 for C++ . 4

2 Python API for spead2 5
2.1 SPEAD flavours . 5
2.2 Mapping of SPEAD protocol to Python . 6
2.3 Stream control items . 6
2.4 Items and item groups . 6
2.5 Thread pools . 8
2.6 Receiving . 9
2.7 Sending . 12
2.8 Logging . 15
2.9 Support for ibverbs . 15

3 C++ API for spead2 19
3.1 C++ API stability . 19
3.2 Asynchronous I/O . 20
3.3 Receiving . 20
3.4 Sending . 26
3.5 Logging . 31
3.6 Support for ibverbs . 31
3.7 Support for netmap . 33

4 Performance tuning 35
4.1 System tuning . 35
4.2 Protocol design . 36
4.3 Application tuning . 37

5 Other tools 41
5.1 mcdump . 41

6 Changelog 43

7 License 51

i

8 Indices and tables 53

Python Module Index 55

ii

spead2 Documentation, Release 1.2.2

Contents:

Contents 1

spead2 Documentation, Release 1.2.2

2 Contents

CHAPTER 1

Introduction to spead2

spead2 is an implementation of the SPEAD protocol, with both Python and C++ bindings. The 2 in the name indi-
cates that this is a new implementation of the protocol; the protocol remains essentially the same. Compared to the
PySPEAD implementation, spead2:

• is at least an order of magnitude faster when dealing with large heaps;

• correctly implements several aspects of the protocol that were implemented incorrectly in PySPEAD (bug-
compatibility is also available);

• correctly implements many corner cases on which PySPEAD would simply fail;

• cleanly supports several SPEAD flavours (e.g. 64-40 and 64-48) in one module, with the receiver adapting to
the flavour used by the sender;

• supports Python 3;

• supports asynchronous operation, using trollius.

Preparation

spead2 requires a modern C++ compiler supporting C++11 (currently only GCC 4.8 and Clang 3.4 have been tried) as
well as Boost (including compiled libraries). The Python bindings have additional dependencies — see below. At the
moment only GNU/Linux has been tested but other POSIX-like systems should work too (OS X is tested occasionally).

There is optional support for netmap and ibverbs for higher performance. If the libraries (including development
headers) libraries are installed, they will automatically be detected and used.

If you are installing spead2 from a git checkout, it is first necessary to run ./bootstrap.sh to prepare the configure
script and related files. When building from a packaged download this is not required.

High-performance usage requires larger buffer sizes than Linux allows by default. The following commands will
increase the permitted buffer sizes on Linux:

sysctl net.core.wmem_max=16777216
sysctl net.core.rmem_max=16777216

3

https://casper.berkeley.edu/wiki/SPEAD
https://github.com/ska-sa/PySPEAD/
http://trollius.readthedocs.io/
https://github.com/luigirizzo/netmap
https://www.openfabrics.org/downloads/libibverbs/README.html

spead2 Documentation, Release 1.2.2

Note that these commands are not persistent across reboots, and the settings need to be stored in /etc/sysctl.
conf or /etc/sysctl.d.

Installing spead2 for Python

The only Python dependencies are numpy and six, although support for asynchronous I/O also requires trollius. Run-
ning the test suite additionally requires nose, decorator and netifaces, and some tests depend on PySPEAD (they will
be skipped if it is not installed). It is also necessary to have the development headers for Python, and Boost.Python.

To install (which will automatically pull in the mandatory dependencies), run:

./setup.py install

Other standard methods for installing Python packages should work too.

Installing spead2 for C++

The C++ API uses the standard autoconf installation flow i.e.:

./configure [options]
make
make install

For generic help with configuration, see INSTALL in the top level of the source distribution. Optional features are
autodetected by default, but can be disabled by passing options to configure (run ./configure -h to see a list
of options).

One option that may squeeze out a very small amount of extra performance is --enable-lto to enable link-time
optimization. Up to version 1.2.0 this was enabled by default, but it has been disabled because it often needs other
compiler or OS-specific configuration to make it work. For GCC, typical usage is

./configure --enable-lto AR=gcc-ar RANLIB=gcc-ranlib

The installation will install some benchmark tools, a static library, and the header files. At the moment there is no
intention to create a shared library, because the ABI is not stable.

4 Chapter 1. Introduction to spead2

http://www.numpy.org
https://pythonhosted.org/six/
http://trollius.readthedocs.io/
https://nose.readthedocs.io/en/latest/
http://pythonhosted.org/decorator/
https://pypi.python.org/pypi/netifaces
https://github.com/ska-sa/PySPEAD/

CHAPTER 2

Python API for spead2

This documentation does not cover all the classes and methods in the module. Instead, it documents those that are
expected to be commonly used by the user, and omits those designed for the classes to communicate with each other
or with the C++ backend.

SPEAD flavours

The SPEAD protocol is versioned and within a version allows for multiple flavours, with different numbers of bits for
item pointer fields. The spead2 library supports all SPEAD-64-XX flavours of version 4, where XX is a multiple of 8.

Furthermore, PySPEAD 0.5.2 has a number of bugs in its implementation of the protocol, which effectively defines a
new protocol. This is treated as part of the flavour in spead2. Some receive functions have a bug_compat parameter
which specifies which of these bugs to maintain compatibility with:

• spead2.BUG_COMPAT_DESCRIPTOR_WIDTHS: the descriptors are encoded with shape and format fields
sized as for SPEAD-64-40, regardless of the actual flavour.

• spead2.BUG_COMPAT_SHAPE_BIT_1: the first byte of a shape is set to 2 to indicate a variably-sized
dimension, instead of 1.

• spead2.BUG_COMPAT_SWAP_ENDIAN: numpy arrays are encoded/decoded in the opposite endianness to
that specified in the descriptor.

• spead2.BUG_COMPAT_NO_SCALAR_NUMPY: scalar items specified with a descriptor are transmitted with
a descriptor, even if it is possible to convert it to a dtype.

• spead2.BUG_COMPAT_PYSPEAD_0_5_2: all of the above (and any other bugs later found in this version
of PySPEAD).

For sending, the full flavour is specified by a spead2.Flavour object. It allows all the fields to be specified to
allow for future expansion, but ValueError is raised unless version is 4 and item_pointer_bits is 64. There is a
default constructor that returns SPEAD-64-40 with bug compatibility disabled.

class Flavour(version, item_pointer_bits, heap_address_bits, bug_compat=0)

The constructor arguments are available as read-only attributes.

5

spead2 Documentation, Release 1.2.2

Mapping of SPEAD protocol to Python

• Any descriptor with a numpy header is handled by numpy. The value is converted to native endian, but is
otherwise left untouched.

• Strings are expected to use ASCII encoding only. At present this is variably enforced, and enforcement may
differ between Python 2 and 3. Future versions may apply stricter enforcement. This applies to names, descrip-
tions, and to values passed with the c format code.

• The c format code may only be used with length 8, and f may only be used with lengths 32 or 64.

• The 0 format code is not supported.

• All values sent or received are converted to numpy arrays. If the descriptor uses a numpy header, this is the type
of the array. Otherwise, a dtype is constructed by converting the format code. The following are converted to
numpy primitive types:

– u8, u16, u32, u64

– i8, i16, i32, i64

– f32, f64

– b8 (converted to dtype bool)

– c8 (converted to dtype S1)

Other fields will be kept as Python objects. If there are multiple fields, their names will be generated by numpy
(f0, f1, etc). If all the fields convert to native types, a fast path will be used for sending and receiving (as fast as
using an explicit numpy header).

• At most one element of the shape may indicate a variable-length field, whose length will be computed from the
size of the item, or zero if any other element of the shape is zero.

When transmitting data, one case is handled specially: if the expected shape is one-dimensional, but the provided value
is an instance of bytes, str or unicode, it will be broken up into its individual characters. This is a convenience
for sending variable-length strings.

When receiving data, some transformations are made:

• A zero-dimensional array is returned as a scalar, rather than a zero-dimensional array object.

• If the format is given and is c8 and the array is one-dimensional, it is joined together into a Python str.

Stream control items

A heap with the CTRL_STREAM_STOP flag will shut down the stream, but the heap is not passed on to the application.
Senders should thus avoid putting any other data in such heaps. These heaps are not automatically sent; use spead2.
send.HeapGenerator.get_end() to produce such a heap.

In contrast, stream start flags (CTRL_STREAM_START) have no effect on internal processing. Senders can generate
them using spead2.send.HeapGenerator.get_start() and receivers can detect them using spead2.
recv.Heap.is_start_of_stream().

Items and item groups

Each data item that can be communicated over SPEAD is described by a spead2.Descriptor. Items combine a
descriptor with a current value, and a version number that is used to detect which items have been changed (either in

6 Chapter 2. Python API for spead2

spead2 Documentation, Release 1.2.2

the library when transmitting, or by the user when receiving).

class spead2.Descriptor(id, name, description, shape, dtype=None, order=’C’, format=None)
Metadata for a SPEAD item.

There are a number of restrictions in the way the parameters combine, which will cause ValueError to be raised
if violated:

•At most one element of shape can be None.

•Exactly one of dtype and format must be non-None.

•If dtype is specified, shape cannot have any unknown dimensions.

•If format is specified, order must be ‘C’

Parameters

• id (int) – SPEAD item ID

• name (str) – Short item name, suitable for use as a key

• description (str) – Long item description

• shape (sequence) – Dimensions, with None indicating a variable-size dimension

• dtype (numpy data type, optional) – Data type, or None if format will be used
instead

• order ({'C', 'F'}) – Indicates C-order or Fortran-order storage

• format (list of pairs, optional) – Structure fields for generic (non-numpy)
type. Each element of the list is a tuple of field code and bit length.

itemsize_bits
Number of bits per element

is_variable_size()
Determine whether any element of the size is dynamic

dynamic_shape(max_elements)
Determine the dynamic shape, given incoming data that is big enough to hold max_elements elements.

compatible_shape(shape)
Determine whether shape is compatible with the (possibly variable-sized) shape for this descriptor

class spead2.Item(*args, **kwargs, value=None)
A SPEAD item with a value and a version number.

Parameters value (object, optional) – Initial value

value
Current value. Assigning to this will increment the version number. Assigning None will raise ValueError
because there is no way to encode this using SPEAD.

Warning: If you modify a mutable value in-place, the change will not be detected, and the new value
will not be transmitted. In this case, either manually increment the version number, or reassign the
value.

version
Version number

2.4. Items and item groups 7

spead2 Documentation, Release 1.2.2

class spead2.ItemGroup
Items are collected into sets called item groups, which can be indexed by either item ID or item name.

There are some subtleties with respect to re-issued item descriptors. There are two cases:

1.The item descriptor is identical to a previous seen one. In this case, no action is taken.

2.Otherwise, any existing items with the same name or ID (which could be two different items) are dropped,
the new item is added, and its value becomes None. The version is set to be higher than version on an
item that was removed, so that consumers who only check the version will detect the change.

add_item(*args, **kwargs)
Add a new item to the group. The parameters are used to construct an Item. If id is None, it will be
automatically populated with an ID that is not already in use.

See the class documentation for the behaviour when the name or ID collides with an existing one. In
addition, if the item descriptor is identical to an existing one and a value, this value is assigned to the
existing item.

keys()
Item names

values()
Item values

items()
Dictionary style (name, value) pairs

ids()
Item IDs

update(heap)
Update the item descriptors and items from an incoming heap.

Parameters heap (spead2.recv.Heap) – Incoming heap

Returns Items that have been updated from this heap, indexed by name

Return type dict

Thread pools

The actual sending and receiving of packets is done by separate C threads. Each stream is associated with a thread
pool, which is a pool of threads able to process its packets. See the performance guidelines for advice on how many
threads to use.

There is one important consideration for deciding whether streams share a thread pool: if a received stream is not
being consumed, it may block one of the threads from the thread pool1. Thus, if several streams share a thread pool, it
is important to be responsive to all of them. Deciding that one stream is temporarily uninteresting and can be discarded
while listening only to another one can thus lead to a deadlock if the two streams share a thread pool with only one
thread.

class spead2.ThreadPool(threads=1, affinity=[])
Construct a thread pool and start the threads. A list of integers can be provided for affinity to have the threads
bound to specific CPU cores (this is only implemented for glibc). If there are fewer values than threads, the list
is reused cyclically (although in this case you’re probably better off having fewer threads in this case).

1 This is a limitation of the current design that will hopefully be overcome in future versions.

8 Chapter 2. Python API for spead2

spead2 Documentation, Release 1.2.2

stop()
Shut down the worker threads. Calling this while there are still open streams is not advised. In most cases,
garbage collection is sufficient.

static set_affinity(core)
Binds the caller to CPU core core.

Receiving

The classes associated with receiving are in the spead2.recv package. A stream represents a logical stream, in
that packets with the same heap ID are assumed to belong to the same heap. A stream can have multiple physical
transports.

Streams yield heaps, which are the basic units of data transfer and contain both item descriptors and item values. While
it is possible to directly inspect heaps, this is not recommended or supported. Instead, heaps are normally passed to
spead2.ItemGroup.update().

class spead2.recv.Heap

cnt
Heap identifier (read-only)

flavour
SPEAD flavour used to encode the heap (see SPEAD flavours)

is_start_of_stream()
Returns true if the packet contains a stream start control item.

Note: Malformed packets (such as an unsupported SPEAD version, or inconsistent heap lengths) are dropped, with
a log message. However, errors in interpreting a fully assembled heap (such as invalid/unsupported formats, data of
the wrong size and so on) are reported as ValueError exceptions. Robust code should thus be prepared to catch
exceptions from heap processing.

Blocking receive

To do blocking receive, create a spead2.recv.Stream, and add transports to it with add_buffer_reader()
and add_udp_reader(). Then either iterate over it, or repeatedly call get().

class spead2.recv.Stream(thread_pool, bug_compat=0, max_heaps=4, ring_heaps=4)

Parameters

• thread_pool (spead2.ThreadPool) – Thread pool handling the I/O

• bug_compat (int) – Bug compatibility flags (see SPEAD flavours)

• max_heaps (int) – The number of partial heaps that can be live at one time. This af-
fects how intermingled heaps can be (due to out-of-order packet delivery) before heaps get
dropped.

• ring_heaps (int) – The capacity of the ring buffer between the network threads and the
consumer. Increasing this may reduce lock contention at the cost of more memory usage.

set_memory_allocator(allocator)
Set or change the memory allocator for a stream. See Memory allocators for details.

2.6. Receiving 9

spead2 Documentation, Release 1.2.2

Parameters pool (spead2.MemoryAllocator) – New memory allocator

set_memcpy(id)
Set the method used to copy data from the network to the heap. The default is MEMCPY_STD. This can be
changed to MEMCPY_NONTEMPORAL, which writes to the destination with a non-temporal cache hint (if
SSE2 is enabled at compile time). This can improve performance with large heaps if the data is not going
to be used immediately, by reducing cache pollution. Be careful when benchmarking: receiving heaps
will generally appear faster, but it can slow down subsequent processing of the heap because it will not be
cached.

Parameters id ({MEMCPY_STD, MEMCPY_NONTEMPORAL}) – Identifier for the copy func-
tion

add_buffer_reader(buffer)
Feed data from an object implementing the buffer protocol.

add_udp_reader(port, max_size=DEFAULT_UDP_MAX_SIZE, buffer_size=DEFAULT_UDP_BUFFER_SIZE,
bind_hostname=’‘, socket=None)

Feed data from a UDP port.

Parameters

• port (int) – UDP port number

• max_size (int) – Largest packet size that will be accepted.

• buffer_size (int) – Kernel socket buffer size. If this is 0, the OS default is used. If
a buffer this large cannot be allocated, a warning will be logged, but there will not be an
error.

• bind_hostname (str) – If specified, the socket will be bound to the first IP address
found by resolving the given hostname. If this is a multicast group, then it will also
subscribe to this multicast group.

• socket (socket.socket) – If specified, this socket is used rather than a new one.
The socket must be open but unbound. The caller must not use this socket any further,
although it is not necessary to keep it alive. This is mainly useful for fine-tuning socket
options such as multicast subscriptions.

add_udp_reader(multicast_group, port, max_size=DEFAULT_UDP_MAX_SIZE,
buffer_size=DEFAULT_UDP_BUFFER_SIZE, interface_address)

Feed data from a UDP port with multicast (IPv4 only).

Parameters

• multicast_group (str) – Hostname/IP address of the multicast group to subscribe
to

• port (int) – UDP port number

• max_size (int) – Largest packet size that will be accepted.

• buffer_size (int) – Kernel socket buffer size. If this is 0, the OS default is used. If
a buffer this large cannot be allocated, a warning will be logged, but there will not be an
error.

• interface_address (str) – Hostname/IP address of the interface which will be
subscribed, or the empty string to let the OS decide.

add_udp_reader(multicast_group, port, max_size=DEFAULT_UDP_MAX_SIZE,
buffer_size=DEFAULT_UDP_BUFFER_SIZE, interface_index)

Feed data from a UDP port with multicast (IPv6 only).

Parameters

10 Chapter 2. Python API for spead2

spead2 Documentation, Release 1.2.2

• multicast_group (str) – Hostname/IP address of the multicast group to subscribe
to

• port (int) – UDP port number

• max_size (int) – Largest packet size that will be accepted.

• buffer_size (int) – Kernel socket buffer size. If this is 0, the OS default is used. If
a buffer this large cannot be allocated, a warning will be logged, but there will not be an
error.

• interface_index (str) – Index of the interface which will be subscribed, or 0 to let
the OS decide.

get()
Returns the next heap, blocking if necessary. If the stream has been stopped, either by calling stop()
or by receiving a stream control packet, it raises spead2.Stopped. However, heap that were already
queued when the stream was stopped are returned first.

A stream can also be iterated over to yield all heaps.

get_nowait()
Like get(), but if there is no heap available it raises spead2.Empty.

stop()
Shut down the stream and close all associated sockets. It is not possible to restart a stream once it has been
stopped; instead, create a new stream.

Asynchronous receive

Asynchronous I/O is supported through trollius, which is a Python 2 backport of the Python 3 asyncio module. It
can be combined with other asynchronous I/O frameworks like twisted.

class spead2.recv.trollius.Stream(*args, **kwargs, loop=None)
See spead2.recv.Stream (the base class) for other constructor arguments.

Parameters loop – Default Trollius event loop for async operations. If not specified, uses the
default Trollius event loop. Do not call get_nowait from the base class.

get(loop=None)
Coroutine that yields the next heap, or raises spead2.Stopped once the stream has been stopped and
there is no more data. It is safe to have multiple in-flight calls, which will be satisfied in the order they
were made.

Parameters loop – Trollius event loop to use, overriding constructor.

Memory allocators

To allow for performance tuning, it is possible to use an alternative memory allocator for heap payloads. A few
allocator classes are provided; new classes must currently be written in C++. The default (which is also the base class
for all allocators) is spead2.MemoryAllocator, which has no constructor arguments or methods. An alternative
is spead2.MmapAllocator.

class spead2.MmapAllocator(flags=0)
An allocator using mmap(2). This may be slightly faster for large allocations, and allows setting custom mmap
flags. This is mainly intended for use with the C++ API, but is exposed to Python as well.

Parameters flags (int) – Extra flags to pass to mmap(2). Finding the numeric values for OS-
specific flags is left as a problem for the user.

2.6. Receiving 11

http://trollius.readthedocs.io/
https://twistedmatrix.com/trac/

spead2 Documentation, Release 1.2.2

The most important custom allocator is spead2.MemoryPool. It allocates from a pool, rather than directly from
the system. This can lead to significant performance improvements when the allocations are large enough that the C
library allocator does not recycle the memory itself, but instead requests memory from the kernel.

A memory pool has a range of sizes that it will handle from its pool, by allocating the upper bound size. Thus, setting
too wide a range will waste memory, while setting too narrow a range will prevent the memory pool from being used
at all. A memory pool is best suited for cases where the heaps are all roughly the same size.

A memory pool can optionally use a background task (scheduled onto a thread pool) to replenish the pool when it gets
low. This is useful when heaps are being captured and stored indefinitely rather than processed and released.

class spead2.MemoryPool(thread_pool, lower, upper, max_free, initial, low_water, allocator=None)
Constructor. One can omit thread_pool and low_water to skip the background refilling.

Parameters

• thread_pool (ThreadPool) – thread pool used for refilling the memory pool

• lower (int) – Minimum allocation size to handle with the pool

• upper (int) – Size of allocations to make

• max_free (int) – Maximum number of allocations held in the pool

• initial (int) – Number of allocations to put in the free pool initially.

• low_water (int) – When fewer than this many buffers remain, the background task will
be started and allocate new memory until initial buffers are available.

• allocator (MemoryAllocator) – Underlying memory allocator

Sending

Unlike for receiving, each stream object can only use a single transport. There is currently no support for collective
operations where multiple producers cooperate to construct a heap between them. It is still possible to do multi-
producer, single-consumer operation if the heap IDs are kept separate.

Because each stream has only one transport, there is a separate class for each, rather than a generic Stream class.
Because there is common configuration between the stream classes, configuration is encapsulated in a spead2.
send.StreamConfig.

class spead2.send.StreamConfig(max_packet_size=1472, rate=0.0, burst_size=65536,
max_heaps=4)

Parameters

• max_packet_size (int) – Heaps will be split into packets of at most this size.

• rate (double) – Maximum transmission rate, in bytes per second, or 0 to send as fast as
possible.

• burst_size (int) – Bursts of up to this size will be sent as fast as possible. Setting this
too large (larger than available buffer sizes) risks losing packets, while setting it too small
may reduce throughput by causing more sleeps than necessary.

• max_heaps (int) – For asynchronous transmits, the maximum number of heaps that can
be in-flight.

The constructor arguments are also instance attributes.

12 Chapter 2. Python API for spead2

spead2 Documentation, Release 1.2.2

Streams send pre-baked heaps, which can be constructed by hand, but are more normally created from an ItemGroup
by a spead2.send.HeapGenerator. To simplify cases where one item group is paired with one heap generator,
a convenience class spead2.send.ItemGroup is provided that inherits from both.

class spead2.send.HeapGenerator(item_group, descriptor_frequency=None, flavour=<Mock
name=’mock.Flavour()’ id=‘140464881787960’>)

Tracks which items and item values have previously been sent and generates delta heaps.

Parameters

• item_group (spead2.ItemGroup) – Item group to monitor.

• descriptor_frequency (int, optional) – If specified, descriptors will be re-
sent once every descriptor_frequency heaps generated by this method.

• flavour (spead2.Flavour) – The SPEAD protocol flavour used for heaps generated
by get_heap() and get_end().

add_to_heap(heap, descriptors=’stale’, data=’stale’)
Update a heap to contains all the new items and item descriptors since the last call.

Parameters

• heap (Heap) – The heap to update.

• descriptors ({'stale', 'all', 'none'}) – Which descriptors to send. The
default (‘stale’) sends only descriptors that have not been sent, or have not been sent re-
cently enough according to the descriptor_frequency passed to the constructor. The other
options are to send all the descriptors or none of them. Sending all descriptors is useful if
a new receiver is added which will be out of date.

• data ({'stale', 'all', 'none'}) – Which data items to send.

• item_group (ItemGroup, optional) – If specified, uses the items from this item group
instead of the one passed to the constructor (which could be None).

Raises ValueError – if descriptors or data is not one of the legal values

get_heap(*args, **kwargs)
Return a new heap which contains all the new items and item descriptors since the last call. This is a
convenience wrapper around add_to_heap().

get_start()
Return a heap that contains only a start-of-stream marker.

get_end()
Return a heap that contains only an end-of-stream marker.

Blocking send

class spead2.send.UdpStream(thread_pool, hostname, port, config,
buffer_size=DEFAULT_BUFFER_SIZE, socket=None)

Stream using UDP. Note that since UDP is an unreliable protocol, there is no guarantee that packets arrive.

Parameters

• thread_pool (spead2.ThreadPool) – Thread pool handling the I/O

• hostname (str) – Peer hostname

• port (int) – Peer port

• config (spead2.send.StreamConfig) – Stream configuration

2.7. Sending 13

spead2 Documentation, Release 1.2.2

• buffer_size (int) – Socket buffer size. A warning is logged if this size cannot be set
due to OS limits.

• socket (socket.socket) – If specified, this socket is used rather than a new one. The
socket must be open but unbound. The caller must not use this socket any further, although
it is not necessary to keep it alive. This is mainly useful for fine-tuning socket options.

send_heap(heap, cnt=-1)
Sends a spead2.send.Heap to the peer, and wait for completion. There is currently no indication of
whether it successfully arrived.

If not specified, a heap cnt is chosen automatically (the choice can be modified by calling
set_cnt_sequence()). If a non-negative value is specified for cnt, it is used instead. It is the user’s
responsibility to avoid collisions.

set_cnt_sequence(next, step)
Modify the linear sequence used to generate heap cnts. The next heap will have cnt next, and each following
cnt will be incremented by step. When using this, it is the user’s responsibility to ensure that the generated
values remain unique. The initial state is next = 1, cnt = 1.

This is useful when multiple senders will send heaps to the same receiver, and need to keep their heap cnts
separate.

class spead2.send.UdpStream(thread_pool, multicast_group, port, config,
buffer_size=DEFAULT_BUFFER_SIZE, ttl)

Stream using UDP, with multicast TTL. Note that the regular constructor will also work with UDP, but does not
give any control over the TTL.

Parameters

• thread_pool (spead2.ThreadPool) – Thread pool handling the I/O

• multicast_group (str) – Multicast group hostname/IP address

• port (int) – Destination port

• config (spead2.send.StreamConfig) – Stream configuration

• buffer_size (int) – Socket buffer size. A warning is logged if this size cannot be set
due to OS limits.

• ttl (int) – Multicast TTL

class spead2.send.UdpStream(thread_pool, multicast_group, port, config, buffer_size=524288, ttl, in-
terface_address)

Stream using UDP, with multicast TTL and interface address (IPv4 only).

Parameters

• thread_pool (spead2.ThreadPool) – Thread pool handling the I/O

• multicast_group (str) – Multicast group hostname/IP address

• port (int) – Destination port

• config (spead2.send.StreamConfig) – Stream configuration

• buffer_size (int) – Socket buffer size. A warning is logged if this size cannot be set
due to OS limits.

• ttl (int) – Multicast TTL

• interface_address (str) – Hostname/IP address of the interface on which to send
the data

14 Chapter 2. Python API for spead2

spead2 Documentation, Release 1.2.2

class spead2.send.UdpStream(thread_pool, multicast_group, port, config, buffer_size=524288, ttl, in-
terface_index)

Stream using UDP, with multicast TTL and interface index (IPv6 only).

Parameters

• thread_pool (spead2.ThreadPool) – Thread pool handling the I/O

• multicast_group (str) – Multicast group hostname/IP address

• port (int) – Destination port

• config (spead2.send.StreamConfig) – Stream configuration

• buffer_size (int) – Socket buffer size. A warning is logged if this size cannot be set
due to OS limits.

• ttl (int) – Multicast TTL

• interface_index (str) – Index of the interface on which to send the data

class spead2.send.BytesStream(thread_pool, config)
Stream that collects packets in memory and makes the concatenated stream available.

Parameters

• thread_pool (spead2.ThreadPool) – Thread pool handling the I/O

• config (spead2.send.StreamConfig) – Stream configuration

send_heap(heap)
Appends a spead2.send.Heap to the memory buffer.

getvalue()
Return a copy of the memory buffer.

Return type bytes

Asynchronous send

As for asynchronous receives, asynchronous sends are managed by trollius. A stream can buffer up multiple heaps for
asynchronous send, up to the limit specified by max_heaps in the StreamConfig. If this limit is exceeded, heaps
will be dropped, and the returned future has an IOError exception set. An IOError could also indicate a low-level
error in sending the heap (for example, if the packet size exceeds the MTU).

Logging

Logging is done with the standard Python logging module, and logging can be configured with the usual utilities.
However, in the default build the debug logging is completely disabled for performance reasons1. To enable it, add
-DSPEAD2_MAX_LOG_LEVEL=spead2::log_level::debug to the compiler options in setup.py.

Support for ibverbs

Receiver performance can be significantly improved by using the Infiniband Verbs API instead of the BSD sockets
API. This is currently only tested on Linux with Mellanox ConnectX®-3 NICs. It depends on device managed flow
steering (DMFS), which may require using the Mellanox OFED version of libibverbs.

1 Logging is done from separate C threads, which have to wait for Python’s Global Interpreter Lock (GIL) in order to do logging.

2.8. Logging 15

http://trollius.readthedocs.io/

spead2 Documentation, Release 1.2.2

There are a number of limitations in the current implementation:

• Only IPv4 is supported

• VLAN tagging, IP optional headers, and IP fragmentation are not supported

• Only multicast is supported

Within these limitations, it is quite easy to take advantage of this faster code path. The main difficulty is that one must
specify the IP address of the interface that will send or receive the packets. The netifaces module can help find the IP
address for an interface by name.

System configuration

It is likely that some system configuration will be needed to allow this mode to work correctly. For ConnectX®-3, add
the following to /etc/modprobe.d/mlnx.conf:

options ib_uverbs disable_raw_qp_enforcement=1
options mlx4_core fast_drop=1
options mlx4_core log_num_mgm_entry_size=-1

For more information, see the libvma documentation.

Receiving

The ibverbs API can be used programmatically by using an extra method of spead2.recv.Stream.

spead2.recv.Stream.add_udp_ibv_reader(endpoints, interface_address,
max_size=DEFAULT_UDP_IBV_MAX_SIZE,
buffer_size=DEFAULT_UDP_IBV_BUFFER_SIZE,
comp_vector=0, max_poll=DEFAULT_UDP_IBV_MAX_POLL)

Feed data from multicast IPv4 traffic. For backwards compatibility, one can also pass a single address and port
as two separate arguments in place of endpoints.

Parameters

• endpoints (list) – List of 2-tuples, each containing a hostname/IP address the multicast
group and the UDP port number.

• interface_address (str) – Hostname/IP address of the interface which will be sub-
scribed

• max_size (int) – Maximum packet size that will be accepted

• buffer_size (int) – Requested memory allocation for work requests. Note that this is
used to determine the number of packets to buffer; if the packets are smaller than max_size,
then fewer bytes will be buffered.

• comp_vector (int) – Completion channel vector (interrupt) for asynchronous operation,
or a negative value to poll continuously. Polling should not be used if there are other users
of the thread pool. If a non-negative value is provided, it is taken modulo the number of
available completion vectors. This allows a number of readers to be assigned sequential
completion vectors and have them load-balanced, without concern for the number available.

• max_poll (int) – Maximum number of times to poll in a row, without waiting for
an interrupt (if comp_vector is non-negative) or letting other code run on the thread (if
comp_vector is negative).

16 Chapter 2. Python API for spead2

https://pypi.python.org/pypi/netifaces
https://github.com/Mellanox/libvma

spead2 Documentation, Release 1.2.2

Environment variables

An existing application can be forced to use ibverbs for all multicast IPv4 readers, by setting the environment
variable SPEAD2_IBV_INTERFACE to the IP address of the interface to receive the packets. Note that calls to
spead2.recv.Stream.add_udp_reader() that pass an explicit interface will use that interface, overriding
SPEAD2_IBV_INTERFACE; in this case, SPEAD2_IBV_INTERFACE serves only to enable the override.

It is also possible to specify SPEAD2_IBV_COMP_VECTOR to override the completion channel vector from the
default.

Note that this environment variable currently has no effect on senders.

Sending

Sending is done by using the class spead2.send.UdpIbvStream instead of spead2.send.UdpStream. It
has a different constructor, but the same methods. There is also a spead2.send.trollius.UdpIbvStream
class, analogous to spead2.send.trollius.UdpStream.

class spead2.send.UdpIbvStream(thread_pool, multicast_group, port, config, inter-
face_address, buffer_size, ttl=1, comp_vector=0,
max_poll=DEFAULT_MAX_POLL)

Create a multicast IPv4 UDP stream using the ibverbs API

Parameters

• thread_pool (spead2.ThreadPool) – Thread pool handling the I/O

• multicast_group (str) – Multicast group hostname/IP address

• port (int) – Destination port

• config (spead2.send.StreamConfig) – Stream configuration

• interface_address (str) – Hostname/IP address of the interface which will be sub-
scribed

• buffer_size (int) – Socket buffer size. A warning is logged if this size cannot be set
due to OS limits.

• ttl (int) – Multicast TTL

• buffer_size – Requested memory allocation for work requests.

• comp_vector (int) – Completion channel vector (interrupt) for asynchronous operation,
or a negative value to poll continuously. Polling should not be used if there are other users
of the thread pool. If a non-negative value is provided, it is taken modulo the number of
available completion vectors. This allows a number of streams to be assigned sequential
completion vectors and have them load-balanced, without concern for the number available.

• max_poll (int) – Maximum number of times to poll in a row, without waiting for
an interrupt (if comp_vector is non-negative) or letting other code run on the thread (if
comp_vector is negative).

2.9. Support for ibverbs 17

spead2 Documentation, Release 1.2.2

18 Chapter 2. Python API for spead2

CHAPTER 3

C++ API for spead2

The C++ API is at a lower level than the Python API. In particular, item values are treated as uninterpreted binary
blobs. The protocol is directly tied to numpy’s type system, so it is not practical to implement this in C++. The C++
API is thus best suited to situations which require the maximum possible performance and where the data formats can
be fixed in advance.

There is also no equivalent to the spead2.ItemGroup and spead2.send.HeapGenerator classes. The user
is responsible for maintaining previously seen descriptors (if they are desired) and tracking which descriptors and
items need to be inserted into heaps.

The C++ documentation is far from complete. As a first step, consult the Python documentation; in many cases it is
just wrapping the C++ interface with Pythonic names, whereas the C++ interface uses lowercase with underscores for
all names. If that doesn’t help, consult the Doxygen-style comments in the source code.

The compiler and link flags necessary for compiling and linking against spead2 can be found with pkg-config i.e.,

• pkg-config --cflags spead2 to get the compiler flags

• pkg-config --libs --static spead2 to get the linker flags

Note that when installed with the default setup on a GNU/Linux system, the spead2.pc file is installed out-
side pkg-config‘s default search path, and you need to set PKG_CONFIG_PATH to /usr/local/lib/
pkgconfig first.

C++ API stability

The C++ API is less stable between versions than the Python API. The most-derived classes defining specific transports
are expected to be stable. Applications that subclass the base classes to define new transports may be broken by future
API changes, as there is still room for improvement in the API between these classes and the core.

19

spead2 Documentation, Release 1.2.2

Asynchronous I/O

The C++ API uses Boost.Asio for asynchronous operations. There is a spead2::thread_pool class (essentially
the same as the Python spead2.ThreadPool class). However, it is not required to use this, and you may for
example run everything in one thread to avoid multi-threading issues.

class spead2::thread_pool
Combination of a boost::asio::io_service with a set of threads to handle the callbacks.

The threads are created by the constructor and shut down and joined in the destructor.

Subclassed by spead2::thread_pool_wrapper

Public Functions

thread_pool(int num_threads, const std::vector<int> &affinity)
Construct with explicit core affinity for the threads.

The affinity list can be shorter or longer than num_threads. Threads are allocated in round-robin fashion
to cores. Failures to set affinity are logged but do not cause an exception.

boost::asio::io_service &get_io_service()
Retrieve the embedded io_service.

void stop()
Shut down the thread pool.

Public Static Functions

void set_affinity(int core)
Set CPU affinity of current thread.

A number of the APIs use callbacks. These follow the usual Boost.Asio guarantee that they will always be called
from threads running boost::asio::io_service::run(). If using a thread_pool, this will be one of the
threads managed by the pool. Additionally, callbacks for a specific stream are serialised, but there may be concurrent
callbacks associated with different streams.

Receiving

Heaps

Unlike the Python bindings, the C++ bindings expose two heap types: live heaps (spead2::recv::live_heap)
are used for heaps being constructed, and may be missing data; frozen heaps (spead2::recv::heap) always have
all their data. Frozen heaps can be move-constructed from live heaps, which will typically be done in the callback.

class spead2::recv::live_heap
A SPEAD heap that is in the process of being received.

Once it is fully received, it is converted to a heap for further processing.

Any SPEAD-64-* flavour can be used, but all packets in the heap must use the same flavour. It may be possible
to relax this, but it hasn’t been examined, and may cause issues for decoding descriptors (whose format depends
on the flavour).

20 Chapter 3. C++ API for spead2

spead2 Documentation, Release 1.2.2

A heap can be:

•complete: a heap length item was found in a packet, and we have received all the payload corresponding
to it. No more packets are expected.

•contiguous: the payload we have received is a contiguous range from 0 up to some amount, and cover all
items described in the item pointers. A complete heap is also contiguous, but not necessarily the other way
around. Only contiguous heaps can be frozen.

Public Functions

bool is_complete() const
True if the heap is complete.

bool is_contiguous() const
True if the heap is contiguous.

bool is_end_of_stream() const
True if an end-of-stream heap control item was found.

s_item_pointer_t get_cnt() const
Retrieve the heap ID.

bug_compat_mask get_bug_compat() const
Get protocol bug compatibility flags.

class spead2::recv::heap
Received heap that has been finalised.

Subclassed by spead2::recv::heap_wrapper

Public Functions

heap(live_heap &&h)
Freeze a heap, which must satisfy live_heap::is_contiguous.

The original heap is destroyed.

s_item_pointer_t get_cnt() const
Get heap ID.

const flavour &get_flavour() const
Get protocol flavour used.

const std::vector<item> &get_items() const
Get the items from the heap.

This includes descriptors, but excludes any items with ID <= 4.

descriptor to_descriptor() const
Extract descriptor fields from the heap.

Any missing fields are default-initialized. This should be used on a heap constructed from the content of a
descriptor item.

The original PySPEAD package (version 0.5.2) does not follow the specification here. The macros in
common_defines.h can be used to control whether to interpret the specification or be bug-compatible.

3.3. Receiving 21

spead2 Documentation, Release 1.2.2

The protocol allows descriptors to use immediate-mode items, but the decoding of these into variable-
length strings is undefined. This implementation will discard such descriptor fields.

std::vector<descriptor> get_descriptors() const
Extract and decode descriptors from this heap.

bool is_start_of_stream() const
Convenience function to check whether any of the items is a CTRL_STREAM_START.

struct spead2::recv::item
An item extracted from a heap.

Subclassed by spead2::recv::item_wrapper

Public Members

s_item_pointer_t id
Item ID.

std::uint8_t *ptr
Start of memory containing value.

std::size_t length
Length of memory.

item_pointer_t immediate_value
The immediate interpreted as an integer (undefined if not immediate)

bool is_immediate
Whether the item is immediate.

struct spead2::descriptor
An unpacked descriptor.

If numpy_header is non-empty, it overrides format and shape.

Public Members

s_item_pointer_t id = 0
SPEAD ID.

std::string name
Short name.

std::string description
Long description.

std::vector<std::pair<char, s_item_pointer_t>> format
Legacy format.

Each element is a specifier character (e.g. ‘u’ for unsigned) and a bit width.

std::vector<s_item_pointer_t> shape
Shape.

Elements are either non-negative, or -1 is used to indicate a variable-length size. At most one dimension
may be variable-length.

std::string numpy_header
Description in the format used in .npy files.

22 Chapter 3. C++ API for spead2

spead2 Documentation, Release 1.2.2

Streams

At the lowest level, heaps are given to the application via a callback to a virtual function. While this callback is running,
no new packets can be received from the network socket, so this function needs to complete quickly to avoid data loss
when using UDP. To use this interface, subclass spead2::recv::stream and implement heap_ready() and
optionally override stop_received().

class spead2::recv::stream
Stream that is fed by subclasses of reader.

Unless otherwise specified, methods in stream_base may only be called while holding the strand contained
in this class. The public interface functions must be called from outside the strand (and outside the threads
associated with the io_service), but are not thread-safe relative to each other.

This class is thread-safe. This is achieved mostly by having operations run as completion handlers on a strand.
The exception is stop, which uses a once to ensure that only the first call actually runs.

Inherits from spead2::recv::stream_base

Subclassed by callback_stream, recv_stream, spead2::recv::ring_stream_base

Public Functions

template <typename T, typename... Args>
void emplace_reader(Args&&... args)

Add a new reader by passing its constructor arguments, excluding the initial stream argument.

void stop()
Stop the stream and block until all the readers have wound up.

After calling this there should be no more outstanding completion handlers in the thread pool.

In most cases subclasses should override stop_received rather than this function.

Protected Functions

void stop_received()
Shut down the stream.

This calls flush. Subclasses may override this to achieve additional effects, but must chain to the base
implementation.

It is undefined what happens if add_packet is called after a stream is stopped.

void flush()
Flush the collection of live heaps, passing them to heap_ready.

A potentially more convenient interface is spead2::recv::ring_stream<Ringbuffer>, which places
received heaps into a fixed-size thread-safe ring buffer. Another thread can then pull from this
ring buffer in a loop. The template parameter selects the ringbuffer implementation. The de-
fault is a good light-weight choice, but if you need to use select()-like functions to wait for
data, you can use spead2::ringbuffer<spead2::recv::live_heap, spead2::semaphore_fd,
spead2::semaphore>.
template <typename Ringbuffer = ringbuffer<live_heap>>
class spead2::recv::ring_stream

Specialisation of stream that pushes its results into a ringbuffer.

3.3. Receiving 23

spead2 Documentation, Release 1.2.2

The ringbuffer class may be replaced, but must provide the same interface as ringbuffer. If the ring buffer fills
up, add_packet will block the reader.

On the consumer side, heaps are automatically frozen as they are extracted.

This class is thread-safe.

Inherits from spead2::recv::ring_stream_base

Readers

Reader classes are constructed inside a stream by calling spead2::recv::stream::emplace_reader().

class spead2::recv::udp_reader
Asynchronous stream reader that receives packets over UDP.

Inherits from spead2::recv::udp_reader_base

Public Functions

udp_reader(stream &owner, const boost::asio::ip::udp::endpoint &endpoint, std::size_t max_size =
default_max_size, std::size_t buffer_size = default_buffer_size)

Constructor.

If endpoint is a multicast address, then this constructor will subscribe to the multicast group, and also set
SO_REUSEADDR so that multiple sockets can be subscribed to the multicast group.

Parameters

• owner: Owning stream

• endpoint: Address on which to listen

• max_size: Maximum packet size that will be accepted.

• buffer_size: Requested socket buffer size. Note that the operating system might not allow a
buffer size as big as the default.

udp_reader(stream &owner, const boost::asio::ip::udp::endpoint &endpoint, std::size_t max_size,
std::size_t buffer_size, const boost::asio::ip::address &interface_address)

Constructor with explicit multicast interface address (IPv4 only).

The socket will have SO_REUSEADDR set, so that multiple sockets can all listen to the same mul-
ticast stream. If you want to let the system pick the interface for the multicast subscription, use
boost::asio::ip::address_v4::any(), or use the default constructor.

Parameters

• owner: Owning stream

• endpoint: Multicast group and port

• max_size: Maximum packet size that will be accepted.

• buffer_size: Requested socket buffer size.

• interface_address: Address of the interface which should join the group

Exceptions

• std::invalid_argument: If endpoint is not an IPv4 multicast address

24 Chapter 3. C++ API for spead2

spead2 Documentation, Release 1.2.2

• std::invalid_argument: If interface_address is not an IPv4 address

udp_reader(stream &owner, const boost::asio::ip::udp::endpoint &endpoint, std::size_t max_size,
std::size_t buffer_size, unsigned int interface_index)

Constructor with explicit multicast interface index (IPv6 only).

The socket will have SO_REUSEADDR set, so that multiple sockets can all listen to the same multicast
stream. If you want to let the system pick the interface for the multicast subscription, set interface_index
to 0, or use the standard constructor.

See if_nametoindex(3)

Parameters

• owner: Owning stream

• endpoint: Multicast group and port

• max_size: Maximum packet size that will be accepted.

• buffer_size: Requested socket buffer size.

• interface_index: Address of the interface which should join the group

udp_reader(stream &owner, boost::asio::ip::udp::socket &&socket, const
boost::asio::ip::udp::endpoint &endpoint, std::size_t max_size = default_max_size,
std::size_t buffer_size = default_buffer_size)

Constructor using an existing socket.

This allows socket options (e.g., multicast subscriptions) to be fine-tuned by the caller. The socket should
not be bound. Note that there is no special handling for multicast addresses here.

Parameters

• owner: Owning stream

• socket: Existing socket which will be taken over. It must use the same I/O service as owner.

• endpoint: Address on which to listen

• max_size: Maximum packet size that will be accepted.

• buffer_size: Requested socket buffer size. Note that the operating system might not allow a
buffer size as big as the default.

class spead2::recv::mem_reader
Reader class that feeds data from a memory buffer to a stream.

The caller must ensure that the underlying memory buffer is not destroyed before this class.

Note For simple cases, use mem_to_stream instead. This class is only necessary if one wants to plug in to a
stream.

Inherits from spead2::recv::reader

Subclassed by spead2::recv::buffer_reader

3.3. Receiving 25

spead2 Documentation, Release 1.2.2

Memory allocators

In addition to the memory allocators described in Memory allocators, new allocators can be created
by subclassing spead2::memory_allocator. For an allocator set on a stream, a pointer to a
spead2::recv::packet_header is passed as a hint to the allocator, allowing memory to be placed accord-
ing to information in the packet. Note that this can be any packet from the heap, so you must not rely on it being the
initial packet.

class spead2::memory_allocator
Polymorphic class for managing memory allocations in a memory pool.

This can be overloaded to provide custom memory allocations.

Inherits from std::enable_shared_from_this< memory_allocator >

Subclassed by spead2::memory_pool, spead2::mmap_allocator, spead2::unittest::mock_allocator

Public Functions

memory_allocator::pointer allocate(std::size_t size, void *hint)
Allocate size bytes of memory.

The default implementation uses new and pre-faults the memory.

Return Pointer to newly allocated memory

Parameters

• size: Number of bytes to allocate

• hint: Usage-dependent extra information

Exceptions

• std::bad_alloc: if allocation failed

Private Functions

void free(std::uint8_t *ptr, void *user)
Free memory previously returned from allocate.

Parameters

• ptr: Value returned by allocate

• user: User-defined handle returned by allocate

Sending

Heaps

class spead2::send::heap
Heap that is constructed for transmission.

Subclassed by spead2::send::heap_wrapper

26 Chapter 3. C++ API for spead2

spead2 Documentation, Release 1.2.2

Public Functions

heap(const flavour &flavour_ = flavour ())
Constructor.

Parameters

• flavour_: SPEAD flavour that will be used to encode the heap

const flavour &get_flavour() const
Return flavour.

template <typename... Args>
void add_item(s_item_pointer_t id, Args&&... args)

Construct a new item.

void add_pointer(std::unique_ptr<std::uint8_t[]> &&pointer)
Take over ownership of pointer and arrange for it to be freed when the heap is freed.

void add_descriptor(const descriptor &descriptor)
Encode a descriptor to an item and add it to the heap.

void add_start()
Add a start-of-stream control item.

void add_end()
Add an end-of-stream control item.

struct spead2::send::item
An item to be inserted into a heap.

An item does not own its memory.

Public Functions

item()
Default constructor.

This item has undefined values and is not usable.

item(s_item_pointer_t id, const void *ptr, std::size_t length, bool allow_immediate)
Create an item referencing existing memory.

item(s_item_pointer_t id, s_item_pointer_t immediate)
Create an item with a value to be encoded as an immediate.

item(s_item_pointer_t id, const std::string &value, bool allow_immediate)
Construct an item referencing the data in a string.

item(s_item_pointer_t id, const std::vector<std::uint8_t> &value, bool allow_immediate)
Construct an item referencing the data in a vector.

3.4. Sending 27

spead2 Documentation, Release 1.2.2

Public Members

s_item_pointer_t id
Item ID.

bool is_inline
If true, the item’s value is stored in-place and must be encoded as an immediate.

Non-inline values can still be encoded as immediates if they have the right length.

bool allow_immediate
If true, the item’s value may be encoded as an immediate.

This must be false if the item is variable-sized, because in that case the actual size can only be determined
from address differences.

If is_inline is true, then this must be true as well.

const std::uint8_t *ptr
Pointer to the value.

std::size_t length
Length of the value.

s_item_pointer_t immediate
Integer value to store (host endian).

This is used if and only if is_inline is true.

Streams

All stream types are derived from spead2::send::stream using the curiously recurring template pattern and
implementing an async_send_packet function.

typedef std::function<void(const boost::system::error_code &ec, item_pointer_t bytes_transferred)>
spead2::send::stream::completion_handler

class spead2::send::stream
Abstract base class for streams.

Subclassed by spead2::send::stream_impl< Derived >, spead2::send::stream_impl< streambuf_stream >,
spead2::send::stream_impl< udp_ibv_stream >, spead2::send::stream_impl< udp_stream >

Public Functions

boost::asio::io_service &get_io_service() const
Retrieve the io_service used for processing the stream.

virtual void set_cnt_sequence(item_pointer_t next, item_pointer_t step) = 0
Modify the linear sequence used to generate heap cnts.

The next heap will have cnt next, and each following cnt will be incremented by step. When using this, it
is the user’s responsibility to ensure that the generated values remain unique. The initial state is next = 1,
cnt = 1.

This is useful when multiple senders will send heaps to the same receiver, and need to keep their heap cnts
separate.

28 Chapter 3. C++ API for spead2

http://en.wikipedia.org/wiki/Curiously_recurring_template_pattern

spead2 Documentation, Release 1.2.2

virtual bool async_send_heap(const heap &h, completion_handler handler, s_item_pointer_t cnt =
-1) = 0

Send h asynchronously, with handler called on completion.

The caller must ensure that h remains valid (as well as any memory it points to) until handler is called.

If this function returns true, then the heap has been added to the queue. The completion handlers for
such heaps are guaranteed to be called in order.

If this function returns false, the heap was rejected due to insufficient space. The han-
dler is called as soon as possible (from a thread running the io_service), with error code
boost::asio::error::would_block.

By default the heap cnt is chosen automatically (see set_cnt_sequence). An explicit value can instead be
chosen by passing a non-negative value for cnt. When doing this, it is entirely the responsibility of the
user to avoid collisions, both with other explicit values and with the automatic counter. This feature is
useful when multiple senders contribute to a single stream and must keep their heap cnts disjoint, which
the automatic assignment would not do.

Return Value

• false: If the heap was immediately discarded

• true: If the heap was enqueued

virtual void flush() = 0
Block until all enqueued heaps have been sent.

This function is thread-safe, but can be live-locked if more heaps are added while it is running.

class spead2::send::udp_stream
Inherits from spead2::send::stream_impl< udp_stream >

Public Functions

udp_stream(boost::asio::io_service &io_service, const boost::asio::ip::udp::endpoint &endpoint,
const stream_config &config = stream_config (), std::size_t buffer_size = de-
fault_buffer_size)

Constructor.

udp_stream(boost::asio::ip::udp::socket &&socket, const boost::asio::ip::udp::endpoint &endpoint,
const stream_config &config = stream_config (), std::size_t buffer_size = de-
fault_buffer_size)

Constructor using an existing socket.

The socket must be open but not bound.

udp_stream(boost::asio::io_service &io_service, const boost::asio::ip::udp::endpoint &endpoint,
const stream_config &config, std::size_t buffer_size, int ttl)

Constructor with multicast hop count.

Parameters

• io_service: I/O service for sending data

• endpoint: Multicast group and port

• config: Stream configuration

• buffer_size: Socket buffer size (0 for OS default)

3.4. Sending 29

spead2 Documentation, Release 1.2.2

• ttl: Maximum number of hops

Exceptions

• std::invalid_argument: if endpoint is not a multicast address

udp_stream(boost::asio::io_service &io_service, const boost::asio::ip::udp::endpoint &endpoint,
const stream_config &config, std::size_t buffer_size, int ttl, const boost::asio::ip::address
&interface_address)

Constructor with multicast hop count and outgoing interface address (IPv4 only).

Parameters

• io_service: I/O service for sending data

• endpoint: Multicast group and port

• config: Stream configuration

• buffer_size: Socket buffer size (0 for OS default)

• ttl: Maximum number of hops

• interface_address: Address of the outgoing interface

Exceptions

• std::invalid_argument: if endpoint is not an IPv4 multicast address

• std::invalid_argument: if interface_address is not an IPv4 address

udp_stream(boost::asio::io_service &io_service, const boost::asio::ip::udp::endpoint &endpoint,
const stream_config &config, std::size_t buffer_size, int ttl, unsigned int interface_index)

Constructor with multicast hop count and outgoing interface address (IPv6 only).

See if_nametoindex(3)

Parameters

• io_service: I/O service for sending data

• endpoint: Multicast group and port

• config: Stream configuration

• buffer_size: Socket buffer size (0 for OS default)

• ttl: Maximum number of hops

• interface_index: Index of the outgoing interface

Exceptions

• std::invalid_argument: if endpoint is not an IPv6 multicast address

class spead2::send::streambuf_stream
Puts packets into a streambuf (which could come from an ostream).

This should not be used for a blocking stream such as a wrapper around TCP, because doing so will block the
asio handler thread.

Inherits from spead2::send::stream_impl< streambuf_stream >

Subclassed by spead2::send::stream_wrapper< streambuf_stream >

30 Chapter 3. C++ API for spead2

spead2 Documentation, Release 1.2.2

Public Functions

streambuf_stream(boost::asio::io_service &io_service, std::streambuf &streambuf, const
stream_config &config = stream_config ())

Constructor.

Logging

By default, log messages are all written to standard error. However, the logging function can be replaced by calling
spead2::set_log_function().

void spead2::set_log_function(std::function<void)log_level, const std::string&
> f

Support for ibverbs

The support for libibverbs is essentially the same as for Python, with the same limitations. The programmatic interface
is via the spead2::recv::udp_ibv_reader and spead2::send::udp_ibv_stream classes:

class spead2::recv::udp_ibv_reader
Synchronous or asynchronous stream reader that reads UDP packets using the Infiniband verbs API.

It currently only supports multicast IPv4, with no fragmentation, IP header options, or VLAN tags.

Inherits from spead2::recv::udp_reader_base

Public Functions

udp_ibv_reader(stream &owner, const boost::asio::ip::udp::endpoint &endpoint, const
boost::asio::ip::address &interface_address, std::size_t max_size = de-
fault_max_size, std::size_t buffer_size = default_buffer_size, int comp_vector
= 0, int max_poll = default_max_poll)

Constructor.

Parameters

• owner: Owning stream

• endpoint: Multicast group and port

• max_size: Maximum packet size that will be accepted

• buffer_size: Requested memory allocation for work requests. Note that this is used to deter-
mine the number of packets to buffer; if the packets are smaller than max_size, then fewer bytes
will be buffered.

• interface_address: Address of the interface which should join the group and listen for
data

• comp_vector: Completion channel vector (interrupt) for asynchronous operation, or a negative
value to poll continuously. Polling should not be used if there are other users of the thread pool. If
a non-negative value is provided, it is taken modulo the number of available completion vectors.
This allows a number of readers to be assigned sequential completion vectors and have them
load-balanced, without concern for the number available.

3.5. Logging 31

spead2 Documentation, Release 1.2.2

• max_poll: Maximum number of times to poll in a row, without waiting for an interrupt (if
comp_vector is non-negative) or letting other code run on the thread (if comp_vector is negative).

Exceptions

• std::invalid_argument: If endpoint is not an IPv4 multicast address

• std::invalid_argument: If interface_address is not an IPv4 address

udp_ibv_reader(stream &owner, const std::vector<boost::asio::ip::udp::endpoint> &endpoints,
const boost::asio::ip::address &interface_address, std::size_t max_size = de-
fault_max_size, std::size_t buffer_size = default_buffer_size, int comp_vector = 0,
int max_poll = default_max_poll)

Constructor with multiple endpoints.

Parameters

• owner: Owning stream

• endpoints: Multicast groups and ports

• max_size: Maximum packet size that will be accepted

• buffer_size: Requested memory allocation for work requests. Note that this is used to deter-
mine the number of packets to buffer; if the packets are smaller than max_size, then fewer bytes
will be buffered.

• interface_address: Address of the interface which should join the group and listen for
data

• comp_vector: Completion channel vector (interrupt) for asynchronous operation, or a negative
value to poll continuously. Polling should not be used if there are other users of the thread pool. If
a non-negative value is provided, it is taken modulo the number of available completion vectors.
This allows a number of readers to be assigned sequential completion vectors and have them
load-balanced, without concern for the number available.

• max_poll: Maximum number of times to poll in a row, without waiting for an interrupt (if
comp_vector is non-negative) or letting other code run on the thread (if comp_vector is negative).

Exceptions

• std::invalid_argument: If any element of endpoints is not an IPv4 multicast address

• std::invalid_argument: If interface_address is not an IPv4 address

class spead2::send::udp_ibv_stream
Stream using Infiniband versions for acceleration.

Only IPv4 multicast with an explicit source address are supported.

Inherits from spead2::send::stream_impl< udp_ibv_stream >

Public Functions

udp_ibv_stream(boost::asio::io_service &io_service, const boost::asio::ip::udp::endpoint &end-
point, const stream_config &config, const boost::asio::ip::address &inter-
face_address, std::size_t buffer_size = default_buffer_size, int ttl = 1, int
comp_vector = 0, int max_poll = default_max_poll)

Constructor.

32 Chapter 3. C++ API for spead2

spead2 Documentation, Release 1.2.2

Parameters

• io_service: I/O service for sending data

• endpoint: Multicast group and port

• config: Stream configuration

• interface_address: Address of the outgoing interface

• buffer_size: Socket buffer size (0 for OS default)

• ttl: Maximum number of hops

• comp_vector: Completion channel vector (interrupt) for asynchronous operation, or a negative
value to poll continuously. Polling should not be used if there are other users of the thread pool. If
a non-negative value is provided, it is taken modulo the number of available completion vectors.
This allows a number of readers to be assigned sequential completion vectors and have them
load-balanced, without concern for the number available.

• max_poll: Maximum number of times to poll in a row, without waiting for an interrupt (if
comp_vector is non-negative) or letting other code run on the thread (if comp_vector is negative).

Exceptions

• std::invalid_argument: if endpoint is not an IPv4 multicast address

• std::invalid_argument: if interface_address is not an IPv4 address

Support for netmap

Introduction

As an experimental feature, it is possible to use the netmap framework to receive packets at a higher rate than is
possible with the regular sockets API. This is particularly useful for small packets.

This is not for the faint of heart: it requires root access, it can easily hang the whole machine, and it imposes limitations,
including:

• Only the C++ API is supported. If you need every drop of performance, you shouldn’t be using Python anyway.

• Only Linux is currently tested. It should be theoretically possible to support FreeBSD, but you’re on your own
(patches welcome).

• Only IPv4 is supported.

• Fragmented IP packets, and IP headers with optional fields are not supported.

• Checksums are not validated (although possibly the NIC will check them).

• Only one reader is supported per network interface.

• All packets that arrive with the correct UDP port will be processed, regardless of destination address. This could
mean, for example, that unrelated multicast streams will be processed even though they aren’t wanted.

Usage

Once netmap is installed and the header file net/netmap_user.h is placed in a system include directory, pass
NETMAP=1 to make to include netmap support in the library.

Then, instead of spead2::recv::udp_reader, use spead2::recv::netmap_udp_reader.

3.7. Support for netmap 33

spead2 Documentation, Release 1.2.2

class spead2::recv::netmap_udp_reader
Inherits from spead2::recv::reader

Public Functions

netmap_udp_reader(stream &owner, const std::string &device, uint16_t port)
Constructor.

Parameters

• owner: Owning stream

• device: Name of the network interface e.g., eth0

• port: UDP port number to listen to

34 Chapter 3. C++ API for spead2

CHAPTER 4

Performance tuning

While spead2 tries to be performant out of the box, there are a number of ways one can tune both the system and the
application using spead2. It is usually necessary to do at least some of these steps to achieve performance of 10Gb/s+,
but your mileage may vary depending on your hardware and application.

This guide focuses mostly on the problem of receiving data, because my experience with high-bandwidth SPEAD has
been with data produced by FPGAs. Nevertheless, some of these tips also apply to sending data.

All advice is for a GNU/Linux system with an Intel CPU. You will need to consult other documentation to find
equivalent commands for other systems.

System tuning

The first thing to do is to increase the maximum socket buffer sizes. See Introduction to spead2 for details.

The kernel firewall can affect performance, particularly if small packets are not being used (in this context, anything
that isn’t a jumbo frame is considered “small”). If possible, remove all firewall rules and unload the kernel mod-
ules (those prefixed with ipt or nf). In particular, simply having the nf_conntrack module loaded can reduce
performance by several percent.

IP fragmentation also causes performance problems on the receiver. Check that the routers in your network have a
sufficiently large MTU that packets do not get fragmented, particularly if using jumbo frames. You can use tcpdump
-v to see fragments.

On a system with multiple CPU sockets, it is important to pin the process using spead2 to a single socket, so that
memory accesses do not cross the QPI bus. For best performance, use the same socket as the NIC, which can be
determined from the output of hwloc-ls. See numactl(8), hwloc-ls(1), hwloc-bind(1).

There are a number of settings that can be adjusted to improve the system’s ability to respond to bursts of data. These
will probably not improve peak performance, but can reduce the number of lost heaps, particularly when a stream
starts and the system must ramp up performance in response.

• Disable hyperthreading.

• Disable CPU frequency scaling.

35

spead2 Documentation, Release 1.2.2

• Disable C states beyond C1 (for example, by passing intel_idle.max_state=1 to the Linux kernel).
Disabling C1 as well may reduce latency, but will likely limit the gains from Turbo Boost.

• Investigate disabling the P-state driver by passing intel_pstate=disable on the kernel command line.
The P-state driver has sometimes been reported to be much slower1,2, but can also be faster3.

• Disable adaptive interrupt moderation on the NIC: ethtool -C interface adaptive-rx off
adaptive-tx off. You may then need to experiment to tune the interrupt moderation settings — consult
ethtool(8) for details.

• Disable Ethernet flow control: ethtool -A interface rx off tx off.

• Use the isolcpus kernel option to completely isolate some CPU cores from other tasks, and pin the receiver to
those cores (I have not actually tried this).

• Use chrt(1) to run the receiver with real-time scheduling (I have not actually tried this).

Protocol design

If you are designing a new SPEAD-based protocol, you have an opportunity to make design choices that will make it
easier for the sender and/or receiver to reach the desired performance.

Heap size

The primary influence comes from heap size. There is some degree of overhead for every heap (particularly for a
Python receiver), and very small heaps will cause this overhead to dominate. Heaps smaller than 16KiB are not
recommended. Very large heaps that do not fit into CPU caches will also reduce performance, but not excessively.
Memory usage also depends on the heap size. A number of application tuning techniques described below also
depend on knowing the heap payload size a priori; thus, it is good practice to communicate this the receiver in some
way, whether by sending the descriptor early in the SPEAD stream or by an out-of-band method.

Packet size

Packet size is not strictly part of the protocol, but also has a large impact on performance. For 10Gb/s or faster streams,
jumbo frames are highly recommended, although with the kernel bypass techniques described below), this is far less
of an issue.

When using spead2 on the send side, the default packet size is 1472 bytes, which is a safe value for IPv4 in a standard
Ethernet setup4. The packet size is set in the StreamConfig. You should pick a packet size, that, when added to
the overhead for IP and UDP headers, does not exceed the MTU of the link. For example, with IPv4 and an MTU of
9200, use a packet size of 9172.

Alignment

Because items directly reference the received data (where possible), it is possible that data will be misaligned. While
numpy allows this, it could make access to the data inefficient. The sender should ensure that data are aligned. The
spead2 sending API currently does not provide a way to enforce this, but using items with round sizes will help.

1 https://www.phoronix.com/scan.php?page=article&item=intel_pstate_linux315
2 https://www.phoronix.com/scan.php?page=article&item=linux-47-schedutil
3 https://www.phoronix.com/scan.php?page=news_item&px=Linux-4.4-CPUFreq-P-State-Gov
4 The UDP and IP header together add 28 bytes, bringing the IP packet to the conventional MTU of 1500 bytes.

36 Chapter 4. Performance tuning

https://codywu2010.wordpress.com/2015/09/27/isolcpus-numactl-and-taskset/
https://www.phoronix.com/scan.php?page=article&item=intel_pstate_linux315
https://www.phoronix.com/scan.php?page=article&item=linux-47-schedutil
https://www.phoronix.com/scan.php?page=news_item&px=Linux-4.4-CPUFreq-P-State-Gov

spead2 Documentation, Release 1.2.2

Endianness

When using numpy builtin types, data are converted to native endian when they are received, to allow for more efficient
operations on them. This can reduce the maximum rate at which packets are received. Thus, using the native endian
on the wire (little-endian for x86) will give better performance.

Data format

Item descriptors can be specified using either a format or a dtype (numpy data type). In many common cases, either
can be used, and performance on a Python receiver should be the same (a PySPEAD receiver, however, will be much
faster with dtype). The dtype is the only way to use Fortran order or little-endian. The format approach is easier for
a C++ receiver to parse (since it does not need to decode a Python literal). It also allows for a wider variety of types
(such as bit vectors), but encoding or decoding these types in Python takes a very slow path.

Application tuning

This section describes a number of ways the application can be modified to improve performance. Most of these
tuning options can be explored using a provided benchmarking tool which measures the sustained performance on
a connection. This makes it possible to quickly identify the techniques that will make the most difference before
implementing them.

There are two versions of the benchmarking tool: one implemented in Python (spead2_bench.py) and one in C++
(spead2_bench), which are installed by the corresponding installers. The examples show the Python version, but
the C++ version functions very similarly.

On the receiver, pick a port number (which must be free for both TCP and UDP) and run

spead2_bench.py slave <port>

Then, on the sender, run

spead2_bench.py master [options] <host> <port>

where host is the hostname of the receiver. This script will run tests at a variety of speeds to determine the maximum
speed at which the connection seems reliable most of the time. This speed is right at the edge of stability: for a totally
reliable setup, you should use a lower speed.

There are also separate spead2_send and spead2_recv (and Python equivalents) programs. The former gener-
ates a stream of meaningless data, while the latter consumes an existing stream and reports the heaps and items that
it finds. Apart from being useful for debugging a stream, spead2_recv has a similar plethora of command-line
options for tuning that allow for exploration.

Kernel bypass APIs

There are two low-level kernel bypass networking APIs supported: ibverbs and netmap. These provide a zero-copy
path from the NIC into the spead2 library, without the kernel being involved. This can make a huge performance
difference, particularly for small packet sizes.

Of these, ibverbs is the recommended one: it can be used without being a root user, it is supported by both the
Python and C++ APIs, can be used for both sending and receiving, can be used by multiple processes or streams
simultaneously, and in simple cases requires only an environment variable to be set. The netmap support is no longer
developed or tested.

4.3. Application tuning 37

spead2 Documentation, Release 1.2.2

These APIs are not free: they will only work with some NICs, require special kernel drivers and setup, have limitations
in what networking features they can support, and require the application to specify which network device to use. Refer
to the links above for more details.

Memory allocation

Using a memory pool is the single most important tool for fast and reliable data transfer. It is particularly important
when heap sizes are large enough that malloc() and free() use mmap() (M_MMAP_THRESHOLD in glibc). For
very small heaps, memory pooling may be a net loss.

To use a memory pool, it is necessary to know the maximum heap payload size (a conservative estimate is fine too —
you will just use more memory). You also need to size the pool appropriately. It is possible to specify a small initial
size and a larger maximum; however, each time the pool grows the CPU will be busy with allocation and may drop
packets. To avoid starvation, you will need to provide:

• A buffer per partial heap (max_heaps parameter to spead2.recv.Stream)

• A buffer per complete heap in the ring buffer (ring_heaps parameter to spead2.recv.Stream)

• A buffer for every heap that has been taken off the ring buffer but not yet destroyed.

• A few extra for heaps that are in-flight between queues. The exact number may vary between releases, but 4
should be safe.

In general, it is best to err on the side of adding a few extra, provided that this does not consume too much memory.
At present there are unfortunately no good tools for analysing memory pool performance.

Heap lifetime (Python)

All the payload for a heap is stored in a single memory allocation, and where possible, items reference this memory.
This means that the entire heap remains live as long as any of the values encoded in it are live. Thus, a small but
seldom-changing value can cause a very large heap to remain live long after the rest of the values in that heap have
been replaced. This can waste memory, and also affects memory pool sizing.

To avoid this, senders should try to group items together that are updated at the same frequency, rather than mixing
low- and high-frequency items in the same heap. Receivers can avoid this problem by copying values that are known
to be slowly varying.

Custom allocators (C++)

If you are doing an extra copy purely to put values into a special memory type (for example, shared mem-
ory to communicate with another process, or pinned memory for transfer to a GPU), then consider subclassing
spead2::memory_allocator.

Tuning based on heap size

The library has a number of tuning parameters that are reasonable for medium-to-large heaps (megabytes or larger).
If using many smaller heaps, some of the tuning parameters may need to be adjusted. In particular

• Increase the max_heaps parameter to the spead2.send.StreamConfig constructor.

• Increase the max_heaps parameter to the spead2.recv.Stream constructor if you expect the network to
reorder packets significantly (e.g., because data is arriving from multiple senders which are not completely
synchronised). For single-packet heaps this has no effect.

38 Chapter 4. Performance tuning

spead2 Documentation, Release 1.2.2

• Increase the ring_heaps parameter to the spead2.recv.Stream constructor to reduce lock contention. This
has rapidly diminishing returns beyond about 16.

It is important to experiment to determine good values. Simply cranking everything way up can actually reduce
performance by increase memory usage and thus reducing cache efficiency.

For very large heaps (gigabytes) some of these values can be decreased to 2 (or possibly even 1) to keep memory usage
under control.

Thread pools

Each stream in spead2 has an associated thread pool, which provides worker threads for handling incoming or outgoing
packets. Each thread pool can have some number of threads, defaulting to 1. Here are some rules of thumb:

• For a small number of streams (up to about the number of CPU cores), it is best to have one single-threaded
thread pool per stream. This gives better cache affinity than a shared thread pool.

• For a large number of lower-bandwidth streams, use a shared thread pool with multiple threads. The number
of threads should be chosen based on the number of CPU cores that you can dedicate to packet handling rather
than other tasks in your application.

• A single stream cannot be processed by multiple threads at the same time, so there is never any benefit (and
often detriment) to have more threads in a thread pool than there are streams serviced by that thread pool.

• Jitter (experienced as occasionally lost heaps) can be reduced by passing an affinity list to the thread pool con-
structor, to pin threads to specific cores. The main thread can be pinned as well, using spead2.ThreadPool.
set_affinity().

4.3. Application tuning 39

spead2 Documentation, Release 1.2.2

40 Chapter 4. Performance tuning

CHAPTER 5

Other tools

mcdump

mcdump is a tool similar to tcpdump, but specialised for high-speed capture of multicast UDP traffic using hardware
that supports the Infiniband Verbs API. It has only been tested on Mellanox ConnectX-3 NICs. Like gulp, it uses a
separate thread for disk I/O and CPU core affinity to achieve reliable performance.

It is not limited to capturing SPEAD data. It is included with spead2 rather than released separately because it reuses
a lot of the spead2 code.

Installation

The tool is automatically compiled and installed with spead2, provided that libiverbs support is detected at configure
time.

It may also be necessary to configure the system to work with ibverbs. See Support for ibverbs for more information.

Usage

The simplest incantation is

mcdump -i xx.xx.xx.xx output.pcap yy.yy.yy.yy:zzzz

which will capture on the interface with IP address xx.xx.xx.xx, for the multicast group yy.yy.yy.yy on UDP port zzzz.
mcdump will take care of subscribing to the multicast group. Note that only IPv4 is supported. Capture continues
until interrupted by Ctrl-C. You can also list more group:port pairs, which will all stored in the same pcap file.

Unfortunately, unlike tcpdump, it is not possible to tell directly tell whether packets were dropped. NIC counters
(on Linux, accessed with ethtool -S) can give an indication, although sometimes packets are dropped during the
shutdown process.

These options are important for performance:

41

http://www.tcpdump.org/
http://corey.elsewhere.org/gulp/

spead2 Documentation, Release 1.2.2

-N <cpu>, -C <cpu>, -D <cpu>
Set CPU core IDs for various threads. The -D option can be repeated multiple times to use multiple threads for
disk I/O. By default, the threads are not bound to any particular core. It is recommended that these cores be on
the same CPU socket as the NIC.

--direct-io
Use the O_DIRECT flag to open the file. This bypasses the kernel page cache, and can in some cases yield
higher performance. However, not all filesystems support it, and it can also reduce performance when capturing
a small enough amount of data that it will fit into RAM.

Limitations

• Packets are not timestamped (they all have a zero timestamp in the file).

• Only IPv4 is supported.

42 Chapter 5. Other tools

CHAPTER 6

Changelog

Version 1.2.2

• Fix rate limiting causing longer sleeps than necessary (fixes #53).

Version 1.2.1

• Disable LTO by default and require the user to opt in, because even if the compiler supports it, linking can still
fail (fixes #51).

Version 1.2.0

• Support multiple endpoints for one udp_ibv_reader (fixes #48).

• Fix compilation on OS X 10.9 (fixes #49)

• Fix spead2::ringbuffer<T>::emplace() and spead2::ringbuffer<T>::try_emplace()

• Improved error messages when passing invalid arguments to mcdump

Version 1.1.2

• Only log descriptor replacement if it actually replaces an existing name or ID (regression in 1.1.1).

• Fix build on ARM where compiling against asio requires linking against pthread.

• Updated and expanded performance tuning guide.

Version 1.1.1

• Report the item name in exception for “too few elements for shape” errors

43

spead2 Documentation, Release 1.2.2

• Overhaul of rules for handling item descriptors that change the name or ID of an item. This prevents stale items
from hanging around when the sender changes the name of an item but keeps the same ID, which can cause
unrelated errors on the receiver if the shape also changes.

Version 1.1.0

• Allow heap cnt to be set explicitly by sender, and the automatic heap cnt sequence to be specified as a start value
and step.

Version 1.0.1

• Fix exceptions to include more information about the source of the failure

• Add mcdump tool

Version 1.0.0

• The C++ API installation has been changed to use autoconf and automake. As a result, it is possible to run
make install and get the static library, headers, and tools installed.

• The directory structure has changed. The spead2_* tools are now installed, example code is now in the
examples directory, and the headers have moved to include/spead2.

• Add support for sending data using libibverbs API (previously only supported for receiving)

• Fix async_send_heap (in Python) to return a future instead of being a coroutine: this fixes a problem with
undefined ordering in the trollius example.

• Made sending streams polymorphic, with abstract base class spead2::send::stream, to simplify writing
generic code that can operate on any type of stream. This will break code that depended on the old template
class of the same name, which has been renamed to spead2::send::stream_impl.

• Add --memcpy-nt to spead2_recv.py and spead2_bench.py

• Multicast support in spead2_bench.py and spead2_bench

• Changes to the algorithm for spead2_bench.py and spead2_bench: it now starts by computing the
maximum send speed, and then either reporting that this is the limiting factor, or using it to start the binary
search for the receive speed. It is also stricter about lost heaps.

• Some internal refactoring of code for dealing with raw packets, so that it is shared between the netmap and ibv
readers.

• Report function name that failed in semaphore system_error exceptions.

• Make the unit tests pass on OS X (now tested on travis-ci.org)

Version 0.10.4

• Refactor some of the Boost.Python glue code to make it possible to reuse parts of it in writing new Python
extensions that use the C++ spead2 API.

44 Chapter 6. Changelog

spead2 Documentation, Release 1.2.2

Version 0.10.3

• Suppress “operation aborted” warnings from UDP reader when using the API to stop a stream (introduced in
0.10.0).

• Improved elimination of duplicate item pointers, removing them as they’re received rather than when freezing a
live heap (fixes #46).

• Use hex for reporting item IDs in log messages

• Fix reading from closed file descriptor after stream.stop() (fixes #42)

• Fix segmentation fault when using ibverbs but trying to bind to a non-RDMA device network interface (fixes
#45)

Version 0.10.2

• Fix a performance problem when a heap contains many packets and every packet contains item pointers. The
performance was quadratic instead of linear.

Version 0.10.1

• Fixed a bug in registering add_udp_ibv_reader in Python, which broke spead2_recv.py, and possibly any
other code using this API.

• Fixed spead2_recv.py ignoring --ibv-max-poll option

Version 0.10.0

• Added support for libibverbs for improved performance in both Python and C++.

• Avoid per-packet shared_ptr reference counting, accidentally introduced in 0.9.0, which caused a small perfor-
mance regression. This is unfortunately a breaking change to the interface for implementing custom memory
allocators.

Version 0.9.1

• Fix using a MemoryPool with a thread pool and low water mark (regression in 0.9.0).

Version 0.9.0

• Add support for custom memory allocators.

Version 0.8.2

• Ensure correct operation when loop=None is passed explicitly to trollius stream constructors, for consistency
with functions that have it as a keyword parameter.

45

spead2 Documentation, Release 1.2.2

Version 0.8.1

• Suppress recvmmsg: resource temporarily unavailable warnings (fixes #43)

Version 0.8.0

• Extend MemoryPool to allow a background thread to replenish the pool when it gets low.

• Extend ThreadPool to allow the user to pin the threads to specific CPU cores (on glibc).

Version 0.7.1

• Fix ring_stream destructor to not deadlock (fixes #41)

Version 0.7.0

• Change handling of incomplete heaps (fixes #39). Previously, incomplete heaps were only abandoned once
there were more than max_heaps of them. Now, they are abandoned once max_heaps more heaps are seen, even
if those heaps were complete. This causes the warnings for incomplete heaps to appear closer to the time they
arrived, and also has some extremely small performance advantages due to changes in the implementation.

• backwards-incompatible change: remove set_max_heaps(). It was not previously documented, so hope-
fully is not being used. It could not be efficiently supported with the design changes above.

• Add spead2.recv.Stream.set_memcpy() to control non-temporal caching hints.

• Fix C++ version of spead2_bench to actually use the memory pool

• Reduce memory usage in spead2_bench (C++ version)

Version 0.6.3

• Partially fix #40: set_max_heaps() and set_memory_pool() will no longer deadlock if called on a
stream that has already had a reader added and is receiving data.

Version 0.6.2

• Add a fast path for integer items that exactly fit in an immediate.

• Optimise Python code by replacing np.product with a pure Python implementation.

Version 0.6.1

• Filter out duplicate items from a heap. It is undefined which of a set of duplicates will be retained (it was already
undefined for spead2.ItemGroup).

46 Chapter 6. Changelog

spead2 Documentation, Release 1.2.2

Version 0.6.0

• Changed item versioning on receive to increment version number on each update rather that setting to heap id.
This is more robust to using a single item or item group with multiple streams, and most closely matches the
send path.

• Made the protocol enums from the C++ library available in the Python library as well.

• Added functions to create stream start items (send) and detect them (recv).

Version 0.5.0

• Added friendlier support for multicast. When a multicast address is passed to add_udp_reader(), the socket
will automatically join the multicast group and set SO_REUSEADDR so that multiple sockets can consume from
the same stream. There are also new constructors and methods to give explicit control over the TTL (send) and
interface (send and receive), including support for IPv6.

Version 0.4.7

• Added in-memory mode to the C++ version of spead2_bench, to measure the packet handling speed indepen-
dently of the lossy networking code

• Optimization to duplicate packet checks. This makes a substantial performance improvement when using small
(e.g. 512 byte) packets and large heaps.

Version 0.4.6

• Fix a data corruption (use-after-free) bug on send side when data is being sent faster than the socket can handle
it.

Version 0.4.5

• Fix bug causing some log messages to be remapped to DEBUG level

Version 0.4.4

• Increase log level for packet rejection from DEBUG to INFO

• Some minor optimisations

Version 0.4.3

• Handle heaps that have out-of-range item offsets without crashing (#32)

• Fix handling of heaps without heap length headers

• spead2.send.UdpStream.send_heap() now correctly raises IOError if the heap is rejected due to
being full, or if there was an OS-level error in sending the heap.

• Fix spead2.send.trollius.UdpStream.async_send_heap() for the case where the last sent
heap failed.

47

spead2 Documentation, Release 1.2.2

• Use eventfd(2) for semaphores on Linux, which makes a very small improvement in ringbuffer perfor-
mance.

• Prevent messages about descriptor replacements for descriptor reissues with no change.

• Fix a use-after-free bug (affecting Python only).

• Throw OverflowError on out-of-range UDP port number, instead of wrapping.

Version 0.4.2

• Fix compilation on systems without glibc

• Fix test suite for non-Linux systems

• Add spead2.send.trollius.UdpStream.async_flush()

Version 0.4.1

• Add C++ version of spead2_recv, a more fully-featured alternative to test_recv

• backwards-incompatible change: Add ring_heaps parameter to ring_stream constructor. Code that spec-
ifies the contiguous_only parameter will need to be modified since the position has changed. Python code is
unaffected.

• Increased the default for ring_heaps from 2 (previously hardcoded) to 4 to improve throughput for small heaps.

• Add support for user to provide the socket for UDP communications. This allows socket options to be set by
the user, for example, to configure multicast.

• Force numpy>=1.9.2 to avoid a numpy [bug](https://github.com/numpy/numpy/issues/5356).

• Add experimental support for receiving packets via netmap

• Improved receive performance on Linux, particularly for small packets, using [recvmmsg](http://linux.die.net/
man/2/recvmmsg).

Version 0.4.0

• Enforce ASCII encoding on descriptor fields.

• Warn if a heap is dropped due to being incomplete.

• Add –ring option to C++ spead2_bench to test ringbuffer performance.

• Reading from a memory buffer (e.g. with add_buffer_reader()) is now reliable, instead of dropping
heaps if the consumer doesn’t keep up (heaps can still be dropped if packets extracted from the buffer are
out-of-order, but it is deterministic).

• The receive ringbuffer now has a fixed size (2), and pushes are blocking. The result is lower memory usage,
and it is no longer necessary to pass a large max_heaps value to deal with the consumer not always keeping up.
Instead, it may be necessary to increase the socket buffer size.

• backwards-incompatible change: Calling spead2::recv::ring_stream::stop() now discards re-
maining partial heaps instead of adding them to the ringbuffer. This only affects the C++ API, because the
Python API does not provide any access to partial heaps anyway.

• backwards-incompatible change: A heap with a stop flag is swallowed rather than passed to heap_ready()
(see issue [#29](https://github.com/ska-sa/spead2/issues/29)).

48 Chapter 6. Changelog

https://github.com/numpy/numpy/issues/5356
http://linux.die.net/man/2/recvmmsg
http://linux.die.net/man/2/recvmmsg
https://github.com/ska-sa/spead2/issues/29

spead2 Documentation, Release 1.2.2

Version 0.3.0

This release contains a number of backwards-incompatible changes in the Python bindings, although most uses will
probably not notice:

• When a received character array is returned as a string, it is now of type str (previously it was unicode in
Python 2).

• An array of characters with a numpy descriptor with type S1 will no longer automatically be turned back into a
string. Only using a format of [(‘c’, 8)] will do so.

• The c format code may now only be used with a length of 8.

• When sending, values will now always be converted to a numpy array first, even if this isn’t the final represen-
tation that will be put on the network. This may lead to some subtle changes in behaviour.

• The BUG_COMPAT_NO_SCALAR_NUMPY introduced in 0.2.2 has been removed. Now, specifying an old-
style format will always use that format at the protocol level, rather than replacing it with a numpy descriptor.

There are also some other bug-fixes and improvements:

• Fix incorrect warnings about send buffer size.

• Added –descriptors option to spead2_recv.py.

• The dtype argument to spead2.ItemGroup.add_item() is now optional, removing the need to specify
dtype=None when passing a format.

Version 0.2.2

• Workaround for a PySPEAD bug that would cause PySPEAD to fail if sent a simple scalar value. The user must
still specify scalars with a format rather than a dtype to make things work.

Version 0.2.1

• Fix compilation on OS X again. The extension binary will be slightly larger as a result, but still much smaller
than before 0.2.0.

Version 0.2.0

• backwards-incompatible change: for sending, the heap count is now tracked internally by the stream, rather
than an attribute of the heap. This affects both C++ and Python bindings, although Python code that always uses
HeapGenerator rather than directly creating heaps will not be affected.

• The HeapGenerator is extended to allow items to be added to an existing heap and to give finer control over
whether descriptors and/or values are put in the heap.

• Fixes a bug that caused some values to be cast to non-native endian.

• Added overloaded equality tests on Flavour objects.

• Strip the extension binary to massively reduce its size

49

spead2 Documentation, Release 1.2.2

Version 0.1.2

• Coerce values to int for legacy ‘u’ and ‘i’ fields

• Fix flavour selection in example code

Version 0.1.1

• Fixes to support OS X

Version 0.1.0

• First public release

50 Chapter 6. Changelog

CHAPTER 7

License

This program is free software: you can redistribute it and/or modify it under the terms of the GNU Lesser General
Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any
later version.

This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the
implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser
General Public License for more details.

You should have received a copy of the GNU Lesser General Public License along with this program. If not, see
http://www.gnu.org/licenses/.

51

http://www.gnu.org/licenses/

spead2 Documentation, Release 1.2.2

52 Chapter 7. License

CHAPTER 8

Indices and tables

• genindex

• modindex

• search

53

spead2 Documentation, Release 1.2.2

54 Chapter 8. Indices and tables

Python Module Index

s
spead2, 5

55

spead2 Documentation, Release 1.2.2

56 Python Module Index

Index

Symbols
–direct-io

command line option, 42
-N <cpu>, -C <cpu>, -D <cpu>

command line option, 41

A
add_buffer_reader() (spead2.recv.Stream method), 10
add_item() (spead2.ItemGroup method), 8
add_to_heap() (spead2.send.HeapGenerator method), 13
add_udp_ibv_reader() (spead2.recv.Stream method), 16
add_udp_reader() (spead2.recv.Stream method), 10

C
cnt (spead2.recv.Heap attribute), 9
command line option

–direct-io, 42
-N <cpu>, -C <cpu>, -D <cpu>, 41

compatible_shape() (spead2.Descriptor method), 7

D
Descriptor (class in spead2), 7
dynamic_shape() (spead2.Descriptor method), 7

E
environment variable

M_MMAP_THRESHOLD, 38
PKG_CONFIG_PATH, 19
SPEAD2_IBV_COMP_VECTOR, 17
SPEAD2_IBV_INTERFACE, 17

F
Flavour (built-in class), 5
flavour (spead2.recv.Heap attribute), 9

G
get() (spead2.recv.Stream method), 11
get() (spead2.recv.trollius.Stream method), 11
get_end() (spead2.send.HeapGenerator method), 13

get_heap() (spead2.send.HeapGenerator method), 13
get_nowait() (spead2.recv.Stream method), 11
get_start() (spead2.send.HeapGenerator method), 13
getvalue() (spead2.send.BytesStream method), 15

H
HeapGenerator (class in spead2.send), 13

I
ids() (spead2.ItemGroup method), 8
is_variable_size() (spead2.Descriptor method), 7
Item (class in spead2), 7
ItemGroup (class in spead2), 7
items() (spead2.ItemGroup method), 8
itemsize_bits (spead2.Descriptor attribute), 7

K
keys() (spead2.ItemGroup method), 8

M
M_MMAP_THRESHOLD, 38

P
PKG_CONFIG_PATH, 19

S
send_heap() (spead2.send.BytesStream method), 15
send_heap() (spead2.send.UdpStream method), 14
set_affinity() (spead2.spead2.ThreadPool static method),

9
set_cnt_sequence() (spead2.send.UdpStream method), 14
set_memcpy() (spead2.recv.Stream method), 10
set_memory_allocator() (spead2.recv.Stream method), 9
spead2 (module), 5
spead2.MemoryPool (built-in class), 12
spead2.MmapAllocator (built-in class), 11
spead2.recv.Heap (built-in class), 9
spead2.recv.Heap.is_start_of_stream() (built-in function),

9

57

spead2 Documentation, Release 1.2.2

spead2.recv.Stream (built-in class), 9
spead2.recv.trollius.Stream (built-in class), 11
spead2.send.BytesStream (built-in class), 15
spead2.send.StreamConfig (built-in class), 12
spead2.send.UdpIbvStream (built-in class), 17
spead2.send.UdpStream (built-in class), 13, 14
spead2.ThreadPool (class in spead2), 8
spead2::descriptor (C++ class), 22
spead2::descriptor::description (C++ member), 22
spead2::descriptor::format (C++ member), 22
spead2::descriptor::id (C++ member), 22
spead2::descriptor::name (C++ member), 22
spead2::descriptor::numpy_header (C++ member), 22
spead2::descriptor::shape (C++ member), 22
spead2::memory_allocator (C++ class), 26
spead2::memory_allocator::allocate (C++ function), 26
spead2::memory_allocator::free (C++ function), 26
spead2::recv::heap (C++ class), 21
spead2::recv::heap::get_cnt (C++ function), 21
spead2::recv::heap::get_descriptors (C++ function), 22
spead2::recv::heap::get_flavour (C++ function), 21
spead2::recv::heap::get_items (C++ function), 21
spead2::recv::heap::heap (C++ function), 21
spead2::recv::heap::is_start_of_stream (C++ function),

22
spead2::recv::heap::to_descriptor (C++ function), 21
spead2::recv::item (C++ class), 22
spead2::recv::item::id (C++ member), 22
spead2::recv::item::immediate_value (C++ member), 22
spead2::recv::item::is_immediate (C++ member), 22
spead2::recv::item::length (C++ member), 22
spead2::recv::item::ptr (C++ member), 22
spead2::recv::live_heap (C++ class), 20
spead2::recv::live_heap::get_bug_compat (C++ func-

tion), 21
spead2::recv::live_heap::get_cnt (C++ function), 21
spead2::recv::live_heap::is_complete (C++ function), 21
spead2::recv::live_heap::is_contiguous (C++ function),

21
spead2::recv::live_heap::is_end_of_stream (C++ func-

tion), 21
spead2::recv::mem_reader (C++ class), 25
spead2::recv::netmap_udp_reader (C++ class), 33
spead2::recv::netmap_udp_reader::netmap_udp_reader

(C++ function), 34
spead2::recv::ring_stream (C++ class), 23
spead2::recv::stream (C++ class), 23
spead2::recv::stream::emplace_reader (C++ function), 23
spead2::recv::stream::stop (C++ function), 23
spead2::recv::stream::stop_received (C++ function), 23
spead2::recv::stream_base::flush (C++ function), 23
spead2::recv::udp_ibv_reader (C++ class), 31
spead2::recv::udp_ibv_reader::udp_ibv_reader (C++

function), 31, 32

spead2::recv::udp_reader (C++ class), 24
spead2::recv::udp_reader::udp_reader (C++ function),

24, 25
spead2::send::heap (C++ class), 26
spead2::send::heap::add_descriptor (C++ function), 27
spead2::send::heap::add_end (C++ function), 27
spead2::send::heap::add_item (C++ function), 27
spead2::send::heap::add_pointer (C++ function), 27
spead2::send::heap::add_start (C++ function), 27
spead2::send::heap::get_flavour (C++ function), 27
spead2::send::heap::heap (C++ function), 27
spead2::send::item (C++ class), 27
spead2::send::item::allow_immediate (C++ member), 28
spead2::send::item::id (C++ member), 28
spead2::send::item::immediate (C++ member), 28
spead2::send::item::is_inline (C++ member), 28
spead2::send::item::item (C++ function), 27
spead2::send::item::length (C++ member), 28
spead2::send::item::ptr (C++ member), 28
spead2::send::stream (C++ class), 28
spead2::send::stream::async_send_heap (C++ function),

28
spead2::send::stream::completion_handler (C++ type), 28
spead2::send::stream::flush (C++ function), 29
spead2::send::stream::get_io_service (C++ function), 28
spead2::send::stream::set_cnt_sequence (C++ function),

28
spead2::send::streambuf_stream (C++ class), 30
spead2::send::streambuf_stream::streambuf_stream (C++

function), 31
spead2::send::udp_ibv_stream (C++ class), 32
spead2::send::udp_ibv_stream::udp_ibv_stream (C++

function), 32
spead2::send::udp_stream (C++ class), 29
spead2::send::udp_stream::udp_stream (C++ function),

29, 30
spead2::set_log_function (C++ function), 31
spead2::thread_pool (C++ class), 20
spead2::thread_pool::get_io_service (C++ function), 20
spead2::thread_pool::set_affinity (C++ function), 20
spead2::thread_pool::stop (C++ function), 20
spead2::thread_pool::thread_pool (C++ function), 20
SPEAD2_IBV_COMP_VECTOR, 17
SPEAD2_IBV_INTERFACE, 17
stop() (spead2.recv.Stream method), 11
stop() (spead2.spead2.ThreadPool method), 8

U
update() (spead2.ItemGroup method), 8

V
value (spead2.Item attribute), 7
values() (spead2.ItemGroup method), 8
version (spead2.Item attribute), 7

58 Index

	Introduction to spead2
	Preparation
	Installing spead2 for Python
	Installing spead2 for C++

	Python API for spead2
	SPEAD flavours
	Mapping of SPEAD protocol to Python
	Stream control items
	Items and item groups
	Thread pools
	Receiving
	Sending
	Logging
	Support for ibverbs

	C++ API for spead2
	C++ API stability
	Asynchronous I/O
	Receiving
	Sending
	Logging
	Support for ibverbs
	Support for netmap

	Performance tuning
	System tuning
	Protocol design
	Application tuning

	Other tools
	mcdump

	Changelog
	License
	Indices and tables
	Python Module Index

