

Spatial Elliptical Fourier Descriptors

[image: _images/spatial_efd.svg]
 [https://travis-ci.com/sgrieve/spatial_efd][image: _images/master.svg]
 [https://ci.appveyor.com/project/sgrieve/spatial-efd][image: _images/badge.svg]
 [https://codecov.io/gh/sgrieve/spatial_efd][image: _images/requirements.svg]
 [https://requires.io/github/sgrieve/spatial_efd/requirements/?branch=master][image: _images/25ace2a73d063763035fd80962ded2cbdda1acc3.svg]
 [http://spatial-efd.readthedocs.io/en/latest/?badge=latest][image: _images/License-MIT-green.svg]
 [https://opensource.org/licenses/MIT][image: _images/status.svg]
 [http://dx.doi.org/10.21105/joss.00189]A pure python implementation of the elliptical Fourier analysis method described by Kuhl and Giardina (1982) [http://www.sci.utah.edu/~gerig/CS7960-S2010/handouts/Kuhl-Giardina-CGIP1982.pdf]. This package is designed to allow the rapid analysis of spatial data stored as ESRI shapefiles, handling all of the geometric conversions. The resulting data can be written back to shapefiles to allow analysis with other spatial data or can be plotted using matplotlib.

The code is built upon the pyefd module [https://github.com/hbldh/pyefd] and it is hoped that this package will allow more geoscientists to apply this technique to analyze spatial data using the elliptical Fourier descriptor technique as there is no longer a data conversion barrier to entry. This package is also more feature rich than previous implementations, providing calculations of Fourier power and spatial averaging of collections of ellipses.

[image: spatial_efd example]

Examples of Fourier ellipses (black) being fitted to a shapefile outline (red), for increasing numbers of harmonics.

Features

	Built-in geometry processing, just pass in a shapefile and get results quickly!

	Fourier coefficient average and standard deviation calculation

	Handles spatial input data through the pyshp library

	Compute an appropriate number of harmonics for a given polygon

	Basic plotting for analysis and debugging through matplotlib

	Write Fourier ellipses as shapefiles

Installation

Install spatial_efd by running:

$ pip install spatial_efd

Dependencies

This package supports Python 2.7 and Python 3 and is tested on Linux and Windows environments, using both the standard python interpreter and pypy [https://pypy.org]. It requires matplotlib, numpy, future and pyshp. These packages will all install automatically if spatial_efd is installed using pip.

Note: pypy is currently not being tested via CI due to a matplotlib build error. Please get in touch if this is an issue.

Dependencies can be tracked by visiting requires.io [https://requires.io/github/sgrieve/spatial_efd/requirements/?branch=master]

Note that Python 2 has reached end of life [https://www.python.org/doc/sunset-python-2/] and although the code currently works under Python 2, this will not be supported, and future updates may completely break Python 2 support without warning.

Tests

A range of unit tests are included in the /test/ directory. These can
be run using pytest:

$ pytest

Many of these tests make use of the example_data.shp file which is a shapefile containing six polygons taken from a real dataset of landslide source areas.

Usage

Normalized Data

The first step in using spatial_efd is always to load a shapefile:

import spatial_efd
shp = spatial_efd.LoadGeometries('test/fixtures/example_data.shp')

This creates a shapefile object shp which contains the polygon geometries we want to analyze. As in most cases more than one polygon will be stored in an individual file, a single polygon can be selected for processing using python’s list notation:

x, y, centroid = spatial_efd.ProcessGeometryNorm(shp[1])

This loads the geometry from the 2nd polygon within the shapefile into a list of x and a list of y coordinates. This method also computes the centroid of the polygon, which can be useful for later analysis. To make comparisons between data from different locations simpler, these data are normalized.

If you already know how many harmonics you wish to compute this can be specified during the calculation of the Fourier coefficients:

harmonic = 20
coeffs = spatial_efd.CalculateEFD(x, y, harmonic)

However, if you need to quantify the number of harmonics needed to exceed a threshold Fourier power, this functionality is available. To do this, an initial set of coefficients need to be computed to the number of harmonics required to equal the Nyquist frequency:

nyquist = spatial_efd.Nyquist(x)
tmpcoeffs = spatial_efd.CalculateEFD(x, y, nyquist)
harmonic = spatial_efd.FourierPower(tmpcoeffs, x)
coeffs = spatial_efd.CalculateEFD(x, y, harmonic)

Once the coefficients have been calculated they can be normalized following the steps outlined by Kuhl and Giardina (1982) [http://www.sci.utah.edu/~gerig/CS7960-S2010/handouts/Kuhl-Giardina-CGIP1982.pdf]:

coeffs, rotation = spatial_efd.normalize_efd(coeffs, size_invariant=True)

size_invariant should be set to True (the default value) in most cases to normalize the coefficient values, allowing comparison between polygons of differing sizes. Set size_invariant to False if it is required to plot the Fourier ellipses alongside the input shapefiles, or if the Fourier ellipses are to be written to a shapefile. These techniques which apply to normalized data are outlined later in this document.

A set of coefficients can be converted back into a series of x and y coordinates by performing an inverse transform, where the harmonic value passed in will be the harmonic reconstructed:

xt, yt = spatial_efd.inverse_transform(coeffs, harmonic=harmonic)

Wrappers around some of the basic matplotlib functionality is provided to speed up the visualization of results:

ax = spatial_efd.InitPlot()
spatial_efd.PlotEllipse(ax, xt, yt, color='k', width=1.)
spatial_efd.SavePlot(ax, harmonic, '/plots/myfigure', 'png')

This example generates an axis object, plots our transformed coordinates onto it with a line width of 1 and a line color of black. These axes are saved with a title denoting the harmonic used to generate the coordinates and are saved in the format provided in the location provided.

Note that as this plotting is performed using matplotlib many other formatting options can be applied to the created axis object, to easily create publication ready plots.

To plot an overlay of a Fourier ellipse and the original shapefile data, a convenience function has been provided to streamline the coordinate processing required.
Plotting the normalized coefficients, where the data has been processed using the ProcessGeometryNorm method is undertaken as follows (Note that size_invariant has been set to False):

size_invariant must be set to false if a normalized Fourier ellipse
is to be plotted alongside the shapefile data
coeffs, rotation = spatial_efd.normalize_efd(coeffs, size_invariant=False)
ax = spatial_efd.InitPlot()
spatial_efd.plotComparison(ax, coeffs, harmonic, x, y, rotation=rotation)
spatial_efd.SavePlot(ax, harmonic, '/plots/myComparison', 'png')

Which produces a figure like this:

[image: spatial_efd example]

Example of a normalized Fourier ellipse (black) being plotted on top of a shapefile outline (red).

All of the above examples have focused on processing a single polygon from a multipart shapefile, but in most cases multiple geometries will be required to be processed. One of the common techniques surrounding elliptical Fourier analysis is the averaging of a collection of polygons. This can be achieved as follows:

shp = spatial_efd.LoadGeometries('test/fixtures/example_data.shp')

coeffsList = []

for shape in shp:
 x, y, centroid = spatial_efd.ProcessGeometryNorm(shape)

 harmonic = 10
 coeffs = spatial_efd.CalculateEFD(x, y, harmonic)

 coeffs, rotation = spatial_efd.normalize_efd(coeffs, size_invariant=True)

 coeffsList.append(coeffs)

avgcoeffs = spatial_efd.AverageCoefficients(coeffsList)

Once the average coefficients for a collection of polygons has been computed, the standard deviation can also be calculated:

SDcoeffs = spatial_efd.AverageSD(coeffsList, avgcoeffs)

With the average and standard deviation coefficients calculated, the average shape, with error ellipses can be plotted in the same manner as individual ellipses were plotted earlier

x_avg, y_avg = spatial_efd.inverse_transform(avgcoeffs, harmonic=harmonic)
x_sd, y_sd = spatial_efd.inverse_transform(SDcoeffs, harmonic=harmonic)

ax = spatial_efd.InitPlot()
spatial_efd.PlotEllipse(ax, x_avg, y_avg, color='b', width=2.)

Plot avg +/- 1 SD error ellipses
spatial_efd.PlotEllipse(ax, x_avg + x_sd, y_avg + y_sd, color='k', width=1.)
spatial_efd.PlotEllipse(ax, x_avg - x_sd, y_avg - y_sd, color='k', width=1.)

spatial_efd.SavePlot(ax, harmonic, '/plots/average', 'png')

Which produces a figure like this:

[image: spatial_efd example]

Example of an average Fourier ellipse (blue) being plotted with standard deviation error ellipses (black).

Non-Normalized Data

In cases where the original coordinates are needed, a different processing method can be called when loading coordinates from a shapefile, to return the non-normalized data:

x, y, centroid = spatial_efd.ProcessGeometry(shp[1])

This method should be used where the original coordinates need to be preserved, for example if output to a shapefile is desired. To plot non-normalized data alongside the original shapefile data, the locus of the coefficients must be computed and passed as an argument to the inverse transform method:

locus = spatial_efd.calculate_dc_coefficients(x, y)
xt, yt = spatial_efd.inverse_transform(coeffs, harmonic=harmonic, locus=locus)

To plot non-normalized coefficients, again call the plotComparison method, with the rotation value set to 0 as no normalization has been performed on the input data:

ax = spatial_efd.InitPlot()
spatial_efd.plotComparison(ax, coeffs, harmonic, x, y, rotation=0.)
spatial_efd.SavePlot(ax, harmonic, '/plots/myComparison', 'png')

Which produces a figure like this:

[image: spatial_efd example]

Example of a non-normalized Fourier ellipse (black) being plotted on top of a shapefile outline (red).

In the case of the non-normalized data plotted above, these ellipses can also be written to a shapefile to allow further analysis in a GIS package:

shape_id = 1
shpinstance = spatial_efd.generateShapefile('mydata/myShapefile', prj='test/fixtures/example_data.prj')
shpinstance = spatial_efd.writeGeometry(coeffs, x, y, harmonic, shpinstance, shape_id)

The first method called creates a blank shapefile in the path mydata, ready to be populated with Fourier ellipses. By passing in the existing example.prj file to the save method, a new projection file will be generated for the saved shapefile, ensuring that it has the correct spatial reference information for when it is loaded into a GIS package. Note that no reprojection is performed as the aim is for the input and output coordinate systems to match. If this parameter is excluded, the output shapefile will have no defined spatial reference system.

The second method can be wrapped in a loop to write as many ellipses as required to a single file. shape_id is written into the attribute table of the output shapefile and can be set to any integer as a means of identifying the Fourier ellipses.

For more detailed guidance on all of the functions and arguments in this package please check out the source code on github [https://github.com/sgrieve/spatial_efd] or the API documentation. [http://spatial-efd.readthedocs.io/en/latest/spatial_efd.html]

Contribute

[image: _images/16128e434e30bf5bb3389ef47d0439a52f7916e0.svg?style=flat]
 [https://codecov.io/github/sgrieve/spatial_efd/issues]I welcome contributions to the code, head to the issue tracker on GitHub to get involved!

	Issue Tracker [https://github.com/sgrieve/spatial_efd/issues]

	Source Code [https://github.com/sgrieve/spatial_efd]

Support

If you find any bugs, have any questions or would like to see a feature in a new version, drop me a line:

	Twitter: @GIStuart [https://www.twitter.com/GIStuart]

	Email: stuart@swdg.io

License

The project is licensed under the MIT license.

Citation

If you use this package for scientific research please cite it as:

Grieve, S. W. D. (2017), spatial-efd: A spatial-aware implementation of elliptical Fourier analysis, The Journal of Open Source Software, 2 (11), doi:10.21105/joss.00189.

You can grab a bibtex file here [https://www.doi2bib.org/bib/10.21105%2Fjoss.00189].

References

Kuhl and Giardina (1982) [http://www.sci.utah.edu/~gerig/CS7960-S2010/handouts/Kuhl-Giardina-CGIP1982.pdf]. Elliptic Fourier features of a closed contour. Computer graphics and image processing, 18(3), 236-258.

API

Click here for the module level documentation.

Indices and tables

	Index

	Module Index

	Search Page

Spatial Elliptical Fourier Descriptors

[image: _images/spatial_efd.svg]
 [https://travis-ci.com/sgrieve/spatial_efd][image: _images/master.svg]
 [https://ci.appveyor.com/project/sgrieve/spatial-efd][image: _images/badge.svg]
 [https://codecov.io/gh/sgrieve/spatial_efd][image: _images/requirements.svg]
 [https://requires.io/github/sgrieve/spatial_efd/requirements/?branch=master][image: _images/25ace2a73d063763035fd80962ded2cbdda1acc3.svg]
 [http://spatial-efd.readthedocs.io/en/latest/?badge=latest][image: _images/License-MIT-green.svg]
 [https://opensource.org/licenses/MIT][image: _images/status.svg]
 [http://dx.doi.org/10.21105/joss.00189]A pure python implementation of the elliptical Fourier analysis method described by Kuhl and Giardina (1982) [http://www.sci.utah.edu/~gerig/CS7960-S2010/handouts/Kuhl-Giardina-CGIP1982.pdf]. This package is designed to allow the rapid analysis of spatial data stored as ESRI shapefiles, handling all of the geometric conversions. The resulting data can be written back to shapefiles to allow analysis with other spatial data or can be plotted using matplotlib.

The code is built upon the pyefd module [https://github.com/hbldh/pyefd] and it is hoped that this package will allow more geoscientists to apply this technique to analyze spatial data using the elliptical Fourier descriptor technique as there is no longer a data conversion barrier to entry. This package is also more feature rich than previous implementations, providing calculations of Fourier power and spatial averaging of collections of ellipses.

[image: spatial_efd example]

Examples of Fourier ellipses (black) being fitted to a shapefile outline (red), for increasing numbers of harmonics.

Features

	Built-in geometry processing, just pass in a shapefile and get results quickly!

	Fourier coefficient average and standard deviation calculation

	Handles spatial input data through the pyshp library

	Compute an appropriate number of harmonics for a given polygon

	Basic plotting for analysis and debugging through matplotlib

	Write Fourier ellipses as shapefiles

Installation

Install spatial_efd by running:

$ pip install spatial_efd

Dependencies

This package supports Python 2.7 and Python 3 and is tested on Linux and Windows environments, using both the standard python interpreter and pypy [https://pypy.org]. It requires matplotlib, numpy, future and pyshp. These packages will all install automatically if spatial_efd is installed using pip.

Note: pypy is currently not being tested via CI due to a matplotlib build error. Please get in touch if this is an issue.

Dependencies can be tracked by visiting requires.io [https://requires.io/github/sgrieve/spatial_efd/requirements/?branch=master]

Note that Python 2 has reached end of life [https://www.python.org/doc/sunset-python-2/] and although the code currently works under Python 2, this will not be supported, and future updates may completely break Python 2 support without warning.

Tests

A range of unit tests are included in the /test/ directory. These can
be run using pytest:

$ pytest

Many of these tests make use of the example_data.shp file which is a shapefile containing six polygons taken from a real dataset of landslide source areas.

Usage

Normalized Data

The first step in using spatial_efd is always to load a shapefile:

import spatial_efd
shp = spatial_efd.LoadGeometries('test/fixtures/example_data.shp')

This creates a shapefile object shp which contains the polygon geometries we want to analyze. As in most cases more than one polygon will be stored in an individual file, a single polygon can be selected for processing using python’s list notation:

x, y, centroid = spatial_efd.ProcessGeometryNorm(shp[1])

This loads the geometry from the 2nd polygon within the shapefile into a list of x and a list of y coordinates. This method also computes the centroid of the polygon, which can be useful for later analysis. To make comparisons between data from different locations simpler, these data are normalized.

If you already know how many harmonics you wish to compute this can be specified during the calculation of the Fourier coefficients:

harmonic = 20
coeffs = spatial_efd.CalculateEFD(x, y, harmonic)

However, if you need to quantify the number of harmonics needed to exceed a threshold Fourier power, this functionality is available. To do this, an initial set of coefficients need to be computed to the number of harmonics required to equal the Nyquist frequency:

nyquist = spatial_efd.Nyquist(x)
tmpcoeffs = spatial_efd.CalculateEFD(x, y, nyquist)
harmonic = spatial_efd.FourierPower(tmpcoeffs, x)
coeffs = spatial_efd.CalculateEFD(x, y, harmonic)

Once the coefficients have been calculated they can be normalized following the steps outlined by Kuhl and Giardina (1982) [http://www.sci.utah.edu/~gerig/CS7960-S2010/handouts/Kuhl-Giardina-CGIP1982.pdf]:

coeffs, rotation = spatial_efd.normalize_efd(coeffs, size_invariant=True)

size_invariant should be set to True (the default value) in most cases to normalize the coefficient values, allowing comparison between polygons of differing sizes. Set size_invariant to False if it is required to plot the Fourier ellipses alongside the input shapefiles, or if the Fourier ellipses are to be written to a shapefile. These techniques which apply to normalized data are outlined later in this document.

A set of coefficients can be converted back into a series of x and y coordinates by performing an inverse transform, where the harmonic value passed in will be the harmonic reconstructed:

xt, yt = spatial_efd.inverse_transform(coeffs, harmonic=harmonic)

Wrappers around some of the basic matplotlib functionality is provided to speed up the visualization of results:

ax = spatial_efd.InitPlot()
spatial_efd.PlotEllipse(ax, xt, yt, color='k', width=1.)
spatial_efd.SavePlot(ax, harmonic, '/plots/myfigure', 'png')

This example generates an axis object, plots our transformed coordinates onto it with a line width of 1 and a line color of black. These axes are saved with a title denoting the harmonic used to generate the coordinates and are saved in the format provided in the location provided.

Note that as this plotting is performed using matplotlib many other formatting options can be applied to the created axis object, to easily create publication ready plots.

To plot an overlay of a Fourier ellipse and the original shapefile data, a convenience function has been provided to streamline the coordinate processing required.
Plotting the normalized coefficients, where the data has been processed using the ProcessGeometryNorm method is undertaken as follows (Note that size_invariant has been set to False):

size_invariant must be set to false if a normalized Fourier ellipse
is to be plotted alongside the shapefile data
coeffs, rotation = spatial_efd.normalize_efd(coeffs, size_invariant=False)
ax = spatial_efd.InitPlot()
spatial_efd.plotComparison(ax, coeffs, harmonic, x, y, rotation=rotation)
spatial_efd.SavePlot(ax, harmonic, '/plots/myComparison', 'png')

Which produces a figure like this:

[image: spatial_efd example]

Example of a normalized Fourier ellipse (black) being plotted on top of a shapefile outline (red).

All of the above examples have focused on processing a single polygon from a multipart shapefile, but in most cases multiple geometries will be required to be processed. One of the common techniques surrounding elliptical Fourier analysis is the averaging of a collection of polygons. This can be achieved as follows:

shp = spatial_efd.LoadGeometries('test/fixtures/example_data.shp')

coeffsList = []

for shape in shp:
 x, y, centroid = spatial_efd.ProcessGeometryNorm(shape)

 harmonic = 10
 coeffs = spatial_efd.CalculateEFD(x, y, harmonic)

 coeffs, rotation = spatial_efd.normalize_efd(coeffs, size_invariant=True)

 coeffsList.append(coeffs)

avgcoeffs = spatial_efd.AverageCoefficients(coeffsList)

Once the average coefficients for a collection of polygons has been computed, the standard deviation can also be calculated:

SDcoeffs = spatial_efd.AverageSD(coeffsList, avgcoeffs)

With the average and standard deviation coefficients calculated, the average shape, with error ellipses can be plotted in the same manner as individual ellipses were plotted earlier

x_avg, y_avg = spatial_efd.inverse_transform(avgcoeffs, harmonic=harmonic)
x_sd, y_sd = spatial_efd.inverse_transform(SDcoeffs, harmonic=harmonic)

ax = spatial_efd.InitPlot()
spatial_efd.PlotEllipse(ax, x_avg, y_avg, color='b', width=2.)

Plot avg +/- 1 SD error ellipses
spatial_efd.PlotEllipse(ax, x_avg + x_sd, y_avg + y_sd, color='k', width=1.)
spatial_efd.PlotEllipse(ax, x_avg - x_sd, y_avg - y_sd, color='k', width=1.)

spatial_efd.SavePlot(ax, harmonic, '/plots/average', 'png')

Which produces a figure like this:

[image: spatial_efd example]

Example of an average Fourier ellipse (blue) being plotted with standard deviation error ellipses (black).

Non-Normalized Data

In cases where the original coordinates are needed, a different processing method can be called when loading coordinates from a shapefile, to return the non-normalized data:

x, y, centroid = spatial_efd.ProcessGeometry(shp[1])

This method should be used where the original coordinates need to be preserved, for example if output to a shapefile is desired. To plot non-normalized data alongside the original shapefile data, the locus of the coefficients must be computed and passed as an argument to the inverse transform method:

locus = spatial_efd.calculate_dc_coefficients(x, y)
xt, yt = spatial_efd.inverse_transform(coeffs, harmonic=harmonic, locus=locus)

To plot non-normalized coefficients, again call the plotComparison method, with the rotation value set to 0 as no normalization has been performed on the input data:

ax = spatial_efd.InitPlot()
spatial_efd.plotComparison(ax, coeffs, harmonic, x, y, rotation=0.)
spatial_efd.SavePlot(ax, harmonic, '/plots/myComparison', 'png')

Which produces a figure like this:

[image: spatial_efd example]

Example of a non-normalized Fourier ellipse (black) being plotted on top of a shapefile outline (red).

In the case of the non-normalized data plotted above, these ellipses can also be written to a shapefile to allow further analysis in a GIS package:

shape_id = 1
shpinstance = spatial_efd.generateShapefile('mydata/myShapefile', prj='test/fixtures/example_data.prj')
shpinstance = spatial_efd.writeGeometry(coeffs, x, y, harmonic, shpinstance, shape_id)

The first method called creates a blank shapefile in the path mydata, ready to be populated with Fourier ellipses. By passing in the existing example.prj file to the save method, a new projection file will be generated for the saved shapefile, ensuring that it has the correct spatial reference information for when it is loaded into a GIS package. Note that no reprojection is performed as the aim is for the input and output coordinate systems to match. If this parameter is excluded, the output shapefile will have no defined spatial reference system.

The second method can be wrapped in a loop to write as many ellipses as required to a single file. shape_id is written into the attribute table of the output shapefile and can be set to any integer as a means of identifying the Fourier ellipses.

For more detailed guidance on all of the functions and arguments in this package please check out the source code on github [https://github.com/sgrieve/spatial_efd] or the API documentation. [http://spatial-efd.readthedocs.io/en/latest/spatial_efd.html]

Contribute

[image: _images/16128e434e30bf5bb3389ef47d0439a52f7916e0.svg?style=flat]
 [https://codecov.io/github/sgrieve/spatial_efd/issues]I welcome contributions to the code, head to the issue tracker on GitHub to get involved!

	Issue Tracker [https://github.com/sgrieve/spatial_efd/issues]

	Source Code [https://github.com/sgrieve/spatial_efd]

Support

If you find any bugs, have any questions or would like to see a feature in a new version, drop me a line:

	Twitter: @GIStuart [https://www.twitter.com/GIStuart]

	Email: stuart@swdg.io

License

The project is licensed under the MIT license.

Citation

If you use this package for scientific research please cite it as:

Grieve, S. W. D. (2017), spatial-efd: A spatial-aware implementation of elliptical Fourier analysis, The Journal of Open Source Software, 2 (11), doi:10.21105/joss.00189.

You can grab a bibtex file here [https://www.doi2bib.org/bib/10.21105%2Fjoss.00189].

References

Kuhl and Giardina (1982) [http://www.sci.utah.edu/~gerig/CS7960-S2010/handouts/Kuhl-Giardina-CGIP1982.pdf]. Elliptic Fourier features of a closed contour. Computer graphics and image processing, 18(3), 236-258.

API

	spatial_efd

spatial_efd

	
spatial_efd.spatial_efd.AverageCoefficients(coeffList)[source]

	Average the coefficients contained in the list of coefficient arrays,
coeffList.

This method is outlined in:

2-D particle shape averaging and comparison using Fourier descriptors:
Powder Technology Volume 104, Issue 2, 1 September 1999, Pages 180-189

	Parameters

	coeffList (list) – A list of coefficient arrays to be averaged.

	Returns

	A numpy array containing the average An, Bn, Cn, Dn
coefficient values.

	Return type

	numpy.ndarray

	
spatial_efd.spatial_efd.AverageSD(coeffList, avgcoeffs)[source]

	Use the coefficients contained in the list of coefficient arrays,
coeffList, and the average coefficient values to compute the standard
deviation of series of ellipses.

This method is outlined in:

2-D particle shape averaging and comparison using Fourier descriptors:
Powder Technology Volume 104, Issue 2, 1 September 1999, Pages 180-189

	Parameters

	
	coeffList (list) – A list of coefficient arrays to be averaged.

	avgcoeffs (numpy.ndarray) – A numpy array containing the average
coefficient values, generated by calling AverageCoefficients().

	Returns

	A numpy array containing the standard deviation
An, Bn, Cn, Dn coefficient values.

	Return type

	numpy.ndarray

	
spatial_efd.spatial_efd.CalculateEFD(X, Y, harmonics=10)[source]

	Compute the Elliptical Fourier Descriptors for a polygon.

Implements Kuhl and Giardina method of computing the coefficients
An, Bn, Cn, Dn for a specified number of harmonics. This code is adapted
from the pyefd module. See the original paper for more detail:

Kuhl, FP and Giardina, CR (1982). Elliptic Fourier features of a closed
contour. Computer graphics and image processing, 18(3), 236-258.

	Parameters

	
	X (list) – A list (or numpy array) of x coordinate values.

	Y (list) – A list (or numpy array) of y coordinate values.

	harmonics (int) – The number of harmonics to compute for the given
shape, defaults to 10.

	Returns

	A numpy array of shape (harmonics, 4) representing the
four coefficients for each harmonic computed.

	Return type

	numpy.ndarray

	
spatial_efd.spatial_efd.CloseContour(X, Y)[source]

	Close an opened polygon.

	Parameters

	
	X (list) – A list (or numpy array) of x coordinate values.

	Y (list) – A list (or numpy array) of y coordinate values.

	Returns

	A tuple containing the X and Y lists of coordinates where the
first and last elements are equal.

	Return type

	tuple

	
spatial_efd.spatial_efd.ContourArea(X, Y)[source]

	Compute the area of an irregular polygon.

Ensures the contour is closed before processing, but does not modify
X or Y outside the scope of this method. Algorithm taken from
http://paulbourke.net/geometry/polygonmesh/.

	Parameters

	
	X (list) – A list (or numpy array) of x coordinate values.

	Y (list) – A list (or numpy array) of y coordinate values.

	Returns

	The area of the input polygon.

	Return type

	float

	
spatial_efd.spatial_efd.ContourCentroid(X, Y)[source]

	Compute the centroid of an irregular polygon.

Ensures the contour is closed before processing, but does not modify
X or Y outside the scope of this method. Algorithm taken from
http://paulbourke.net/geometry/polygonmesh/.

	Parameters

	
	X (list) – A list (or numpy array) of x coordinate values.

	Y (list) – A list (or numpy array) of y coordinate values.

	Returns

	A tuple containing the (x,y) coordinate of the center of the
input polygon.

	Return type

	tuple

	
spatial_efd.spatial_efd.FourierPower(coeffs, X, threshold=0.9999)[source]

	Compute the total Fourier power and find the minium number of harmonics
required to exceed the threshold fraction of the total power.

This is a good method for identifying the number of harmonics to use to
describe a polygon. For more details see:

	Costa et al. / Postharvest Biology and Technology 54 (2009) 38-47

Warning

The number of coeffs must be >= the nyquist freqency.

	Parameters

	
	coeffs (numpy.ndarray) – A numpy array of shape (n, 4) representing the
four coefficients for each harmonic computed.

	X (list) – A list (or numpy array) of x coordinate values.

	threshold (float) – The threshold fraction of the total Fourier power,
the default is 0.9999.

	Returns

	The number of harmonics required to represent the contour above
the threshold Fourier power.

	Return type

	int

	
spatial_efd.spatial_efd.InitPlot()[source]

	Set up the axes for plotting, ensuring that x and y dimensions are equal.

	Returns

	Matplotlib axis instance.

	Return type

	matplotlib.axes.Axes

	
spatial_efd.spatial_efd.LoadGeometries(filename)[source]

	Takes a filename and uses pyshp to load it, returning a list of
shapefile.ShapeRecord instances.

This list can be iterated over, passing the individual shape instances
to ProcessGeometry() one by one. There is no input handling if a
non-polygon shapefile is passed in, that will result in undefined behavior.

	Parameters

	filename (string) – A filename with optional full path pointing to an
ESRI shapefile to be loaded by the pyshp module. The file extension
is optional.

	Returns

	A list of shapefile._ShapeRecord objects representing each
polygon geometry in the shapefile.

	Return type

	list

	
spatial_efd.spatial_efd.NormContour(X, Y, rawCentroid)[source]

	Normalize the coordinates which make up a contour.

Rescale the coordinates to values between 0 and 1 in both the x and y
directions. The normalizing is performed using x or y width of the minimum
bounding rectangle of the contour, whichever is largest. X and Y must have
the same dimensions.

	Parameters

	
	X (list) – A list (or numpy array) of x coordinate values.

	Y (list) – A list (or numpy array) of y coordinate values.

	rawCentroid (tuple) – A tuple containing the x,y coordinates of the
centroid of the contour.

	Returns

	A tuple containing a list of normalized x coordinates, a list of
normalized y coordinate and the normalized centroid.

	Return type

	tuple

	
spatial_efd.spatial_efd.Nyquist(X)[source]

	Returns the maximum number of harmonics that can be computed for a given
contour, the nyquist freqency.

See this paper for details:
C. Costa et al. / Postharvest Biology and Technology 54 (2009) 38-47

	Parameters

	X (list) – A list (or numpy array) of x coordinate values.

	Returns

	The nyquist frequency, expressed as a number of harmonics.

	Return type

	int

	
spatial_efd.spatial_efd.PlotEllipse(ax, x, y, color='k', width=1.0)[source]

	Plots an ellipse represented as a series of x and y coordinates on a given
axis.

	Parameters

	
	ax (matplotlib.axes.Axes) – Matplotlib axis instance.

	x (list) – A list (or numpy array) of x coordinate values.

	y (list) – A list (or numpy array) of y coordinate values.

	color (string) – A matplotlib color string to color the line used to
plot the ellipse. Defaults to k (black).

	width (float) – The width of the plotted line. Defaults to 1.

	
spatial_efd.spatial_efd.ProcessGeometry(shape)[source]

	Method to handle all the geometry processing that may be needed by the rest
of the EFD code.

Method which takes a single shape instance from a shapefile
eg shp.Reader(‘shapefile.shp’).shapeRecords()[n]
where n is the index of the shape within a multipart geometry. This results
in the contour, coordinate list and centroid data computed for the input
polygon being normalized and returned to the user.

	Parameters

	shapefile._ShapeRecord – A shapefile object representing the geometry
and attributes of a single polygon from a multipart shapefile.

	Returns

	A tuple containing a list of normalized x coordinates, a list of
normalized y coordinates, contour (a list of [x,y] coordinate pairs,
normalized about the shape’s centroid) and the normalized coordinate
centroid.

	Return type

	tuple

	
spatial_efd.spatial_efd.ProcessGeometryNorm(shape)[source]

	Method to handle all the geometry processing that may be needed by the rest
of the EFD code. This method normalizes the input data to allow spatially
distributed data to be plotted in the same cartesian space.

Method which takes a single shape instance from a shapefile
eg shp.Reader(‘shapefile.shp’).shapeRecords()[n]
where n is the index of the shape within a multipart geometry. This results
in the contour, coordinate list and centroid data computed for the input
polygon being normalized and returned to the user.

	Parameters

	shapefile._ShapeRecord – A shapefile object representing the geometry
and attributes of a single polygon from a multipart shapefile.

	Returns

	A tuple containing a list of normalized x coordinates, a list of
normalized y coordinates, contour (a list of [x,y] coordinate pairs,
normalized about the shape’s centroid) and the normalized coordinate
centroid.

	Return type

	tuple

	
spatial_efd.spatial_efd.RotateContour(X, Y, rotation, centroid)[source]

	Rotates a contour about a point by a given amount expressed in degrees.

Operates by calling rotatePoint() on each x,y pair in turn. X and Y must
have the same dimensions.

	Parameters

	
	X (list) – A list (or numpy array) of x coordinate values.

	Y (list) – A list (or numpy array) of y coordinate values.

	rotation (float) – The angle in degrees for the contour to be rotated
by.

	centroid (tuple) – A tuple containing the x,y coordinates of the
centroid to rotate the contour about.

	Returns

	A tuple containing a list of x coordinates and a list of y
coordinates.

	Return type

	tuple

	
spatial_efd.spatial_efd.SavePlot(ax, harmonic, filename, figformat='png')[source]

	Wrapper around the savefig method.

Call this method to add a title identifying the harmonic being plotted, and
save the plot to a file. Note that harmonic is simply an int value to be
appended to the plot title, it does not select a harmonic to plot.

The figformat argumet can take any value which matplotlib understands,
which varies by system. To see a full list suitable for your matplotlib
instance, call plt.gcf().canvas.get_supported_filetypes().

	Parameters

	
	ax (matplotlib.axes.Axes) – Matplotlib axis instance.

	harmonic (int) – The harmonic which is being plotted.

	filename (string) – A complete path and filename, without an extension,
for the saved plot.

	figformat (string) – A string denoting the format to save the figure as.
Defaults to png.

	
spatial_efd.spatial_efd.calculate_dc_coefficients(X, Y)[source]

	Compute the dc coefficients, used as the locus when calling
inverse_transform().

This code is adapted from the pyefd module. See the original paper for
more detail:

Kuhl, FP and Giardina, CR (1982). Elliptic Fourier features of a closed
contour. Computer graphics and image processing, 18(3), 236-258.

	Parameters

	
	X (list) – A list (or numpy array) of x coordinate values.

	Y (list) – A list (or numpy array) of y coordinate values.

	Returns

	A tuple containing the c and d coefficients.

	Return type

	tuple

	
spatial_efd.spatial_efd.generateShapefile(filename, prj=None)[source]

	Create an empty shapefile to write output into using writeGeometry().

Builds a multipart polygon shapefile with a single attribute, ID, which can
be used to reference the written polygons.

	Parameters

	
	filename (string) – A complete path and filename, with or without the
.shp extenion, to write the shapefile data to. Must be a path
which exists.

	prj (string) – A complete path and filename, with or without the
.prj extenion, to the projection file from the shapefile that the
data was loaded from initially, Used to copy the spatial projection
information to the new file.

Warning

Code does not test if output paths exist, and if files exist they will
be overwritten.

	Returns

	An empty polygon shapefile instance ready to have
data written to it.

	Return type

	shapefile.Writer

	
spatial_efd.spatial_efd.getBBoxDimensions(x, y)[source]

	Returns the width in the x and y dimensions and the maximum x and y
coordinates for the bounding box of a given list of x and y coordinates.

	Parameters

	
	x (list) – A list (or numpy array) of x coordinate values.

	y (list) – A list (or numpy array) of y coordinate values.

	Returns

	A four-tuple representing (width in the x direction, width in
the y direction, the minimum x coordinate and the minimum y
coordinate).

	Return type

	tuple

	
spatial_efd.spatial_efd.inverse_transform(coeffs, locus=(0, 0), n_coords=300, harmonic=10)[source]

	Perform an inverse fourier transform to convert the coefficients back into
spatial coordinates.

Implements Kuhl and Giardina method of computing the performing the
transform for a specified number of harmonics. This code is adapted
from the pyefd module. See the original paper for more detail:

Kuhl, FP and Giardina, CR (1982). Elliptic Fourier features of a closed
contour. Computer graphics and image processing, 18(3), 236-258.

	Parameters

	
	coeffs (numpy.ndarray) – A numpy array of shape (harmonic, 4)
representing the four coefficients for each harmonic computed.

	locus (tuple) – The x,y coordinates of the centroid of the contour being
generated. Use calculate_dc_coefficients() to generate the correct
locus for a shape.

	n_coords (int) – The number of coordinate pairs to compute. A larger
value will result in a more complex shape at the expense of
increased computational time. Defaults to 300.

	harmonics (int) – The number of harmonics to be used to generate
coordinates, defaults to 10. Must be <= coeffs.shape[0]. Supply a
smaller value to produce coordinates for a more generalized shape.

	Returns

	A numpy array of shape (harmonics, 4) representing the
four coefficients for each harmonic computed.

	Return type

	numpy.ndarray

	
spatial_efd.spatial_efd.normalize_efd(coeffs, size_invariant=True)[source]

	Normalize the Elliptical Fourier Descriptor coefficients for a polygon.

Implements Kuhl and Giardina method of normalizing the coefficients
An, Bn, Cn, Dn. Performs 3 separate normalizations. First, it makes the
data location invariant by re-scaling the data to a common origin.
Secondly, the data is rotated with respect to the major axis. Thirdly,
the coefficients are normalized with regard to the absolute value of A_1.
This code is adapted from the pyefd module. See the original paper for
more detail:

Kuhl, FP and Giardina, CR (1982). Elliptic Fourier features of a closed
contour. Computer graphics and image processing, 18(3), 236-258.

	Parameters

	
	coeffs (numpy.ndarray) – A numpy array of shape (n, 4) representing the
four coefficients for each harmonic computed.

	size_invariant (bool) – Set to True (the default) to perform the third
normalization and false to return the data withot this processing
step. Set this to False when plotting a comparison between the
input data and the Fourier ellipse.

	Returns

	
	A tuple consisting of a numpy.ndarray of shape (harmonics, 4)

	representing the four coefficients for each harmonic computed and
the rotation in degrees applied to the normalized contour.

	Return type

	tuple

	
spatial_efd.spatial_efd.plotComparison(ax, coeffs, harmonic, x, y, rotation=0, color1='k', width1=2, color2='r', width2=1)[source]

	Convenience function which plots an EFD ellipse and a shapefile polygon in
the same coordate system.

Warning

If passing in normalized coefficients, they must be created with the
size_invariant parameter set to False.

	Parameters

	
	ax (matplotlib.axes.Axes) – Matplotlib axis instance.

	x (list) – A list (or numpy array) of x coordinate values.

	y (list) – A list (or numpy array) of y coordinate values.

	rotation (float) – The angle in degrees for the contour to be rotated
by. Generated by normalize_efd(). Leave as 0 if non-normalized
coefficients are being plotted.

	harmonic (int) – The number of harmonics to be used to generate
coordinates. Must be <= coeffs.shape[0]. Supply a smaller value to
produce coordinates for a more generalized shape.

	color1 (string) – A matplotlib color string to color the line used to
plot the Fourier ellipse. Defaults to k (black).

	width1 (float) – The width of the plotted fourier ellipse. Defaults
to 1.

	color2 (string) – A matplotlib color string to color the line used to
plot the shapefile. Defaults to r (red).

	width2 (float) – The width of the plotted shapefile. Defaults to 1.

	
spatial_efd.spatial_efd.rotatePoint(point, centerPoint, angle)[source]

	Rotates a point counter-clockwise around centerPoint.

The angle to rotate by is supplied in degrees. Code based on:
https://gist.github.com/somada141/d81a05f172bb2df26a2c

	Parameters

	
	point (tuple) – The point to be rotated, represented as an (x,y) tuple.

	centerPoint (tuple) – The point to be rotated about, represented as
an (x,y) tuple.

	angle (float) – The angle to rotate point by, in the counter-clockwise
direction.

	Returns

	A tuple representing the rotated point, (x,y).

	Return type

	tuple

	
spatial_efd.spatial_efd.writeGeometry(coeffs, x, y, harmonic, shpinstance, ID)[source]

	Write the results of inverse_transform() to a shapefile.

Will only produce spatially meaningful data if the input coefficients have
not been normalized.

	Parameters

	
	coeffs (numpy.ndarray) – A numpy array of shape (n, 4) representing the
four coefficients for each harmonic computed.

	x (list) – A list (or numpy array) of x coordinate values.

	y (list) – A list (or numpy array) of y coordinate values.

	harmonic (int) – The number of harmonics to be used to generate
coordinates. Must be <= coeffs.shape[0]. Supply a smaller value to
produce coordinates for a more generalized shape.

	shpinstance (shapefile.Writer) – A multipart polygon shapefile to write
the data to.

	ID (int) – An integer ID value which will be written as an attribute
alongside the geometry.

	Returns

	shpinstance with the new geometry appended.

 Python Module Index

 s

 		 	

 		
 s	

 	[image: -]
 	
 spatial_efd	

 	
 	
 spatial_efd.spatial_efd	

Index

 A
 | C
 | F
 | G
 | I
 | L
 | N
 | P
 | R
 | S
 | W

A

 	
 	AverageCoefficients() (in module spatial_efd.spatial_efd)

 	
 	AverageSD() (in module spatial_efd.spatial_efd)

C

 	
 	calculate_dc_coefficients() (in module spatial_efd.spatial_efd)

 	CalculateEFD() (in module spatial_efd.spatial_efd)

 	
 	CloseContour() (in module spatial_efd.spatial_efd)

 	ContourArea() (in module spatial_efd.spatial_efd)

 	ContourCentroid() (in module spatial_efd.spatial_efd)

F

 	
 	FourierPower() (in module spatial_efd.spatial_efd)

G

 	
 	generateShapefile() (in module spatial_efd.spatial_efd)

 	
 	getBBoxDimensions() (in module spatial_efd.spatial_efd)

I

 	
 	InitPlot() (in module spatial_efd.spatial_efd)

 	
 	inverse_transform() (in module spatial_efd.spatial_efd)

L

 	
 	LoadGeometries() (in module spatial_efd.spatial_efd)

N

 	
 	normalize_efd() (in module spatial_efd.spatial_efd)

 	
 	NormContour() (in module spatial_efd.spatial_efd)

 	Nyquist() (in module spatial_efd.spatial_efd)

P

 	
 	plotComparison() (in module spatial_efd.spatial_efd)

 	PlotEllipse() (in module spatial_efd.spatial_efd)

 	
 	ProcessGeometry() (in module spatial_efd.spatial_efd)

 	ProcessGeometryNorm() (in module spatial_efd.spatial_efd)

R

 	
 	RotateContour() (in module spatial_efd.spatial_efd)

 	
 	rotatePoint() (in module spatial_efd.spatial_efd)

S

 	
 	SavePlot() (in module spatial_efd.spatial_efd)

 	
 	spatial_efd.spatial_efd (module)

W

 	
 	writeGeometry() (in module spatial_efd.spatial_efd)

 All modules for which code is available

	spatial_efd.spatial_efd

 Source code for spatial_efd.spatial_efd

#!/usr/bin/env python
from __future__ import division
from builtins import range, zip
import warnings
import numpy as np
import shapefile as sf
import matplotlib.pyplot as plt
import os.path as path
from shutil import copy2

[docs]def RotateContour(X, Y, rotation, centroid):
 '''
 Rotates a contour about a point by a given amount expressed in degrees.

 Operates by calling rotatePoint() on each x,y pair in turn. X and Y must
 have the same dimensions.

 Args:
 X (list): A list (or numpy array) of x coordinate values.
 Y (list): A list (or numpy array) of y coordinate values.
 rotation (float): The angle in degrees for the contour to be rotated
 by.
 centroid (tuple): A tuple containing the x,y coordinates of the
 centroid to rotate the contour about.

 Returns:
 tuple: A tuple containing a list of x coordinates and a list of y
 coordinates.
 '''

 rxs = []
 rys = []

 for nx, ny in zip(X, Y):
 rx, ry = rotatePoint((nx, ny), centroid, rotation)
 rxs.append(rx)
 rys.append(ry)

 return rxs, rys

[docs]def NormContour(X, Y, rawCentroid):
 '''
 Normalize the coordinates which make up a contour.

 Rescale the coordinates to values between 0 and 1 in both the x and y
 directions. The normalizing is performed using x or y width of the minimum
 bounding rectangle of the contour, whichever is largest. X and Y must have
 the same dimensions.

 Args:
 X (list): A list (or numpy array) of x coordinate values.
 Y (list): A list (or numpy array) of y coordinate values.
 rawCentroid (tuple): A tuple containing the x,y coordinates of the
 centroid of the contour.

 Returns:
 tuple: A tuple containing a list of normalized x coordinates, a list of
 normalized y coordinate and the normalized centroid.
 '''

 # find longest axis of rotated shape
 xwidth, ywidth, xmin, ymin = getBBoxDimensions(X, Y)
 if (xwidth > ywidth):
 normshape = xwidth
 elif (ywidth >= xwidth):
 normshape = ywidth

 norm_x = [(value - xmin) / normshape for value in X]
 norm_y = [(value - ymin) / normshape for value in Y]

 centroid = ((rawCentroid[0] - xmin) / normshape,
 (rawCentroid[1] - ymin) / normshape)

 return norm_x, norm_y, centroid

[docs]def CloseContour(X, Y):
 '''
 Close an opened polygon.

 Args:
 X (list): A list (or numpy array) of x coordinate values.
 Y (list): A list (or numpy array) of y coordinate values.

 Returns:
 tuple: A tuple containing the X and Y lists of coordinates where the
 first and last elements are equal.
 '''
 if ((X[0] != X[-1]) or (Y[0] != Y[-1])):
 X = X + [X[0]]
 Y = Y + [Y[0]]

 return X, Y

[docs]def ContourArea(X, Y):
 '''
 Compute the area of an irregular polygon.

 Ensures the contour is closed before processing, but does not modify
 X or Y outside the scope of this method. Algorithm taken from
 http://paulbourke.net/geometry/polygonmesh/.

 Args:
 X (list): A list (or numpy array) of x coordinate values.
 Y (list): A list (or numpy array) of y coordinate values.

 Returns:
 float: The area of the input polygon.
 '''

 # Check the contour provided is closed
 X, Y = CloseContour(X, Y)

 Sum = 0

 for i in range(len(X) - 1):
 Sum += (X[i] * Y[i + 1]) - (X[i + 1] * Y[i])

 return abs(0.5 * Sum)

[docs]def ContourCentroid(X, Y):
 '''
 Compute the centroid of an irregular polygon.

 Ensures the contour is closed before processing, but does not modify
 X or Y outside the scope of this method. Algorithm taken from
 http://paulbourke.net/geometry/polygonmesh/.

 Args:
 X (list): A list (or numpy array) of x coordinate values.
 Y (list): A list (or numpy array) of y coordinate values.

 Returns:
 tuple: A tuple containing the (x,y) coordinate of the center of the
 input polygon.
 '''

 # Check the contour provided is closed
 X, Y = CloseContour(X, Y)

 Area = ContourArea(X, Y)

 Cx = 0
 Cy = 0

 for i in range(len(X) - 1):
 const = (X[i] * Y[i + 1]) - (X[i + 1] * Y[i])

 Cx += (X[i] + X[i + 1]) * const
 Cy += (Y[i] + Y[i + 1]) * const

 AreaFactor = (1 / (6 * Area))

 Cx *= AreaFactor
 Cy *= AreaFactor

 return (abs(Cx), abs(Cy))

[docs]def CalculateEFD(X, Y, harmonics=10):
 '''
 Compute the Elliptical Fourier Descriptors for a polygon.

 Implements Kuhl and Giardina method of computing the coefficients
 An, Bn, Cn, Dn for a specified number of harmonics. This code is adapted
 from the pyefd module. See the original paper for more detail:

 Kuhl, FP and Giardina, CR (1982). Elliptic Fourier features of a closed
 contour. Computer graphics and image processing, 18(3), 236-258.

 Args:
 X (list): A list (or numpy array) of x coordinate values.
 Y (list): A list (or numpy array) of y coordinate values.
 harmonics (int): The number of harmonics to compute for the given
 shape, defaults to 10.

 Returns:
 numpy.ndarray: A numpy array of shape (harmonics, 4) representing the
 four coefficients for each harmonic computed.
 '''

 contour = np.array([(x, y) for x, y in zip(X, Y)])

 dxy = np.diff(contour, axis=0)
 dt = np.sqrt((dxy ** 2).sum(axis=1))
 t = np.concatenate([([0,]), np.cumsum(dt)]).reshape(-1, 1)
 T = t[-1]

 phi = (2. * np.pi * t)/T

 coeffs = np.zeros((harmonics, 4))

 n = np.arange(1, harmonics + 1)
 const = T / (2 * n * n * np.pi * np.pi)
 phi_n = phi * n
 d_cos_phi_n = np.cos(phi_n[1:, :]) - np.cos(phi_n[:-1, :])
 d_sin_phi_n = np.sin(phi_n[1:, :]) - np.sin(phi_n[:-1, :])
 a_n = const * np.sum((dxy[:, 1] / dt).reshape(-1, 1) * d_cos_phi_n, axis=0)
 b_n = const * np.sum((dxy[:, 1] / dt).reshape(-1, 1) * d_sin_phi_n, axis=0)
 c_n = const * np.sum((dxy[:, 0] / dt).reshape(-1, 1) * d_cos_phi_n, axis=0)
 d_n = const * np.sum((dxy[:, 0] / dt).reshape(-1, 1) * d_sin_phi_n, axis=0)

 coeffs = np.vstack((a_n, b_n, c_n, d_n)).T
 return coeffs

[docs]def inverse_transform(coeffs, locus=(0, 0), n_coords=300, harmonic=10):
 '''
 Perform an inverse fourier transform to convert the coefficients back into
 spatial coordinates.

 Implements Kuhl and Giardina method of computing the performing the
 transform for a specified number of harmonics. This code is adapted
 from the pyefd module. See the original paper for more detail:

 Kuhl, FP and Giardina, CR (1982). Elliptic Fourier features of a closed
 contour. Computer graphics and image processing, 18(3), 236-258.

 Args:
 coeffs (numpy.ndarray): A numpy array of shape (harmonic, 4)
 representing the four coefficients for each harmonic computed.
 locus (tuple): The x,y coordinates of the centroid of the contour being
 generated. Use calculate_dc_coefficients() to generate the correct
 locus for a shape.
 n_coords (int): The number of coordinate pairs to compute. A larger
 value will result in a more complex shape at the expense of
 increased computational time. Defaults to 300.
 harmonics (int): The number of harmonics to be used to generate
 coordinates, defaults to 10. Must be <= coeffs.shape[0]. Supply a
 smaller value to produce coordinates for a more generalized shape.

 Returns:
 numpy.ndarray: A numpy array of shape (harmonics, 4) representing the
 four coefficients for each harmonic computed.
 '''

 t = np.linspace(0, 1, n_coords).reshape(1, -1)
 n = np.arange(harmonic).reshape(-1, 1)

 xt = (np.matmul(coeffs[:harmonic, 2].reshape(1, -1),
 np.cos(2. * (n + 1) * np.pi * t)) +
 np.matmul(coeffs[:harmonic, 3].reshape(1, -1),
 np.sin(2. * (n + 1) * np.pi * t)) +
 locus[0])

 yt = (np.matmul(coeffs[:harmonic, 0].reshape(1, -1),
 np.cos(2. * (n + 1) * np.pi * t)) +
 np.matmul(coeffs[:harmonic, 1].reshape(1, -1),
 np.sin(2. * (n + 1) * np.pi * t)) +
 locus[1])

 return xt.ravel(), yt.ravel()

[docs]def InitPlot():
 '''
 Set up the axes for plotting, ensuring that x and y dimensions are equal.

 Returns:
 matplotlib.axes.Axes: Matplotlib axis instance.
 '''
 ax = plt.gca()
 ax.axis('equal')

 return ax

[docs]def PlotEllipse(ax, x, y, color='k', width=1.):
 '''
 Plots an ellipse represented as a series of x and y coordinates on a given
 axis.

 Args:
 ax (matplotlib.axes.Axes): Matplotlib axis instance.
 x (list): A list (or numpy array) of x coordinate values.
 y (list): A list (or numpy array) of y coordinate values.
 color (string): A matplotlib color string to color the line used to
 plot the ellipse. Defaults to k (black).
 width (float): The width of the plotted line. Defaults to 1.
 '''
 ax.plot(x, y, color, linewidth=width)

[docs]def plotComparison(ax, coeffs, harmonic, x, y, rotation=0, color1='k',
 width1=2, color2='r', width2=1):
 '''
 Convenience function which plots an EFD ellipse and a shapefile polygon in
 the same coordate system.

 Warning:
 If passing in normalized coefficients, they must be created with the
 size_invariant parameter set to False.

 Args:
 ax (matplotlib.axes.Axes): Matplotlib axis instance.
 x (list): A list (or numpy array) of x coordinate values.
 y (list): A list (or numpy array) of y coordinate values.
 rotation (float): The angle in degrees for the contour to be rotated
 by. Generated by normalize_efd(). Leave as 0 if non-normalized
 coefficients are being plotted.
 harmonic (int): The number of harmonics to be used to generate
 coordinates. Must be <= coeffs.shape[0]. Supply a smaller value to
 produce coordinates for a more generalized shape.
 color1 (string): A matplotlib color string to color the line used to
 plot the Fourier ellipse. Defaults to k (black).
 width1 (float): The width of the plotted fourier ellipse. Defaults
 to 1.
 color2 (string): A matplotlib color string to color the line used to
 plot the shapefile. Defaults to r (red).
 width2 (float): The width of the plotted shapefile. Defaults to 1.
 '''
 locus = calculate_dc_coefficients(x, y)
 xt, yt = inverse_transform(coeffs, locus=locus, harmonic=harmonic)

 if rotation:
 x, y = RotateContour(x, y, rotation, locus)

 PlotEllipse(ax, xt, yt, color1, width1)
 PlotEllipse(ax, x, y, color2, width2)

[docs]def SavePlot(ax, harmonic, filename, figformat='png'):
 '''
 Wrapper around the savefig method.

 Call this method to add a title identifying the harmonic being plotted, and
 save the plot to a file. Note that harmonic is simply an int value to be
 appended to the plot title, it does not select a harmonic to plot.

 The figformat argumet can take any value which matplotlib understands,
 which varies by system. To see a full list suitable for your matplotlib
 instance, call plt.gcf().canvas.get_supported_filetypes().

 Args:
 ax (matplotlib.axes.Axes): Matplotlib axis instance.
 harmonic (int): The harmonic which is being plotted.
 filename (string): A complete path and filename, without an extension,
 for the saved plot.
 figformat (string): A string denoting the format to save the figure as.
 Defaults to png.

 '''
 ax.set_title('Harmonic: {0}'.format(harmonic))
 plt.savefig('{0}_{1}.{2}'.format(filename, harmonic, figformat))
 plt.clf()

[docs]def AverageCoefficients(coeffList):
 '''
 Average the coefficients contained in the list of coefficient arrays,
 coeffList.

 This method is outlined in:

 2-D particle shape averaging and comparison using Fourier descriptors:
 Powder Technology Volume 104, Issue 2, 1 September 1999, Pages 180-189

 Args:
 coeffList (list): A list of coefficient arrays to be averaged.

 Returns:
 numpy.ndarray: A numpy array containing the average An, Bn, Cn, Dn
 coefficient values.
 '''

 nHarmonics = coeffList[0].shape[0]
 coeffsum = np.zeros((nHarmonics, 4))

 for coeff in coeffList:
 coeffsum += coeff

 coeffsum /= float(len(coeffList))

 return coeffsum

[docs]def AverageSD(coeffList, avgcoeffs):
 '''
 Use the coefficients contained in the list of coefficient arrays,
 coeffList, and the average coefficient values to compute the standard
 deviation of series of ellipses.

 This method is outlined in:

 2-D particle shape averaging and comparison using Fourier descriptors:
 Powder Technology Volume 104, Issue 2, 1 September 1999, Pages 180-189

 Args:
 coeffList (list): A list of coefficient arrays to be averaged.
 avgcoeffs (numpy.ndarray): A numpy array containing the average
 coefficient values, generated by calling AverageCoefficients().

 Returns:
 numpy.ndarray: A numpy array containing the standard deviation
 An, Bn, Cn, Dn coefficient values.
 '''
 nHarmonics = avgcoeffs.shape[0]
 coeffsum = np.zeros((nHarmonics, 4))

 for coeff in coeffList:
 coeffsum += (coeff ** 2)

 return (coeffsum / float(len(coeffList) - 1)) - (avgcoeffs ** 2)

[docs]def Nyquist(X):
 '''
 Returns the maximum number of harmonics that can be computed for a given
 contour, the nyquist freqency.

 See this paper for details:
 C. Costa et al. / Postharvest Biology and Technology 54 (2009) 38-47

 Args:
 X (list): A list (or numpy array) of x coordinate values.

 Returns:
 int: The nyquist frequency, expressed as a number of harmonics.
 '''
 return len(X) // 2

[docs]def FourierPower(coeffs, X, threshold=0.9999):
 '''
 Compute the total Fourier power and find the minium number of harmonics
 required to exceed the threshold fraction of the total power.

 This is a good method for identifying the number of harmonics to use to
 describe a polygon. For more details see:

 C. Costa et al. / Postharvest Biology and Technology 54 (2009) 38-47

 Warning:
 The number of coeffs must be >= the nyquist freqency.

 Args:
 coeffs (numpy.ndarray): A numpy array of shape (n, 4) representing the
 four coefficients for each harmonic computed.
 X (list): A list (or numpy array) of x coordinate values.
 threshold (float): The threshold fraction of the total Fourier power,
 the default is 0.9999.

 Returns:
 int: The number of harmonics required to represent the contour above
 the threshold Fourier power.

 '''
 nyquist = Nyquist(X)

 totalPower = 0
 currentPower = 0

 for n in range(nyquist):
 totalPower += ((coeffs[n, 0] ** 2) + (coeffs[n, 1] ** 2) +
 (coeffs[n, 2] ** 2) + (coeffs[n, 3] ** 2)) / 2

 for i in range(nyquist):
 currentPower += ((coeffs[i, 0] ** 2) + (coeffs[i, 1] ** 2.) +
 (coeffs[i, 2] ** 2) + (coeffs[i, 3] ** 2.)) / 2

 if (currentPower / totalPower) > threshold:
 return i + 1

[docs]def normalize_efd(coeffs, size_invariant=True):
 '''
 Normalize the Elliptical Fourier Descriptor coefficients for a polygon.

 Implements Kuhl and Giardina method of normalizing the coefficients
 An, Bn, Cn, Dn. Performs 3 separate normalizations. First, it makes the
 data location invariant by re-scaling the data to a common origin.
 Secondly, the data is rotated with respect to the major axis. Thirdly,
 the coefficients are normalized with regard to the absolute value of A_1.
 This code is adapted from the pyefd module. See the original paper for
 more detail:

 Kuhl, FP and Giardina, CR (1982). Elliptic Fourier features of a closed
 contour. Computer graphics and image processing, 18(3), 236-258.

 Args:
 coeffs (numpy.ndarray): A numpy array of shape (n, 4) representing the
 four coefficients for each harmonic computed.
 size_invariant (bool): Set to True (the default) to perform the third
 normalization and false to return the data withot this processing
 step. Set this to False when plotting a comparison between the
 input data and the Fourier ellipse.

 Returns:
 tuple: A tuple consisting of a numpy.ndarray of shape (harmonics, 4)
 representing the four coefficients for each harmonic computed and
 the rotation in degrees applied to the normalized contour.
 '''
 # Make the coefficients have a zero phase shift from
 # the first major axis. Theta_1 is that shift angle.
 theta_1 = (0.5 * np.arctan2(2 * ((coeffs[0, 0] * coeffs[0, 1]) +
 (coeffs[0, 2] * coeffs[0, 3])),
 ((coeffs[0, 0] ** 2) -
 (coeffs[0, 1] ** 2) +
 (coeffs[0, 2] ** 2) -
 (coeffs[0, 3] ** 2))))

 # Rotate all coefficients by theta_1.
 for n in range(1, coeffs.shape[0] + 1):
 coeffs[n - 1, :] = np.dot(np.array([[coeffs[n - 1, 0],
 coeffs[n - 1, 1]], [coeffs[n - 1, 2],
 coeffs[n - 1, 3]]]),
 np.array([[np.cos(n * theta_1),
 -np.sin(n * theta_1)],
 [np.sin(n * theta_1),
 np.cos(n * theta_1)]])).flatten()

 # Make the coefficients rotation invariant by rotating so that
 # the semi-major axis is parallel to the x-axis.
 psi_1 = np.arctan2(coeffs[0, 2], coeffs[0, 0])
 psi_r = np.array([[np.cos(psi_1), np.sin(psi_1)],
 [-np.sin(psi_1), np.cos(psi_1)]])

 # Rotate all coefficients by -psi_1.
 for n in range(1, coeffs.shape[0] + 1):
 rot = np.array([[coeffs[n - 1, 0], coeffs[n - 1, 1]],
 [coeffs[n - 1, 2], coeffs[n - 1, 3]]])
 coeffs[n - 1, :] = psi_r.dot(rot).flatten()

 if size_invariant:
 # Obtain size-invariance by normalizing.
 coeffs /= np.abs(coeffs[0, 0])

 return coeffs, np.degrees(psi_1)

[docs]def calculate_dc_coefficients(X, Y):
 '''
 Compute the dc coefficients, used as the locus when calling
 inverse_transform().

 This code is adapted from the pyefd module. See the original paper for
 more detail:

 Kuhl, FP and Giardina, CR (1982). Elliptic Fourier features of a closed
 contour. Computer graphics and image processing, 18(3), 236-258.

 Args:
 X (list): A list (or numpy array) of x coordinate values.
 Y (list): A list (or numpy array) of y coordinate values.

 Returns:
 tuple: A tuple containing the c and d coefficients.

 '''

 contour = np.array([(x, y) for x, y in zip(X, Y)])

 dxy = np.diff(contour, axis=0)
 dt = np.sqrt((dxy ** 2).sum(axis=1))
 t = np.concatenate([([0,]), np.cumsum(dt)])
 T = t[-1]

 diff = np.diff(t ** 2)
 xi = np.cumsum(dxy[:, 0]) - (dxy[:, 0] / dt) * t[1:]
 A0 = (1 / T) * np.sum(((dxy[:, 0] / (2 * dt)) * diff) + xi * dt)
 delta = np.cumsum(dxy[:, 1]) - (dxy[:, 1] / dt) * t[1:]
 C0 = (1 / T) * np.sum(((dxy[:, 1] / (2 * dt)) * diff) + delta * dt)

 # A0 and CO relate to the first point of the contour array as origin.
 # Adding those values to the coeffs to make them relate to true origin
 return (contour[0, 0] + A0, contour[0, 1] + C0)

[docs]def LoadGeometries(filename):
 '''
 Takes a filename and uses pyshp to load it, returning a list of
 shapefile.ShapeRecord instances.

 This list can be iterated over, passing the individual shape instances
 to ProcessGeometry() one by one. There is no input handling if a
 non-polygon shapefile is passed in, that will result in undefined behavior.

 Args:
 filename (string): A filename with optional full path pointing to an
 ESRI shapefile to be loaded by the pyshp module. The file extension
 is optional.

 Returns:
 list: A list of shapefile._ShapeRecord objects representing each
 polygon geometry in the shapefile.
 '''
 shp = sf.Reader(filename)
 return shp.shapeRecords()

[docs]def ProcessGeometry(shape):
 '''
 Method to handle all the geometry processing that may be needed by the rest
 of the EFD code.

 Method which takes a single shape instance from a shapefile
 eg shp.Reader('shapefile.shp').shapeRecords()[n]
 where n is the index of the shape within a multipart geometry. This results
 in the contour, coordinate list and centroid data computed for the input
 polygon being normalized and returned to the user.

 Args:
 shapefile._ShapeRecord: A shapefile object representing the geometry
 and attributes of a single polygon from a multipart shapefile.

 Returns:
 tuple: A tuple containing a list of normalized x coordinates, a list of
 normalized y coordinates, contour (a list of [x,y] coordinate pairs,
 normalized about the shape's centroid) and the normalized coordinate
 centroid.
 '''
 x = []
 y = []

 for point in shape.shape.points:
 x.append(point[0])
 y.append(point[1])

 centroid = ContourCentroid(x, y)

 return x, y, centroid

[docs]def ProcessGeometryNorm(shape):
 '''
 Method to handle all the geometry processing that may be needed by the rest
 of the EFD code. This method normalizes the input data to allow spatially
 distributed data to be plotted in the same cartesian space.

 Method which takes a single shape instance from a shapefile
 eg shp.Reader('shapefile.shp').shapeRecords()[n]
 where n is the index of the shape within a multipart geometry. This results
 in the contour, coordinate list and centroid data computed for the input
 polygon being normalized and returned to the user.

 Args:
 shapefile._ShapeRecord: A shapefile object representing the geometry
 and attributes of a single polygon from a multipart shapefile.

 Returns:
 tuple: A tuple containing a list of normalized x coordinates, a list of
 normalized y coordinates, contour (a list of [x,y] coordinate pairs,
 normalized about the shape's centroid) and the normalized coordinate
 centroid.
 '''
 x = []
 y = []

 for point in shape.shape.points:
 x.append(point[0])
 y.append(point[1])

 centroid = ContourCentroid(x, y)
 X, Y, NormCentroid = NormContour(x, y, centroid)

 return X, Y, NormCentroid

[docs]def generateShapefile(filename, prj=None):
 '''
 Create an empty shapefile to write output into using writeGeometry().

 Builds a multipart polygon shapefile with a single attribute, ID, which can
 be used to reference the written polygons.

 Args:
 filename (string): A complete path and filename, with or without the
 .shp extenion, to write the shapefile data to. Must be a path
 which exists.
 prj (string): A complete path and filename, with or without the
 .prj extenion, to the projection file from the shapefile that the
 data was loaded from initially, Used to copy the spatial projection
 information to the new file.

 Warning:
 Code does not test if output paths exist, and if files exist they will
 be overwritten.

 Returns:
 shapefile.Writer: An empty polygon shapefile instance ready to have
 data written to it.

 '''
 shpinstance = sf.Writer(filename, sf.POLYGON)
 shpinstance.autoBalance = 1
 shpinstance.field('Poly_ID', 'N', '10')

 # create prj file
 if prj:
 # we have been passed a filename, check prj points to a *.prj file
 if path.isfile(prj):
 if path.splitext(prj)[-1].lower() == '.prj':
 # build the new filename
 newprj = '{0}.{1}'.format(path.splitext(filename)[:-1][0],
 'prj')
 copy2(prj, newprj)
 else:
 warning = ('The file supplied ({0}) is not a prj file. '
 'No .prj file will be written').format(prj)
 warnings.warn(warning)
 else:
 warning = ('The .prj file supplied ({0}) does not exist. '
 'No .prj file will be written'.format(prj))
 warnings.warn(warning)

 return shpinstance

[docs]def writeGeometry(coeffs, x, y, harmonic, shpinstance, ID):
 '''
 Write the results of inverse_transform() to a shapefile.

 Will only produce spatially meaningful data if the input coefficients have
 not been normalized.

 Args:
 coeffs (numpy.ndarray): A numpy array of shape (n, 4) representing the
 four coefficients for each harmonic computed.
 x (list): A list (or numpy array) of x coordinate values.
 y (list): A list (or numpy array) of y coordinate values.
 harmonic (int): The number of harmonics to be used to generate
 coordinates. Must be <= coeffs.shape[0]. Supply a smaller value to
 produce coordinates for a more generalized shape.
 shpinstance (shapefile.Writer): A multipart polygon shapefile to write
 the data to.
 ID (int): An integer ID value which will be written as an attribute
 alongside the geometry.

 Returns:
 shpinstance with the new geometry appended.

 '''

 locus = calculate_dc_coefficients(x, y)
 xt, yt = inverse_transform(coeffs, locus=locus, harmonic=harmonic)

 contour = [(x_, y_) for x_, y_ in zip(xt, yt)]
 shpinstance.poly([contour])
 shpinstance.record(ID, 'Poly_ID')

 return shpinstance

[docs]def rotatePoint(point, centerPoint, angle):
 '''
 Rotates a point counter-clockwise around centerPoint.

 The angle to rotate by is supplied in degrees. Code based on:
 https://gist.github.com/somada141/d81a05f172bb2df26a2c

 Args:
 point (tuple): The point to be rotated, represented as an (x,y) tuple.
 centerPoint (tuple): The point to be rotated about, represented as
 an (x,y) tuple.
 angle (float): The angle to rotate point by, in the counter-clockwise
 direction.

 Returns:
 tuple: A tuple representing the rotated point, (x,y).
 '''
 angle = np.radians(angle)
 temp_point = point[0] - centerPoint[0], point[1] - centerPoint[1]
 temp_point = (temp_point[0] * np.cos(angle) - temp_point[1] *
 np.sin(angle), temp_point[0] * np.sin(angle) +
 temp_point[1] * np.cos(angle))

 temp_point = temp_point[0] + centerPoint[0], temp_point[1] + centerPoint[1]
 return temp_point[0], temp_point[1]

[docs]def getBBoxDimensions(x, y):
 '''
 Returns the width in the x and y dimensions and the maximum x and y
 coordinates for the bounding box of a given list of x and y coordinates.

 Args:
 x (list): A list (or numpy array) of x coordinate values.
 y (list): A list (or numpy array) of y coordinate values.
 Returns:
 tuple: A four-tuple representing (width in the x direction, width in
 the y direction, the minimum x coordinate and the minimum y
 coordinate).
 '''
 xmin = min(x)
 ymin = min(y)

 xmax = max(x)
 ymax = max(y)

 return xmax - xmin, ymax - ymin, xmin, ymin

 _static/figure_4.png
15

1.0

0.5

0.0

-0.5

-1.0

-1.5

Harmonic: 10

-1.5

-1.0

-0.5

0.0

0.5

1.0

15

2.0

_static/file.png

_images/figure_4.png
15

1.0

0.5

0.0

-0.5

-1.0

-1.5

Harmonic: 10

-1.5

-1.0

-0.5

0.0

0.5

1.0

15

2.0

_static/up-pressed.png

_images/figure_2.png
+3.8822e6

250

200

150

100

0 50 100 150 200 250
+2.805e5

_static/minus.png

_images/figure_3.png
0.8

0.6

0.4

0.2

0.0

-0.2

-0.4

0.2 0.4 0.6 0.8 1.0 1.2

0.0

-0.2

_static/plus.png

_static/up.png

_static/ajax-loader.gif

_images/figure_1.png
Harmonic: 1

Harmonic: 2

Harmonic: 4

Harmonic: 20

nav.xhtml

 Table of Contents

 		
 Spatial Elliptical Fourier Descriptors

_static/comment.png

_static/down-pressed.png

_static/comment-bright.png

_static/comment-close.png

_static/figure_1.png
Harmonic: 1

Harmonic: 2

Harmonic: 4

Harmonic: 20

_static/figure_2.png
+3.8822e6

250

200

150

100

0 50 100 150 200 250
+2.805e5

_static/down.png

_static/figure_3.png
0.8

0.6

0.4

0.2

0.0

-0.2

-0.4

0.2 0.4 0.6 0.8 1.0 1.2

0.0

-0.2

