

    
      
          
            
  
SPART

SPART is an open-source modeling and control toolkit for mobile-base robotic multibody systems with kinematic tree topologies (i.e., open-loop multi-branched systems).
SPART is MATLAB-based and ROS-compatible, allowing to prototype in simulation and deploy to hardware controllers for robotic systems.

Given a URDF description of a multibody system, SPART computes the system’s:


	Kinematics – pose of the links and joints (i.e., rotation matrices and position vectors).


	Differential kinematics – operational space velocities and accelerations, as well as the geometric Jacobians and their time derivatives.


	Dynamics – generalized inertia and convective inertia matrices.


	Forward/Inverse dynamics – solves both problems, including the floating-base case.




SPART supports symbolic computation and analytic expressions for all kinematic and dynamic quantities can be obtained.
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Installing SPART

First you need to download the SPART toolkit from the SPART Github repository [https://github.com/NPS-SRL/SPART/archive/master.zip]:

git clone https://github.com/NPS-SRL/SPART.git





Once you have the SPART source code, navigate to the SPART root folder and execute the following command in the MATLAB command window:

SPART2path





This adds all the required SPART folders into your MATLAB path and saves it.


Note

In Linux, running MATLAB with root privileges may be required (i.e., sudo) to permanently save the MATLAB path.




Dependencies

Some MATLAB toolboxes are required to fully exploit SPART:


	The Robotics System Toolbox [https://www.mathworks.com/products/robotics.html] is required to interface MATLAB with ROS.


	The Matlab Coder [https://www.mathworks.com/products/matlab-coder.html] and the Simulink Coder [https://www.mathworks.com/products/simulink-coder.html] are required to generate standalone ROS nodes or portable C/C++ code from SPART MATLAB code or Simulink models.


	The Symbolic Math Toolbox [https://www.mathworks.com/products/symbolic.html] is required to obtain analytic expressions of the kinematic and dynamic quantities.


	The Simulink 3D Animation [https://www.mathworks.com/products/3d-animation.html] is useful to visualize the robotic systems.










          

      

      

    

  

    
      
          
            
  
SPART Tutorial – Introduction

This tutorial covers the basic functionality of SPART and introduces some concepts of multibody systems. The tutorial is structured in three sections:


	Introduction – Covers the nomenclature and conventions used by SPART.


	SPART Tutorial – Robot Model – Covers the URDF description of a multibody system and the SPART robot structure.


	SPART Tutorial – Kinematics – Covers the kinematics – positions, orientations, velocities, and accelerations – of the system.


	SPART Tutorial – Dynamics – Covers how to obtain the inertia matrices, equations of motion, and solve the forward/inverse dynamic problem.




The code in this tutorial can be found in examples/URDF_Tutorial/URDF_Tutorial.m.


Note

Before starting this tutorial make sure you have correctly installed and configured SPART. See Installing SPART for instructions.




Kinematic tree topology

A multibody system is defined as a collection of bodies coupled by massless joints. The bodies of the system – also known as links – are arranged in one of two basic types of kinematic chains:


	Kinematic trees, when the path between any pair of links is unique. This  are also known as open-loop kinematic chains.


	Closed-loop kinematic chains, when the path between any pair of links is not unique.




SPART is only able to handle multibody systems composed of rigid bodies arranged in kinematic trees.


[image: Kinematic tree.]
Kinematic tree.






Joint/Link nomenclature and numbering scheme

A link is denoted by \(\mathcal{L}_{i}\) and a joint by \(\mathcal{J}_{i}\), with the number \(i\) used as a unique identifier of each link or joint. In SPART, the number \(i\) is used to access the results associated with a specific link or joint.

In a kinematic tree, one of the links is designated as the base-link, with \(i=0\) and \(\mathcal{L}_{0}\). The base-link can be selected arbitrarily among all the links, yet an obvious choice usually exists.

A link \(\mathcal{L}_{i}\) can be connected with an arbitrary number of other links via an equal number of joints. Only one of these other links lies within the path connecting \(\mathcal{L}_{i}\) and the base-link \(\mathcal{L}_{0}\). This previous/upstream link \(\mathcal{L}_{i-1}\) is known as the parent link of \(\mathcal{L}_{i}\) and the joint connecting these two links is \(\mathcal{J}_{i}\). The rest of links directly connected to link \(\mathcal{L}_{i}\) are child links \(\mathcal{L}_{i+1}\). A branching event occurs when a link has multiple children.

In the regular number scheme used by SPART, each children link is given a higher number \(i\) than its parent, with the base link given the number \(i=0\). In a branching event multiple numbering options exist and they can be chosen arbitrarily among them. The notation \(i+1\) and \(i-1\) is here abused to denote the child and parent link or joint, even when they are not sequentially numbered. Additionally, the total number of joints \(n\) is also used to refer to the last joint and link of a branch. The last link of a branch is also commonly referred to as an end-effector.


[image: Regular numbering scheme.]
Regular numbering scheme.






Joints types

Three type of joints primitives can be modeled with SPART:


	Fixed – a joint rigidly connecting the pair of links (zero degrees-of-freedom).


	Revolute – a joint that allows a rotation around a common rotation axis \(\hat{e}_{i}\) (one degree-of-freedom).


	Prismatic – a joint that allows a translation along a common sliding axis \(\hat{e}_{i}\) (one degree-of-freedom).




More complex joints (e.g., planar, spherical, helical, …) can be constructed as a combination of these primitive joints connected by massless and dimensionless links.

Only revolute and prismatic joints are active joints, with the rotation or translation displacement denoted by \(q_{i}\).




Cartesian Coordinate Systems (CCS)

Each link and joint has an associated Cartesian Coordinate System (CCS).  The origin of the link CCS is located at the link’s center-of-mass, and the origin of the joint CSS is located on the rotation/sliding axis. The orientations of the CCS are arbitrary.


[image: Cartesian Coordinate Systems.]
Cartesian Coordinate Systems.






Joint displacements

Another convention in SPART is that a displacement on a joint affects all the elements downstream, but it doesn’t affect the orientation or position of that joint CCS.


[image: Effects of joint displacement.]
Effects of a joint displacement.









          

      

      

    

  

    
      
          
            
  
SPART Tutorial – Robot Model


Example of a multibody system

This tutorial uses the following spacecraft equipped with a 3 degree-of-freedom manipulator as example.


[image: Example of a multibody system.]
Example of a multibody system – spacecraft with a 3 degree-of-freedom manipulator.






Using a URDF to describe a multibody system

In SPART, the preferred method to describe a multibody system is via a URDF file. URDF files are also the descriptor files used in ROS. To learn how to write URDF files, refer to the URDF documentation [http://wiki.ros.org/urdf]  on the ROS wiki.

It is important to note that in SPART:


	Only fixed, revolute, continuous, and prismatic joints are accepted.


	Continuous and revolute joints are treated equally. Joint displacement, velocity, and effort limits are not taken into consideration.


	Joint dynamics (e.g., damping) are not modeled.




The URDF of the spacecraft with the manipulator can be found in URDF_models\SC_3DoF.urdf. Other examples are included in the URDF_models` folder, and a list of these models can be found in Examples of URDF Models.


Note

xacro files can be converted to a pure URDF file by running the following command

rosrun xacro xacro --inorder -o robot.urdf robot.urdf.xacro










Reading a URDF file

SPART takes a URDF file and converts it to the SPART robot structure.

%URDF filename
filename='SC_3DoF.urdf';

%Create robot model
[robot,robot_keys] = urdf2robot(filename);








The robot structure

The robot structure contains all the required kinematic and dynamic information of the multibody system. Build as a MATLAB structure it contains the following fields:



	robot.name – Name of the robot.


	robot.n_q – Number of active joints.


	robot.n_links_joints – Number of manipulator links and joints (includes fixed joints, and excludes the base-link).


	robot.links – Structure with the data of the links.



	robot.links(i).id – Link id.


	robot.links(i).parent_joint – Parent joint id.


	robot.links(i).T – Homogeneous transformation matrix from parent joint [4x4].


	robot.links(i).mass – Link’s mass.


	robot.links(i).inertia – Link’s inertia matrix [3x3], projected in the body-fixed link’s CCS.









	robot.joints – Structure with the data of the joints.



	robot.joints(i).id – Joint id.


	robot.joints(i).type – Joint type (0 – fixed, 1 – revolute, 2 – prismatic)


	robot.joints(i).q_id – Active joint id (if q_id=-1 indicates a fixed joint).


	robot.joints(i).parent_link – Parent link id.


	robot.joints(i).child_link – Child link id.


	robot.joints(i).axis – Joint rotation or sliding axis [3x1].


	robot.joints(i).T – Homogeneous transformation matrix from parent link [4x4].









	robot.base_link – Structure with the data of the base-link.



	robot.base_link.mass – Base-link’s mass.


	robot.base_link.inertia – Base-link’s inertia matrix [3x3], projected in the body-fixed base-link’s CCS.









	robot.con – Structure with additional connectivity information.



	robot.con.branch – Branch connectivity map. This is a [nxn] lower triangular matrix. If the i,j element is 1 it means that the ith and jth link are on the same branch.


	robot.con.child – A [nxn] matrix. If the i,j element is 1, then the ith link is a child of the jth link.


	robot.con.child_base – A [nx1] matrix. If the ith element is 1, the ith link is connected to the base-link.

















Understanding the robot structure and the robot_keys map

After reading the URDF of the spacecraft with the robotic manipulator, we obtain the robot structure and we can start querying it.

For example let’s check how many acting joints there are:

>> robot.n_q

ans =

  3





As the manipulator has only 3 revolute joints, this results is correct. Now let’s check how many joints and links there are in the system:

>> robot.n_joints_links

ans =

  5





which coincides with the number of revolute and fixed joints added together.

The robot_keys map can be used to map the names used in the URDF to the numbers used in SPART to uniquely identify the joints and links.

To know the URDF names of all links, joints, and active joints:

link_names=keys(robot_keys.link_id);
joint_names=keys(robot_keys.joint_id);
qm_names=keys(robot_keys.q_id);





To get the corresponding id of a URDF joint/link name use:

robot_keys.link_id('Link_name')
robot_keys.joint_id('Joint_name')
robot_keys.q_id('Joint_name')





The properties of the \(i\)th link (e.g., \(i=2\)) can be inspected as follows:

i=2;
robot.links(i)





The properties of the joints can be inspected in an equivalent manner:

i=2;
robot.joints(i)








Alternative methods to create the robot structure

SPART also allows to create this robot structure using two other input methods:


	With the Denavit-Hartenberg (DH) parameters. Refer to the Using the Denavit–Hartenberg convention with SPART page for the procedure to create a SPART robot structure using DH parameters.


	Manually populate the robot structure.










          

      

      

    

  

    
      
          
            
  
SPART Tutorial – Kinematics


Direct Kinematics

SPART can compute the position and orientation of all the links and joints. The definitions of the kinematic quantities of a generic link and joint are notionally shown in the following figure.


[image: Definition of the kinematic quantities.]
Schematic disposition of a generic link and its associated joint.



To obtain the kinematics of the system, the base-link position \(\mathrm{r}_{0}\in\mathbb{R}^{3}\) and orientation, as a rotation matrix \(\mathrm{R}_{0}\in\mathrm{SO}\left(3\right)\), with respect to the inertial CCS are first specified.

%Base-link position and orientation
R0=eye(3);  %Rotation from base-link with respect to the inertial CCS.
r0=[0;0;0]; %Position of the base-link with respect to the origin of the inertial frame, projected in the inertial CCS.





In SPART, the vectors are represented by a 3-by-1 column matrix containing the components of the vector projection to the inertial CCS. Projections to other CCS are explicitly marked.


Note

The position of the base-link r0 refers to the base-link center-of-mass, corresponding with the origin of the URDF inertial tag. The base-link orientation R0 also corresponds with the orientation of the CCS specified in the URDF inertial tag.



The joint displacements, \(\mathbf{q}_{m}\in\mathbb{R}^{n}\), also also defined as a \(n\)-by-1 column matrix.


\[\begin{split}\mathbf{q}_{m}=\begin{bmatrix}q_{1} \\ q_{2} \\ \vdots \\ q_{n} \end{bmatrix}\end{split}\]

%Joint displacements
qm=[0;0;0];





If the \(i\)th joint is revolute, \(q_{i}\) denotes an angular displacement around the rotation axis \(\hat{e}_{i}\), whether if the \(i\)th joint is prismatic, \(q_{i}\) denotes a translational displacement along the sliding axis \(\hat{e}_{i}\).

The set of \(\mathbf{R}_{0},\mathbf{r}_{0},\mathbf{q}_{m}\) constitute a set of variables \(\mathcal{Q}\), known as generalized variables, which full define the state of the multibody system,


\[\mathcal{Q}=\left\lbrace\mathbf{R}_{0},\mathbf{r}_{0},\mathbf{q}_{m}\right\rbrace\]

With the generalized variables specified, SPART is ready to compute the kinematics of the system.

%Kinematics
[RJ,RL,rJ,rL,e,g]=Kinematics(R0,r0,qm,robot);





The output of the Kinematics function is as follows:


	RJ – Joint 3x3 rotation matrices – as a [3x3xn] matrix.


	RL – Links 3x3 rotation matrices – as a [3x3xn] matrix.


	rJ – Positions of the joints projected in the inertial CCS – as a [3xn] matrix.


	rL – Positions of the links projected in the inertial CCS – as a [3xn] matrix.


	e – Joint rotation/sliding axis projected in the inertial CCS – as a [3xn] matrix.


	g – Vector from the origin of the ith joint CCS to the origin of the ith link CCS, projected in the inertial CCS – as a [3xn] matrix.




The results for each link/joint are stacked into a single variable. For example, to get the position of the second link center-of-mass:

%Position of the center-of-mass of a link
i=2;
rL(1:3,i)





and the rotation matrix corresponding to the second link CCS:

%Position of the center-of-mass of a link
i=2;
RL(1:3,1:3,i)





If your Matlab installation includes the Symbolic Math Toolbox [https://www.mathworks.com/products/symbolic.html] SPART is able to obtain the analytic expressions of these kinematic quantities. To do so, just define the generalized variables as symbolic expressions.

%Base-link position
r0=sym('r0',[3,1],'real');

%Base-link orientation
Euler_Ang=sym('Euler_Ang',[3,1],'real');
R0 = Angles321_DCM(Euler_Ang)';

%Joint displacements
qm=sym('qm',[robot.n_q,1],'real');

%Kinematics
[RJ,RL,rJ,rL,e,g]=Kinematics(R0,r0,qm,robot);






Warning

To obtain analytic expressions, all inputs must be symbolic. Otherwise, errors may occur.






Differential kinematics

The angular and linear velocities of the \(i\)th link with respect to the inertial frame, projected in the inertial CCS, are encapsulated into the twist variable \(\mathbf{t}_{i}\in\mathbb{R}^{6}\).


\[\begin{split}\mathbf{t}_{i}=\begin{bmatrix}\mathbf{\omega}_{i}\\ \dot{\mathbf{r}}_{i}\end{bmatrix}\end{split}\]

The twist can be recursively propagated outward from one link to the next using the 6-by-6 \(\mathbf{B}_{ij}\) twist–propagation matrix and the 6-by-1 \(\mathbf{p}_{i}\) twist–propagation “vector”:


\[\mathbf{t}_{i}=\mathbf{B}_{ij}\mathbf{t}_{j}+\mathbf{p}_{i}\dot{q}_{i}\quad\text{for}\quad j=i-1\]

The twist–propagation matrices and “vectors”, which form the basis of the differential kinematics, can be computed with the DiffKinematics function.

%Differential kinematics
[Bij,Bi0,P0,pm]=DiffKinematics(R0,r0,rL,e,g,robot);





The output of the differential kinematics is as follows:


	Bij – Twist–propagation [6x6xn] matrix (for manipulator i>0 and j>0).


	Bi0 – Twist–propagation [6x6xn] matrix (for i>0 and j=0).


	P0 – Base–link twist–propagation [6x6] matrix.


	pm – Manipulator twist–propagation [6xn] vector.




The set of generalized velocities \(\mathbf{u}\in\mathbb{R}^{6+n}\) (joint-space velocities) contains the base-link velocities \(\mathbf{u}_{0}\in\mathbb{R}^{6}\) and the joint velocities \(\mathbf{u}_{m}\in\mathbb{R}^{n}\).


\[\begin{split}\mathbf{u} = \begin{bmatrix}\mathbf{u}_{0} \\ \mathbf{u}_{m} \end{bmatrix}\end{split}\]

With the base-link and joint velocities defined as:


\[ \begin{align}\begin{aligned}\begin{split}\mathbf{u}_{0} = \begin{bmatrix}\mathbf{\omega}^{\left\{\mathcal{L}_{0}\right\}}_{0} \\ \dot{\mathbf{r}}_{0} \end{bmatrix}\end{split}\\\begin{split}\mathbf{u}_{m} = \begin{bmatrix}\dot{q}_{1} \\ \vdots \\ \dot{q}_{n} \end{bmatrix}\end{split}\end{aligned}\end{align} \]

Note that \(\mathbf{\omega}^{\left\{\mathcal{L}_{0}\right\}}_{0}\) denotes the angular velocity of the base-link, with respect to the inertial frame, projected in the base-link body-fixed CCS (this is the angular velocity that is obtained when using an onboard rate-gyro).

For the base-link, the twist is computed only using a modified 6-by-6 \(\mathbf{P}_{0}\) twist-propagation matrix.


\[\mathbf{t}_{0}=\mathbf{P}_{0}u_{0}\]

With the twist-propagation quantities and the generalized velocities, the twists of all the links (operational-space velocities) can be determined.

%Generalized velocities (joint-space velocities)
u0=zeros(6,1); %Base-link angular (projected in the base-link body-fixed CCS) and linear velocities.
um=[4;-1;5]*pi/180; %Joint velocities

%Twist (operational-space velocities)
[t0,tL]=Velocities(Bij,Bi0,P0,pm,u0,um,robot);





The output of the operational space velocities are as follows:


	t0 – Base–link twist projected in the inertial CCS – as a [6x1] matrix.


	tL – Manipulator links twist projected in the inertial CCS – as a [6xn] matrix.







Jacobians

The geometric Jacobian of a point \(p\) maps the joint-space velocities \(\mathbf{u}\) into operational-space velocities of that point \(\mathbf{t}_{p}\).


\[\mathbf{t}_{p}=\mathbf{J}_{p}\mathbf{u}\]

The contribution from the base-link and from the joints can be written more explicitly as:


\[ \begin{align}\begin{aligned}\mathbf{J}_{p} = \begin{bmatrix}\mathbf{J}_{0p} &  \mathbf{J}_{mp}\end{bmatrix}\\\mathbf{t}_{p}=\mathbf{J}_{0p}\mathbf{u}_{0}+\mathbf{J}_{mp}\mathbf{u}_{m}\end{aligned}\end{align} \]

The Jacobian of a point \(p\), fixed to the \(i\)th link, can be obtained as follows:

%Jacobian of a point p in the ith link
%rp is the position of the point p, projected in the inertial CCS -- as a [3x1] matrix.
[J0p, Jmp]=Jacob(rp,r0,rL,P0,pm,i,robot);





The Jacobians corresponding to the center-of-mass of the the \(i\)th link of the multibody system are then computed as follows:

%Jacobian of the ith Link
[J0i, Jmi]=Jacob(rL(1:3,i),r0,rL,P0,pm,i,robot);








Accelerations

The accelerations of a link can be encapsulated in a twist-rate \(\dot{\mathbf{t}}_{i}\in\mathbb{R}^{6}\):


\[\begin{split}\dot{\mathbf{t}}_{i}=\begin{bmatrix}\dot{\mathbf{\omega}}_{i}\\ \ddot{\mathbf{r}}_{i}\end{bmatrix}\end{split}\]

The generalized accelerations \(\dot{\mathbf{u}}\in\mathbb{R}^{6+n}\) of the system are defined as:


\[\begin{split}\dot{\mathbf{u}} = \begin{bmatrix}\dot{\mathbf{u}}_{0} \\ \dot{\mathbf{u}}_{m} \end{bmatrix}\end{split}\]

The twist-rate can then be computed as follows:

%Define generalized accelerations
u0=zeros(6,1); %Base-link angular (projected in the base-link body-fixed CCS) and linear accelerations
um=[-0.1;0.2;0.1]*pi/180; %Joint accelerations

%Accelerations, twist-rate
[t0dot,tLdot]=Accelerations(t0,tL,P0,pm,Bi0,Bij,u0,um,u0dot,umdot,robot)








Jacobian time derivative

The time derivatives of the Jacobians can also be obtained:

%Jacobain time derivative
%rp is the position of the point p, projected in the inertial CCS -- as a [3x1] matrix.
%tp is the twist of the point p -- as a [6x1] matrix.
[J0pdot, Jmpdot]=Jacobdot(rp,tp,r0,t0,rL,tL,P0,pm,i,robot)





The Jacobian time derivative can be used to obtain the twist-rate of a point on the multibody system.


\[\dot{\mathbf{t}}_{p}=\mathbf{J}_{p}\dot{\mathbf{u}}+\dot{\mathbf{J}}_{p}\mathbf{u}\]







          

      

      

    

  

    
      
          
            
  
SPART Tutorial – Dynamics


Equations of motion and inertia matrices

The equations of motion of a multibody system take the following form:


\[\mathbf{H}\dot{\mathbf{u}}+\mathbf{C}\mathbf{u}=\mathbf{\tau}\]

with \(\mathbf{H}\left(\mathcal{Q}\right)\in\mathbb{R}^{\left(6+n\right)\times \left(6+n\right)}\) being the symmetric, positive-definite Generalized Inertia Matrix (GIM), \(\mathbf{C}\left(\mathcal{Q},\mathbf{u}\right)\in\mathbb{R}^{\left(6+n\right)\times \left(6+n\right)}\) the Convective Inertia Matrix (CIM), and \(\mathbf{\tau}\in\mathbb{R}^{6+n}\) the generalized forces (joint-space forces).

The contributions of the base-link and the manipulator can be made explicit when writing the equations of motion.


\[\begin{split}\left[\begin{array}{cc} \mathbf{H}_{0} & \mathbf{H}_{0m}\\ \mathbf{H}_{0m}^{T} & \mathbf{H}_{m} \end{array}\right]
\left[\begin{array}{c} \dot{\mathbf{u}}_{0}\\ \dot{\mathbf{u}}_{m} \end{array}\right]+
\left[\begin{array}{cc} \mathbf{C}_{0} & \mathbf{C}_{0m}\\ \mathbf{C}_{m0} & \mathbf{C}_{m} \end{array}\right]
\left[\begin{array}{c} \mathbf{u}_{0}\\ \mathbf{u}_{m} \end{array}\right]=
\left[\begin{array}{c} \mathbf{\tau}_{0}\\ \mathbf{\tau}_{m} \end{array}\right]\end{split}\]

These GIM and CIM are computed as follows:

%Inertias projected in the inertial frame
[I0,Im]=I_I(R0,RL,robot);
%Mass Composite Body matrix
[M0_tilde,Mm_tilde]=MCB(I0,Im,Bij,Bi0,robot);
%Generalized Inertia Matrix
[H0, H0m, Hm] = GIM(M0_tilde,Mm_tilde,Bij,Bi0,P0,pm,robot);
%Generalized Convective Inertia Matrix
[C0, C0m, Cm0, Cm] = CIM(t0,tL,I0,Im,M0_tilde,Mm_tilde,Bij,Bi0,P0,pm,robot);





Although the equations of motion can be used to solve the forward dynamic problem (determining the motion of the system given a set of applied forces \(\mathbf{\tau}\rightarrow\dot{\mathbf{u}}\)) and the inverse dynamic problem (determining the forces required to produce a prescribe motion \(\dot{\mathbf{u}}\rightarrow\mathbf{\tau}\)) there are more computationally efficient ways of doing so.




Forward dynamics

To solve the forward dynamics, the forces acting on the multibody system are specified as an input. The generalized forces \(\mathbf{\tau}\) are the forces acting on the joints \(\mathbf{\tau}_{m}\in\mathbb{R}^{n}\) and on the base-link \(\mathbf{\tau_{0}}\in\mathbb{R}^{6}\). Specifically, the generalized forces \(\mathbf{\tau}\) act upon the generalized velocities \(\mathbf{u}\).

In \(\mathbf{\tau}_{0}\), as in the twist vector, the torques \(\mathbf{n}^{\left\{\mathcal{L}_{0}\right\}}_{0}\in\mathbb{R}^{3}\), projected in the base-link body-fixed CCS, come first and are followed by forces \(\mathbf{f}_{0}\in\mathbb{R}^{3}\), applied to the base-link center-of-mass.


\[\begin{split}\mathbf{\tau}_{0}=\begin{bmatrix}\mathbf{n}^{\left\{\mathcal{L}_{0}\right\}}_{0}\\ \mathbf{f}_{0} \end{bmatrix}\end{split}\]

The wrench applied to the \(i\)th link, \(\mathbf{w}_{i}\in\mathbb{R}^{6}\), encapsulates the torques \(\mathbf{n}_{i}\in\mathbb{R}^{3}\) and forces \(\mathbf{f}_{i}\in\mathbb{R}^{3}\), projected in the inertial CCS, applied to the center-of-mass of each link.


\[\begin{split}\mathbf{w}_{i}=\begin{bmatrix}\mathbf{n}_{i}\\ \mathbf{f}_{i} \end{bmatrix}\end{split}\]

Here is an example of how to define them:

%Wrenches
wF0=zeros(6,1);
wFm=zeros(6,robot.n_links_joints);

%Generalized forces
tau0=zeros(6,1);
taum=zeros(robot.n_q,1);





After these forces are defined, a forward dynamic solver is available.

%Forward dynamics
[u0dot_FD,umdot_FD] = FD(tau0,taum,wF0,wFm,t0,tL,P0,pm,I0,Im,Bij,Bi0,u0,um,robot);





As an example, if you need to incorporate the weight of the links (with the \(z\)-axis being the vertical direction), set the wrenches as follows:

%Gravity
g=9.8; %[m s-2]

%Wrenches (includes gravity and assumes z is the vertical direction)
wF0=zeros(6,1);
wF0(6)=-robot.base_link(i).mass*g;
wFm=zeros(6,robot.n_links);
for i=1:robot.n_links
        wFm(6,i)=-robot.links(i).mass*g;
end








Inverse dynamics

For the inverse dynamics, the acceleration of the base-link \(\dot{\mathbf{u}}_{0}\) and of the joints \(\dot{\mathbf{u}}_{m}\) are specified, then the ID function computes the inverse dynamics, providing the required forces to obtain these accelerations.

%Generalized accelerations
u0dot=zeros(6,1);
umdot=zeros(robot.n_q,1);

%Oprational-space accelerations
[t0dot,tLdot]=Accelerations(t0,tL,P0,pm,Bi0,Bij,u0,um,u0dot,umdot,robot);

%Inverse Dynamics - Flying base
[tau0,taum] = ID(wF0,wFm,t0,tL,t0dot,tLdot,P0,pm,I0,Im,Bij,Bi0,robot);





If the base-link is left uncontrolled \(\dot{\mathbf{\tau}}_{0}=\mathbf{0}\) (floating-base case) and thus the base-link acceleration is unknown, the Floating_ID function is available.

%Accelerations
umdot=zeros(robot.n_q,1);

%Inverse Dynamics - Floating Base
[taum_floating,u0dot_floating] = Floating_ID(wF0,wFm,Mm_tilde,H0,t0,tL,P0,pm,I0,Im,Bij,Bi0,u0,um,umdot,robot);








Finding more information

The Function Reference provides more documentation on the SPART functions. If you don’t find what you need you can always Get in touch.







          

      

      

    

  

    
      
          
            
  
Function Reference

Here is the documentation for all of SPART functions (the current list is incomplete).



	Kinematics


	Dynamics


	Robot Model


	Attitude Transformations


	Utilities







Kinematics


	
Kinematics(R0, r0, qm, robot)

	Computes the kinematics – positions and orientations – of the multibody system.

[RJ,RL,rJ,rL,e,g]=Kinematics(R0,r0,qm,robot)


	Parameters

	
	R0 – Rotation matrix from the base-link CCS to the inertial CCS – [3x3].


	r0 – Position of the base-link center-of-mass with respect to the origin of the inertial frame, projected in the inertial CCS – [3x1].


	qm – Displacements of the active joints – [n_qx1].


	robot – Robot model (see SPART Tutorial – Robot Model).






	Returns

	
	RJ – Joints CCS 3x3 rotation matrices with respect to the inertial CCS  – as a [3x3xn] matrix.


	RL – Links CCS 3x3 rotation matrices with respect to the inertial CCS – as a [3x3xn] matrix.


	rJ – Positions of the joints, projected in the inertial CCS – as a [3xn] matrix.


	rL – Positions of the links, projected in the inertial CCS – as a [3xn] matrix.


	e – Joint rotation/sliding axes, projected in the inertial CCS – as a [3xn] matrix.


	g – Vector from the origin of the ith joint CCS to the origin of the ith link CCS, projected in the inertial CCS – as a [3xn] matrix.










Remember that all the ouput magnitudes are projected in the inertial frame.

Examples on how to retrieve the results from a specific link/joint:


To retrieve the position of the ith link: rL(1:3,i).

To retrieve the rotation matrix of the ith joint: RJ(1:3,1:3,i).




See also: src.robot_model.urdf2robot() and src.robot_model.DH_Serial2robot().






	
DiffKinematics(R0, r0, rL, e, g, robot)

	Computes the differential kinematics of the multibody system.

[Bij,Bi0,P0,pm]=DiffKinematics(R0,r0,rL,e,g,robot)


	Parameters

	
	R0 – Rotation matrix from the base-link CCS to the inertial CCS – [3x3].


	r0 – Position of the base-link center-of-mass with respect to the origin of the inertial frame, projected in the inertial CCS – [3x1].


	rL – Positions of the links, projected in the inertial CCS – as a [3xn] matrix.


	e – Joint rotation/sliding axes, projected in the inertial CCS – as a [3xn] matrix.


	g – Vector from the origin of the ith joint CCS to the origin of the ith link CCS, projected in the inertial CCS – as a [3xn] matrix.


	robot – Robot model (see SPART Tutorial – Robot Model).






	Returns

	
	Bij – Twist-propagation matrix (for manipulator i>0 and j>0) – as a [6x6xn] matrix.


	Bi0 – Twist-propagation matrix (for i>0 and j=0) – as a [6x6xn] matrix.


	P0 – Base-link twist-propagation “vector” – as a [6x6] matrix.


	pm – Manipulator twist-propagation “vector” – as a [6xn] matrix.










Use src.kinematics_dynamics.Kinematics() to compute rL,e, and g.

See also: src.kinematics_dynamics.Kinematics() and src.kinematics_dynamics.Jacob().






	
Velocities(Bij, Bi0, P0, pm, u0, um, robot)

	Computes the operational-space velocities of the multibody system.

[t0,tL]=Velocities(Bij,Bi0,P0,pm,u0,um,robot)


	Parameters

	
	Bij – Twist-propagation matrix (for manipulator i>0 and j>0) – as a [6x6xn] matrix.


	Bi0 – Twist-propagation matrix (for i>0 and j=0) – as a [6x6xn] matrix.


	P0 – Base-link twist-propagation “vector” – as a [6x6] matrix.


	pm – Manipulator twist-propagation “vector” – as a [6xn] matrix.


	u0 – Base-link velocities [omega,rdot]. The angular velocity is projected in the body-fixed CCS, while the linear velocity is projected in the inertial CCS – [6x1].


	um – Joint velocities – [n_qx1].


	robot – Robot model (see SPART Tutorial – Robot Model).






	Returns

	
	t0 – Base-link twist [omega,rdot], projected in the inertial CCS – as a [6x1] matrix.


	tL – Manipulator twist [omega,rdot], projected in the inertial CCS – as a [6xn] matrix.










Use src.kinematics_dynamics.DiffKinematics() to compute Bij, Bi0, P0, and pm.

See also: src.kinematics_dynamics.Jacob()






	
Jacob(rp, r0, rL, P0, pm, i, robot)

	Computes the geometric Jacobian of a point p.

[J0, Jm]=Jacob(rp,r0,rL,P0,pm,i,robot)


	Parameters

	
	rp – Position of the point of interest, projected in the inertial CCS – [3x1].


	r0 – Position of the base-link, projected in the inertial CCS – [3x1].


	rL – Positions of the links, projected in the inertial CCS – as a [3xn] matrix.


	P0 – Base-link twist-propagation “vector” – as a [6x6] matrix.


	pm – Manipulator twist-propagation “vector” – as a [6xn] matrix.


	i – Link id where the point p is located – int 0 to n.


	robot – Robot model (see SPART Tutorial – Robot Model).






	Returns

	
	J0 – Base-link geometric Jacobian – [6x6].


	Jm – Manipulator geometric Jacobian – [6xn_q].










Examples:


To compute the velocity of the point p on the ith link:




%Compute Jacobians
[J0, Jm]=Jacob(rp,r0,rL,P0,pm,i,robot);
%Twist of that point
tp=J0*u0+Jm*um;





See also: src.kinematics_dynamics.Kinematics(), src.kinematics_dynamics.DiffKinematics()






	
Accelerations(t0, tL, P0, pm, Bi0, Bij, u0, um, u0dot, umdot, robot)

	Computes the operational-space accelerations (twist-rate) of the multibody system.

[t0dot,tLdot]=Accelerations(t0,tL,P0,pm,Bi0,Bij,u0,um,u0dot,umdot,robot)


	Parameters

	
	t0 – Base-link twist [omega,rdot], projected in the inertial CCS – as a [6x1] matrix.


	tL – Manipulator twist [omega,rdot], projected in the inertial CCS – as a [6xn] matrix.


	Bij – Twist-propagation matrix (for manipulator i>0 and j>0) – as a [6x6xn] matrix.


	Bi0 – Twist-propagation matrix (for i>0 and j=0) – as a [6x6xn] matrix.


	P0 – Base-link twist-propagation “vector” – as a [6x6] matrix.


	pm – Manipulator twist-propagation “vector” – as a [6xn] matrix.


	u0 – Base-link velocities [omega,rdot]. The angular velocity is projected in the body-fixed CCS, while the linear velocity is projected in the inertial CCS – [6x1].


	um – Joint velocities – [n_qx1].


	u0dot – Base-link accelerations [omegadot,rddot]. The angular acceleration is projected in a body-fixed CCS, while the linear acceleration is projected in the inertial CCS – [6x1].


	umdot – Manipulator joint accelerations – [n_qx1].


	robot – Robot model (see SPART Tutorial – Robot Model).






	Returns

	
	t0dot – Base-link twist-rate vector omegadot,rddot], projected in inertial frame – as a [6x1] matrix.


	tLdot – Manipulator twist-rate vector omegadot,rddot], projected in inertial frame – as a [6xn] matrix.










See also: src.kinematics_dynamics.Jacobdot().






	
Jacobdot(rp, tp, r0, t0, rL, tL, P0, pm, i, robot)

	Computes the geometric Jacobian time-derivative of a point p.

[J0dot, Jmdot]=Jacobdot(rp,tp,r0,t0,rL,tL,P0,pm,i,robot)


	Parameters

	
	rp – Position of the point of interest, projected in the inertial CCS – [3x1].


	tp – Twist of the point of interest [omega,rdot], projected in the intertial CCS – [6x1].


	r0 – Position of the base-link center-of-mass with respect to the origin of the inertial frame, projected in the inertial CCS – [3x1].


	t0 – Base-link twist [omega,rdot], projected in the inertial CCS – as a [6x1] matrix.


	rL – Positions of the links, projected in the inertial CCS – as a [3xn] matrix.


	tL – Manipulator twist [omega,rdot], projected in the inertial CCS – as a [6xn] matrix.


	P0 – Base-link twist-propagation “vector” – as a [6x6] matrix.


	pm – Manipulator twist-propagation “vector” – as a [6xn] matrix.


	i – Link id where the point p is located – int 0 to n.


	robot – Robot model (see SPART Tutorial – Robot Model).






	Returns

	
	J0dot – Base-link Jacobian time-derivative – as a [6x6] matrix.


	Jmdot – Manipulator Jacobian time-derivative – as a [6xn_q] matrix.










Examples:


To compute the acceleration of a point p on the ith link:




%Compute Jacobians
[J0, Jm]=Jacob(rp,r0,rL,P0,pm,i,robot);
Compute Jacobians time-derivatives
[J0dot, Jmdot]=Jacobdot(rp,tp,r0,t0,rL,tL,P0,pm,i,robot)
%Twist-rate of that point
tpdot=J0*u0dot+J0dot*u0+Jm*umdot+Jmdot*um;





See also: src.kinematics_dynamics.Accelerations() and src.kinematics_dynamics.Jacob().






	
Center_of_Mass(r0, rL, robot)

	Computes the center-of-mass (CoM) of the system.

r_com = Center_of_Mass(r0,rL,robot)


	Parameters

	
	r0 – Position of the base-link, projected in the inertial CCS – [3x1].


	rL – Positions of the links, projected in the inertial CCS – as a [3xn] matrix.


	robot – Robot model (see SPART Tutorial – Robot Model).






	Returns

	
	r_com – Location of the center-of-mass, projected in the inertial CCS  – [3x1].










Use src.kinematics_dynamics.Kinematics() to compute rL.

This function can also be used to compute the velocity/acceleration of the center-of-mass.
To do it use as paremeters the velocities r0dot,rLdot or acceleration r0ddot,rLddot and you will get the CoM  velocity rcomdot or acceleration rcomddot.

See also: src.kinematics_dynamics.Kinematics()






	
NOC(r0, rL, P0, pm, robot)

	Computes the Natural Orthogonal Complement (NOC) matrix (generalized Jacobian).

[N] = NOC(r0,rL,P0,pm,robot)


	Parameters

	
	r0 – Position of the base-link, projected in the inertial CCS – [3x1].


	rL – Positions of the links, projected in the inertial CCS – as a [3xn] matrix.


	P0 – Base-link twist-propagation “vector” – as a [6x6] matrix.


	pm – Manipulator twist-propagation “vector” – as a [6xn] matrix.


	robot – Robot model (see SPART Tutorial – Robot Model).






	Returns

	
	N – Natural Orthogonal Complement (NOC) matrix – a [(6+6*n)x(6+n_q)] matrix.










Examples:


To compute the velocities of all links:




%Compute NOC.
[N] = NOC(r0,rL,P0,pm,robot)
%Generalized twist (concatenation of the twist of all links).
t=N*[u0;um];
%Twist of the base-link
t0=t(1:6,1);
%Twist of the ith link
i=2;
ti=t(6*i:6+6*i,1);





See also: src.kinematics_dynamics.Jacob() and src.kinematics_dynamics.NOCdot().






	
NOCdot(r0, t0, rL, tL, P0, pm, robot)

	Computes the Natural Orthogonal Complement (NOC) matrix time-derivative.

[Ndot] = NOCdot(r0,t0,rL,tL,P0,pm,robot)


	Parameters

	
	r0 – Position of the base-link center-of-mass with respect to the origin of the inertial frame, projected in the inertial CCS – [3x1].


	t0 – Base-link twist [omega,rdot], projected in the inertial CCS – as a [6x1] matrix.


	rL – Positions of the links, projected in the inertial CCS – as a [3xn] matrix.


	tL – Manipulator twist [omega,rdot], projected in the inertial CCS – as a [6xn] matrix.


	P0 – Base-link twist-propagation “vector” – as a [6x6] matrix.


	pm – Manipulator twist-propagation “vector” – as a [6xn] matrix.


	robot – Robot model (see SPART Tutorial – Robot Model).






	Returns

	
	Ndot – Natural Orthogonal Complement (NOC) matrix time-derivative – as a [(6+6*n)x(6+n_q)] matrix.










Examples:


To compute the operational-space accelerations of all links:




%Compute NOC
[N] = NOC(r0,rL,P0,pm,robot)
%Compute NOC time-derivative
[Ndot] = NOCdot(r0,t0,rL,tL,P0,pm,robot)
%Twist time-derivatives of all the links
tdot=N*[u0dot;umdot]+Ndot*[u0;um];
%Twist time-derivative of the base-link
t0dot=tdot(1:6,1);
%Twist time-derivative of the ith link
i=2;
tidot=tdot(6*i:6+6*i,1);





See also: src.kinematics_dynamics.Jacobdot() and src.kinematics_dynamics.NOC().








Dynamics


	
FD(tau0, taum, wF0, wFm, t0, tm, P0, pm, I0, Im, Bij, Bi0, u0, um, robot)

	This function solves the forward dynamics (FD) problem (it obtains the
acceleration from  forces).

[u0dot,umdot] = FD(tau0,taum,wF0,wFm,t0,tm,P0,pm,I0,Im,Bij,Bi0,u0,um,robot)


	Parameters

	
	tau0 – Base-link forces [n,f]. The torque n is projected in the body-fixed CCS, while the force f is projected in the inertial CCS – [6x1].


	taum – Joint forces/torques – as a [n_qx1] matrix.


	wF0 – Wrench acting on the base-link center-of-mass [n,f], projected in the inertial CCS – as a [6x1] matrix.


	wFm – Wrench acting on the links center-of-mass  [n,f], projected in the inertial CCS – as a [6xn] matrix.


	t0 – Base-link twist [omega,rdot], projected in the inertial CCS – as a [6x1] matrix.


	tL – Manipulator twist [omega,rdot], projected in the inertial CCS – as a [6xn] matrix.


	P0 – Base-link twist-propagation “vector” – as a [6x6] matrix.


	pm – Manipulator twist-propagation “vector” – as a [6xn] matrix.


	I0 – Base-link inertia matrix, projected in the inertial CCS – as a [3x3] matrix.


	Im – Links inertia matrices, projected in the inertial CCS – as a [3x3xn] matrix.


	Bij – Twist-propagation matrix (for manipulator i>0 and j>0) – as a [6x6xn] matrix.


	Bi0 – Twist-propagation matrix (for i>0 and j=0) – as a [6x6xn] matrix.


	u0 – Base-link velocities [omega,rdot]. The angular velocity is projected in the body-fixed CCS, while the linear velocity is projected in the inertial CCS – [6x1].


	um – Joint velocities – [n_qx1].


	robot – Robot model (see SPART Tutorial – Robot Model).






	Returns

	
	u0dot – Base-link accelerations [omegadot,rddot]. The angular acceleration is projected in a body-fixed CCS, while the linear acceleration is projected in the inertial CCS – [6x1].


	umdot – Manipulator joint accelerations – [n_qx1].










See also: src.kinematics_dynamics.ID() and src.kinematics_dynamics.I_I().






	
ID(wF0, wFm, t0, tL, t0dot, tLdot, P0, pm, I0, Im, Bij, Bi0, robot)

	This function solves the inverse dynamics (ID) problem (it obtains the
generalized forces from the accelerations) for a manipulator.

[tau0,taum] = ID(wF0,wFm,t0,tL,t0dot,tLdot,P0,pm,I0,Im,Bij,Bi0,robot)


	Parameters

	
	wF0 – Wrench acting on the base-link center-of-mass [n,f], projected in the inertial CCS – as a [6x1] matrix.


	wFm – Wrench acting on the links center-of-mass  [n,f], projected in the inertial CCS – as a [6xn] matrix.


	t0 – Base-link twist [omega,rdot], projected in the inertial CCS – as a [6x1] matrix.


	tL – Manipulator twist [omega,rdot], projected in the inertial CCS – as a [6xn] matrix.


	t0dot – Base-link twist-rate vector omegadot,rddot], projected in inertial frame – as a [6x1] matrix.


	tLdot – Manipulator twist-rate vector omegadot,rddot], projected in inertial frame – as a [6xn] matrix.


	P0 – Base-link twist-propagation “vector” – as a [6x6] matrix.


	pm – Manipulator twist-propagation “vector” – as a [6xn] matrix.


	I0 – Base-link inertia matrix, projected in the inertial CCS – as a [3x3] matrix.


	Im – Links inertia matrices, projected in the inertial CCS – as a [3x3xn] matrix.


	Bij – Twist-propagation matrix (for manipulator i>0 and j>0) – as a [6x6xn] matrix.


	Bi0 – Twist-propagation matrix (for i>0 and j=0) – as a [6x6xn] matrix.


	robot – Robot model (see SPART Tutorial – Robot Model).






	Returns

	
	tau0 – Base-link forces [n,f]. The torque n is projected in the body-fixed CCS, while the force f is projected in the inertial CCS – [6x1].


	taum – Joint forces/torques – as a [n_qx1] matrix.










See also: src.kinematics_dynamics.Floating_ID() and src.kinematics_dynamics.FD().






	
Floating_ID(wF0, wFm, Mm_tilde, H0, t0, tm, P0, pm, I0, Im, Bij, Bi0, u0, um, umdot, robot)

	This function solves the inverse dynamics problem (it obtains the
generalized forces from the accelerations) for a manipulator with 
a floating base.

[taum,u0dot] = Floating_ID(wF0,wFm,Mm_tilde,H0,t0,tm,P0,pm,I0,Im,Bij,Bi0,u0,um,umdot,robot)


	Parameters

	
	wF0 – Wrench acting on the base-link center-of-mass [n,f], projected in the inertial CCS – as a [6x1] matrix.


	wFm – Wrench acting on the links center-of-mass  [n,f], projected in the inertial CCS – as a [6xn] matrix.


	M0_tilde – Base-link mass composite body matrix – as a [6x6] matrix .


	Mm_tilde – Manipulator mass composite body matrix – as a [6x6xn] matrix.


	t0 – Base-link twist [omega,rdot], projected in the inertial CCS – as a [6x1] matrix.


	tL – Manipulator twist [omega,rdot], projected in the inertial CCS – as a [6xn] matrix.


	P0 – Base-link twist-propagation “vector” – as a [6x6] matrix.


	pm – Manipulator twist-propagation “vector” – as a [6xn] matrix.


	I0 – Base-link inertia matrix, projected in the inertial CCS – as a [3x3] matrix.


	Im – Links inertia matrices, projected in the inertial CCS – as a [3x3xn] matrix.


	Bij – Twist-propagation matrix (for manipulator i>0 and j>0) – as a [6x6xn] matrix.


	Bi0 – Twist-propagation matrix (for i>0 and j=0) – as a [6x6xn] matrix.


	u0 – Base-link velocities [omega,rdot]. The angular velocity is projected in the body-fixed CCS, while the linear velocity is projected in the inertial CCS – [6x1].


	um – Joint velocities – [n_qx1].


	umdot – Manipulator joint accelerations – [n_qx1].


	robot – Robot model (see SPART Tutorial – Robot Model).






	Returns

	
	tau0 – Base-link forces [n,f]. The torque n is projected in the body-fixed CCS, while the force f is projected in the inertial CCS – [6x1].


	taum – Joint forces/torques – as a [n_qx1] matrix.










See also: src.kinematics_dynamics.sID() and src.kinematics_dynamics.FD().






	
I_I(R0, RL, robot)

	Projects the link inertias in the inertial CCS.

[I0,Im]=I_I(R0,RL,robot)


	Parameters

	
	R0 – Rotation matrix from the base-link CCS to the inertial CCS – [3x3].


	RL – Links CCS 3x3 rotation matrices with respect to the inertial CCS – as a [3x3xn] matrix.


	robot – Robot model (see SPART Tutorial – Robot Model).






	Returns

	
	I0 – Base-link inertia matrix, projected in the inertial CCS – as a [3x3] matrix.


	Im – Links inertia matrices, projected in the inertial CCS – as a [3x3xn] matrix.










See also: src.kinematics_dynamics.MCB().






	
MCB(I0, Im, Bij, Bi0, robot)

	Computes the Mass Composite Body Matrix (MCB) of the multibody system.

[M0_tilde,Mm_tilde]=MCB(I0,Im,Bij,Bi0,robot)


	Parameters

	
	I0 – Base-link inertia matrix, projected in the inertial CCS – as a [3x3] matrix.


	Im – Links inertia matrices, projected in the inertial CCS – as a [3x3xn] matrix.


	Bij – Twist-propagation matrix (for manipulator i>0 and j>0) – as a [6x6xn] matrix.


	Bi0 – Twist-propagation matrix (for i>0 and j=0) – as a [6x6xn] matrix.


	robot – Robot model (see SPART Tutorial – Robot Model).






	Returns

	
	M0_tilde – Base-link mass composite body matrix – as a [6x6] matrix .


	Mm_tilde – Manipulator mass composite body matrix – as a [6x6xn] matrix.










See also: src.kinematics_dynamics.I_I().






	
GIM(M0_tilde, Mm_tilde, Bij, Bi0, P0, pm, robot)

	Computes the Generalized Inertia Matrix (GIM) H of the multibody vehicle.

This function uses a recursive algorithm.

[H0, H0m, Hm] = GIM(M0_tilde,Mm_tilde,Bij,Bi0,P0,pm,robot)


	Parameters

	
	M0_tilde – Base-link mass composite body matrix – as a [6x6] matrix .


	Mm_tilde – Manipulator mass composite body matrix – as a [6x6xn] matrix.


	Bij – Twist-propagation matrix (for manipulator i>0 and j>0) – as a [6x6xn] matrix.


	Bi0 – Twist-propagation matrix (for i>0 and j=0) – as a [6x6xn] matrix.


	P0 – Base-link twist-propagation “vector” – as a [6x6] matrix.


	pm – Manipulator twist-propagation “vector” – as a [6xn] matrix.


	robot – Robot model (see SPART Tutorial – Robot Model).






	Returns

	
	H0 – Base-link inertia matrix – as a [6x6] matrix.


	H0m – Base-link – manipulator coupling inertia matrix – as a [6xn_q] matrix.


	Hm – Manipulator inertia matrix – as a [n_qxn_q] matrix.










To obtain the full generalized inertia matrix H:

%Compute H
[H0, H0m, Hm] = GIM(M0_tilde,Mm_tilde,Bij,Bi0,P0,pm,robot);
H=[H0,H0m;H0m';Hm];





See also: src.kinematics_dynamics.CIM().






	
CIM(t0, tL, I0, Im, M0_tilde, Mm_tilde, Bij, Bi0, P0, pm, robot)

	Computes the Generalized Convective Inertia Matrix C of the multibody system.


	Parameters

	
	t0 – Base-link twist [omega,rdot], projected in the inertial CCS – as a [6x1] matrix.


	tL – Manipulator twist [omega,rdot], projected in the inertial CCS – as a [6xn] matrix.


	I0 – Base-link inertia matrix, projected in the inertial CCS – as a [3x3] matrix.


	Im – Links inertia matrices, projected in the inertial CCS – as a [3x3xn] matrix.


	M0_tilde – Base-link mass composite body matrix – as a [6x6] matrix .


	Mm_tilde – Manipulator mass composite body matrix – as a [6x6xn] matrix.


	Bij – Twist-propagation matrix (for manipulator i>0 and j>0) – as a [6x6xn] matrix.


	Bi0 – Twist-propagation matrix (for i>0 and j=0) – as a [6x6xn] matrix.


	P0 – Base-link twist-propagation “vector” – as a [6x6] matrix.


	pm – Manipulator twist-propagation “vector” – as a [6xn] matrix.


	robot – Robot model (see SPART Tutorial – Robot Model).






	Returns

	
	C0 -> Base-link convective inertia matrix – as a [6x6] matrix.


	C0m -> Base-link - manipulator coupling convective inertia matrix – as a [6xn_q] matrix.


	Cm0 -> Manipulator - base-link coupling convective inertia matrix – as a [n_qx6] matrix.


	Cm -> Manipulator convective inertia matrix – as a [n_qxn_q] matrix.










To obtain the full convective inertia matrix C:

%Compute the Convective Inertia Matrix C
[C0, C0m, Cm0, Cm] = CIM(t0,tL,I0,Im,M0_tilde,Mm_tilde,Bij,Bi0,P0,pm,robot)
C=[C0,C0m;Cm0,Cm];





See also: src.kinematics_dynamics.GIM().








Robot Model


	
urdf2robot(filename, verbose_flag)

	Creates a SPART robot model from a URDF file.

[robot,robot_keys] = urdf2robot(filename,verbose_flag)


	Parameters

	
	filename – Path to the URDF file.


	verbose_flag – True for verbose output (default False).






	Returns

	
	robot – Robot model (see SPART Tutorial – Robot Model).


	robot_keys – Links/Joints name map (see SPART Tutorial – Robot Model).










This function was inspired by:
https://github.com/jhu-lcsr/matlab_urdf/blob/master/load_ne_id.m






	
DH_Serial2robot(DH_data)

	Transforms a description of a multibody system, provided in Denavit-Hartenberg parameters, into the SPART robot model.

[robot,T_Ln_EE] = DH_Serial2robot(DH_data)


	Parameters

	
	DH_data – Structure containing the DH parameters. (see Using the Denavit–Hartenberg convention with SPART).






	Returns

	
	robot – Robot model (see SPART Tutorial – Robot Model).


	T_Ln_EE – Homogeneous transformation matrix from last link to end-effector –[4x4].










DH descriptions are only supported for serial configurations.






	
ConnectivityMap(robot)

	Produces the connectivity map for a robot model.

[branch,child,child_base]=ConnectivityMap(robot)


	Parameters

	
	robot – Robot model (see SPART Tutorial – Robot Model).






	Returns

	
	branch – Branch connectivity map. This is a [nxn] lower triangular matrix. If the i,j element is 1 it means that the ith and jth link are on the same branch.


	child – A [nxn] matrix. If the i,j element is 1, then the ith link is a child of the jth link.


	child_base – A [nx1] matrix. If the ith element is 1, the ith link is connected to the base-link.










See also: src.robot_model.urdf2robot() and src.robot_model.DH_Serial2robot().








Attitude Transformations


	
Angles321_DCM(Angles)

	Convert the Euler angles (321 sequence), x-phi, y-theta, z-psi to its DCM equivalent.

DCM = Angles321_DCM(Angles)


	Parameters

	
	Angles – Euler angles [x-phi, y-theta, z-psi] – [3x1].






	Returns

	
	DCM – Direction Cosine Matrix – [3x3].










See also: src.attitude_transformations.Angles123_DCM() and src.attitude_transformations.DCM_Angles321().






	
Angles123_DCM(Angles)

	#codegen
Convert the Euler angles (123 sequence), x-phi, y-theta, z-psi to DCM.

DCM = Angles123_DCM(Angles)


	Parameters

	
	Angles – Euler angles [x-phi, y-theta, z-psi] – [3x1].






	Returns

	
	DCM – Direction Cosine Matrix – [3x3].










See also: src.attitude_transformations.Angles321_DCM() and src.attitude_transformations.DCM_Angles321().








Utilities


	
SkewSym(x)

	Computes the skew-symmetric matrix of a vector, which is also the
left-hand-side matricial equivalent of the vector cross product

[x_skew] = SkewSym(x)


	Parameters

	
	x – [3x1] column matrix (the vector).






	Returns

	
	x_skew – [3x3] skew-symmetric matrix of x.




















          

      

      

    

  

    
      
          
            
  
Examples of URDF Models

SPART comes with a few URDF models ready to use. These models are located in /URDF_models, which should be already included in your path (see Installing SPART).


Spacecraft with robotic manipulators


	SC_3DoF.urdf a simple spacecraft with a 3 DoF manipulator.





[image: Spacecraft with a 3 DoF manipulator]
Simple spacecraft with a 3 DoF manipulator.






Spacecraft


	Simple_Spacecraft.urdf a simple spacecraft model.





[image: Simple spacecraft with 2 solar panels.]
Simple spacecraft with 2 solar panels.






Fixed-base manipulators


	kuka_iiwa.urdf Kuka iiwa manipulator.


	kuka_lwr.urdf Kuka lwr manipulator.







Acknowledgments
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Citing SPART

Are you using SPART in research work to be published? If so, please include explicit mention of SPART. We suggest to use the following language:


To derive the kinematic and dynamic properties of the system we used SPART, a modeling and control software package for mobile-base robotic multibody systems [1].




with the following corresponding entry in your references:


[1] J. Virgili-Llop et al., “SPART: an open-source modeling and control toolkit for mobile-base robotic multibody systems with kinematic tree topologies,”
https://github.com/NPS-SRL/SPART.




The corresponding BiBTeX citation is given below:

@misc{SPART,
Author = {Josep Virgili-Llop and others},
Howpublished = {\url{https://github.com/NPS-SRL/SPART}},
Title = {{SPART}: an open-source modeling and control toolkit for mobile-base robotic multibody systems with kinematic tree topologies}}









          

      

      

    

  

    
      
          
            
  
Getting in touch

If you can’t figure how to do something with SPART, have found a bug in the code, or want to suggest an improvement or new feature, you can always open an issue [https://github.com/NPS-SRL/SPART/issues] or send an email to jvirgili@nps.edu. We will try our best to help you, resolve the problem, or implement the suggested features.
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Using the Denavit–Hartenberg convention with SPART

The DEnavit–Hartenberg (DH) convention is a classical way to provide the kinematic description of a manipulator. To illustrate how to input DH description into SPART we will use the following spacecraft with a 5 degree-of-freedom manipulator example with the following dimensions: L0=50, L1=125, L2=144, L3=47, L4=142, L5=80, L6=70 mm.


[image: Tutorial model configuration]
Spacecraft-manipulator system.



The code of this tutorial can be found in examples/Tutorial/Tutorial.m.


Kinematics

Before SPART can start computing any kinematic or dynamic magnitude it needs a representation of the geometry and dynamic properties of the spacecraft-manipulator system. These fixed parameters are introduced into a data structure.


	The data structure has 3 fields:

	
	data.n – Number of links.


	
	data.man(i) – Describes the ith link/joint.

	
	data.man(i).type – Type of joint. 0 for fixed, 1 for a revolute joint, 2 for a prismatic joint.


	data.man(i).DH – Denavit–Hartenberg parameters. Definitions are included below.


	data.man(i).b – Vector from the Center-of-Mass of the link to the next joint in the local frame.


	data.man(i).mass – Mass of the link.


	data.man(i).I – Inertia matrix of the link.










	
	data.base – Describes the base–spacecraft.

	
	data.base.T_L0_J1 – Homogeneous transformation matrix from the base to the first joint.


	data.base.mass – Mass of the base–spacecraft.


	data.base.I – Inertia matrix of the base–spacecraft










	
	data.EE – Provides additional information about the end–effector

	
	data.EE.theta – Final rotation about the z axis. Last joint DH parameters are not enough to completely specify the orientation of the x and y end–effector axes.


	data.EE.d – Final translation about the z–axis. Last joint DH parameters are not enough to completely specify the location of the end-effector frame origin along the z–axis.
















The kinematic relationship between a pair of connected joints is expressed by the Denavit–Hartenberg parameters.


[image: DH parameters]
Denavit-Hartenberg parameters.




[image: DH text parameters]
Denavit-Hartenberg parameters and their geometric definition.



Additional geometric definitions are included in the following figure.


[image: DH text parameters]
Schematic disposition of links and joints.



The DH convention does not specify the orientation and origin of the first joint CCS (it’s origin must lie within the rotation or sliding axis). We then have freedom to set these. The orientation and the origin of the first joint are specified through the homogeneous transformation matrix data.base.T_L0_J1. An homogeneous transformation matrix encapsulates the orientation and position for a CCS with respect to another one, and in this particular case it can be written as follows.


\[\begin{split}^{\mathcal{L}_{0}}T_{\mathcal{J}_{1}}=\left[\begin{array}{cc}
^{\mathcal{L}_{0}}R_{\mathcal{J}_{1}} & ^{\mathcal{L}_{0}}s_{\mathcal{J}_{1}}\\
0_{1,3} & 1
\end{array}\right]\end{split}\]

For this example we will assume that the base CCS and the first joint frame \(\mathcal{J}_{1}\) share the same orientation \(^{\mathcal{L}_{0}}R_{\mathcal{J}_{1}}=I_{3\times 3}\) and that \(\mathcal{J}_{1}\) is only displaced L0 in the \(k\) direction  \(^{\mathcal{L}_{0}}s_{\mathcal{J}_{1}}=\left[0,0,L_{0}\right]^{T}\).

%Firts joint location with respect to base
data.base.T_L0_J1=[eye(3),[0;0;L0];zeros(1,3),1];





We will also assume that the links are homogeneous bodies and so their center-of-mass will be located at their geometric center, which allows to easily determine the data.man(i).b vector. The data.man(i).b vector goes from the center-of-mass of the ith link to the origin of the ith+1 joint in the local ith link reference frame.
Using the DH parameters and assuming homogeneous bodies the DH and b vector are given below.











	Joint/Link

	DH.d

	DH.alpha

	DH.a

	DH.theta

	b





	Joint 1

	L1

	pi/2

	0

	0

	[0;L1/2;0]



	Joint 2

	0

	0

	sqrt(L2^2+L3^2)

	atan2(L2,L3)

	*see below



	Joint 3

	0

	0

	L4

	–atan2(L2,L3)

	[L4/2;0;0]



	Joint 4

	0

	pi/2

	0

	pi/2

	[0;0;–L5/2]



	Joint 5

	L5+L6

	–pi/2

	0

	-pi/2

	[L6/2;0;0]






data.man(2).b = [cos(-data.man(2).DH.theta),-sin(-data.man(2).DH.theta),0;sin(-data.man(2).DH.theta),cos(-data.man(2).DH.theta),0;0,0,1]*[L3^2/2;L2^2/2 + L3*L2;0]/(L2 + L3);

The resulting links and joints Cartesian Coordinate Systems are shown in the following image.


[image: CCS of the tutorial model configuration]
CCS of the spacecraft-manipulator system.



Finally, the DH parameters do not allow to freely set the end-effector CCS. For that we need two additional \(d\) and \(\theta\) DH parameters, that are applied to the last transformation. In this case the required values are as follows.

%End-Effector
data.EE.theta=-pi/2;
data.EE.d=0;





We can then create our data structure:

%--- Manipulator Definition ----%
%Number of joints/links
data.n=5;

%First joint
data.man(1).type=1;
data.man(1).DH.d = L1;
data.man(1).DH.alpha = pi/2;
data.man(1).DH.a = 0;
data.man(1).DH.theta=0;
data.man(1).b = [0;L1/2;0];

%Second joint
data.man(2).type=1;
data.man(2).DH.d = 0;
data.man(2).DH.alpha = 0;
data.man(2).DH.a = sqrt(L2^2+L3^2);
data.man(2).DH.theta=atan2(L2,L3);
data.man(2).b = [cos(-data.man(2).DH.theta),-sin(-data.man(2).DH.theta),0;sin(-data.man(2).DH.theta),cos(-data.man(2).DH.theta),0;0,0,1]*[L3^2/2;L2^2/2 + L3*L2;0]/(L2 + L3);

%Third joint
data.man(3).type=1;
data.man(3).DH.d = 0;
data.man(3).DH.alpha = 0;
data.man(3).DH.a =L4;
data.man(3).DH.theta=-atan2(L2,L3);
data.man(3).b = [L4/2;0;0];

%Fourth joint
data.man(4).type=1;
data.man(4).DH.d = 0;
data.man(4).DH.alpha = pi/2;
data.man(4).DH.a = 0;
data.man(4).DH.theta=pi/2;
data.man(4).b = [0;0;-L5/2];

%Fifth joint
data.man(5).type=1;
data.man(5).DH.d = L5+L6;
data.man(5).DH.alpha =-pi/2;
data.man(5).DH.a = 0;
data.man(5).DH.theta=-pi/2;
data.man(5).b = [L6/2;0;0];

%Firts joint location with respect to base
data.base.T_L0_J1=[eye(3),[0;0;L0];zeros(1,3),1];

%End-Effector
data.EE.theta=-pi/2;
data.EE.d=0;








Dynamic parameters

Let’s assume, for the sake of simplicity, that all the links masses are 2 kg and have diagonal inertia matrices with \(I_{xx}=2/10\), \(I_{yy}=1/10\), and \(I_{zz}=3/10\, \mathrm{kg\,m}^2\). And the base-spacecraft has a mass of 20 kg and inertia of \(I_{xx}=2\), kg/m2 \(I_{yy}=1\), and \(I_{zz}=3 \, \mathrm{kg\,m}^2\).

These variables can be added to the data structure as follows.

%First joint
data.man(1).mass=2;
data.man(1).I=diag([2,1,3])/10;

%Second joint
data.man(2).mass=2;
data.man(2).I=diag([2,1,3])/10;

%Third joint
data.man(3).mass=2;
data.man(3).I=diag([2,1,3])/10;

%Fourth joint
data.man(4).mass=2;
data.man(4).I=diag([2,1,3])/10;

%Fifth joint
data.man(5).mass=2;
data.man(5).I=diag([2,1,3])/10;

%Base-spacecraft mass and inertia
data.base.mass=20;
data.base.I=diag([2,1,3]);








Creating the robot model

Now that we have a complete description of the manipulator we can convert it into a robot model.

%Create robot structure
[robot,T_Ln_EE] = DH_Serial2robot(data);











          

      

      

    

  

    
      
          
            
  
Robot Model

The robot model contains all the required kinematic and dynamic information of the robotic vehicle that SPARTS requires to compute all the kinematic and dynamic quantities.

The robot model is build as a Matlab structure with the following fields:



	robot.name – Name of the robot.


	robot.n_q – Number of manipulator variables (exclude the base variables).


	robot.n_links_joints – Number of manipulator links and joints (include fixed joints).


	robot.links – Structure containing the links information.



	robot.links(i).id – Link id.


	robot.links(i).parent_joint – Parent joint id.


	robot.links(i).T – Transformation matrix from parent joint.


	robot.links(i).mass – Link’s mass.


	robot.links(i).inertia – Link’s inertia matrix.









	robot.joints – Structure containing the joints information.



	robot.joints(i).id – Joint id.


	robot.joints(i).type – Joint type (0 – fixed, 1 – revolute, 2 – prismatic)


	robot.joints(i).q_id – Manipulator variable id (if q_id=-1 indicates a fixed joint).


	robot.joints(i).parent_link – Parent link id.


	robot.joints(i).child_link – Child link id.


	robot.joints(i).axis – Joint axis.


	robot.links(i).T – Transformation matrix from parent Link.









	robot.base_link – Structure containing the base link (root) information.



	robot.base_link.name – Link name.


	robot.base_links.T – Transformation matrix from parent joint.


	robot.base_links.mass – Link’s mass.


	robot.base_links.inertia – Link’s inertia matrix.









	robot.Con – Structure containing extra connectivity information.



	robot.con.branch – Branch connectivity map. This is an nxn  lower triangular matrix. If the i,j element is 1 it means that the ith and jth link are on the same branch (i.e. kinematic chain).


	robot.con.child – Child connectivity of links. It is a nxn matrix and if the i,j element is 1 then the ith link is a child of the jth link.


	robot.con.child_base – Child connectivity of base links. It is a nx1 vector that contains 1s on the links that are connected to the base.


















          

      

      

    

  

    
      
          
            
  
Using URDF with SPART

SPART can also use the popular Unified Robot Description Format (URDF) file. More information about how to create this type of robot descriptions can be found in the ROS wiki [http://wiki.ros.org/urdf]. Particularly clarifying are the XML field descriptions [http://wiki.ros.org/urdf/XML].

SPART includes several URDF models that can be found in the URDF_models folder. A list of these models can be found in Examples of URDF Models.

Once you have your URDF description it has to be converted into the robot model. This can be easily done as follows:

%URDF filename
filename='kuka_lwr/kuka.urdf';

%Create robot model
[robot,robot_keys] = urdf2robot(filename);





The robot_keys variables contains the original URDF names of the joints and links in three Matlab containers.

To get the id of a link:

robot_keys.link_id('Link_name')





To get the id of a joint:

robot_keys.joint_id('Joint_name')





To get the id of a variable qm (moving joint):

robot_keys.q_id('Joint_name')





And if you want to know the names of the available links, all joints, and moving joints:

link_names=keys(robot_keys.link_id);
joint_names=keys(robot_keys.joint_id);
qm_names=keys(robot_keys.q_id);






Limitations

There are several known limitations with how SPART models parses URDF models.


	Revolute joint limits are not enforced. Revolute and Continuous joints are treated equally.


	Planar and Floating joints are not supported. Please redefine them as a combination of Revolute/Continuous and Prismatic joints.







Virtual World in Simulink Using URDF

One advantage of using URDF is that it can be imported into a Simulink virtual world (since Matlab 2016b). To do so follow the MathWorks documentation [https://www.mathworks.com/help/sl3d/import-visual-representations-of-robot-models.html].
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